 82eabd9eb2
			
		
	
	
	82eabd9eb2
	
	
	
		
			
			Since sock_efree and sock_demux are essentially the same code for non-TCP sockets and the case where CONFIG_INET is not defined we can combine the code or replace the call to sock_edemux in several spots. As a result we can avoid a bit of unnecessary code or code duplication. Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			2523 lines
		
	
	
	
		
			64 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2523 lines
		
	
	
	
		
			64 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * INET		An implementation of the TCP/IP protocol suite for the LINUX
 | |
|  *		operating system.  INET is implemented using the  BSD Socket
 | |
|  *		interface as the means of communication with the user level.
 | |
|  *
 | |
|  *		The User Datagram Protocol (UDP).
 | |
|  *
 | |
|  * Authors:	Ross Biro
 | |
|  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 | |
|  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 | |
|  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
 | |
|  *		Hirokazu Takahashi, <taka@valinux.co.jp>
 | |
|  *
 | |
|  * Fixes:
 | |
|  *		Alan Cox	:	verify_area() calls
 | |
|  *		Alan Cox	: 	stopped close while in use off icmp
 | |
|  *					messages. Not a fix but a botch that
 | |
|  *					for udp at least is 'valid'.
 | |
|  *		Alan Cox	:	Fixed icmp handling properly
 | |
|  *		Alan Cox	: 	Correct error for oversized datagrams
 | |
|  *		Alan Cox	:	Tidied select() semantics.
 | |
|  *		Alan Cox	:	udp_err() fixed properly, also now
 | |
|  *					select and read wake correctly on errors
 | |
|  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
 | |
|  *		Alan Cox	:	UDP can count its memory
 | |
|  *		Alan Cox	:	send to an unknown connection causes
 | |
|  *					an ECONNREFUSED off the icmp, but
 | |
|  *					does NOT close.
 | |
|  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
 | |
|  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
 | |
|  *					bug no longer crashes it.
 | |
|  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
 | |
|  *		Alan Cox	:	Uses skb_free_datagram
 | |
|  *		Alan Cox	:	Added get/set sockopt support.
 | |
|  *		Alan Cox	:	Broadcasting without option set returns EACCES.
 | |
|  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
 | |
|  *		Alan Cox	:	Use ip_tos and ip_ttl
 | |
|  *		Alan Cox	:	SNMP Mibs
 | |
|  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
 | |
|  *		Matt Dillon	:	UDP length checks.
 | |
|  *		Alan Cox	:	Smarter af_inet used properly.
 | |
|  *		Alan Cox	:	Use new kernel side addressing.
 | |
|  *		Alan Cox	:	Incorrect return on truncated datagram receive.
 | |
|  *	Arnt Gulbrandsen 	:	New udp_send and stuff
 | |
|  *		Alan Cox	:	Cache last socket
 | |
|  *		Alan Cox	:	Route cache
 | |
|  *		Jon Peatfield	:	Minor efficiency fix to sendto().
 | |
|  *		Mike Shaver	:	RFC1122 checks.
 | |
|  *		Alan Cox	:	Nonblocking error fix.
 | |
|  *	Willy Konynenberg	:	Transparent proxying support.
 | |
|  *		Mike McLagan	:	Routing by source
 | |
|  *		David S. Miller	:	New socket lookup architecture.
 | |
|  *					Last socket cache retained as it
 | |
|  *					does have a high hit rate.
 | |
|  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
 | |
|  *		Andi Kleen	:	Some cleanups, cache destination entry
 | |
|  *					for connect.
 | |
|  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
 | |
|  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
 | |
|  *					return ENOTCONN for unconnected sockets (POSIX)
 | |
|  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
 | |
|  *					bound-to-device socket
 | |
|  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
 | |
|  *					datagrams.
 | |
|  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
 | |
|  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
 | |
|  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
 | |
|  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
 | |
|  *					a single port at the same time.
 | |
|  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
 | |
|  *	James Chapman		:	Add L2TP encapsulation type.
 | |
|  *
 | |
|  *
 | |
|  *		This program is free software; you can redistribute it and/or
 | |
|  *		modify it under the terms of the GNU General Public License
 | |
|  *		as published by the Free Software Foundation; either version
 | |
|  *		2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) "UDP: " fmt
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/ioctls.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/fcntl.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/socket.h>
 | |
| #include <linux/sockios.h>
 | |
| #include <linux/igmp.h>
 | |
| #include <linux/in.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/inet.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/slab.h>
 | |
| #include <net/tcp_states.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <net/net_namespace.h>
 | |
| #include <net/icmp.h>
 | |
| #include <net/inet_hashtables.h>
 | |
| #include <net/route.h>
 | |
| #include <net/checksum.h>
 | |
| #include <net/xfrm.h>
 | |
| #include <trace/events/udp.h>
 | |
| #include <linux/static_key.h>
 | |
| #include <trace/events/skb.h>
 | |
| #include <net/busy_poll.h>
 | |
| #include "udp_impl.h"
 | |
| 
 | |
| struct udp_table udp_table __read_mostly;
 | |
| EXPORT_SYMBOL(udp_table);
 | |
| 
 | |
| long sysctl_udp_mem[3] __read_mostly;
 | |
| EXPORT_SYMBOL(sysctl_udp_mem);
 | |
| 
 | |
| int sysctl_udp_rmem_min __read_mostly;
 | |
| EXPORT_SYMBOL(sysctl_udp_rmem_min);
 | |
| 
 | |
| int sysctl_udp_wmem_min __read_mostly;
 | |
| EXPORT_SYMBOL(sysctl_udp_wmem_min);
 | |
| 
 | |
| atomic_long_t udp_memory_allocated;
 | |
| EXPORT_SYMBOL(udp_memory_allocated);
 | |
| 
 | |
| #define MAX_UDP_PORTS 65536
 | |
| #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
 | |
| 
 | |
| static int udp_lib_lport_inuse(struct net *net, __u16 num,
 | |
| 			       const struct udp_hslot *hslot,
 | |
| 			       unsigned long *bitmap,
 | |
| 			       struct sock *sk,
 | |
| 			       int (*saddr_comp)(const struct sock *sk1,
 | |
| 						 const struct sock *sk2),
 | |
| 			       unsigned int log)
 | |
| {
 | |
| 	struct sock *sk2;
 | |
| 	struct hlist_nulls_node *node;
 | |
| 	kuid_t uid = sock_i_uid(sk);
 | |
| 
 | |
| 	sk_nulls_for_each(sk2, node, &hslot->head)
 | |
| 		if (net_eq(sock_net(sk2), net) &&
 | |
| 		    sk2 != sk &&
 | |
| 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
 | |
| 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
 | |
| 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 | |
| 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 | |
| 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
 | |
| 		      !uid_eq(uid, sock_i_uid(sk2))) &&
 | |
| 		    (*saddr_comp)(sk, sk2)) {
 | |
| 			if (bitmap)
 | |
| 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
 | |
| 					  bitmap);
 | |
| 			else
 | |
| 				return 1;
 | |
| 		}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note: we still hold spinlock of primary hash chain, so no other writer
 | |
|  * can insert/delete a socket with local_port == num
 | |
|  */
 | |
| static int udp_lib_lport_inuse2(struct net *net, __u16 num,
 | |
| 			       struct udp_hslot *hslot2,
 | |
| 			       struct sock *sk,
 | |
| 			       int (*saddr_comp)(const struct sock *sk1,
 | |
| 						 const struct sock *sk2))
 | |
| {
 | |
| 	struct sock *sk2;
 | |
| 	struct hlist_nulls_node *node;
 | |
| 	kuid_t uid = sock_i_uid(sk);
 | |
| 	int res = 0;
 | |
| 
 | |
| 	spin_lock(&hslot2->lock);
 | |
| 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
 | |
| 		if (net_eq(sock_net(sk2), net) &&
 | |
| 		    sk2 != sk &&
 | |
| 		    (udp_sk(sk2)->udp_port_hash == num) &&
 | |
| 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
 | |
| 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 | |
| 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 | |
| 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
 | |
| 		      !uid_eq(uid, sock_i_uid(sk2))) &&
 | |
| 		    (*saddr_comp)(sk, sk2)) {
 | |
| 			res = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	spin_unlock(&hslot2->lock);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
 | |
|  *
 | |
|  *  @sk:          socket struct in question
 | |
|  *  @snum:        port number to look up
 | |
|  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
 | |
|  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
 | |
|  *                   with NULL address
 | |
|  */
 | |
| int udp_lib_get_port(struct sock *sk, unsigned short snum,
 | |
| 		       int (*saddr_comp)(const struct sock *sk1,
 | |
| 					 const struct sock *sk2),
 | |
| 		     unsigned int hash2_nulladdr)
 | |
| {
 | |
| 	struct udp_hslot *hslot, *hslot2;
 | |
| 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
 | |
| 	int    error = 1;
 | |
| 	struct net *net = sock_net(sk);
 | |
| 
 | |
| 	if (!snum) {
 | |
| 		int low, high, remaining;
 | |
| 		unsigned int rand;
 | |
| 		unsigned short first, last;
 | |
| 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
 | |
| 
 | |
| 		inet_get_local_port_range(net, &low, &high);
 | |
| 		remaining = (high - low) + 1;
 | |
| 
 | |
| 		rand = prandom_u32();
 | |
| 		first = reciprocal_scale(rand, remaining) + low;
 | |
| 		/*
 | |
| 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
 | |
| 		 */
 | |
| 		rand = (rand | 1) * (udptable->mask + 1);
 | |
| 		last = first + udptable->mask + 1;
 | |
| 		do {
 | |
| 			hslot = udp_hashslot(udptable, net, first);
 | |
| 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
 | |
| 			spin_lock_bh(&hslot->lock);
 | |
| 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
 | |
| 					    saddr_comp, udptable->log);
 | |
| 
 | |
| 			snum = first;
 | |
| 			/*
 | |
| 			 * Iterate on all possible values of snum for this hash.
 | |
| 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
 | |
| 			 * give us randomization and full range coverage.
 | |
| 			 */
 | |
| 			do {
 | |
| 				if (low <= snum && snum <= high &&
 | |
| 				    !test_bit(snum >> udptable->log, bitmap) &&
 | |
| 				    !inet_is_local_reserved_port(net, snum))
 | |
| 					goto found;
 | |
| 				snum += rand;
 | |
| 			} while (snum != first);
 | |
| 			spin_unlock_bh(&hslot->lock);
 | |
| 		} while (++first != last);
 | |
| 		goto fail;
 | |
| 	} else {
 | |
| 		hslot = udp_hashslot(udptable, net, snum);
 | |
| 		spin_lock_bh(&hslot->lock);
 | |
| 		if (hslot->count > 10) {
 | |
| 			int exist;
 | |
| 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
 | |
| 
 | |
| 			slot2          &= udptable->mask;
 | |
| 			hash2_nulladdr &= udptable->mask;
 | |
| 
 | |
| 			hslot2 = udp_hashslot2(udptable, slot2);
 | |
| 			if (hslot->count < hslot2->count)
 | |
| 				goto scan_primary_hash;
 | |
| 
 | |
| 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
 | |
| 						     sk, saddr_comp);
 | |
| 			if (!exist && (hash2_nulladdr != slot2)) {
 | |
| 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
 | |
| 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
 | |
| 							     sk, saddr_comp);
 | |
| 			}
 | |
| 			if (exist)
 | |
| 				goto fail_unlock;
 | |
| 			else
 | |
| 				goto found;
 | |
| 		}
 | |
| scan_primary_hash:
 | |
| 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
 | |
| 					saddr_comp, 0))
 | |
| 			goto fail_unlock;
 | |
| 	}
 | |
| found:
 | |
| 	inet_sk(sk)->inet_num = snum;
 | |
| 	udp_sk(sk)->udp_port_hash = snum;
 | |
| 	udp_sk(sk)->udp_portaddr_hash ^= snum;
 | |
| 	if (sk_unhashed(sk)) {
 | |
| 		sk_nulls_add_node_rcu(sk, &hslot->head);
 | |
| 		hslot->count++;
 | |
| 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
 | |
| 
 | |
| 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
 | |
| 		spin_lock(&hslot2->lock);
 | |
| 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
 | |
| 					 &hslot2->head);
 | |
| 		hslot2->count++;
 | |
| 		spin_unlock(&hslot2->lock);
 | |
| 	}
 | |
| 	error = 0;
 | |
| fail_unlock:
 | |
| 	spin_unlock_bh(&hslot->lock);
 | |
| fail:
 | |
| 	return error;
 | |
| }
 | |
| EXPORT_SYMBOL(udp_lib_get_port);
 | |
| 
 | |
| static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
 | |
| {
 | |
| 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
 | |
| 
 | |
| 	return 	(!ipv6_only_sock(sk2)  &&
 | |
| 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
 | |
| 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
 | |
| }
 | |
| 
 | |
| static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
 | |
| 				       unsigned int port)
 | |
| {
 | |
| 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
 | |
| }
 | |
| 
 | |
| int udp_v4_get_port(struct sock *sk, unsigned short snum)
 | |
| {
 | |
| 	unsigned int hash2_nulladdr =
 | |
| 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
 | |
| 	unsigned int hash2_partial =
 | |
| 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
 | |
| 
 | |
| 	/* precompute partial secondary hash */
 | |
| 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
 | |
| 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
 | |
| }
 | |
| 
 | |
| static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
 | |
| 			 unsigned short hnum,
 | |
| 			 __be16 sport, __be32 daddr, __be16 dport, int dif)
 | |
| {
 | |
| 	int score = -1;
 | |
| 
 | |
| 	if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
 | |
| 			!ipv6_only_sock(sk)) {
 | |
| 		struct inet_sock *inet = inet_sk(sk);
 | |
| 
 | |
| 		score = (sk->sk_family == PF_INET ? 2 : 1);
 | |
| 		if (inet->inet_rcv_saddr) {
 | |
| 			if (inet->inet_rcv_saddr != daddr)
 | |
| 				return -1;
 | |
| 			score += 4;
 | |
| 		}
 | |
| 		if (inet->inet_daddr) {
 | |
| 			if (inet->inet_daddr != saddr)
 | |
| 				return -1;
 | |
| 			score += 4;
 | |
| 		}
 | |
| 		if (inet->inet_dport) {
 | |
| 			if (inet->inet_dport != sport)
 | |
| 				return -1;
 | |
| 			score += 4;
 | |
| 		}
 | |
| 		if (sk->sk_bound_dev_if) {
 | |
| 			if (sk->sk_bound_dev_if != dif)
 | |
| 				return -1;
 | |
| 			score += 4;
 | |
| 		}
 | |
| 	}
 | |
| 	return score;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
 | |
|  */
 | |
| static inline int compute_score2(struct sock *sk, struct net *net,
 | |
| 				 __be32 saddr, __be16 sport,
 | |
| 				 __be32 daddr, unsigned int hnum, int dif)
 | |
| {
 | |
| 	int score = -1;
 | |
| 
 | |
| 	if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
 | |
| 		struct inet_sock *inet = inet_sk(sk);
 | |
| 
 | |
| 		if (inet->inet_rcv_saddr != daddr)
 | |
| 			return -1;
 | |
| 		if (inet->inet_num != hnum)
 | |
| 			return -1;
 | |
| 
 | |
| 		score = (sk->sk_family == PF_INET ? 2 : 1);
 | |
| 		if (inet->inet_daddr) {
 | |
| 			if (inet->inet_daddr != saddr)
 | |
| 				return -1;
 | |
| 			score += 4;
 | |
| 		}
 | |
| 		if (inet->inet_dport) {
 | |
| 			if (inet->inet_dport != sport)
 | |
| 				return -1;
 | |
| 			score += 4;
 | |
| 		}
 | |
| 		if (sk->sk_bound_dev_if) {
 | |
| 			if (sk->sk_bound_dev_if != dif)
 | |
| 				return -1;
 | |
| 			score += 4;
 | |
| 		}
 | |
| 	}
 | |
| 	return score;
 | |
| }
 | |
| 
 | |
| static unsigned int udp_ehashfn(struct net *net, const __be32 laddr,
 | |
| 				 const __u16 lport, const __be32 faddr,
 | |
| 				 const __be16 fport)
 | |
| {
 | |
| 	static u32 udp_ehash_secret __read_mostly;
 | |
| 
 | |
| 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
 | |
| 
 | |
| 	return __inet_ehashfn(laddr, lport, faddr, fport,
 | |
| 			      udp_ehash_secret + net_hash_mix(net));
 | |
| }
 | |
| 
 | |
| 
 | |
| /* called with read_rcu_lock() */
 | |
| static struct sock *udp4_lib_lookup2(struct net *net,
 | |
| 		__be32 saddr, __be16 sport,
 | |
| 		__be32 daddr, unsigned int hnum, int dif,
 | |
| 		struct udp_hslot *hslot2, unsigned int slot2)
 | |
| {
 | |
| 	struct sock *sk, *result;
 | |
| 	struct hlist_nulls_node *node;
 | |
| 	int score, badness, matches = 0, reuseport = 0;
 | |
| 	u32 hash = 0;
 | |
| 
 | |
| begin:
 | |
| 	result = NULL;
 | |
| 	badness = 0;
 | |
| 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
 | |
| 		score = compute_score2(sk, net, saddr, sport,
 | |
| 				      daddr, hnum, dif);
 | |
| 		if (score > badness) {
 | |
| 			result = sk;
 | |
| 			badness = score;
 | |
| 			reuseport = sk->sk_reuseport;
 | |
| 			if (reuseport) {
 | |
| 				hash = udp_ehashfn(net, daddr, hnum,
 | |
| 						   saddr, sport);
 | |
| 				matches = 1;
 | |
| 			}
 | |
| 		} else if (score == badness && reuseport) {
 | |
| 			matches++;
 | |
| 			if (reciprocal_scale(hash, matches) == 0)
 | |
| 				result = sk;
 | |
| 			hash = next_pseudo_random32(hash);
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * if the nulls value we got at the end of this lookup is
 | |
| 	 * not the expected one, we must restart lookup.
 | |
| 	 * We probably met an item that was moved to another chain.
 | |
| 	 */
 | |
| 	if (get_nulls_value(node) != slot2)
 | |
| 		goto begin;
 | |
| 	if (result) {
 | |
| 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
 | |
| 			result = NULL;
 | |
| 		else if (unlikely(compute_score2(result, net, saddr, sport,
 | |
| 				  daddr, hnum, dif) < badness)) {
 | |
| 			sock_put(result);
 | |
| 			goto begin;
 | |
| 		}
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
 | |
|  * harder than this. -DaveM
 | |
|  */
 | |
| struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
 | |
| 		__be16 sport, __be32 daddr, __be16 dport,
 | |
| 		int dif, struct udp_table *udptable)
 | |
| {
 | |
| 	struct sock *sk, *result;
 | |
| 	struct hlist_nulls_node *node;
 | |
| 	unsigned short hnum = ntohs(dport);
 | |
| 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
 | |
| 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
 | |
| 	int score, badness, matches = 0, reuseport = 0;
 | |
| 	u32 hash = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (hslot->count > 10) {
 | |
| 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
 | |
| 		slot2 = hash2 & udptable->mask;
 | |
| 		hslot2 = &udptable->hash2[slot2];
 | |
| 		if (hslot->count < hslot2->count)
 | |
| 			goto begin;
 | |
| 
 | |
| 		result = udp4_lib_lookup2(net, saddr, sport,
 | |
| 					  daddr, hnum, dif,
 | |
| 					  hslot2, slot2);
 | |
| 		if (!result) {
 | |
| 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
 | |
| 			slot2 = hash2 & udptable->mask;
 | |
| 			hslot2 = &udptable->hash2[slot2];
 | |
| 			if (hslot->count < hslot2->count)
 | |
| 				goto begin;
 | |
| 
 | |
| 			result = udp4_lib_lookup2(net, saddr, sport,
 | |
| 						  htonl(INADDR_ANY), hnum, dif,
 | |
| 						  hslot2, slot2);
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 		return result;
 | |
| 	}
 | |
| begin:
 | |
| 	result = NULL;
 | |
| 	badness = 0;
 | |
| 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
 | |
| 		score = compute_score(sk, net, saddr, hnum, sport,
 | |
| 				      daddr, dport, dif);
 | |
| 		if (score > badness) {
 | |
| 			result = sk;
 | |
| 			badness = score;
 | |
| 			reuseport = sk->sk_reuseport;
 | |
| 			if (reuseport) {
 | |
| 				hash = udp_ehashfn(net, daddr, hnum,
 | |
| 						   saddr, sport);
 | |
| 				matches = 1;
 | |
| 			}
 | |
| 		} else if (score == badness && reuseport) {
 | |
| 			matches++;
 | |
| 			if (reciprocal_scale(hash, matches) == 0)
 | |
| 				result = sk;
 | |
| 			hash = next_pseudo_random32(hash);
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * if the nulls value we got at the end of this lookup is
 | |
| 	 * not the expected one, we must restart lookup.
 | |
| 	 * We probably met an item that was moved to another chain.
 | |
| 	 */
 | |
| 	if (get_nulls_value(node) != slot)
 | |
| 		goto begin;
 | |
| 
 | |
| 	if (result) {
 | |
| 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
 | |
| 			result = NULL;
 | |
| 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
 | |
| 				  daddr, dport, dif) < badness)) {
 | |
| 			sock_put(result);
 | |
| 			goto begin;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return result;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
 | |
| 
 | |
| static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
 | |
| 						 __be16 sport, __be16 dport,
 | |
| 						 struct udp_table *udptable)
 | |
| {
 | |
| 	const struct iphdr *iph = ip_hdr(skb);
 | |
| 
 | |
| 	return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
 | |
| 				 iph->daddr, dport, inet_iif(skb),
 | |
| 				 udptable);
 | |
| }
 | |
| 
 | |
| struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
 | |
| 			     __be32 daddr, __be16 dport, int dif)
 | |
| {
 | |
| 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(udp4_lib_lookup);
 | |
| 
 | |
| static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
 | |
| 				       __be16 loc_port, __be32 loc_addr,
 | |
| 				       __be16 rmt_port, __be32 rmt_addr,
 | |
| 				       int dif, unsigned short hnum)
 | |
| {
 | |
| 	struct inet_sock *inet = inet_sk(sk);
 | |
| 
 | |
| 	if (!net_eq(sock_net(sk), net) ||
 | |
| 	    udp_sk(sk)->udp_port_hash != hnum ||
 | |
| 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
 | |
| 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
 | |
| 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
 | |
| 	    ipv6_only_sock(sk) ||
 | |
| 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
 | |
| 		return false;
 | |
| 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
 | |
| 		return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine is called by the ICMP module when it gets some
 | |
|  * sort of error condition.  If err < 0 then the socket should
 | |
|  * be closed and the error returned to the user.  If err > 0
 | |
|  * it's just the icmp type << 8 | icmp code.
 | |
|  * Header points to the ip header of the error packet. We move
 | |
|  * on past this. Then (as it used to claim before adjustment)
 | |
|  * header points to the first 8 bytes of the udp header.  We need
 | |
|  * to find the appropriate port.
 | |
|  */
 | |
| 
 | |
| void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
 | |
| {
 | |
| 	struct inet_sock *inet;
 | |
| 	const struct iphdr *iph = (const struct iphdr *)skb->data;
 | |
| 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
 | |
| 	const int type = icmp_hdr(skb)->type;
 | |
| 	const int code = icmp_hdr(skb)->code;
 | |
| 	struct sock *sk;
 | |
| 	int harderr;
 | |
| 	int err;
 | |
| 	struct net *net = dev_net(skb->dev);
 | |
| 
 | |
| 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
 | |
| 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
 | |
| 	if (sk == NULL) {
 | |
| 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 | |
| 		return;	/* No socket for error */
 | |
| 	}
 | |
| 
 | |
| 	err = 0;
 | |
| 	harderr = 0;
 | |
| 	inet = inet_sk(sk);
 | |
| 
 | |
| 	switch (type) {
 | |
| 	default:
 | |
| 	case ICMP_TIME_EXCEEDED:
 | |
| 		err = EHOSTUNREACH;
 | |
| 		break;
 | |
| 	case ICMP_SOURCE_QUENCH:
 | |
| 		goto out;
 | |
| 	case ICMP_PARAMETERPROB:
 | |
| 		err = EPROTO;
 | |
| 		harderr = 1;
 | |
| 		break;
 | |
| 	case ICMP_DEST_UNREACH:
 | |
| 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
 | |
| 			ipv4_sk_update_pmtu(skb, sk, info);
 | |
| 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
 | |
| 				err = EMSGSIZE;
 | |
| 				harderr = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 			goto out;
 | |
| 		}
 | |
| 		err = EHOSTUNREACH;
 | |
| 		if (code <= NR_ICMP_UNREACH) {
 | |
| 			harderr = icmp_err_convert[code].fatal;
 | |
| 			err = icmp_err_convert[code].errno;
 | |
| 		}
 | |
| 		break;
 | |
| 	case ICMP_REDIRECT:
 | |
| 		ipv4_sk_redirect(skb, sk);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
 | |
| 	 *	4.1.3.3.
 | |
| 	 */
 | |
| 	if (!inet->recverr) {
 | |
| 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
 | |
| 			goto out;
 | |
| 	} else
 | |
| 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
 | |
| 
 | |
| 	sk->sk_err = err;
 | |
| 	sk->sk_error_report(sk);
 | |
| out:
 | |
| 	sock_put(sk);
 | |
| }
 | |
| 
 | |
| void udp_err(struct sk_buff *skb, u32 info)
 | |
| {
 | |
| 	__udp4_lib_err(skb, info, &udp_table);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Throw away all pending data and cancel the corking. Socket is locked.
 | |
|  */
 | |
| void udp_flush_pending_frames(struct sock *sk)
 | |
| {
 | |
| 	struct udp_sock *up = udp_sk(sk);
 | |
| 
 | |
| 	if (up->pending) {
 | |
| 		up->len = 0;
 | |
| 		up->pending = 0;
 | |
| 		ip_flush_pending_frames(sk);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(udp_flush_pending_frames);
 | |
| 
 | |
| /**
 | |
|  * 	udp4_hwcsum  -  handle outgoing HW checksumming
 | |
|  * 	@skb: 	sk_buff containing the filled-in UDP header
 | |
|  * 	        (checksum field must be zeroed out)
 | |
|  *	@src:	source IP address
 | |
|  *	@dst:	destination IP address
 | |
|  */
 | |
| void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
 | |
| {
 | |
| 	struct udphdr *uh = udp_hdr(skb);
 | |
| 	int offset = skb_transport_offset(skb);
 | |
| 	int len = skb->len - offset;
 | |
| 	int hlen = len;
 | |
| 	__wsum csum = 0;
 | |
| 
 | |
| 	if (!skb_has_frag_list(skb)) {
 | |
| 		/*
 | |
| 		 * Only one fragment on the socket.
 | |
| 		 */
 | |
| 		skb->csum_start = skb_transport_header(skb) - skb->head;
 | |
| 		skb->csum_offset = offsetof(struct udphdr, check);
 | |
| 		uh->check = ~csum_tcpudp_magic(src, dst, len,
 | |
| 					       IPPROTO_UDP, 0);
 | |
| 	} else {
 | |
| 		struct sk_buff *frags;
 | |
| 
 | |
| 		/*
 | |
| 		 * HW-checksum won't work as there are two or more
 | |
| 		 * fragments on the socket so that all csums of sk_buffs
 | |
| 		 * should be together
 | |
| 		 */
 | |
| 		skb_walk_frags(skb, frags) {
 | |
| 			csum = csum_add(csum, frags->csum);
 | |
| 			hlen -= frags->len;
 | |
| 		}
 | |
| 
 | |
| 		csum = skb_checksum(skb, offset, hlen, csum);
 | |
| 		skb->ip_summed = CHECKSUM_NONE;
 | |
| 
 | |
| 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
 | |
| 		if (uh->check == 0)
 | |
| 			uh->check = CSUM_MANGLED_0;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(udp4_hwcsum);
 | |
| 
 | |
| /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
 | |
|  * for the simple case like when setting the checksum for a UDP tunnel.
 | |
|  */
 | |
| void udp_set_csum(bool nocheck, struct sk_buff *skb,
 | |
| 		  __be32 saddr, __be32 daddr, int len)
 | |
| {
 | |
| 	struct udphdr *uh = udp_hdr(skb);
 | |
| 
 | |
| 	if (nocheck)
 | |
| 		uh->check = 0;
 | |
| 	else if (skb_is_gso(skb))
 | |
| 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 | |
| 	else if (skb_dst(skb) && skb_dst(skb)->dev &&
 | |
| 		 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
 | |
| 
 | |
| 		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
 | |
| 
 | |
| 		skb->ip_summed = CHECKSUM_PARTIAL;
 | |
| 		skb->csum_start = skb_transport_header(skb) - skb->head;
 | |
| 		skb->csum_offset = offsetof(struct udphdr, check);
 | |
| 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 | |
| 	} else {
 | |
| 		__wsum csum;
 | |
| 
 | |
| 		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
 | |
| 
 | |
| 		uh->check = 0;
 | |
| 		csum = skb_checksum(skb, 0, len, 0);
 | |
| 		uh->check = udp_v4_check(len, saddr, daddr, csum);
 | |
| 		if (uh->check == 0)
 | |
| 			uh->check = CSUM_MANGLED_0;
 | |
| 
 | |
| 		skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(udp_set_csum);
 | |
| 
 | |
| static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
 | |
| {
 | |
| 	struct sock *sk = skb->sk;
 | |
| 	struct inet_sock *inet = inet_sk(sk);
 | |
| 	struct udphdr *uh;
 | |
| 	int err = 0;
 | |
| 	int is_udplite = IS_UDPLITE(sk);
 | |
| 	int offset = skb_transport_offset(skb);
 | |
| 	int len = skb->len - offset;
 | |
| 	__wsum csum = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Create a UDP header
 | |
| 	 */
 | |
| 	uh = udp_hdr(skb);
 | |
| 	uh->source = inet->inet_sport;
 | |
| 	uh->dest = fl4->fl4_dport;
 | |
| 	uh->len = htons(len);
 | |
| 	uh->check = 0;
 | |
| 
 | |
| 	if (is_udplite)  				 /*     UDP-Lite      */
 | |
| 		csum = udplite_csum(skb);
 | |
| 
 | |
| 	else if (sk->sk_no_check_tx) {   /* UDP csum disabled */
 | |
| 
 | |
| 		skb->ip_summed = CHECKSUM_NONE;
 | |
| 		goto send;
 | |
| 
 | |
| 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
 | |
| 
 | |
| 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
 | |
| 		goto send;
 | |
| 
 | |
| 	} else
 | |
| 		csum = udp_csum(skb);
 | |
| 
 | |
| 	/* add protocol-dependent pseudo-header */
 | |
| 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
 | |
| 				      sk->sk_protocol, csum);
 | |
| 	if (uh->check == 0)
 | |
| 		uh->check = CSUM_MANGLED_0;
 | |
| 
 | |
| send:
 | |
| 	err = ip_send_skb(sock_net(sk), skb);
 | |
| 	if (err) {
 | |
| 		if (err == -ENOBUFS && !inet->recverr) {
 | |
| 			UDP_INC_STATS_USER(sock_net(sk),
 | |
| 					   UDP_MIB_SNDBUFERRORS, is_udplite);
 | |
| 			err = 0;
 | |
| 		}
 | |
| 	} else
 | |
| 		UDP_INC_STATS_USER(sock_net(sk),
 | |
| 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Push out all pending data as one UDP datagram. Socket is locked.
 | |
|  */
 | |
| int udp_push_pending_frames(struct sock *sk)
 | |
| {
 | |
| 	struct udp_sock  *up = udp_sk(sk);
 | |
| 	struct inet_sock *inet = inet_sk(sk);
 | |
| 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
 | |
| 	struct sk_buff *skb;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	skb = ip_finish_skb(sk, fl4);
 | |
| 	if (!skb)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = udp_send_skb(skb, fl4);
 | |
| 
 | |
| out:
 | |
| 	up->len = 0;
 | |
| 	up->pending = 0;
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL(udp_push_pending_frames);
 | |
| 
 | |
| int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
 | |
| 		size_t len)
 | |
| {
 | |
| 	struct inet_sock *inet = inet_sk(sk);
 | |
| 	struct udp_sock *up = udp_sk(sk);
 | |
| 	struct flowi4 fl4_stack;
 | |
| 	struct flowi4 *fl4;
 | |
| 	int ulen = len;
 | |
| 	struct ipcm_cookie ipc;
 | |
| 	struct rtable *rt = NULL;
 | |
| 	int free = 0;
 | |
| 	int connected = 0;
 | |
| 	__be32 daddr, faddr, saddr;
 | |
| 	__be16 dport;
 | |
| 	u8  tos;
 | |
| 	int err, is_udplite = IS_UDPLITE(sk);
 | |
| 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
 | |
| 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
 | |
| 	struct sk_buff *skb;
 | |
| 	struct ip_options_data opt_copy;
 | |
| 
 | |
| 	if (len > 0xFFFF)
 | |
| 		return -EMSGSIZE;
 | |
| 
 | |
| 	/*
 | |
| 	 *	Check the flags.
 | |
| 	 */
 | |
| 
 | |
| 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	ipc.opt = NULL;
 | |
| 	ipc.tx_flags = 0;
 | |
| 	ipc.ttl = 0;
 | |
| 	ipc.tos = -1;
 | |
| 
 | |
| 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
 | |
| 
 | |
| 	fl4 = &inet->cork.fl.u.ip4;
 | |
| 	if (up->pending) {
 | |
| 		/*
 | |
| 		 * There are pending frames.
 | |
| 		 * The socket lock must be held while it's corked.
 | |
| 		 */
 | |
| 		lock_sock(sk);
 | |
| 		if (likely(up->pending)) {
 | |
| 			if (unlikely(up->pending != AF_INET)) {
 | |
| 				release_sock(sk);
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			goto do_append_data;
 | |
| 		}
 | |
| 		release_sock(sk);
 | |
| 	}
 | |
| 	ulen += sizeof(struct udphdr);
 | |
| 
 | |
| 	/*
 | |
| 	 *	Get and verify the address.
 | |
| 	 */
 | |
| 	if (msg->msg_name) {
 | |
| 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
 | |
| 		if (msg->msg_namelen < sizeof(*usin))
 | |
| 			return -EINVAL;
 | |
| 		if (usin->sin_family != AF_INET) {
 | |
| 			if (usin->sin_family != AF_UNSPEC)
 | |
| 				return -EAFNOSUPPORT;
 | |
| 		}
 | |
| 
 | |
| 		daddr = usin->sin_addr.s_addr;
 | |
| 		dport = usin->sin_port;
 | |
| 		if (dport == 0)
 | |
| 			return -EINVAL;
 | |
| 	} else {
 | |
| 		if (sk->sk_state != TCP_ESTABLISHED)
 | |
| 			return -EDESTADDRREQ;
 | |
| 		daddr = inet->inet_daddr;
 | |
| 		dport = inet->inet_dport;
 | |
| 		/* Open fast path for connected socket.
 | |
| 		   Route will not be used, if at least one option is set.
 | |
| 		 */
 | |
| 		connected = 1;
 | |
| 	}
 | |
| 	ipc.addr = inet->inet_saddr;
 | |
| 
 | |
| 	ipc.oif = sk->sk_bound_dev_if;
 | |
| 
 | |
| 	sock_tx_timestamp(sk, &ipc.tx_flags);
 | |
| 
 | |
| 	if (msg->msg_controllen) {
 | |
| 		err = ip_cmsg_send(sock_net(sk), msg, &ipc,
 | |
| 				   sk->sk_family == AF_INET6);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		if (ipc.opt)
 | |
| 			free = 1;
 | |
| 		connected = 0;
 | |
| 	}
 | |
| 	if (!ipc.opt) {
 | |
| 		struct ip_options_rcu *inet_opt;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		inet_opt = rcu_dereference(inet->inet_opt);
 | |
| 		if (inet_opt) {
 | |
| 			memcpy(&opt_copy, inet_opt,
 | |
| 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
 | |
| 			ipc.opt = &opt_copy.opt;
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| 	saddr = ipc.addr;
 | |
| 	ipc.addr = faddr = daddr;
 | |
| 
 | |
| 	if (ipc.opt && ipc.opt->opt.srr) {
 | |
| 		if (!daddr)
 | |
| 			return -EINVAL;
 | |
| 		faddr = ipc.opt->opt.faddr;
 | |
| 		connected = 0;
 | |
| 	}
 | |
| 	tos = get_rttos(&ipc, inet);
 | |
| 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
 | |
| 	    (msg->msg_flags & MSG_DONTROUTE) ||
 | |
| 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
 | |
| 		tos |= RTO_ONLINK;
 | |
| 		connected = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (ipv4_is_multicast(daddr)) {
 | |
| 		if (!ipc.oif)
 | |
| 			ipc.oif = inet->mc_index;
 | |
| 		if (!saddr)
 | |
| 			saddr = inet->mc_addr;
 | |
| 		connected = 0;
 | |
| 	} else if (!ipc.oif)
 | |
| 		ipc.oif = inet->uc_index;
 | |
| 
 | |
| 	if (connected)
 | |
| 		rt = (struct rtable *)sk_dst_check(sk, 0);
 | |
| 
 | |
| 	if (rt == NULL) {
 | |
| 		struct net *net = sock_net(sk);
 | |
| 
 | |
| 		fl4 = &fl4_stack;
 | |
| 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
 | |
| 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
 | |
| 				   inet_sk_flowi_flags(sk),
 | |
| 				   faddr, saddr, dport, inet->inet_sport);
 | |
| 
 | |
| 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
 | |
| 		rt = ip_route_output_flow(net, fl4, sk);
 | |
| 		if (IS_ERR(rt)) {
 | |
| 			err = PTR_ERR(rt);
 | |
| 			rt = NULL;
 | |
| 			if (err == -ENETUNREACH)
 | |
| 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		err = -EACCES;
 | |
| 		if ((rt->rt_flags & RTCF_BROADCAST) &&
 | |
| 		    !sock_flag(sk, SOCK_BROADCAST))
 | |
| 			goto out;
 | |
| 		if (connected)
 | |
| 			sk_dst_set(sk, dst_clone(&rt->dst));
 | |
| 	}
 | |
| 
 | |
| 	if (msg->msg_flags&MSG_CONFIRM)
 | |
| 		goto do_confirm;
 | |
| back_from_confirm:
 | |
| 
 | |
| 	saddr = fl4->saddr;
 | |
| 	if (!ipc.addr)
 | |
| 		daddr = ipc.addr = fl4->daddr;
 | |
| 
 | |
| 	/* Lockless fast path for the non-corking case. */
 | |
| 	if (!corkreq) {
 | |
| 		skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
 | |
| 				  sizeof(struct udphdr), &ipc, &rt,
 | |
| 				  msg->msg_flags);
 | |
| 		err = PTR_ERR(skb);
 | |
| 		if (!IS_ERR_OR_NULL(skb))
 | |
| 			err = udp_send_skb(skb, fl4);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	lock_sock(sk);
 | |
| 	if (unlikely(up->pending)) {
 | |
| 		/* The socket is already corked while preparing it. */
 | |
| 		/* ... which is an evident application bug. --ANK */
 | |
| 		release_sock(sk);
 | |
| 
 | |
| 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/*
 | |
| 	 *	Now cork the socket to pend data.
 | |
| 	 */
 | |
| 	fl4 = &inet->cork.fl.u.ip4;
 | |
| 	fl4->daddr = daddr;
 | |
| 	fl4->saddr = saddr;
 | |
| 	fl4->fl4_dport = dport;
 | |
| 	fl4->fl4_sport = inet->inet_sport;
 | |
| 	up->pending = AF_INET;
 | |
| 
 | |
| do_append_data:
 | |
| 	up->len += ulen;
 | |
| 	err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
 | |
| 			     sizeof(struct udphdr), &ipc, &rt,
 | |
| 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
 | |
| 	if (err)
 | |
| 		udp_flush_pending_frames(sk);
 | |
| 	else if (!corkreq)
 | |
| 		err = udp_push_pending_frames(sk);
 | |
| 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
 | |
| 		up->pending = 0;
 | |
| 	release_sock(sk);
 | |
| 
 | |
| out:
 | |
| 	ip_rt_put(rt);
 | |
| 	if (free)
 | |
| 		kfree(ipc.opt);
 | |
| 	if (!err)
 | |
| 		return len;
 | |
| 	/*
 | |
| 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
 | |
| 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
 | |
| 	 * we don't have a good statistic (IpOutDiscards but it can be too many
 | |
| 	 * things).  We could add another new stat but at least for now that
 | |
| 	 * seems like overkill.
 | |
| 	 */
 | |
| 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
 | |
| 		UDP_INC_STATS_USER(sock_net(sk),
 | |
| 				UDP_MIB_SNDBUFERRORS, is_udplite);
 | |
| 	}
 | |
| 	return err;
 | |
| 
 | |
| do_confirm:
 | |
| 	dst_confirm(&rt->dst);
 | |
| 	if (!(msg->msg_flags&MSG_PROBE) || len)
 | |
| 		goto back_from_confirm;
 | |
| 	err = 0;
 | |
| 	goto out;
 | |
| }
 | |
| EXPORT_SYMBOL(udp_sendmsg);
 | |
| 
 | |
| int udp_sendpage(struct sock *sk, struct page *page, int offset,
 | |
| 		 size_t size, int flags)
 | |
| {
 | |
| 	struct inet_sock *inet = inet_sk(sk);
 | |
| 	struct udp_sock *up = udp_sk(sk);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (flags & MSG_SENDPAGE_NOTLAST)
 | |
| 		flags |= MSG_MORE;
 | |
| 
 | |
| 	if (!up->pending) {
 | |
| 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
 | |
| 
 | |
| 		/* Call udp_sendmsg to specify destination address which
 | |
| 		 * sendpage interface can't pass.
 | |
| 		 * This will succeed only when the socket is connected.
 | |
| 		 */
 | |
| 		ret = udp_sendmsg(NULL, sk, &msg, 0);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	lock_sock(sk);
 | |
| 
 | |
| 	if (unlikely(!up->pending)) {
 | |
| 		release_sock(sk);
 | |
| 
 | |
| 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
 | |
| 			     page, offset, size, flags);
 | |
| 	if (ret == -EOPNOTSUPP) {
 | |
| 		release_sock(sk);
 | |
| 		return sock_no_sendpage(sk->sk_socket, page, offset,
 | |
| 					size, flags);
 | |
| 	}
 | |
| 	if (ret < 0) {
 | |
| 		udp_flush_pending_frames(sk);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	up->len += size;
 | |
| 	if (!(up->corkflag || (flags&MSG_MORE)))
 | |
| 		ret = udp_push_pending_frames(sk);
 | |
| 	if (!ret)
 | |
| 		ret = size;
 | |
| out:
 | |
| 	release_sock(sk);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  *	first_packet_length	- return length of first packet in receive queue
 | |
|  *	@sk: socket
 | |
|  *
 | |
|  *	Drops all bad checksum frames, until a valid one is found.
 | |
|  *	Returns the length of found skb, or 0 if none is found.
 | |
|  */
 | |
| static unsigned int first_packet_length(struct sock *sk)
 | |
| {
 | |
| 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
 | |
| 	struct sk_buff *skb;
 | |
| 	unsigned int res;
 | |
| 
 | |
| 	__skb_queue_head_init(&list_kill);
 | |
| 
 | |
| 	spin_lock_bh(&rcvq->lock);
 | |
| 	while ((skb = skb_peek(rcvq)) != NULL &&
 | |
| 		udp_lib_checksum_complete(skb)) {
 | |
| 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
 | |
| 				 IS_UDPLITE(sk));
 | |
| 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
 | |
| 				 IS_UDPLITE(sk));
 | |
| 		atomic_inc(&sk->sk_drops);
 | |
| 		__skb_unlink(skb, rcvq);
 | |
| 		__skb_queue_tail(&list_kill, skb);
 | |
| 	}
 | |
| 	res = skb ? skb->len : 0;
 | |
| 	spin_unlock_bh(&rcvq->lock);
 | |
| 
 | |
| 	if (!skb_queue_empty(&list_kill)) {
 | |
| 		bool slow = lock_sock_fast(sk);
 | |
| 
 | |
| 		__skb_queue_purge(&list_kill);
 | |
| 		sk_mem_reclaim_partial(sk);
 | |
| 		unlock_sock_fast(sk, slow);
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	IOCTL requests applicable to the UDP protocol
 | |
|  */
 | |
| 
 | |
| int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
 | |
| {
 | |
| 	switch (cmd) {
 | |
| 	case SIOCOUTQ:
 | |
| 	{
 | |
| 		int amount = sk_wmem_alloc_get(sk);
 | |
| 
 | |
| 		return put_user(amount, (int __user *)arg);
 | |
| 	}
 | |
| 
 | |
| 	case SIOCINQ:
 | |
| 	{
 | |
| 		unsigned int amount = first_packet_length(sk);
 | |
| 
 | |
| 		if (amount)
 | |
| 			/*
 | |
| 			 * We will only return the amount
 | |
| 			 * of this packet since that is all
 | |
| 			 * that will be read.
 | |
| 			 */
 | |
| 			amount -= sizeof(struct udphdr);
 | |
| 
 | |
| 		return put_user(amount, (int __user *)arg);
 | |
| 	}
 | |
| 
 | |
| 	default:
 | |
| 		return -ENOIOCTLCMD;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(udp_ioctl);
 | |
| 
 | |
| /*
 | |
|  * 	This should be easy, if there is something there we
 | |
|  * 	return it, otherwise we block.
 | |
|  */
 | |
| 
 | |
| int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
 | |
| 		size_t len, int noblock, int flags, int *addr_len)
 | |
| {
 | |
| 	struct inet_sock *inet = inet_sk(sk);
 | |
| 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
 | |
| 	struct sk_buff *skb;
 | |
| 	unsigned int ulen, copied;
 | |
| 	int peeked, off = 0;
 | |
| 	int err;
 | |
| 	int is_udplite = IS_UDPLITE(sk);
 | |
| 	bool slow;
 | |
| 
 | |
| 	if (flags & MSG_ERRQUEUE)
 | |
| 		return ip_recv_error(sk, msg, len, addr_len);
 | |
| 
 | |
| try_again:
 | |
| 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
 | |
| 				  &peeked, &off, &err);
 | |
| 	if (!skb)
 | |
| 		goto out;
 | |
| 
 | |
| 	ulen = skb->len - sizeof(struct udphdr);
 | |
| 	copied = len;
 | |
| 	if (copied > ulen)
 | |
| 		copied = ulen;
 | |
| 	else if (copied < ulen)
 | |
| 		msg->msg_flags |= MSG_TRUNC;
 | |
| 
 | |
| 	/*
 | |
| 	 * If checksum is needed at all, try to do it while copying the
 | |
| 	 * data.  If the data is truncated, or if we only want a partial
 | |
| 	 * coverage checksum (UDP-Lite), do it before the copy.
 | |
| 	 */
 | |
| 
 | |
| 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
 | |
| 		if (udp_lib_checksum_complete(skb))
 | |
| 			goto csum_copy_err;
 | |
| 	}
 | |
| 
 | |
| 	if (skb_csum_unnecessary(skb))
 | |
| 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
 | |
| 					      msg->msg_iov, copied);
 | |
| 	else {
 | |
| 		err = skb_copy_and_csum_datagram_iovec(skb,
 | |
| 						       sizeof(struct udphdr),
 | |
| 						       msg->msg_iov);
 | |
| 
 | |
| 		if (err == -EINVAL)
 | |
| 			goto csum_copy_err;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(err)) {
 | |
| 		trace_kfree_skb(skb, udp_recvmsg);
 | |
| 		if (!peeked) {
 | |
| 			atomic_inc(&sk->sk_drops);
 | |
| 			UDP_INC_STATS_USER(sock_net(sk),
 | |
| 					   UDP_MIB_INERRORS, is_udplite);
 | |
| 		}
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	if (!peeked)
 | |
| 		UDP_INC_STATS_USER(sock_net(sk),
 | |
| 				UDP_MIB_INDATAGRAMS, is_udplite);
 | |
| 
 | |
| 	sock_recv_ts_and_drops(msg, sk, skb);
 | |
| 
 | |
| 	/* Copy the address. */
 | |
| 	if (sin) {
 | |
| 		sin->sin_family = AF_INET;
 | |
| 		sin->sin_port = udp_hdr(skb)->source;
 | |
| 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
 | |
| 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
 | |
| 		*addr_len = sizeof(*sin);
 | |
| 	}
 | |
| 	if (inet->cmsg_flags)
 | |
| 		ip_cmsg_recv(msg, skb);
 | |
| 
 | |
| 	err = copied;
 | |
| 	if (flags & MSG_TRUNC)
 | |
| 		err = ulen;
 | |
| 
 | |
| out_free:
 | |
| 	skb_free_datagram_locked(sk, skb);
 | |
| out:
 | |
| 	return err;
 | |
| 
 | |
| csum_copy_err:
 | |
| 	slow = lock_sock_fast(sk);
 | |
| 	if (!skb_kill_datagram(sk, skb, flags)) {
 | |
| 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
 | |
| 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
 | |
| 	}
 | |
| 	unlock_sock_fast(sk, slow);
 | |
| 
 | |
| 	if (noblock)
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	/* starting over for a new packet */
 | |
| 	msg->msg_flags &= ~MSG_TRUNC;
 | |
| 	goto try_again;
 | |
| }
 | |
| 
 | |
| 
 | |
| int udp_disconnect(struct sock *sk, int flags)
 | |
| {
 | |
| 	struct inet_sock *inet = inet_sk(sk);
 | |
| 	/*
 | |
| 	 *	1003.1g - break association.
 | |
| 	 */
 | |
| 
 | |
| 	sk->sk_state = TCP_CLOSE;
 | |
| 	inet->inet_daddr = 0;
 | |
| 	inet->inet_dport = 0;
 | |
| 	sock_rps_reset_rxhash(sk);
 | |
| 	sk->sk_bound_dev_if = 0;
 | |
| 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
 | |
| 		inet_reset_saddr(sk);
 | |
| 
 | |
| 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
 | |
| 		sk->sk_prot->unhash(sk);
 | |
| 		inet->inet_sport = 0;
 | |
| 	}
 | |
| 	sk_dst_reset(sk);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(udp_disconnect);
 | |
| 
 | |
| void udp_lib_unhash(struct sock *sk)
 | |
| {
 | |
| 	if (sk_hashed(sk)) {
 | |
| 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
 | |
| 		struct udp_hslot *hslot, *hslot2;
 | |
| 
 | |
| 		hslot  = udp_hashslot(udptable, sock_net(sk),
 | |
| 				      udp_sk(sk)->udp_port_hash);
 | |
| 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
 | |
| 
 | |
| 		spin_lock_bh(&hslot->lock);
 | |
| 		if (sk_nulls_del_node_init_rcu(sk)) {
 | |
| 			hslot->count--;
 | |
| 			inet_sk(sk)->inet_num = 0;
 | |
| 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
 | |
| 
 | |
| 			spin_lock(&hslot2->lock);
 | |
| 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
 | |
| 			hslot2->count--;
 | |
| 			spin_unlock(&hslot2->lock);
 | |
| 		}
 | |
| 		spin_unlock_bh(&hslot->lock);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(udp_lib_unhash);
 | |
| 
 | |
| /*
 | |
|  * inet_rcv_saddr was changed, we must rehash secondary hash
 | |
|  */
 | |
| void udp_lib_rehash(struct sock *sk, u16 newhash)
 | |
| {
 | |
| 	if (sk_hashed(sk)) {
 | |
| 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
 | |
| 		struct udp_hslot *hslot, *hslot2, *nhslot2;
 | |
| 
 | |
| 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
 | |
| 		nhslot2 = udp_hashslot2(udptable, newhash);
 | |
| 		udp_sk(sk)->udp_portaddr_hash = newhash;
 | |
| 		if (hslot2 != nhslot2) {
 | |
| 			hslot = udp_hashslot(udptable, sock_net(sk),
 | |
| 					     udp_sk(sk)->udp_port_hash);
 | |
| 			/* we must lock primary chain too */
 | |
| 			spin_lock_bh(&hslot->lock);
 | |
| 
 | |
| 			spin_lock(&hslot2->lock);
 | |
| 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
 | |
| 			hslot2->count--;
 | |
| 			spin_unlock(&hslot2->lock);
 | |
| 
 | |
| 			spin_lock(&nhslot2->lock);
 | |
| 			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
 | |
| 						 &nhslot2->head);
 | |
| 			nhslot2->count++;
 | |
| 			spin_unlock(&nhslot2->lock);
 | |
| 
 | |
| 			spin_unlock_bh(&hslot->lock);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(udp_lib_rehash);
 | |
| 
 | |
| static void udp_v4_rehash(struct sock *sk)
 | |
| {
 | |
| 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
 | |
| 					  inet_sk(sk)->inet_rcv_saddr,
 | |
| 					  inet_sk(sk)->inet_num);
 | |
| 	udp_lib_rehash(sk, new_hash);
 | |
| }
 | |
| 
 | |
| static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	if (inet_sk(sk)->inet_daddr) {
 | |
| 		sock_rps_save_rxhash(sk, skb);
 | |
| 		sk_mark_napi_id(sk, skb);
 | |
| 	}
 | |
| 
 | |
| 	rc = sock_queue_rcv_skb(sk, skb);
 | |
| 	if (rc < 0) {
 | |
| 		int is_udplite = IS_UDPLITE(sk);
 | |
| 
 | |
| 		/* Note that an ENOMEM error is charged twice */
 | |
| 		if (rc == -ENOMEM)
 | |
| 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
 | |
| 					 is_udplite);
 | |
| 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
 | |
| 		kfree_skb(skb);
 | |
| 		trace_udp_fail_queue_rcv_skb(rc, sk);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| static struct static_key udp_encap_needed __read_mostly;
 | |
| void udp_encap_enable(void)
 | |
| {
 | |
| 	if (!static_key_enabled(&udp_encap_needed))
 | |
| 		static_key_slow_inc(&udp_encap_needed);
 | |
| }
 | |
| EXPORT_SYMBOL(udp_encap_enable);
 | |
| 
 | |
| /* returns:
 | |
|  *  -1: error
 | |
|  *   0: success
 | |
|  *  >0: "udp encap" protocol resubmission
 | |
|  *
 | |
|  * Note that in the success and error cases, the skb is assumed to
 | |
|  * have either been requeued or freed.
 | |
|  */
 | |
| int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 | |
| {
 | |
| 	struct udp_sock *up = udp_sk(sk);
 | |
| 	int rc;
 | |
| 	int is_udplite = IS_UDPLITE(sk);
 | |
| 
 | |
| 	/*
 | |
| 	 *	Charge it to the socket, dropping if the queue is full.
 | |
| 	 */
 | |
| 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
 | |
| 		goto drop;
 | |
| 	nf_reset(skb);
 | |
| 
 | |
| 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
 | |
| 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
 | |
| 
 | |
| 		/*
 | |
| 		 * This is an encapsulation socket so pass the skb to
 | |
| 		 * the socket's udp_encap_rcv() hook. Otherwise, just
 | |
| 		 * fall through and pass this up the UDP socket.
 | |
| 		 * up->encap_rcv() returns the following value:
 | |
| 		 * =0 if skb was successfully passed to the encap
 | |
| 		 *    handler or was discarded by it.
 | |
| 		 * >0 if skb should be passed on to UDP.
 | |
| 		 * <0 if skb should be resubmitted as proto -N
 | |
| 		 */
 | |
| 
 | |
| 		/* if we're overly short, let UDP handle it */
 | |
| 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
 | |
| 		if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
 | |
| 			int ret;
 | |
| 
 | |
| 			/* Verify checksum before giving to encap */
 | |
| 			if (udp_lib_checksum_complete(skb))
 | |
| 				goto csum_error;
 | |
| 
 | |
| 			ret = encap_rcv(sk, skb);
 | |
| 			if (ret <= 0) {
 | |
| 				UDP_INC_STATS_BH(sock_net(sk),
 | |
| 						 UDP_MIB_INDATAGRAMS,
 | |
| 						 is_udplite);
 | |
| 				return -ret;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* FALLTHROUGH -- it's a UDP Packet */
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * 	UDP-Lite specific tests, ignored on UDP sockets
 | |
| 	 */
 | |
| 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
 | |
| 
 | |
| 		/*
 | |
| 		 * MIB statistics other than incrementing the error count are
 | |
| 		 * disabled for the following two types of errors: these depend
 | |
| 		 * on the application settings, not on the functioning of the
 | |
| 		 * protocol stack as such.
 | |
| 		 *
 | |
| 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
 | |
| 		 * way ... to ... at least let the receiving application block
 | |
| 		 * delivery of packets with coverage values less than a value
 | |
| 		 * provided by the application."
 | |
| 		 */
 | |
| 		if (up->pcrlen == 0) {          /* full coverage was set  */
 | |
| 			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
 | |
| 				       UDP_SKB_CB(skb)->cscov, skb->len);
 | |
| 			goto drop;
 | |
| 		}
 | |
| 		/* The next case involves violating the min. coverage requested
 | |
| 		 * by the receiver. This is subtle: if receiver wants x and x is
 | |
| 		 * greater than the buffersize/MTU then receiver will complain
 | |
| 		 * that it wants x while sender emits packets of smaller size y.
 | |
| 		 * Therefore the above ...()->partial_cov statement is essential.
 | |
| 		 */
 | |
| 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
 | |
| 			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
 | |
| 				       UDP_SKB_CB(skb)->cscov, up->pcrlen);
 | |
| 			goto drop;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (rcu_access_pointer(sk->sk_filter) &&
 | |
| 	    udp_lib_checksum_complete(skb))
 | |
| 		goto csum_error;
 | |
| 
 | |
| 
 | |
| 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
 | |
| 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
 | |
| 				 is_udplite);
 | |
| 		goto drop;
 | |
| 	}
 | |
| 
 | |
| 	rc = 0;
 | |
| 
 | |
| 	ipv4_pktinfo_prepare(sk, skb);
 | |
| 	bh_lock_sock(sk);
 | |
| 	if (!sock_owned_by_user(sk))
 | |
| 		rc = __udp_queue_rcv_skb(sk, skb);
 | |
| 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
 | |
| 		bh_unlock_sock(sk);
 | |
| 		goto drop;
 | |
| 	}
 | |
| 	bh_unlock_sock(sk);
 | |
| 
 | |
| 	return rc;
 | |
| 
 | |
| csum_error:
 | |
| 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
 | |
| drop:
 | |
| 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
 | |
| 	atomic_inc(&sk->sk_drops);
 | |
| 	kfree_skb(skb);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void flush_stack(struct sock **stack, unsigned int count,
 | |
| 			struct sk_buff *skb, unsigned int final)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	struct sk_buff *skb1 = NULL;
 | |
| 	struct sock *sk;
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		sk = stack[i];
 | |
| 		if (likely(skb1 == NULL))
 | |
| 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
 | |
| 
 | |
| 		if (!skb1) {
 | |
| 			atomic_inc(&sk->sk_drops);
 | |
| 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
 | |
| 					 IS_UDPLITE(sk));
 | |
| 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
 | |
| 					 IS_UDPLITE(sk));
 | |
| 		}
 | |
| 
 | |
| 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
 | |
| 			skb1 = NULL;
 | |
| 
 | |
| 		sock_put(sk);
 | |
| 	}
 | |
| 	if (unlikely(skb1))
 | |
| 		kfree_skb(skb1);
 | |
| }
 | |
| 
 | |
| /* For TCP sockets, sk_rx_dst is protected by socket lock
 | |
|  * For UDP, we use xchg() to guard against concurrent changes.
 | |
|  */
 | |
| static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
 | |
| {
 | |
| 	struct dst_entry *old;
 | |
| 
 | |
| 	dst_hold(dst);
 | |
| 	old = xchg(&sk->sk_rx_dst, dst);
 | |
| 	dst_release(old);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Multicasts and broadcasts go to each listener.
 | |
|  *
 | |
|  *	Note: called only from the BH handler context.
 | |
|  */
 | |
| static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
 | |
| 				    struct udphdr  *uh,
 | |
| 				    __be32 saddr, __be32 daddr,
 | |
| 				    struct udp_table *udptable)
 | |
| {
 | |
| 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
 | |
| 	struct hlist_nulls_node *node;
 | |
| 	unsigned short hnum = ntohs(uh->dest);
 | |
| 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
 | |
| 	int dif = skb->dev->ifindex;
 | |
| 	unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
 | |
| 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
 | |
| 
 | |
| 	if (use_hash2) {
 | |
| 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
 | |
| 			    udp_table.mask;
 | |
| 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
 | |
| start_lookup:
 | |
| 		hslot = &udp_table.hash2[hash2];
 | |
| 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&hslot->lock);
 | |
| 	sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
 | |
| 		if (__udp_is_mcast_sock(net, sk,
 | |
| 					uh->dest, daddr,
 | |
| 					uh->source, saddr,
 | |
| 					dif, hnum)) {
 | |
| 			if (unlikely(count == ARRAY_SIZE(stack))) {
 | |
| 				flush_stack(stack, count, skb, ~0);
 | |
| 				count = 0;
 | |
| 			}
 | |
| 			stack[count++] = sk;
 | |
| 			sock_hold(sk);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&hslot->lock);
 | |
| 
 | |
| 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
 | |
| 	if (use_hash2 && hash2 != hash2_any) {
 | |
| 		hash2 = hash2_any;
 | |
| 		goto start_lookup;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * do the slow work with no lock held
 | |
| 	 */
 | |
| 	if (count) {
 | |
| 		flush_stack(stack, count, skb, count - 1);
 | |
| 	} else {
 | |
| 		kfree_skb(skb);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Initialize UDP checksum. If exited with zero value (success),
 | |
|  * CHECKSUM_UNNECESSARY means, that no more checks are required.
 | |
|  * Otherwise, csum completion requires chacksumming packet body,
 | |
|  * including udp header and folding it to skb->csum.
 | |
|  */
 | |
| static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
 | |
| 				 int proto)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	UDP_SKB_CB(skb)->partial_cov = 0;
 | |
| 	UDP_SKB_CB(skb)->cscov = skb->len;
 | |
| 
 | |
| 	if (proto == IPPROTO_UDPLITE) {
 | |
| 		err = udplite_checksum_init(skb, uh);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	return skb_checksum_init_zero_check(skb, proto, uh->check,
 | |
| 					    inet_compute_pseudo);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	All we need to do is get the socket, and then do a checksum.
 | |
|  */
 | |
| 
 | |
| int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
 | |
| 		   int proto)
 | |
| {
 | |
| 	struct sock *sk;
 | |
| 	struct udphdr *uh;
 | |
| 	unsigned short ulen;
 | |
| 	struct rtable *rt = skb_rtable(skb);
 | |
| 	__be32 saddr, daddr;
 | |
| 	struct net *net = dev_net(skb->dev);
 | |
| 
 | |
| 	/*
 | |
| 	 *  Validate the packet.
 | |
| 	 */
 | |
| 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
 | |
| 		goto drop;		/* No space for header. */
 | |
| 
 | |
| 	uh   = udp_hdr(skb);
 | |
| 	ulen = ntohs(uh->len);
 | |
| 	saddr = ip_hdr(skb)->saddr;
 | |
| 	daddr = ip_hdr(skb)->daddr;
 | |
| 
 | |
| 	if (ulen > skb->len)
 | |
| 		goto short_packet;
 | |
| 
 | |
| 	if (proto == IPPROTO_UDP) {
 | |
| 		/* UDP validates ulen. */
 | |
| 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
 | |
| 			goto short_packet;
 | |
| 		uh = udp_hdr(skb);
 | |
| 	}
 | |
| 
 | |
| 	if (udp4_csum_init(skb, uh, proto))
 | |
| 		goto csum_error;
 | |
| 
 | |
| 	sk = skb_steal_sock(skb);
 | |
| 	if (sk) {
 | |
| 		struct dst_entry *dst = skb_dst(skb);
 | |
| 		int ret;
 | |
| 
 | |
| 		if (unlikely(sk->sk_rx_dst != dst))
 | |
| 			udp_sk_rx_dst_set(sk, dst);
 | |
| 
 | |
| 		ret = udp_queue_rcv_skb(sk, skb);
 | |
| 		sock_put(sk);
 | |
| 		/* a return value > 0 means to resubmit the input, but
 | |
| 		 * it wants the return to be -protocol, or 0
 | |
| 		 */
 | |
| 		if (ret > 0)
 | |
| 			return -ret;
 | |
| 		return 0;
 | |
| 	} else {
 | |
| 		if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
 | |
| 			return __udp4_lib_mcast_deliver(net, skb, uh,
 | |
| 					saddr, daddr, udptable);
 | |
| 
 | |
| 		sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
 | |
| 	}
 | |
| 
 | |
| 	if (sk != NULL) {
 | |
| 		int ret;
 | |
| 
 | |
| 		if (udp_sk(sk)->convert_csum && uh->check && !IS_UDPLITE(sk))
 | |
| 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
 | |
| 						 inet_compute_pseudo);
 | |
| 
 | |
| 		ret = udp_queue_rcv_skb(sk, skb);
 | |
| 		sock_put(sk);
 | |
| 
 | |
| 		/* a return value > 0 means to resubmit the input, but
 | |
| 		 * it wants the return to be -protocol, or 0
 | |
| 		 */
 | |
| 		if (ret > 0)
 | |
| 			return -ret;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
 | |
| 		goto drop;
 | |
| 	nf_reset(skb);
 | |
| 
 | |
| 	/* No socket. Drop packet silently, if checksum is wrong */
 | |
| 	if (udp_lib_checksum_complete(skb))
 | |
| 		goto csum_error;
 | |
| 
 | |
| 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
 | |
| 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Hmm.  We got an UDP packet to a port to which we
 | |
| 	 * don't wanna listen.  Ignore it.
 | |
| 	 */
 | |
| 	kfree_skb(skb);
 | |
| 	return 0;
 | |
| 
 | |
| short_packet:
 | |
| 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
 | |
| 		       proto == IPPROTO_UDPLITE ? "Lite" : "",
 | |
| 		       &saddr, ntohs(uh->source),
 | |
| 		       ulen, skb->len,
 | |
| 		       &daddr, ntohs(uh->dest));
 | |
| 	goto drop;
 | |
| 
 | |
| csum_error:
 | |
| 	/*
 | |
| 	 * RFC1122: OK.  Discards the bad packet silently (as far as
 | |
| 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
 | |
| 	 */
 | |
| 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
 | |
| 		       proto == IPPROTO_UDPLITE ? "Lite" : "",
 | |
| 		       &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
 | |
| 		       ulen);
 | |
| 	UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
 | |
| drop:
 | |
| 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
 | |
| 	kfree_skb(skb);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* We can only early demux multicast if there is a single matching socket.
 | |
|  * If more than one socket found returns NULL
 | |
|  */
 | |
| static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
 | |
| 						  __be16 loc_port, __be32 loc_addr,
 | |
| 						  __be16 rmt_port, __be32 rmt_addr,
 | |
| 						  int dif)
 | |
| {
 | |
| 	struct sock *sk, *result;
 | |
| 	struct hlist_nulls_node *node;
 | |
| 	unsigned short hnum = ntohs(loc_port);
 | |
| 	unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
 | |
| 	struct udp_hslot *hslot = &udp_table.hash[slot];
 | |
| 
 | |
| 	/* Do not bother scanning a too big list */
 | |
| 	if (hslot->count > 10)
 | |
| 		return NULL;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| begin:
 | |
| 	count = 0;
 | |
| 	result = NULL;
 | |
| 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
 | |
| 		if (__udp_is_mcast_sock(net, sk,
 | |
| 					loc_port, loc_addr,
 | |
| 					rmt_port, rmt_addr,
 | |
| 					dif, hnum)) {
 | |
| 			result = sk;
 | |
| 			++count;
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * if the nulls value we got at the end of this lookup is
 | |
| 	 * not the expected one, we must restart lookup.
 | |
| 	 * We probably met an item that was moved to another chain.
 | |
| 	 */
 | |
| 	if (get_nulls_value(node) != slot)
 | |
| 		goto begin;
 | |
| 
 | |
| 	if (result) {
 | |
| 		if (count != 1 ||
 | |
| 		    unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
 | |
| 			result = NULL;
 | |
| 		else if (unlikely(!__udp_is_mcast_sock(net, result,
 | |
| 						       loc_port, loc_addr,
 | |
| 						       rmt_port, rmt_addr,
 | |
| 						       dif, hnum))) {
 | |
| 			sock_put(result);
 | |
| 			result = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* For unicast we should only early demux connected sockets or we can
 | |
|  * break forwarding setups.  The chains here can be long so only check
 | |
|  * if the first socket is an exact match and if not move on.
 | |
|  */
 | |
| static struct sock *__udp4_lib_demux_lookup(struct net *net,
 | |
| 					    __be16 loc_port, __be32 loc_addr,
 | |
| 					    __be16 rmt_port, __be32 rmt_addr,
 | |
| 					    int dif)
 | |
| {
 | |
| 	struct sock *sk, *result;
 | |
| 	struct hlist_nulls_node *node;
 | |
| 	unsigned short hnum = ntohs(loc_port);
 | |
| 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
 | |
| 	unsigned int slot2 = hash2 & udp_table.mask;
 | |
| 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
 | |
| 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
 | |
| 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	result = NULL;
 | |
| 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
 | |
| 		if (INET_MATCH(sk, net, acookie,
 | |
| 			       rmt_addr, loc_addr, ports, dif))
 | |
| 			result = sk;
 | |
| 		/* Only check first socket in chain */
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (result) {
 | |
| 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
 | |
| 			result = NULL;
 | |
| 		else if (unlikely(!INET_MATCH(sk, net, acookie,
 | |
| 					      rmt_addr, loc_addr,
 | |
| 					      ports, dif))) {
 | |
| 			sock_put(result);
 | |
| 			result = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| void udp_v4_early_demux(struct sk_buff *skb)
 | |
| {
 | |
| 	struct net *net = dev_net(skb->dev);
 | |
| 	const struct iphdr *iph;
 | |
| 	const struct udphdr *uh;
 | |
| 	struct sock *sk;
 | |
| 	struct dst_entry *dst;
 | |
| 	int dif = skb->dev->ifindex;
 | |
| 
 | |
| 	/* validate the packet */
 | |
| 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
 | |
| 		return;
 | |
| 
 | |
| 	iph = ip_hdr(skb);
 | |
| 	uh = udp_hdr(skb);
 | |
| 
 | |
| 	if (skb->pkt_type == PACKET_BROADCAST ||
 | |
| 	    skb->pkt_type == PACKET_MULTICAST)
 | |
| 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
 | |
| 						   uh->source, iph->saddr, dif);
 | |
| 	else if (skb->pkt_type == PACKET_HOST)
 | |
| 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
 | |
| 					     uh->source, iph->saddr, dif);
 | |
| 	else
 | |
| 		return;
 | |
| 
 | |
| 	if (!sk)
 | |
| 		return;
 | |
| 
 | |
| 	skb->sk = sk;
 | |
| 	skb->destructor = sock_efree;
 | |
| 	dst = sk->sk_rx_dst;
 | |
| 
 | |
| 	if (dst)
 | |
| 		dst = dst_check(dst, 0);
 | |
| 	if (dst)
 | |
| 		skb_dst_set_noref(skb, dst);
 | |
| }
 | |
| 
 | |
| int udp_rcv(struct sk_buff *skb)
 | |
| {
 | |
| 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
 | |
| }
 | |
| 
 | |
| void udp_destroy_sock(struct sock *sk)
 | |
| {
 | |
| 	struct udp_sock *up = udp_sk(sk);
 | |
| 	bool slow = lock_sock_fast(sk);
 | |
| 	udp_flush_pending_frames(sk);
 | |
| 	unlock_sock_fast(sk, slow);
 | |
| 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
 | |
| 		void (*encap_destroy)(struct sock *sk);
 | |
| 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
 | |
| 		if (encap_destroy)
 | |
| 			encap_destroy(sk);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Socket option code for UDP
 | |
|  */
 | |
| int udp_lib_setsockopt(struct sock *sk, int level, int optname,
 | |
| 		       char __user *optval, unsigned int optlen,
 | |
| 		       int (*push_pending_frames)(struct sock *))
 | |
| {
 | |
| 	struct udp_sock *up = udp_sk(sk);
 | |
| 	int val, valbool;
 | |
| 	int err = 0;
 | |
| 	int is_udplite = IS_UDPLITE(sk);
 | |
| 
 | |
| 	if (optlen < sizeof(int))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (get_user(val, (int __user *)optval))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	valbool = val ? 1 : 0;
 | |
| 
 | |
| 	switch (optname) {
 | |
| 	case UDP_CORK:
 | |
| 		if (val != 0) {
 | |
| 			up->corkflag = 1;
 | |
| 		} else {
 | |
| 			up->corkflag = 0;
 | |
| 			lock_sock(sk);
 | |
| 			(*push_pending_frames)(sk);
 | |
| 			release_sock(sk);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case UDP_ENCAP:
 | |
| 		switch (val) {
 | |
| 		case 0:
 | |
| 		case UDP_ENCAP_ESPINUDP:
 | |
| 		case UDP_ENCAP_ESPINUDP_NON_IKE:
 | |
| 			up->encap_rcv = xfrm4_udp_encap_rcv;
 | |
| 			/* FALLTHROUGH */
 | |
| 		case UDP_ENCAP_L2TPINUDP:
 | |
| 			up->encap_type = val;
 | |
| 			udp_encap_enable();
 | |
| 			break;
 | |
| 		default:
 | |
| 			err = -ENOPROTOOPT;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case UDP_NO_CHECK6_TX:
 | |
| 		up->no_check6_tx = valbool;
 | |
| 		break;
 | |
| 
 | |
| 	case UDP_NO_CHECK6_RX:
 | |
| 		up->no_check6_rx = valbool;
 | |
| 		break;
 | |
| 
 | |
| 	/*
 | |
| 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
 | |
| 	 */
 | |
| 	/* The sender sets actual checksum coverage length via this option.
 | |
| 	 * The case coverage > packet length is handled by send module. */
 | |
| 	case UDPLITE_SEND_CSCOV:
 | |
| 		if (!is_udplite)         /* Disable the option on UDP sockets */
 | |
| 			return -ENOPROTOOPT;
 | |
| 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
 | |
| 			val = 8;
 | |
| 		else if (val > USHRT_MAX)
 | |
| 			val = USHRT_MAX;
 | |
| 		up->pcslen = val;
 | |
| 		up->pcflag |= UDPLITE_SEND_CC;
 | |
| 		break;
 | |
| 
 | |
| 	/* The receiver specifies a minimum checksum coverage value. To make
 | |
| 	 * sense, this should be set to at least 8 (as done below). If zero is
 | |
| 	 * used, this again means full checksum coverage.                     */
 | |
| 	case UDPLITE_RECV_CSCOV:
 | |
| 		if (!is_udplite)         /* Disable the option on UDP sockets */
 | |
| 			return -ENOPROTOOPT;
 | |
| 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
 | |
| 			val = 8;
 | |
| 		else if (val > USHRT_MAX)
 | |
| 			val = USHRT_MAX;
 | |
| 		up->pcrlen = val;
 | |
| 		up->pcflag |= UDPLITE_RECV_CC;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		err = -ENOPROTOOPT;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL(udp_lib_setsockopt);
 | |
| 
 | |
| int udp_setsockopt(struct sock *sk, int level, int optname,
 | |
| 		   char __user *optval, unsigned int optlen)
 | |
| {
 | |
| 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
 | |
| 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
 | |
| 					  udp_push_pending_frames);
 | |
| 	return ip_setsockopt(sk, level, optname, optval, optlen);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| int compat_udp_setsockopt(struct sock *sk, int level, int optname,
 | |
| 			  char __user *optval, unsigned int optlen)
 | |
| {
 | |
| 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
 | |
| 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
 | |
| 					  udp_push_pending_frames);
 | |
| 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int udp_lib_getsockopt(struct sock *sk, int level, int optname,
 | |
| 		       char __user *optval, int __user *optlen)
 | |
| {
 | |
| 	struct udp_sock *up = udp_sk(sk);
 | |
| 	int val, len;
 | |
| 
 | |
| 	if (get_user(len, optlen))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	len = min_t(unsigned int, len, sizeof(int));
 | |
| 
 | |
| 	if (len < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	switch (optname) {
 | |
| 	case UDP_CORK:
 | |
| 		val = up->corkflag;
 | |
| 		break;
 | |
| 
 | |
| 	case UDP_ENCAP:
 | |
| 		val = up->encap_type;
 | |
| 		break;
 | |
| 
 | |
| 	case UDP_NO_CHECK6_TX:
 | |
| 		val = up->no_check6_tx;
 | |
| 		break;
 | |
| 
 | |
| 	case UDP_NO_CHECK6_RX:
 | |
| 		val = up->no_check6_rx;
 | |
| 		break;
 | |
| 
 | |
| 	/* The following two cannot be changed on UDP sockets, the return is
 | |
| 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
 | |
| 	case UDPLITE_SEND_CSCOV:
 | |
| 		val = up->pcslen;
 | |
| 		break;
 | |
| 
 | |
| 	case UDPLITE_RECV_CSCOV:
 | |
| 		val = up->pcrlen;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return -ENOPROTOOPT;
 | |
| 	}
 | |
| 
 | |
| 	if (put_user(len, optlen))
 | |
| 		return -EFAULT;
 | |
| 	if (copy_to_user(optval, &val, len))
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(udp_lib_getsockopt);
 | |
| 
 | |
| int udp_getsockopt(struct sock *sk, int level, int optname,
 | |
| 		   char __user *optval, int __user *optlen)
 | |
| {
 | |
| 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
 | |
| 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
 | |
| 	return ip_getsockopt(sk, level, optname, optval, optlen);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| int compat_udp_getsockopt(struct sock *sk, int level, int optname,
 | |
| 				 char __user *optval, int __user *optlen)
 | |
| {
 | |
| 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
 | |
| 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
 | |
| 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
 | |
| }
 | |
| #endif
 | |
| /**
 | |
|  * 	udp_poll - wait for a UDP event.
 | |
|  *	@file - file struct
 | |
|  *	@sock - socket
 | |
|  *	@wait - poll table
 | |
|  *
 | |
|  *	This is same as datagram poll, except for the special case of
 | |
|  *	blocking sockets. If application is using a blocking fd
 | |
|  *	and a packet with checksum error is in the queue;
 | |
|  *	then it could get return from select indicating data available
 | |
|  *	but then block when reading it. Add special case code
 | |
|  *	to work around these arguably broken applications.
 | |
|  */
 | |
| unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
 | |
| {
 | |
| 	unsigned int mask = datagram_poll(file, sock, wait);
 | |
| 	struct sock *sk = sock->sk;
 | |
| 
 | |
| 	sock_rps_record_flow(sk);
 | |
| 
 | |
| 	/* Check for false positives due to checksum errors */
 | |
| 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
 | |
| 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
 | |
| 		mask &= ~(POLLIN | POLLRDNORM);
 | |
| 
 | |
| 	return mask;
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL(udp_poll);
 | |
| 
 | |
| struct proto udp_prot = {
 | |
| 	.name		   = "UDP",
 | |
| 	.owner		   = THIS_MODULE,
 | |
| 	.close		   = udp_lib_close,
 | |
| 	.connect	   = ip4_datagram_connect,
 | |
| 	.disconnect	   = udp_disconnect,
 | |
| 	.ioctl		   = udp_ioctl,
 | |
| 	.destroy	   = udp_destroy_sock,
 | |
| 	.setsockopt	   = udp_setsockopt,
 | |
| 	.getsockopt	   = udp_getsockopt,
 | |
| 	.sendmsg	   = udp_sendmsg,
 | |
| 	.recvmsg	   = udp_recvmsg,
 | |
| 	.sendpage	   = udp_sendpage,
 | |
| 	.backlog_rcv	   = __udp_queue_rcv_skb,
 | |
| 	.release_cb	   = ip4_datagram_release_cb,
 | |
| 	.hash		   = udp_lib_hash,
 | |
| 	.unhash		   = udp_lib_unhash,
 | |
| 	.rehash		   = udp_v4_rehash,
 | |
| 	.get_port	   = udp_v4_get_port,
 | |
| 	.memory_allocated  = &udp_memory_allocated,
 | |
| 	.sysctl_mem	   = sysctl_udp_mem,
 | |
| 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
 | |
| 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
 | |
| 	.obj_size	   = sizeof(struct udp_sock),
 | |
| 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
 | |
| 	.h.udp_table	   = &udp_table,
 | |
| #ifdef CONFIG_COMPAT
 | |
| 	.compat_setsockopt = compat_udp_setsockopt,
 | |
| 	.compat_getsockopt = compat_udp_getsockopt,
 | |
| #endif
 | |
| 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
 | |
| };
 | |
| EXPORT_SYMBOL(udp_prot);
 | |
| 
 | |
| /* ------------------------------------------------------------------------ */
 | |
| #ifdef CONFIG_PROC_FS
 | |
| 
 | |
| static struct sock *udp_get_first(struct seq_file *seq, int start)
 | |
| {
 | |
| 	struct sock *sk;
 | |
| 	struct udp_iter_state *state = seq->private;
 | |
| 	struct net *net = seq_file_net(seq);
 | |
| 
 | |
| 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
 | |
| 	     ++state->bucket) {
 | |
| 		struct hlist_nulls_node *node;
 | |
| 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
 | |
| 
 | |
| 		if (hlist_nulls_empty(&hslot->head))
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock_bh(&hslot->lock);
 | |
| 		sk_nulls_for_each(sk, node, &hslot->head) {
 | |
| 			if (!net_eq(sock_net(sk), net))
 | |
| 				continue;
 | |
| 			if (sk->sk_family == state->family)
 | |
| 				goto found;
 | |
| 		}
 | |
| 		spin_unlock_bh(&hslot->lock);
 | |
| 	}
 | |
| 	sk = NULL;
 | |
| found:
 | |
| 	return sk;
 | |
| }
 | |
| 
 | |
| static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
 | |
| {
 | |
| 	struct udp_iter_state *state = seq->private;
 | |
| 	struct net *net = seq_file_net(seq);
 | |
| 
 | |
| 	do {
 | |
| 		sk = sk_nulls_next(sk);
 | |
| 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
 | |
| 
 | |
| 	if (!sk) {
 | |
| 		if (state->bucket <= state->udp_table->mask)
 | |
| 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
 | |
| 		return udp_get_first(seq, state->bucket + 1);
 | |
| 	}
 | |
| 	return sk;
 | |
| }
 | |
| 
 | |
| static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
 | |
| {
 | |
| 	struct sock *sk = udp_get_first(seq, 0);
 | |
| 
 | |
| 	if (sk)
 | |
| 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
 | |
| 			--pos;
 | |
| 	return pos ? NULL : sk;
 | |
| }
 | |
| 
 | |
| static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
 | |
| {
 | |
| 	struct udp_iter_state *state = seq->private;
 | |
| 	state->bucket = MAX_UDP_PORTS;
 | |
| 
 | |
| 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
 | |
| }
 | |
| 
 | |
| static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 | |
| {
 | |
| 	struct sock *sk;
 | |
| 
 | |
| 	if (v == SEQ_START_TOKEN)
 | |
| 		sk = udp_get_idx(seq, 0);
 | |
| 	else
 | |
| 		sk = udp_get_next(seq, v);
 | |
| 
 | |
| 	++*pos;
 | |
| 	return sk;
 | |
| }
 | |
| 
 | |
| static void udp_seq_stop(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct udp_iter_state *state = seq->private;
 | |
| 
 | |
| 	if (state->bucket <= state->udp_table->mask)
 | |
| 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
 | |
| }
 | |
| 
 | |
| int udp_seq_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
 | |
| 	struct udp_iter_state *s;
 | |
| 	int err;
 | |
| 
 | |
| 	err = seq_open_net(inode, file, &afinfo->seq_ops,
 | |
| 			   sizeof(struct udp_iter_state));
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 
 | |
| 	s = ((struct seq_file *)file->private_data)->private;
 | |
| 	s->family		= afinfo->family;
 | |
| 	s->udp_table		= afinfo->udp_table;
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL(udp_seq_open);
 | |
| 
 | |
| /* ------------------------------------------------------------------------ */
 | |
| int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
 | |
| {
 | |
| 	struct proc_dir_entry *p;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	afinfo->seq_ops.start		= udp_seq_start;
 | |
| 	afinfo->seq_ops.next		= udp_seq_next;
 | |
| 	afinfo->seq_ops.stop		= udp_seq_stop;
 | |
| 
 | |
| 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
 | |
| 			     afinfo->seq_fops, afinfo);
 | |
| 	if (!p)
 | |
| 		rc = -ENOMEM;
 | |
| 	return rc;
 | |
| }
 | |
| EXPORT_SYMBOL(udp_proc_register);
 | |
| 
 | |
| void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
 | |
| {
 | |
| 	remove_proc_entry(afinfo->name, net->proc_net);
 | |
| }
 | |
| EXPORT_SYMBOL(udp_proc_unregister);
 | |
| 
 | |
| /* ------------------------------------------------------------------------ */
 | |
| static void udp4_format_sock(struct sock *sp, struct seq_file *f,
 | |
| 		int bucket)
 | |
| {
 | |
| 	struct inet_sock *inet = inet_sk(sp);
 | |
| 	__be32 dest = inet->inet_daddr;
 | |
| 	__be32 src  = inet->inet_rcv_saddr;
 | |
| 	__u16 destp	  = ntohs(inet->inet_dport);
 | |
| 	__u16 srcp	  = ntohs(inet->inet_sport);
 | |
| 
 | |
| 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
 | |
| 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
 | |
| 		bucket, src, srcp, dest, destp, sp->sk_state,
 | |
| 		sk_wmem_alloc_get(sp),
 | |
| 		sk_rmem_alloc_get(sp),
 | |
| 		0, 0L, 0,
 | |
| 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
 | |
| 		0, sock_i_ino(sp),
 | |
| 		atomic_read(&sp->sk_refcnt), sp,
 | |
| 		atomic_read(&sp->sk_drops));
 | |
| }
 | |
| 
 | |
| int udp4_seq_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	seq_setwidth(seq, 127);
 | |
| 	if (v == SEQ_START_TOKEN)
 | |
| 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
 | |
| 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
 | |
| 			   "inode ref pointer drops");
 | |
| 	else {
 | |
| 		struct udp_iter_state *state = seq->private;
 | |
| 
 | |
| 		udp4_format_sock(v, seq, state->bucket);
 | |
| 	}
 | |
| 	seq_pad(seq, '\n');
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct file_operations udp_afinfo_seq_fops = {
 | |
| 	.owner    = THIS_MODULE,
 | |
| 	.open     = udp_seq_open,
 | |
| 	.read     = seq_read,
 | |
| 	.llseek   = seq_lseek,
 | |
| 	.release  = seq_release_net
 | |
| };
 | |
| 
 | |
| /* ------------------------------------------------------------------------ */
 | |
| static struct udp_seq_afinfo udp4_seq_afinfo = {
 | |
| 	.name		= "udp",
 | |
| 	.family		= AF_INET,
 | |
| 	.udp_table	= &udp_table,
 | |
| 	.seq_fops	= &udp_afinfo_seq_fops,
 | |
| 	.seq_ops	= {
 | |
| 		.show		= udp4_seq_show,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int __net_init udp4_proc_init_net(struct net *net)
 | |
| {
 | |
| 	return udp_proc_register(net, &udp4_seq_afinfo);
 | |
| }
 | |
| 
 | |
| static void __net_exit udp4_proc_exit_net(struct net *net)
 | |
| {
 | |
| 	udp_proc_unregister(net, &udp4_seq_afinfo);
 | |
| }
 | |
| 
 | |
| static struct pernet_operations udp4_net_ops = {
 | |
| 	.init = udp4_proc_init_net,
 | |
| 	.exit = udp4_proc_exit_net,
 | |
| };
 | |
| 
 | |
| int __init udp4_proc_init(void)
 | |
| {
 | |
| 	return register_pernet_subsys(&udp4_net_ops);
 | |
| }
 | |
| 
 | |
| void udp4_proc_exit(void)
 | |
| {
 | |
| 	unregister_pernet_subsys(&udp4_net_ops);
 | |
| }
 | |
| #endif /* CONFIG_PROC_FS */
 | |
| 
 | |
| static __initdata unsigned long uhash_entries;
 | |
| static int __init set_uhash_entries(char *str)
 | |
| {
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	if (!str)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = kstrtoul(str, 0, &uhash_entries);
 | |
| 	if (ret)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
 | |
| 		uhash_entries = UDP_HTABLE_SIZE_MIN;
 | |
| 	return 1;
 | |
| }
 | |
| __setup("uhash_entries=", set_uhash_entries);
 | |
| 
 | |
| void __init udp_table_init(struct udp_table *table, const char *name)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	table->hash = alloc_large_system_hash(name,
 | |
| 					      2 * sizeof(struct udp_hslot),
 | |
| 					      uhash_entries,
 | |
| 					      21, /* one slot per 2 MB */
 | |
| 					      0,
 | |
| 					      &table->log,
 | |
| 					      &table->mask,
 | |
| 					      UDP_HTABLE_SIZE_MIN,
 | |
| 					      64 * 1024);
 | |
| 
 | |
| 	table->hash2 = table->hash + (table->mask + 1);
 | |
| 	for (i = 0; i <= table->mask; i++) {
 | |
| 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
 | |
| 		table->hash[i].count = 0;
 | |
| 		spin_lock_init(&table->hash[i].lock);
 | |
| 	}
 | |
| 	for (i = 0; i <= table->mask; i++) {
 | |
| 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
 | |
| 		table->hash2[i].count = 0;
 | |
| 		spin_lock_init(&table->hash2[i].lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init udp_init(void)
 | |
| {
 | |
| 	unsigned long limit;
 | |
| 
 | |
| 	udp_table_init(&udp_table, "UDP");
 | |
| 	limit = nr_free_buffer_pages() / 8;
 | |
| 	limit = max(limit, 128UL);
 | |
| 	sysctl_udp_mem[0] = limit / 4 * 3;
 | |
| 	sysctl_udp_mem[1] = limit;
 | |
| 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
 | |
| 
 | |
| 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
 | |
| 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
 | |
| }
 |