Just reuse rsvd_bits() inside kvm_set_mmio_spte_mask() for slightly better code. Signed-off-by: Tiejun Chen <tiejun.chen@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
		
			
				
	
	
		
			186 lines
		
	
	
	
		
			6.1 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			186 lines
		
	
	
	
		
			6.1 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
#ifndef __KVM_X86_MMU_H
 | 
						|
#define __KVM_X86_MMU_H
 | 
						|
 | 
						|
#include <linux/kvm_host.h>
 | 
						|
#include "kvm_cache_regs.h"
 | 
						|
 | 
						|
#define PT64_PT_BITS 9
 | 
						|
#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
 | 
						|
#define PT32_PT_BITS 10
 | 
						|
#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
 | 
						|
 | 
						|
#define PT_WRITABLE_SHIFT 1
 | 
						|
 | 
						|
#define PT_PRESENT_MASK (1ULL << 0)
 | 
						|
#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
 | 
						|
#define PT_USER_MASK (1ULL << 2)
 | 
						|
#define PT_PWT_MASK (1ULL << 3)
 | 
						|
#define PT_PCD_MASK (1ULL << 4)
 | 
						|
#define PT_ACCESSED_SHIFT 5
 | 
						|
#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
 | 
						|
#define PT_DIRTY_SHIFT 6
 | 
						|
#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
 | 
						|
#define PT_PAGE_SIZE_SHIFT 7
 | 
						|
#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
 | 
						|
#define PT_PAT_MASK (1ULL << 7)
 | 
						|
#define PT_GLOBAL_MASK (1ULL << 8)
 | 
						|
#define PT64_NX_SHIFT 63
 | 
						|
#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
 | 
						|
 | 
						|
#define PT_PAT_SHIFT 7
 | 
						|
#define PT_DIR_PAT_SHIFT 12
 | 
						|
#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
 | 
						|
 | 
						|
#define PT32_DIR_PSE36_SIZE 4
 | 
						|
#define PT32_DIR_PSE36_SHIFT 13
 | 
						|
#define PT32_DIR_PSE36_MASK \
 | 
						|
	(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
 | 
						|
 | 
						|
#define PT64_ROOT_LEVEL 4
 | 
						|
#define PT32_ROOT_LEVEL 2
 | 
						|
#define PT32E_ROOT_LEVEL 3
 | 
						|
 | 
						|
#define PT_PDPE_LEVEL 3
 | 
						|
#define PT_DIRECTORY_LEVEL 2
 | 
						|
#define PT_PAGE_TABLE_LEVEL 1
 | 
						|
 | 
						|
#define PFERR_PRESENT_BIT 0
 | 
						|
#define PFERR_WRITE_BIT 1
 | 
						|
#define PFERR_USER_BIT 2
 | 
						|
#define PFERR_RSVD_BIT 3
 | 
						|
#define PFERR_FETCH_BIT 4
 | 
						|
 | 
						|
#define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
 | 
						|
#define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
 | 
						|
#define PFERR_USER_MASK (1U << PFERR_USER_BIT)
 | 
						|
#define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
 | 
						|
#define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
 | 
						|
 | 
						|
static inline u64 rsvd_bits(int s, int e)
 | 
						|
{
 | 
						|
	return ((1ULL << (e - s + 1)) - 1) << s;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4]);
 | 
						|
void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return values of handle_mmio_page_fault_common:
 | 
						|
 * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
 | 
						|
 *			directly.
 | 
						|
 * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
 | 
						|
 *			fault path update the mmio spte.
 | 
						|
 * RET_MMIO_PF_RETRY: let CPU fault again on the address.
 | 
						|
 * RET_MMIO_PF_BUG: bug is detected.
 | 
						|
 */
 | 
						|
enum {
 | 
						|
	RET_MMIO_PF_EMULATE = 1,
 | 
						|
	RET_MMIO_PF_INVALID = 2,
 | 
						|
	RET_MMIO_PF_RETRY = 0,
 | 
						|
	RET_MMIO_PF_BUG = -1
 | 
						|
};
 | 
						|
 | 
						|
int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct);
 | 
						|
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
 | 
						|
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
 | 
						|
		bool execonly);
 | 
						|
void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 | 
						|
		bool ept);
 | 
						|
 | 
						|
static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
 | 
						|
{
 | 
						|
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
 | 
						|
		return kvm->arch.n_max_mmu_pages -
 | 
						|
			kvm->arch.n_used_mmu_pages;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return kvm_mmu_load(vcpu);
 | 
						|
}
 | 
						|
 | 
						|
static inline int is_present_gpte(unsigned long pte)
 | 
						|
{
 | 
						|
	return pte & PT_PRESENT_MASK;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Currently, we have two sorts of write-protection, a) the first one
 | 
						|
 * write-protects guest page to sync the guest modification, b) another one is
 | 
						|
 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
 | 
						|
 * between these two sorts are:
 | 
						|
 * 1) the first case clears SPTE_MMU_WRITEABLE bit.
 | 
						|
 * 2) the first case requires flushing tlb immediately avoiding corrupting
 | 
						|
 *    shadow page table between all vcpus so it should be in the protection of
 | 
						|
 *    mmu-lock. And the another case does not need to flush tlb until returning
 | 
						|
 *    the dirty bitmap to userspace since it only write-protects the page
 | 
						|
 *    logged in the bitmap, that means the page in the dirty bitmap is not
 | 
						|
 *    missed, so it can flush tlb out of mmu-lock.
 | 
						|
 *
 | 
						|
 * So, there is the problem: the first case can meet the corrupted tlb caused
 | 
						|
 * by another case which write-protects pages but without flush tlb
 | 
						|
 * immediately. In order to making the first case be aware this problem we let
 | 
						|
 * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
 | 
						|
 * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
 | 
						|
 *
 | 
						|
 * Anyway, whenever a spte is updated (only permission and status bits are
 | 
						|
 * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
 | 
						|
 * readonly, if that happens, we need to flush tlb. Fortunately,
 | 
						|
 * mmu_spte_update() has already handled it perfectly.
 | 
						|
 *
 | 
						|
 * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
 | 
						|
 * - if we want to see if it has writable tlb entry or if the spte can be
 | 
						|
 *   writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
 | 
						|
 *   case, otherwise
 | 
						|
 * - if we fix page fault on the spte or do write-protection by dirty logging,
 | 
						|
 *   check PT_WRITABLE_MASK.
 | 
						|
 *
 | 
						|
 * TODO: introduce APIs to split these two cases.
 | 
						|
 */
 | 
						|
static inline int is_writable_pte(unsigned long pte)
 | 
						|
{
 | 
						|
	return pte & PT_WRITABLE_MASK;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool is_write_protection(struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Will a fault with a given page-fault error code (pfec) cause a permission
 | 
						|
 * fault with the given access (in ACC_* format)?
 | 
						|
 */
 | 
						|
static inline bool permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 | 
						|
				    unsigned pte_access, unsigned pfec)
 | 
						|
{
 | 
						|
	int cpl = kvm_x86_ops->get_cpl(vcpu);
 | 
						|
	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
 | 
						|
	 *
 | 
						|
	 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
 | 
						|
	 * (these are implicit supervisor accesses) regardless of the value
 | 
						|
	 * of EFLAGS.AC.
 | 
						|
	 *
 | 
						|
	 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
 | 
						|
	 * the result in X86_EFLAGS_AC. We then insert it in place of
 | 
						|
	 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
 | 
						|
	 * but it will be one in index if SMAP checks are being overridden.
 | 
						|
	 * It is important to keep this branchless.
 | 
						|
	 */
 | 
						|
	unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
 | 
						|
	int index = (pfec >> 1) +
 | 
						|
		    (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
 | 
						|
 | 
						|
	return (mmu->permissions[index] >> pte_access) & 1;
 | 
						|
}
 | 
						|
 | 
						|
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm);
 | 
						|
#endif
 |