 c728cc88ce
			
		
	
	
	c728cc88ce
	
	
	
		
			
			The state machine code in the elsa driver uses interruptible_sleep_on to wait for state changes, which is racy. A closer look at the possible states reveals that it is always used to wait for getting back into ARCOFI_NOP, so we can use wait_event_interruptible instead. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Karsten Keil <isdn@linux-pingi.de> Cc: netdev@vger.kernel.org Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			659 lines
		
	
	
	
		
			17 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			659 lines
		
	
	
	
		
			17 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* $Id: elsa_ser.c,v 2.14.2.3 2004/02/11 13:21:33 keil Exp $
 | |
|  *
 | |
|  * stuff for the serial modem on ELSA cards
 | |
|  *
 | |
|  * This software may be used and distributed according to the terms
 | |
|  * of the GNU General Public License, incorporated herein by reference.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/serial.h>
 | |
| #include <linux/serial_reg.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #define MAX_MODEM_BUF	256
 | |
| #define WAKEUP_CHARS	(MAX_MODEM_BUF / 2)
 | |
| #define RS_ISR_PASS_LIMIT 256
 | |
| #define BASE_BAUD (1843200 / 16)
 | |
| 
 | |
| //#define SERIAL_DEBUG_OPEN 1
 | |
| //#define SERIAL_DEBUG_INTR 1
 | |
| //#define SERIAL_DEBUG_FLOW 1
 | |
| #undef SERIAL_DEBUG_OPEN
 | |
| #undef SERIAL_DEBUG_INTR
 | |
| #undef SERIAL_DEBUG_FLOW
 | |
| #undef SERIAL_DEBUG_REG
 | |
| //#define SERIAL_DEBUG_REG 1
 | |
| 
 | |
| #ifdef SERIAL_DEBUG_REG
 | |
| static u_char deb[32];
 | |
| const char *ModemIn[] = {"RBR", "IER", "IIR", "LCR", "MCR", "LSR", "MSR", "SCR"};
 | |
| const char *ModemOut[] = {"THR", "IER", "FCR", "LCR", "MCR", "LSR", "MSR", "SCR"};
 | |
| #endif
 | |
| 
 | |
| static char *MInit_1 = "AT&F&C1E0&D2\r\0";
 | |
| static char *MInit_2 = "ATL2M1S64=13\r\0";
 | |
| static char *MInit_3 = "AT+FCLASS=0\r\0";
 | |
| static char *MInit_4 = "ATV1S2=128X1\r\0";
 | |
| static char *MInit_5 = "AT\\V8\\N3\r\0";
 | |
| static char *MInit_6 = "ATL0M0&G0%E1\r\0";
 | |
| static char *MInit_7 = "AT%L1%M0%C3\r\0";
 | |
| 
 | |
| static char *MInit_speed28800 = "AT%G0%B28800\r\0";
 | |
| 
 | |
| static char *MInit_dialout = "ATs7=60 x1 d\r\0";
 | |
| static char *MInit_dialin = "ATs7=60 x1 a\r\0";
 | |
| 
 | |
| 
 | |
| static inline unsigned int serial_in(struct IsdnCardState *cs, int offset)
 | |
| {
 | |
| #ifdef SERIAL_DEBUG_REG
 | |
| 	u_int val = inb(cs->hw.elsa.base + 8 + offset);
 | |
| 	debugl1(cs, "in   %s %02x", ModemIn[offset], val);
 | |
| 	return (val);
 | |
| #else
 | |
| 	return inb(cs->hw.elsa.base + 8 + offset);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline unsigned int serial_inp(struct IsdnCardState *cs, int offset)
 | |
| {
 | |
| #ifdef SERIAL_DEBUG_REG
 | |
| #ifdef ELSA_SERIAL_NOPAUSE_IO
 | |
| 	u_int val = inb(cs->hw.elsa.base + 8 + offset);
 | |
| 	debugl1(cs, "inp  %s %02x", ModemIn[offset], val);
 | |
| #else
 | |
| 	u_int val = inb_p(cs->hw.elsa.base + 8 + offset);
 | |
| 	debugl1(cs, "inP  %s %02x", ModemIn[offset], val);
 | |
| #endif
 | |
| 	return (val);
 | |
| #else
 | |
| #ifdef ELSA_SERIAL_NOPAUSE_IO
 | |
| 	return inb(cs->hw.elsa.base + 8 + offset);
 | |
| #else
 | |
| 	return inb_p(cs->hw.elsa.base + 8 + offset);
 | |
| #endif
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void serial_out(struct IsdnCardState *cs, int offset, int value)
 | |
| {
 | |
| #ifdef SERIAL_DEBUG_REG
 | |
| 	debugl1(cs, "out  %s %02x", ModemOut[offset], value);
 | |
| #endif
 | |
| 	outb(value, cs->hw.elsa.base + 8 + offset);
 | |
| }
 | |
| 
 | |
| static inline void serial_outp(struct IsdnCardState *cs, int offset,
 | |
| 			       int value)
 | |
| {
 | |
| #ifdef SERIAL_DEBUG_REG
 | |
| #ifdef ELSA_SERIAL_NOPAUSE_IO
 | |
| 	debugl1(cs, "outp %s %02x", ModemOut[offset], value);
 | |
| #else
 | |
| 	debugl1(cs, "outP %s %02x", ModemOut[offset], value);
 | |
| #endif
 | |
| #endif
 | |
| #ifdef ELSA_SERIAL_NOPAUSE_IO
 | |
| 	outb(value, cs->hw.elsa.base + 8 + offset);
 | |
| #else
 | |
| 	outb_p(value, cs->hw.elsa.base + 8 + offset);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine is called to set the UART divisor registers to match
 | |
|  * the specified baud rate for a serial port.
 | |
|  */
 | |
| static void change_speed(struct IsdnCardState *cs, int baud)
 | |
| {
 | |
| 	int	quot = 0, baud_base;
 | |
| 	unsigned cval, fcr = 0;
 | |
| 
 | |
| 
 | |
| 	/* byte size and parity */
 | |
| 	cval = 0x03;
 | |
| 	/* Determine divisor based on baud rate */
 | |
| 	baud_base = BASE_BAUD;
 | |
| 	quot = baud_base / baud;
 | |
| 	/* If the quotient is ever zero, default to 9600 bps */
 | |
| 	if (!quot)
 | |
| 		quot = baud_base / 9600;
 | |
| 
 | |
| 	/* Set up FIFO's */
 | |
| 	if ((baud_base / quot) < 2400)
 | |
| 		fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_1;
 | |
| 	else
 | |
| 		fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_8;
 | |
| 	serial_outp(cs, UART_FCR, fcr);
 | |
| 	/* CTS flow control flag and modem status interrupts */
 | |
| 	cs->hw.elsa.IER &= ~UART_IER_MSI;
 | |
| 	cs->hw.elsa.IER |= UART_IER_MSI;
 | |
| 	serial_outp(cs, UART_IER, cs->hw.elsa.IER);
 | |
| 
 | |
| 	debugl1(cs, "modem quot=0x%x", quot);
 | |
| 	serial_outp(cs, UART_LCR, cval | UART_LCR_DLAB);/* set DLAB */
 | |
| 	serial_outp(cs, UART_DLL, quot & 0xff);		/* LS of divisor */
 | |
| 	serial_outp(cs, UART_DLM, quot >> 8);		/* MS of divisor */
 | |
| 	serial_outp(cs, UART_LCR, cval);		/* reset DLAB */
 | |
| 	serial_inp(cs, UART_RX);
 | |
| }
 | |
| 
 | |
| static int mstartup(struct IsdnCardState *cs)
 | |
| {
 | |
| 	int retval = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear the FIFO buffers and disable them
 | |
| 	 * (they will be reenabled in change_speed())
 | |
| 	 */
 | |
| 	serial_outp(cs, UART_FCR, (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT));
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point there's no way the LSR could still be 0xFF;
 | |
| 	 * if it is, then bail out, because there's likely no UART
 | |
| 	 * here.
 | |
| 	 */
 | |
| 	if (serial_inp(cs, UART_LSR) == 0xff) {
 | |
| 		retval = -ENODEV;
 | |
| 		goto errout;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear the interrupt registers.
 | |
| 	 */
 | |
| 	(void) serial_inp(cs, UART_RX);
 | |
| 	(void) serial_inp(cs, UART_IIR);
 | |
| 	(void) serial_inp(cs, UART_MSR);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now, initialize the UART
 | |
| 	 */
 | |
| 	serial_outp(cs, UART_LCR, UART_LCR_WLEN8);	/* reset DLAB */
 | |
| 
 | |
| 	cs->hw.elsa.MCR = 0;
 | |
| 	cs->hw.elsa.MCR = UART_MCR_DTR | UART_MCR_RTS | UART_MCR_OUT2;
 | |
| 	serial_outp(cs, UART_MCR, cs->hw.elsa.MCR);
 | |
| 
 | |
| 	/*
 | |
| 	 * Finally, enable interrupts
 | |
| 	 */
 | |
| 	cs->hw.elsa.IER = UART_IER_MSI | UART_IER_RLSI | UART_IER_RDI;
 | |
| 	serial_outp(cs, UART_IER, cs->hw.elsa.IER);	/* enable interrupts */
 | |
| 
 | |
| 	/*
 | |
| 	 * And clear the interrupt registers again for luck.
 | |
| 	 */
 | |
| 	(void)serial_inp(cs, UART_LSR);
 | |
| 	(void)serial_inp(cs, UART_RX);
 | |
| 	(void)serial_inp(cs, UART_IIR);
 | |
| 	(void)serial_inp(cs, UART_MSR);
 | |
| 
 | |
| 	cs->hw.elsa.transcnt = cs->hw.elsa.transp = 0;
 | |
| 	cs->hw.elsa.rcvcnt = cs->hw.elsa.rcvp = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * and set the speed of the serial port
 | |
| 	 */
 | |
| 	change_speed(cs, BASE_BAUD);
 | |
| 	cs->hw.elsa.MFlag = 1;
 | |
| errout:
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine will shutdown a serial port; interrupts are disabled, and
 | |
|  * DTR is dropped if the hangup on close termio flag is on.
 | |
|  */
 | |
| static void mshutdown(struct IsdnCardState *cs)
 | |
| {
 | |
| 
 | |
| #ifdef SERIAL_DEBUG_OPEN
 | |
| 	printk(KERN_DEBUG"Shutting down serial ....");
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * clear delta_msr_wait queue to avoid mem leaks: we may free the irq
 | |
| 	 * here so the queue might never be waken up
 | |
| 	 */
 | |
| 
 | |
| 	cs->hw.elsa.IER = 0;
 | |
| 	serial_outp(cs, UART_IER, 0x00);	/* disable all intrs */
 | |
| 	cs->hw.elsa.MCR &= ~UART_MCR_OUT2;
 | |
| 
 | |
| 	/* disable break condition */
 | |
| 	serial_outp(cs, UART_LCR, serial_inp(cs, UART_LCR) & ~UART_LCR_SBC);
 | |
| 
 | |
| 	cs->hw.elsa.MCR &= ~(UART_MCR_DTR | UART_MCR_RTS);
 | |
| 	serial_outp(cs, UART_MCR, cs->hw.elsa.MCR);
 | |
| 
 | |
| 	/* disable FIFO's */
 | |
| 	serial_outp(cs, UART_FCR, (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT));
 | |
| 	serial_inp(cs, UART_RX);    /* read data port to reset things */
 | |
| 
 | |
| #ifdef SERIAL_DEBUG_OPEN
 | |
| 	printk(" done\n");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| write_modem(struct BCState *bcs) {
 | |
| 	int ret = 0;
 | |
| 	struct IsdnCardState *cs = bcs->cs;
 | |
| 	int count, len, fp;
 | |
| 
 | |
| 	if (!bcs->tx_skb)
 | |
| 		return 0;
 | |
| 	if (bcs->tx_skb->len <= 0)
 | |
| 		return 0;
 | |
| 	len = bcs->tx_skb->len;
 | |
| 	if (len > MAX_MODEM_BUF - cs->hw.elsa.transcnt)
 | |
| 		len = MAX_MODEM_BUF - cs->hw.elsa.transcnt;
 | |
| 	fp = cs->hw.elsa.transcnt + cs->hw.elsa.transp;
 | |
| 	fp &= (MAX_MODEM_BUF - 1);
 | |
| 	count = len;
 | |
| 	if (count > MAX_MODEM_BUF - fp) {
 | |
| 		count = MAX_MODEM_BUF - fp;
 | |
| 		skb_copy_from_linear_data(bcs->tx_skb,
 | |
| 					  cs->hw.elsa.transbuf + fp, count);
 | |
| 		skb_pull(bcs->tx_skb, count);
 | |
| 		cs->hw.elsa.transcnt += count;
 | |
| 		ret = count;
 | |
| 		count = len - count;
 | |
| 		fp = 0;
 | |
| 	}
 | |
| 	skb_copy_from_linear_data(bcs->tx_skb,
 | |
| 				  cs->hw.elsa.transbuf + fp, count);
 | |
| 	skb_pull(bcs->tx_skb, count);
 | |
| 	cs->hw.elsa.transcnt += count;
 | |
| 	ret += count;
 | |
| 
 | |
| 	if (cs->hw.elsa.transcnt &&
 | |
| 	    !(cs->hw.elsa.IER & UART_IER_THRI)) {
 | |
| 		cs->hw.elsa.IER |= UART_IER_THRI;
 | |
| 		serial_outp(cs, UART_IER, cs->hw.elsa.IER);
 | |
| 	}
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| modem_fill(struct BCState *bcs) {
 | |
| 
 | |
| 	if (bcs->tx_skb) {
 | |
| 		if (bcs->tx_skb->len) {
 | |
| 			write_modem(bcs);
 | |
| 			return;
 | |
| 		} else {
 | |
| 			if (test_bit(FLG_LLI_L1WAKEUP, &bcs->st->lli.flag) &&
 | |
| 			    (PACKET_NOACK != bcs->tx_skb->pkt_type)) {
 | |
| 				u_long	flags;
 | |
| 				spin_lock_irqsave(&bcs->aclock, flags);
 | |
| 				bcs->ackcnt += bcs->hw.hscx.count;
 | |
| 				spin_unlock_irqrestore(&bcs->aclock, flags);
 | |
| 				schedule_event(bcs, B_ACKPENDING);
 | |
| 			}
 | |
| 			dev_kfree_skb_any(bcs->tx_skb);
 | |
| 			bcs->tx_skb = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
 | |
| 		bcs->hw.hscx.count = 0;
 | |
| 		test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
 | |
| 		write_modem(bcs);
 | |
| 	} else {
 | |
| 		test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
 | |
| 		schedule_event(bcs, B_XMTBUFREADY);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void receive_chars(struct IsdnCardState *cs,
 | |
| 				 int *status)
 | |
| {
 | |
| 	unsigned char ch;
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	do {
 | |
| 		ch = serial_in(cs, UART_RX);
 | |
| 		if (cs->hw.elsa.rcvcnt >= MAX_MODEM_BUF)
 | |
| 			break;
 | |
| 		cs->hw.elsa.rcvbuf[cs->hw.elsa.rcvcnt++] = ch;
 | |
| #ifdef SERIAL_DEBUG_INTR
 | |
| 		printk("DR%02x:%02x...", ch, *status);
 | |
| #endif
 | |
| 		if (*status & (UART_LSR_BI | UART_LSR_PE |
 | |
| 			       UART_LSR_FE | UART_LSR_OE)) {
 | |
| 
 | |
| #ifdef SERIAL_DEBUG_INTR
 | |
| 			printk("handling exept....");
 | |
| #endif
 | |
| 		}
 | |
| 		*status = serial_inp(cs, UART_LSR);
 | |
| 	} while (*status & UART_LSR_DR);
 | |
| 	if (cs->hw.elsa.MFlag == 2) {
 | |
| 		if (!(skb = dev_alloc_skb(cs->hw.elsa.rcvcnt)))
 | |
| 			printk(KERN_WARNING "ElsaSER: receive out of memory\n");
 | |
| 		else {
 | |
| 			memcpy(skb_put(skb, cs->hw.elsa.rcvcnt), cs->hw.elsa.rcvbuf,
 | |
| 			       cs->hw.elsa.rcvcnt);
 | |
| 			skb_queue_tail(&cs->hw.elsa.bcs->rqueue, skb);
 | |
| 		}
 | |
| 		schedule_event(cs->hw.elsa.bcs, B_RCVBUFREADY);
 | |
| 	} else {
 | |
| 		char tmp[128];
 | |
| 		char *t = tmp;
 | |
| 
 | |
| 		t += sprintf(t, "modem read cnt %d", cs->hw.elsa.rcvcnt);
 | |
| 		QuickHex(t, cs->hw.elsa.rcvbuf, cs->hw.elsa.rcvcnt);
 | |
| 		debugl1(cs, "%s", tmp);
 | |
| 	}
 | |
| 	cs->hw.elsa.rcvcnt = 0;
 | |
| }
 | |
| 
 | |
| static inline void transmit_chars(struct IsdnCardState *cs, int *intr_done)
 | |
| {
 | |
| 	int count;
 | |
| 
 | |
| 	debugl1(cs, "transmit_chars: p(%x) cnt(%x)", cs->hw.elsa.transp,
 | |
| 		cs->hw.elsa.transcnt);
 | |
| 
 | |
| 	if (cs->hw.elsa.transcnt <= 0) {
 | |
| 		cs->hw.elsa.IER &= ~UART_IER_THRI;
 | |
| 		serial_out(cs, UART_IER, cs->hw.elsa.IER);
 | |
| 		return;
 | |
| 	}
 | |
| 	count = 16;
 | |
| 	do {
 | |
| 		serial_outp(cs, UART_TX, cs->hw.elsa.transbuf[cs->hw.elsa.transp++]);
 | |
| 		if (cs->hw.elsa.transp >= MAX_MODEM_BUF)
 | |
| 			cs->hw.elsa.transp = 0;
 | |
| 		if (--cs->hw.elsa.transcnt <= 0)
 | |
| 			break;
 | |
| 	} while (--count > 0);
 | |
| 	if ((cs->hw.elsa.transcnt < WAKEUP_CHARS) && (cs->hw.elsa.MFlag == 2))
 | |
| 		modem_fill(cs->hw.elsa.bcs);
 | |
| 
 | |
| #ifdef SERIAL_DEBUG_INTR
 | |
| 	printk("THRE...");
 | |
| #endif
 | |
| 	if (intr_done)
 | |
| 		*intr_done = 0;
 | |
| 	if (cs->hw.elsa.transcnt <= 0) {
 | |
| 		cs->hw.elsa.IER &= ~UART_IER_THRI;
 | |
| 		serial_outp(cs, UART_IER, cs->hw.elsa.IER);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static void rs_interrupt_elsa(struct IsdnCardState *cs)
 | |
| {
 | |
| 	int status, iir, msr;
 | |
| 	int pass_counter = 0;
 | |
| 
 | |
| #ifdef SERIAL_DEBUG_INTR
 | |
| 	printk(KERN_DEBUG "rs_interrupt_single(%d)...", cs->irq);
 | |
| #endif
 | |
| 
 | |
| 	do {
 | |
| 		status = serial_inp(cs, UART_LSR);
 | |
| 		debugl1(cs, "rs LSR %02x", status);
 | |
| #ifdef SERIAL_DEBUG_INTR
 | |
| 		printk("status = %x...", status);
 | |
| #endif
 | |
| 		if (status & UART_LSR_DR)
 | |
| 			receive_chars(cs, &status);
 | |
| 		if (status & UART_LSR_THRE)
 | |
| 			transmit_chars(cs, NULL);
 | |
| 		if (pass_counter++ > RS_ISR_PASS_LIMIT) {
 | |
| 			printk("rs_single loop break.\n");
 | |
| 			break;
 | |
| 		}
 | |
| 		iir = serial_inp(cs, UART_IIR);
 | |
| 		debugl1(cs, "rs IIR %02x", iir);
 | |
| 		if ((iir & 0xf) == 0) {
 | |
| 			msr = serial_inp(cs, UART_MSR);
 | |
| 			debugl1(cs, "rs MSR %02x", msr);
 | |
| 		}
 | |
| 	} while (!(iir & UART_IIR_NO_INT));
 | |
| #ifdef SERIAL_DEBUG_INTR
 | |
| 	printk("end.\n");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| extern int open_hscxstate(struct IsdnCardState *cs, struct BCState *bcs);
 | |
| extern void modehscx(struct BCState *bcs, int mode, int bc);
 | |
| extern void hscx_l2l1(struct PStack *st, int pr, void *arg);
 | |
| 
 | |
| static void
 | |
| close_elsastate(struct BCState *bcs)
 | |
| {
 | |
| 	modehscx(bcs, 0, bcs->channel);
 | |
| 	if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
 | |
| 		if (bcs->hw.hscx.rcvbuf) {
 | |
| 			if (bcs->mode != L1_MODE_MODEM)
 | |
| 				kfree(bcs->hw.hscx.rcvbuf);
 | |
| 			bcs->hw.hscx.rcvbuf = NULL;
 | |
| 		}
 | |
| 		skb_queue_purge(&bcs->rqueue);
 | |
| 		skb_queue_purge(&bcs->squeue);
 | |
| 		if (bcs->tx_skb) {
 | |
| 			dev_kfree_skb_any(bcs->tx_skb);
 | |
| 			bcs->tx_skb = NULL;
 | |
| 			test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| modem_write_cmd(struct IsdnCardState *cs, u_char *buf, int len) {
 | |
| 	int count, fp;
 | |
| 	u_char *msg = buf;
 | |
| 
 | |
| 	if (!len)
 | |
| 		return;
 | |
| 	if (len > (MAX_MODEM_BUF - cs->hw.elsa.transcnt)) {
 | |
| 		return;
 | |
| 	}
 | |
| 	fp = cs->hw.elsa.transcnt + cs->hw.elsa.transp;
 | |
| 	fp &= (MAX_MODEM_BUF - 1);
 | |
| 	count = len;
 | |
| 	if (count > MAX_MODEM_BUF - fp) {
 | |
| 		count = MAX_MODEM_BUF - fp;
 | |
| 		memcpy(cs->hw.elsa.transbuf + fp, msg, count);
 | |
| 		cs->hw.elsa.transcnt += count;
 | |
| 		msg += count;
 | |
| 		count = len - count;
 | |
| 		fp = 0;
 | |
| 	}
 | |
| 	memcpy(cs->hw.elsa.transbuf + fp, msg, count);
 | |
| 	cs->hw.elsa.transcnt += count;
 | |
| 	if (cs->hw.elsa.transcnt &&
 | |
| 	    !(cs->hw.elsa.IER & UART_IER_THRI)) {
 | |
| 		cs->hw.elsa.IER |= UART_IER_THRI;
 | |
| 		serial_outp(cs, UART_IER, cs->hw.elsa.IER);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| modem_set_init(struct IsdnCardState *cs) {
 | |
| 	int timeout;
 | |
| 
 | |
| #define RCV_DELAY 20
 | |
| 	modem_write_cmd(cs, MInit_1, strlen(MInit_1));
 | |
| 	timeout = 1000;
 | |
| 	while (timeout-- && cs->hw.elsa.transcnt)
 | |
| 		udelay(1000);
 | |
| 	debugl1(cs, "msi tout=%d", timeout);
 | |
| 	mdelay(RCV_DELAY);
 | |
| 	modem_write_cmd(cs, MInit_2, strlen(MInit_2));
 | |
| 	timeout = 1000;
 | |
| 	while (timeout-- && cs->hw.elsa.transcnt)
 | |
| 		udelay(1000);
 | |
| 	debugl1(cs, "msi tout=%d", timeout);
 | |
| 	mdelay(RCV_DELAY);
 | |
| 	modem_write_cmd(cs, MInit_3, strlen(MInit_3));
 | |
| 	timeout = 1000;
 | |
| 	while (timeout-- && cs->hw.elsa.transcnt)
 | |
| 		udelay(1000);
 | |
| 	debugl1(cs, "msi tout=%d", timeout);
 | |
| 	mdelay(RCV_DELAY);
 | |
| 	modem_write_cmd(cs, MInit_4, strlen(MInit_4));
 | |
| 	timeout = 1000;
 | |
| 	while (timeout-- && cs->hw.elsa.transcnt)
 | |
| 		udelay(1000);
 | |
| 	debugl1(cs, "msi tout=%d", timeout);
 | |
| 	mdelay(RCV_DELAY);
 | |
| 	modem_write_cmd(cs, MInit_5, strlen(MInit_5));
 | |
| 	timeout = 1000;
 | |
| 	while (timeout-- && cs->hw.elsa.transcnt)
 | |
| 		udelay(1000);
 | |
| 	debugl1(cs, "msi tout=%d", timeout);
 | |
| 	mdelay(RCV_DELAY);
 | |
| 	modem_write_cmd(cs, MInit_6, strlen(MInit_6));
 | |
| 	timeout = 1000;
 | |
| 	while (timeout-- && cs->hw.elsa.transcnt)
 | |
| 		udelay(1000);
 | |
| 	debugl1(cs, "msi tout=%d", timeout);
 | |
| 	mdelay(RCV_DELAY);
 | |
| 	modem_write_cmd(cs, MInit_7, strlen(MInit_7));
 | |
| 	timeout = 1000;
 | |
| 	while (timeout-- && cs->hw.elsa.transcnt)
 | |
| 		udelay(1000);
 | |
| 	debugl1(cs, "msi tout=%d", timeout);
 | |
| 	mdelay(RCV_DELAY);
 | |
| }
 | |
| 
 | |
| static void
 | |
| modem_set_dial(struct IsdnCardState *cs, int outgoing) {
 | |
| 	int timeout;
 | |
| #define RCV_DELAY 20
 | |
| 
 | |
| 	modem_write_cmd(cs, MInit_speed28800, strlen(MInit_speed28800));
 | |
| 	timeout = 1000;
 | |
| 	while (timeout-- && cs->hw.elsa.transcnt)
 | |
| 		udelay(1000);
 | |
| 	debugl1(cs, "msi tout=%d", timeout);
 | |
| 	mdelay(RCV_DELAY);
 | |
| 	if (outgoing)
 | |
| 		modem_write_cmd(cs, MInit_dialout, strlen(MInit_dialout));
 | |
| 	else
 | |
| 		modem_write_cmd(cs, MInit_dialin, strlen(MInit_dialin));
 | |
| 	timeout = 1000;
 | |
| 	while (timeout-- && cs->hw.elsa.transcnt)
 | |
| 		udelay(1000);
 | |
| 	debugl1(cs, "msi tout=%d", timeout);
 | |
| 	mdelay(RCV_DELAY);
 | |
| }
 | |
| 
 | |
| static void
 | |
| modem_l2l1(struct PStack *st, int pr, void *arg)
 | |
| {
 | |
| 	struct BCState *bcs = st->l1.bcs;
 | |
| 	struct sk_buff *skb = arg;
 | |
| 	u_long flags;
 | |
| 
 | |
| 	if (pr == (PH_DATA | REQUEST)) {
 | |
| 		spin_lock_irqsave(&bcs->cs->lock, flags);
 | |
| 		if (bcs->tx_skb) {
 | |
| 			skb_queue_tail(&bcs->squeue, skb);
 | |
| 		} else {
 | |
| 			bcs->tx_skb = skb;
 | |
| 			test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
 | |
| 			bcs->hw.hscx.count = 0;
 | |
| 			write_modem(bcs);
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&bcs->cs->lock, flags);
 | |
| 	} else if (pr == (PH_ACTIVATE | REQUEST)) {
 | |
| 		test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
 | |
| 		st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL);
 | |
| 		set_arcofi(bcs->cs, st->l1.bc);
 | |
| 		mstartup(bcs->cs);
 | |
| 		modem_set_dial(bcs->cs, test_bit(FLG_ORIG, &st->l2.flag));
 | |
| 		bcs->cs->hw.elsa.MFlag = 2;
 | |
| 	} else if (pr == (PH_DEACTIVATE | REQUEST)) {
 | |
| 		test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
 | |
| 		bcs->cs->dc.isac.arcofi_bc = st->l1.bc;
 | |
| 		arcofi_fsm(bcs->cs, ARCOFI_START, &ARCOFI_XOP_0);
 | |
| 		wait_event_interruptible(bcs->cs->dc.isac.arcofi_wait,
 | |
| 				 bcs->cs->dc.isac.arcofi_state == ARCOFI_NOP);
 | |
| 		bcs->cs->hw.elsa.MFlag = 1;
 | |
| 	} else {
 | |
| 		printk(KERN_WARNING "ElsaSer: unknown pr %x\n", pr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| setstack_elsa(struct PStack *st, struct BCState *bcs)
 | |
| {
 | |
| 
 | |
| 	bcs->channel = st->l1.bc;
 | |
| 	switch (st->l1.mode) {
 | |
| 	case L1_MODE_HDLC:
 | |
| 	case L1_MODE_TRANS:
 | |
| 		if (open_hscxstate(st->l1.hardware, bcs))
 | |
| 			return (-1);
 | |
| 		st->l2.l2l1 = hscx_l2l1;
 | |
| 		break;
 | |
| 	case L1_MODE_MODEM:
 | |
| 		bcs->mode = L1_MODE_MODEM;
 | |
| 		if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
 | |
| 			bcs->hw.hscx.rcvbuf = bcs->cs->hw.elsa.rcvbuf;
 | |
| 			skb_queue_head_init(&bcs->rqueue);
 | |
| 			skb_queue_head_init(&bcs->squeue);
 | |
| 		}
 | |
| 		bcs->tx_skb = NULL;
 | |
| 		test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
 | |
| 		bcs->event = 0;
 | |
| 		bcs->hw.hscx.rcvidx = 0;
 | |
| 		bcs->tx_cnt = 0;
 | |
| 		bcs->cs->hw.elsa.bcs = bcs;
 | |
| 		st->l2.l2l1 = modem_l2l1;
 | |
| 		break;
 | |
| 	}
 | |
| 	st->l1.bcs = bcs;
 | |
| 	setstack_manager(st);
 | |
| 	bcs->st = st;
 | |
| 	setstack_l1_B(st);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| init_modem(struct IsdnCardState *cs) {
 | |
| 
 | |
| 	cs->bcs[0].BC_SetStack = setstack_elsa;
 | |
| 	cs->bcs[1].BC_SetStack = setstack_elsa;
 | |
| 	cs->bcs[0].BC_Close = close_elsastate;
 | |
| 	cs->bcs[1].BC_Close = close_elsastate;
 | |
| 	if (!(cs->hw.elsa.rcvbuf = kmalloc(MAX_MODEM_BUF,
 | |
| 					   GFP_ATOMIC))) {
 | |
| 		printk(KERN_WARNING
 | |
| 		       "Elsa: No modem mem hw.elsa.rcvbuf\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	if (!(cs->hw.elsa.transbuf = kmalloc(MAX_MODEM_BUF,
 | |
| 					     GFP_ATOMIC))) {
 | |
| 		printk(KERN_WARNING
 | |
| 		       "Elsa: No modem mem hw.elsa.transbuf\n");
 | |
| 		kfree(cs->hw.elsa.rcvbuf);
 | |
| 		cs->hw.elsa.rcvbuf = NULL;
 | |
| 		return;
 | |
| 	}
 | |
| 	if (mstartup(cs)) {
 | |
| 		printk(KERN_WARNING "Elsa: problem startup modem\n");
 | |
| 	}
 | |
| 	modem_set_init(cs);
 | |
| }
 | |
| 
 | |
| static void
 | |
| release_modem(struct IsdnCardState *cs) {
 | |
| 
 | |
| 	cs->hw.elsa.MFlag = 0;
 | |
| 	if (cs->hw.elsa.transbuf) {
 | |
| 		if (cs->hw.elsa.rcvbuf) {
 | |
| 			mshutdown(cs);
 | |
| 			kfree(cs->hw.elsa.rcvbuf);
 | |
| 			cs->hw.elsa.rcvbuf = NULL;
 | |
| 		}
 | |
| 		kfree(cs->hw.elsa.transbuf);
 | |
| 		cs->hw.elsa.transbuf = NULL;
 | |
| 	}
 | |
| }
 |