 807540baae
			
		
	
	
	807540baae
	
	
	
		
			
			Change "return (EXPR);" to "return EXPR;" return is not a function, parentheses are not required. Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			1491 lines
		
	
	
	
		
			39 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1491 lines
		
	
	
	
		
			39 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /******************************************************************************
 | |
|  *
 | |
|  *	(C)Copyright 1998,1999 SysKonnect,
 | |
|  *	a business unit of Schneider & Koch & Co. Datensysteme GmbH.
 | |
|  *
 | |
|  *	See the file "skfddi.c" for further information.
 | |
|  *
 | |
|  *	This program is free software; you can redistribute it and/or modify
 | |
|  *	it under the terms of the GNU General Public License as published by
 | |
|  *	the Free Software Foundation; either version 2 of the License, or
 | |
|  *	(at your option) any later version.
 | |
|  *
 | |
|  *	The information in this file is provided "AS IS" without warranty.
 | |
|  *
 | |
|  ******************************************************************************/
 | |
| 
 | |
| /*
 | |
|  * FORMAC+ Driver for tag mode
 | |
|  */
 | |
| 
 | |
| #include "h/types.h"
 | |
| #include "h/fddi.h"
 | |
| #include "h/smc.h"
 | |
| #include "h/supern_2.h"
 | |
| #include <linux/bitrev.h>
 | |
| 
 | |
| #ifndef	lint
 | |
| static const char ID_sccs[] = "@(#)fplustm.c	1.32 99/02/23 (C) SK " ;
 | |
| #endif
 | |
| 
 | |
| #ifndef UNUSED
 | |
| #ifdef  lint
 | |
| #define UNUSED(x)	(x) = (x)
 | |
| #else
 | |
| #define UNUSED(x)
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #define FM_ADDRX	 (FM_ADDET|FM_EXGPA0|FM_EXGPA1)
 | |
| #define MS2BCLK(x)	((x)*12500L)
 | |
| #define US2BCLK(x)	((x)*1250L)
 | |
| 
 | |
| /*
 | |
|  * prototypes for static function
 | |
|  */
 | |
| static void build_claim_beacon(struct s_smc *smc, u_long t_request);
 | |
| static int init_mac(struct s_smc *smc, int all);
 | |
| static void rtm_init(struct s_smc *smc);
 | |
| static void smt_split_up_fifo(struct s_smc *smc);
 | |
| 
 | |
| #if (!defined(NO_SMT_PANIC) || defined(DEBUG))
 | |
| static	char write_mdr_warning [] = "E350 write_mdr() FM_SNPPND is set\n";
 | |
| static	char cam_warning [] = "E_SMT_004: CAM still busy\n";
 | |
| #endif
 | |
| 
 | |
| #define	DUMMY_READ()	smc->hw.mc_dummy = (u_short) inp(ADDR(B0_RAP))
 | |
| 
 | |
| #define	CHECK_NPP() {	unsigned k = 10000 ;\
 | |
| 			while ((inpw(FM_A(FM_STMCHN)) & FM_SNPPND) && k) k--;\
 | |
| 			if (!k) { \
 | |
| 				SMT_PANIC(smc,SMT_E0130, SMT_E0130_MSG) ; \
 | |
| 			}	\
 | |
| 		}
 | |
| 
 | |
| #define	CHECK_CAM() {	unsigned k = 10 ;\
 | |
| 			while (!(inpw(FM_A(FM_AFSTAT)) & FM_DONE) && k) k--;\
 | |
| 			if (!k) { \
 | |
| 				SMT_PANIC(smc,SMT_E0131, SMT_E0131_MSG) ; \
 | |
| 			}	\
 | |
| 		}
 | |
| 
 | |
| const struct fddi_addr fddi_broadcast = {{0xff,0xff,0xff,0xff,0xff,0xff}};
 | |
| static const struct fddi_addr null_addr = {{0,0,0,0,0,0}};
 | |
| static const struct fddi_addr dbeacon_multi = {{0x01,0x80,0xc2,0x00,0x01,0x00}};
 | |
| 
 | |
| static const u_short my_said = 0xffff ;	/* short address (n.u.) */
 | |
| static const u_short my_sagp = 0xffff ;	/* short group address (n.u.) */
 | |
| 
 | |
| /*
 | |
|  * define my address
 | |
|  */
 | |
| #ifdef	USE_CAN_ADDR
 | |
| #define MA	smc->hw.fddi_canon_addr
 | |
| #else
 | |
| #define MA	smc->hw.fddi_home_addr
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * useful interrupt bits
 | |
|  */
 | |
| static const int mac_imsk1u = FM_STXABRS | FM_STXABRA0 | FM_SXMTABT ;
 | |
| static const int mac_imsk1l = FM_SQLCKS | FM_SQLCKA0 | FM_SPCEPDS | FM_SPCEPDA0|
 | |
| 			FM_STBURS | FM_STBURA0 ;
 | |
| 
 | |
| 	/* delete FM_SRBFL after tests */
 | |
| static const int mac_imsk2u = FM_SERRSF | FM_SNFSLD | FM_SRCVOVR | FM_SRBFL |
 | |
| 			FM_SMYCLM ;
 | |
| static const int mac_imsk2l = FM_STRTEXR | FM_SDUPCLM | FM_SFRMCTR |
 | |
| 			FM_SERRCTR | FM_SLSTCTR |
 | |
| 			FM_STRTEXP | FM_SMULTDA | FM_SRNGOP ;
 | |
| 
 | |
| static const int mac_imsk3u = FM_SRCVOVR2 | FM_SRBFL2 ;
 | |
| static const int mac_imsk3l = FM_SRPERRQ2 | FM_SRPERRQ1 ;
 | |
| 
 | |
| static const int mac_beacon_imsk2u = FM_SOTRBEC | FM_SMYBEC | FM_SBEC |
 | |
| 			FM_SLOCLM | FM_SHICLM | FM_SMYCLM | FM_SCLM ;
 | |
| 
 | |
| 
 | |
| static u_long mac_get_tneg(struct s_smc *smc)
 | |
| {
 | |
| 	u_long	tneg ;
 | |
| 
 | |
| 	tneg = (u_long)((long)inpw(FM_A(FM_TNEG))<<5) ;
 | |
| 	return (u_long)((tneg + ((inpw(FM_A(FM_TMRS))>>10)&0x1f)) |
 | |
| 		0xffe00000L) ;
 | |
| }
 | |
| 
 | |
| void mac_update_counter(struct s_smc *smc)
 | |
| {
 | |
| 	smc->mib.m[MAC0].fddiMACFrame_Ct =
 | |
| 		(smc->mib.m[MAC0].fddiMACFrame_Ct & 0xffff0000L)
 | |
| 		+ (u_short) inpw(FM_A(FM_FCNTR)) ;
 | |
| 	smc->mib.m[MAC0].fddiMACLost_Ct =
 | |
| 		(smc->mib.m[MAC0].fddiMACLost_Ct & 0xffff0000L)
 | |
| 		+ (u_short) inpw(FM_A(FM_LCNTR)) ;
 | |
| 	smc->mib.m[MAC0].fddiMACError_Ct =
 | |
| 		(smc->mib.m[MAC0].fddiMACError_Ct & 0xffff0000L)
 | |
| 		+ (u_short) inpw(FM_A(FM_ECNTR)) ;
 | |
| 	smc->mib.m[MAC0].fddiMACT_Neg = mac_get_tneg(smc) ;
 | |
| #ifdef SMT_REAL_TOKEN_CT
 | |
| 	/*
 | |
| 	 * If the token counter is emulated it is updated in smt_event.
 | |
| 	 */
 | |
| 	TBD
 | |
| #else
 | |
| 	smt_emulate_token_ct( smc, MAC0 );
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * write long value into buffer memory over memory data register (MDR),
 | |
|  */
 | |
| static void write_mdr(struct s_smc *smc, u_long val)
 | |
| {
 | |
| 	CHECK_NPP() ;
 | |
| 	MDRW(val) ;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| /*
 | |
|  * read long value from buffer memory over memory data register (MDR),
 | |
|  */
 | |
| static u_long read_mdr(struct s_smc *smc, unsigned int addr)
 | |
| {
 | |
| 	long p ;
 | |
| 	CHECK_NPP() ;
 | |
| 	MARR(addr) ;
 | |
| 	outpw(FM_A(FM_CMDREG1),FM_IRMEMWO) ;
 | |
| 	CHECK_NPP() ;	/* needed for PCI to prevent from timeing violations */
 | |
| /*	p = MDRR() ; */	/* bad read values if the workaround */
 | |
| 			/* smc->hw.mc_dummy = *((short volatile far *)(addr)))*/
 | |
| 			/* is used */
 | |
| 	p = (u_long)inpw(FM_A(FM_MDRU))<<16 ;
 | |
| 	p += (u_long)inpw(FM_A(FM_MDRL)) ;
 | |
| 	return p;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * clear buffer memory
 | |
|  */
 | |
| static void init_ram(struct s_smc *smc)
 | |
| {
 | |
| 	u_short i ;
 | |
| 
 | |
| 	smc->hw.fp.fifo.rbc_ram_start = 0 ;
 | |
| 	smc->hw.fp.fifo.rbc_ram_end =
 | |
| 		smc->hw.fp.fifo.rbc_ram_start + RBC_MEM_SIZE ;
 | |
| 	CHECK_NPP() ;
 | |
| 	MARW(smc->hw.fp.fifo.rbc_ram_start) ;
 | |
| 	for (i = smc->hw.fp.fifo.rbc_ram_start;
 | |
| 		i < (u_short) (smc->hw.fp.fifo.rbc_ram_end-1); i++)
 | |
| 		write_mdr(smc,0L) ;
 | |
| 	/* Erase the last byte too */
 | |
| 	write_mdr(smc,0L) ;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * set receive FIFO pointer
 | |
|  */
 | |
| static void set_recvptr(struct s_smc *smc)
 | |
| {
 | |
| 	/*
 | |
| 	 * initialize the pointer for receive queue 1
 | |
| 	 */
 | |
| 	outpw(FM_A(FM_RPR1),smc->hw.fp.fifo.rx1_fifo_start) ;	/* RPR1 */
 | |
| 	outpw(FM_A(FM_SWPR1),smc->hw.fp.fifo.rx1_fifo_start) ;	/* SWPR1 */
 | |
| 	outpw(FM_A(FM_WPR1),smc->hw.fp.fifo.rx1_fifo_start) ;	/* WPR1 */
 | |
| 	outpw(FM_A(FM_EARV1),smc->hw.fp.fifo.tx_s_start-1) ;	/* EARV1 */
 | |
| 
 | |
| 	/*
 | |
| 	 * initialize the pointer for receive queue 2
 | |
| 	 */
 | |
| 	if (smc->hw.fp.fifo.rx2_fifo_size) {
 | |
| 		outpw(FM_A(FM_RPR2),smc->hw.fp.fifo.rx2_fifo_start) ;
 | |
| 		outpw(FM_A(FM_SWPR2),smc->hw.fp.fifo.rx2_fifo_start) ;
 | |
| 		outpw(FM_A(FM_WPR2),smc->hw.fp.fifo.rx2_fifo_start) ;
 | |
| 		outpw(FM_A(FM_EARV2),smc->hw.fp.fifo.rbc_ram_end-1) ;
 | |
| 	}
 | |
| 	else {
 | |
| 		outpw(FM_A(FM_RPR2),smc->hw.fp.fifo.rbc_ram_end-1) ;
 | |
| 		outpw(FM_A(FM_SWPR2),smc->hw.fp.fifo.rbc_ram_end-1) ;
 | |
| 		outpw(FM_A(FM_WPR2),smc->hw.fp.fifo.rbc_ram_end-1) ;
 | |
| 		outpw(FM_A(FM_EARV2),smc->hw.fp.fifo.rbc_ram_end-1) ;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * set transmit FIFO pointer
 | |
|  */
 | |
| static void set_txptr(struct s_smc *smc)
 | |
| {
 | |
| 	outpw(FM_A(FM_CMDREG2),FM_IRSTQ) ;	/* reset transmit queues */
 | |
| 
 | |
| 	/*
 | |
| 	 * initialize the pointer for asynchronous transmit queue
 | |
| 	 */
 | |
| 	outpw(FM_A(FM_RPXA0),smc->hw.fp.fifo.tx_a0_start) ;	/* RPXA0 */
 | |
| 	outpw(FM_A(FM_SWPXA0),smc->hw.fp.fifo.tx_a0_start) ;	/* SWPXA0 */
 | |
| 	outpw(FM_A(FM_WPXA0),smc->hw.fp.fifo.tx_a0_start) ;	/* WPXA0 */
 | |
| 	outpw(FM_A(FM_EAA0),smc->hw.fp.fifo.rx2_fifo_start-1) ;	/* EAA0 */
 | |
| 
 | |
| 	/*
 | |
| 	 * initialize the pointer for synchronous transmit queue
 | |
| 	 */
 | |
| 	if (smc->hw.fp.fifo.tx_s_size) {
 | |
| 		outpw(FM_A(FM_RPXS),smc->hw.fp.fifo.tx_s_start) ;
 | |
| 		outpw(FM_A(FM_SWPXS),smc->hw.fp.fifo.tx_s_start) ;
 | |
| 		outpw(FM_A(FM_WPXS),smc->hw.fp.fifo.tx_s_start) ;
 | |
| 		outpw(FM_A(FM_EAS),smc->hw.fp.fifo.tx_a0_start-1) ;
 | |
| 	}
 | |
| 	else {
 | |
| 		outpw(FM_A(FM_RPXS),smc->hw.fp.fifo.tx_a0_start-1) ;
 | |
| 		outpw(FM_A(FM_SWPXS),smc->hw.fp.fifo.tx_a0_start-1) ;
 | |
| 		outpw(FM_A(FM_WPXS),smc->hw.fp.fifo.tx_a0_start-1) ;
 | |
| 		outpw(FM_A(FM_EAS),smc->hw.fp.fifo.tx_a0_start-1) ;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * init memory buffer management registers
 | |
|  */
 | |
| static void init_rbc(struct s_smc *smc)
 | |
| {
 | |
| 	u_short	rbc_ram_addr ;
 | |
| 
 | |
| 	/*
 | |
| 	 * set unused pointers or permanent pointers
 | |
| 	 */
 | |
| 	rbc_ram_addr = smc->hw.fp.fifo.rx2_fifo_start - 1 ;
 | |
| 
 | |
| 	outpw(FM_A(FM_RPXA1),rbc_ram_addr) ;	/* a1-send pointer */
 | |
| 	outpw(FM_A(FM_WPXA1),rbc_ram_addr) ;
 | |
| 	outpw(FM_A(FM_SWPXA1),rbc_ram_addr) ;
 | |
| 	outpw(FM_A(FM_EAA1),rbc_ram_addr) ;
 | |
| 
 | |
| 	set_recvptr(smc) ;
 | |
| 	set_txptr(smc) ;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * init rx pointer
 | |
|  */
 | |
| static void init_rx(struct s_smc *smc)
 | |
| {
 | |
| 	struct s_smt_rx_queue	*queue ;
 | |
| 
 | |
| 	/*
 | |
| 	 * init all tx data structures for receive queue 1
 | |
| 	 */
 | |
| 	smc->hw.fp.rx[QUEUE_R1] = queue = &smc->hw.fp.rx_q[QUEUE_R1] ;
 | |
| 	queue->rx_bmu_ctl = (HW_PTR) ADDR(B0_R1_CSR) ;
 | |
| 	queue->rx_bmu_dsc = (HW_PTR) ADDR(B4_R1_DA) ;
 | |
| 
 | |
| 	/*
 | |
| 	 * init all tx data structures for receive queue 2
 | |
| 	 */
 | |
| 	smc->hw.fp.rx[QUEUE_R2] = queue = &smc->hw.fp.rx_q[QUEUE_R2] ;
 | |
| 	queue->rx_bmu_ctl = (HW_PTR) ADDR(B0_R2_CSR) ;
 | |
| 	queue->rx_bmu_dsc = (HW_PTR) ADDR(B4_R2_DA) ;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * set the TSYNC register of the FORMAC to regulate synchronous transmission
 | |
|  */
 | |
| void set_formac_tsync(struct s_smc *smc, long sync_bw)
 | |
| {
 | |
| 	outpw(FM_A(FM_TSYNC),(unsigned int) (((-sync_bw) >> 5) & 0xffff) ) ;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * init all tx data structures
 | |
|  */
 | |
| static void init_tx(struct s_smc *smc)
 | |
| {
 | |
| 	struct s_smt_tx_queue	*queue ;
 | |
| 
 | |
| 	/*
 | |
| 	 * init all tx data structures for the synchronous queue
 | |
| 	 */
 | |
| 	smc->hw.fp.tx[QUEUE_S] = queue = &smc->hw.fp.tx_q[QUEUE_S] ;
 | |
| 	queue->tx_bmu_ctl = (HW_PTR) ADDR(B0_XS_CSR) ;
 | |
| 	queue->tx_bmu_dsc = (HW_PTR) ADDR(B5_XS_DA) ;
 | |
| 
 | |
| #ifdef ESS
 | |
| 	set_formac_tsync(smc,smc->ess.sync_bw) ;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * init all tx data structures for the asynchronous queue 0
 | |
| 	 */
 | |
| 	smc->hw.fp.tx[QUEUE_A0] = queue = &smc->hw.fp.tx_q[QUEUE_A0] ;
 | |
| 	queue->tx_bmu_ctl = (HW_PTR) ADDR(B0_XA_CSR) ;
 | |
| 	queue->tx_bmu_dsc = (HW_PTR) ADDR(B5_XA_DA) ;
 | |
| 
 | |
| 
 | |
| 	llc_recover_tx(smc) ;
 | |
| }
 | |
| 
 | |
| static void mac_counter_init(struct s_smc *smc)
 | |
| {
 | |
| 	int i ;
 | |
| 	u_long *ec ;
 | |
| 
 | |
| 	/*
 | |
| 	 * clear FORMAC+ frame-, lost- and error counter
 | |
| 	 */
 | |
| 	outpw(FM_A(FM_FCNTR),0) ;
 | |
| 	outpw(FM_A(FM_LCNTR),0) ;
 | |
| 	outpw(FM_A(FM_ECNTR),0) ;
 | |
| 	/*
 | |
| 	 * clear internal error counter stucture
 | |
| 	 */
 | |
| 	ec = (u_long *)&smc->hw.fp.err_stats ;
 | |
| 	for (i = (sizeof(struct err_st)/sizeof(long)) ; i ; i--)
 | |
| 		*ec++ = 0L ;
 | |
| 	smc->mib.m[MAC0].fddiMACRingOp_Ct = 0 ;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * set FORMAC address, and t_request
 | |
|  */
 | |
| static	void set_formac_addr(struct s_smc *smc)
 | |
| {
 | |
| 	long	t_requ = smc->mib.m[MAC0].fddiMACT_Req ;
 | |
| 
 | |
| 	outpw(FM_A(FM_SAID),my_said) ;	/* set short address */
 | |
| 	outpw(FM_A(FM_LAIL),(unsigned)((smc->hw.fddi_home_addr.a[4]<<8) +
 | |
| 					smc->hw.fddi_home_addr.a[5])) ;
 | |
| 	outpw(FM_A(FM_LAIC),(unsigned)((smc->hw.fddi_home_addr.a[2]<<8) +
 | |
| 					smc->hw.fddi_home_addr.a[3])) ;
 | |
| 	outpw(FM_A(FM_LAIM),(unsigned)((smc->hw.fddi_home_addr.a[0]<<8) +
 | |
| 					smc->hw.fddi_home_addr.a[1])) ;
 | |
| 
 | |
| 	outpw(FM_A(FM_SAGP),my_sagp) ;	/* set short group address */
 | |
| 
 | |
| 	outpw(FM_A(FM_LAGL),(unsigned)((smc->hw.fp.group_addr.a[4]<<8) +
 | |
| 					smc->hw.fp.group_addr.a[5])) ;
 | |
| 	outpw(FM_A(FM_LAGC),(unsigned)((smc->hw.fp.group_addr.a[2]<<8) +
 | |
| 					smc->hw.fp.group_addr.a[3])) ;
 | |
| 	outpw(FM_A(FM_LAGM),(unsigned)((smc->hw.fp.group_addr.a[0]<<8) +
 | |
| 					smc->hw.fp.group_addr.a[1])) ;
 | |
| 
 | |
| 	/* set r_request regs. (MSW & LSW of TRT ) */
 | |
| 	outpw(FM_A(FM_TREQ1),(unsigned)(t_requ>>16)) ;
 | |
| 	outpw(FM_A(FM_TREQ0),(unsigned)t_requ) ;
 | |
| }
 | |
| 
 | |
| static void set_int(char *p, int l)
 | |
| {
 | |
| 	p[0] = (char)(l >> 24) ;
 | |
| 	p[1] = (char)(l >> 16) ;
 | |
| 	p[2] = (char)(l >> 8) ;
 | |
| 	p[3] = (char)(l >> 0) ;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * copy TX descriptor to buffer mem
 | |
|  * append FC field and MAC frame
 | |
|  * if more bit is set in descr
 | |
|  *	append pointer to descriptor (endless loop)
 | |
|  * else
 | |
|  *	append 'end of chain' pointer
 | |
|  */
 | |
| static void copy_tx_mac(struct s_smc *smc, u_long td, struct fddi_mac *mac,
 | |
| 			unsigned off, int len)
 | |
| /* u_long td;		 transmit descriptor */
 | |
| /* struct fddi_mac *mac; mac frame pointer */
 | |
| /* unsigned off;	 start address within buffer memory */
 | |
| /* int len ;		 length of the frame including the FC */
 | |
| {
 | |
| 	int	i ;
 | |
| 	__le32	*p ;
 | |
| 
 | |
| 	CHECK_NPP() ;
 | |
| 	MARW(off) ;		/* set memory address reg for writes */
 | |
| 
 | |
| 	p = (__le32 *) mac ;
 | |
| 	for (i = (len + 3)/4 ; i ; i--) {
 | |
| 		if (i == 1) {
 | |
| 			/* last word, set the tag bit */
 | |
| 			outpw(FM_A(FM_CMDREG2),FM_ISTTB) ;
 | |
| 		}
 | |
| 		write_mdr(smc,le32_to_cpu(*p)) ;
 | |
| 		p++ ;
 | |
| 	}
 | |
| 
 | |
| 	outpw(FM_A(FM_CMDREG2),FM_ISTTB) ;	/* set the tag bit */
 | |
| 	write_mdr(smc,td) ;	/* write over memory data reg to buffer */
 | |
| }
 | |
| 
 | |
| /*
 | |
| 	BEGIN_MANUAL_ENTRY(module;tests;3)
 | |
| 	How to test directed beacon frames
 | |
| 	----------------------------------------------------------------
 | |
| 
 | |
| 	o Insert a break point in the function build_claim_beacon()
 | |
| 	  before calling copy_tx_mac() for building the claim frame.
 | |
| 	o Modify the RM3_DETECT case so that the RM6_DETECT state
 | |
| 	  will always entered from the RM3_DETECT state (function rmt_fsm(),
 | |
| 	  rmt.c)
 | |
| 	o Compile the driver.
 | |
| 	o Set the parameter TREQ in the protocol.ini or net.cfg to a
 | |
| 	  small value to make sure your station will win the claim
 | |
| 	  process.
 | |
| 	o Start the driver.
 | |
| 	o When you reach the break point, modify the SA and DA address
 | |
| 	  of the claim frame (e.g. SA = DA = 10005affffff).
 | |
| 	o When you see RM3_DETECT and RM6_DETECT, observe the direct
 | |
| 	  beacon frames on the UPPSLANA.
 | |
| 
 | |
| 	END_MANUAL_ENTRY
 | |
|  */
 | |
| static void directed_beacon(struct s_smc *smc)
 | |
| {
 | |
| 	SK_LOC_DECL(__le32,a[2]) ;
 | |
| 
 | |
| 	/*
 | |
| 	 * set UNA in frame
 | |
| 	 * enable FORMAC to send endless queue of directed beacon
 | |
| 	 * important: the UNA starts at byte 1 (not at byte 0)
 | |
| 	 */
 | |
| 	* (char *) a = (char) ((long)DBEACON_INFO<<24L) ;
 | |
| 	a[1] = 0 ;
 | |
| 	memcpy((char *)a+1,(char *) &smc->mib.m[MAC0].fddiMACUpstreamNbr,6) ;
 | |
| 
 | |
| 	CHECK_NPP() ;
 | |
| 	 /* set memory address reg for writes */
 | |
| 	MARW(smc->hw.fp.fifo.rbc_ram_start+DBEACON_FRAME_OFF+4) ;
 | |
| 	write_mdr(smc,le32_to_cpu(a[0])) ;
 | |
| 	outpw(FM_A(FM_CMDREG2),FM_ISTTB) ;	/* set the tag bit */
 | |
| 	write_mdr(smc,le32_to_cpu(a[1])) ;
 | |
| 
 | |
| 	outpw(FM_A(FM_SABC),smc->hw.fp.fifo.rbc_ram_start + DBEACON_FRAME_OFF) ;
 | |
| }
 | |
| 
 | |
| /*
 | |
| 	setup claim & beacon pointer
 | |
| 	NOTE :
 | |
| 		special frame packets end with a pointer to their own
 | |
| 		descriptor, and the MORE bit is set in the descriptor
 | |
| */
 | |
| static void build_claim_beacon(struct s_smc *smc, u_long t_request)
 | |
| {
 | |
| 	u_int	td ;
 | |
| 	int	len ;
 | |
| 	struct fddi_mac_sf *mac ;
 | |
| 
 | |
| 	/*
 | |
| 	 * build claim packet
 | |
| 	 */
 | |
| 	len = 17 ;
 | |
| 	td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ;
 | |
| 	mac = &smc->hw.fp.mac_sfb ;
 | |
| 	mac->mac_fc = FC_CLAIM ;
 | |
| 	/* DA == SA in claim frame */
 | |
| 	mac->mac_source = mac->mac_dest = MA ;
 | |
| 	/* 2's complement */
 | |
| 	set_int((char *)mac->mac_info,(int)t_request) ;
 | |
| 
 | |
| 	copy_tx_mac(smc,td,(struct fddi_mac *)mac,
 | |
| 		smc->hw.fp.fifo.rbc_ram_start + CLAIM_FRAME_OFF,len) ;
 | |
| 	/* set CLAIM start pointer */
 | |
| 	outpw(FM_A(FM_SACL),smc->hw.fp.fifo.rbc_ram_start + CLAIM_FRAME_OFF) ;
 | |
| 
 | |
| 	/*
 | |
| 	 * build beacon packet
 | |
| 	 */
 | |
| 	len = 17 ;
 | |
| 	td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ;
 | |
| 	mac->mac_fc = FC_BEACON ;
 | |
| 	mac->mac_source = MA ;
 | |
| 	mac->mac_dest = null_addr ;		/* DA == 0 in beacon frame */
 | |
| 	set_int((char *) mac->mac_info,((int)BEACON_INFO<<24) + 0 ) ;
 | |
| 
 | |
| 	copy_tx_mac(smc,td,(struct fddi_mac *)mac,
 | |
| 		smc->hw.fp.fifo.rbc_ram_start + BEACON_FRAME_OFF,len) ;
 | |
| 	/* set beacon start pointer */
 | |
| 	outpw(FM_A(FM_SABC),smc->hw.fp.fifo.rbc_ram_start + BEACON_FRAME_OFF) ;
 | |
| 
 | |
| 	/*
 | |
| 	 * build directed beacon packet
 | |
| 	 * contains optional UNA
 | |
| 	 */
 | |
| 	len = 23 ;
 | |
| 	td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ;
 | |
| 	mac->mac_fc = FC_BEACON ;
 | |
| 	mac->mac_source = MA ;
 | |
| 	mac->mac_dest = dbeacon_multi ;		/* multicast */
 | |
| 	set_int((char *) mac->mac_info,((int)DBEACON_INFO<<24) + 0 ) ;
 | |
| 	set_int((char *) mac->mac_info+4,0) ;
 | |
| 	set_int((char *) mac->mac_info+8,0) ;
 | |
| 
 | |
| 	copy_tx_mac(smc,td,(struct fddi_mac *)mac,
 | |
| 		smc->hw.fp.fifo.rbc_ram_start + DBEACON_FRAME_OFF,len) ;
 | |
| 
 | |
| 	/* end of claim/beacon queue */
 | |
| 	outpw(FM_A(FM_EACB),smc->hw.fp.fifo.rx1_fifo_start-1) ;
 | |
| 
 | |
| 	outpw(FM_A(FM_WPXSF),0) ;
 | |
| 	outpw(FM_A(FM_RPXSF),0) ;
 | |
| }
 | |
| 
 | |
| static void formac_rcv_restart(struct s_smc *smc)
 | |
| {
 | |
| 	/* enable receive function */
 | |
| 	SETMASK(FM_A(FM_MDREG1),smc->hw.fp.rx_mode,FM_ADDRX) ;
 | |
| 
 | |
| 	outpw(FM_A(FM_CMDREG1),FM_ICLLR) ;	/* clear receive lock */
 | |
| }
 | |
| 
 | |
| void formac_tx_restart(struct s_smc *smc)
 | |
| {
 | |
| 	outpw(FM_A(FM_CMDREG1),FM_ICLLS) ;	/* clear s-frame lock */
 | |
| 	outpw(FM_A(FM_CMDREG1),FM_ICLLA0) ;	/* clear a-frame lock */
 | |
| }
 | |
| 
 | |
| static void enable_formac(struct s_smc *smc)
 | |
| {
 | |
| 	/* set formac IMSK : 0 enables irq */
 | |
| 	outpw(FM_A(FM_IMSK1U),(unsigned short)~mac_imsk1u);
 | |
| 	outpw(FM_A(FM_IMSK1L),(unsigned short)~mac_imsk1l);
 | |
| 	outpw(FM_A(FM_IMSK2U),(unsigned short)~mac_imsk2u);
 | |
| 	outpw(FM_A(FM_IMSK2L),(unsigned short)~mac_imsk2l);
 | |
| 	outpw(FM_A(FM_IMSK3U),(unsigned short)~mac_imsk3u);
 | |
| 	outpw(FM_A(FM_IMSK3L),(unsigned short)~mac_imsk3l);
 | |
| }
 | |
| 
 | |
| #if 0	/* Removed because the driver should use the ASICs TX complete IRQ. */
 | |
| 	/* The FORMACs tx complete IRQ should be used any longer */
 | |
| 
 | |
| /*
 | |
| 	BEGIN_MANUAL_ENTRY(if,func;others;4)
 | |
| 
 | |
| 	void enable_tx_irq(smc, queue)
 | |
| 	struct s_smc *smc ;
 | |
| 	u_short	queue ;
 | |
| 
 | |
| Function	DOWNCALL	(SMT, fplustm.c)
 | |
| 		enable_tx_irq() enables the FORMACs transmit complete
 | |
| 		interrupt of the queue.
 | |
| 
 | |
| Para	queue	= QUEUE_S:	synchronous queue
 | |
| 		= QUEUE_A0:	asynchronous queue
 | |
| 
 | |
| Note	After any ring operational change the transmit complete
 | |
| 	interrupts are disabled.
 | |
| 	The operating system dependent module must enable
 | |
| 	the transmit complete interrupt of a queue,
 | |
| 		- when it queues the first frame,
 | |
| 		  because of no transmit resources are beeing
 | |
| 		  available and
 | |
| 		- when it escapes from the function llc_restart_tx
 | |
| 		  while some frames are still queued.
 | |
| 
 | |
| 	END_MANUAL_ENTRY
 | |
|  */
 | |
| void enable_tx_irq(struct s_smc *smc, u_short queue)
 | |
| /* u_short queue; 0 = synchronous queue, 1 = asynchronous queue 0 */
 | |
| {
 | |
| 	u_short	imask ;
 | |
| 
 | |
| 	imask = ~(inpw(FM_A(FM_IMSK1U))) ;
 | |
| 
 | |
| 	if (queue == 0) {
 | |
| 		outpw(FM_A(FM_IMSK1U),~(imask|FM_STEFRMS)) ;
 | |
| 	}
 | |
| 	if (queue == 1) {
 | |
| 		outpw(FM_A(FM_IMSK1U),~(imask|FM_STEFRMA0)) ;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
| 	BEGIN_MANUAL_ENTRY(if,func;others;4)
 | |
| 
 | |
| 	void disable_tx_irq(smc, queue)
 | |
| 	struct s_smc *smc ;
 | |
| 	u_short	queue ;
 | |
| 
 | |
| Function	DOWNCALL	(SMT, fplustm.c)
 | |
| 		disable_tx_irq disables the FORMACs transmit complete
 | |
| 		interrupt of the queue
 | |
| 
 | |
| Para	queue	= QUEUE_S:	synchronous queue
 | |
| 		= QUEUE_A0:	asynchronous queue
 | |
| 
 | |
| Note	The operating system dependent module should disable
 | |
| 	the transmit complete interrupts if it escapes from the
 | |
| 	function llc_restart_tx and no frames are queued.
 | |
| 
 | |
| 	END_MANUAL_ENTRY
 | |
|  */
 | |
| void disable_tx_irq(struct s_smc *smc, u_short queue)
 | |
| /* u_short queue; 0 = synchronous queue, 1 = asynchronous queue 0 */
 | |
| {
 | |
| 	u_short	imask ;
 | |
| 
 | |
| 	imask = ~(inpw(FM_A(FM_IMSK1U))) ;
 | |
| 
 | |
| 	if (queue == 0) {
 | |
| 		outpw(FM_A(FM_IMSK1U),~(imask&~FM_STEFRMS)) ;
 | |
| 	}
 | |
| 	if (queue == 1) {
 | |
| 		outpw(FM_A(FM_IMSK1U),~(imask&~FM_STEFRMA0)) ;
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void disable_formac(struct s_smc *smc)
 | |
| {
 | |
| 	/* clear formac IMSK : 1 disables irq */
 | |
| 	outpw(FM_A(FM_IMSK1U),MW) ;
 | |
| 	outpw(FM_A(FM_IMSK1L),MW) ;
 | |
| 	outpw(FM_A(FM_IMSK2U),MW) ;
 | |
| 	outpw(FM_A(FM_IMSK2L),MW) ;
 | |
| 	outpw(FM_A(FM_IMSK3U),MW) ;
 | |
| 	outpw(FM_A(FM_IMSK3L),MW) ;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void mac_ring_up(struct s_smc *smc, int up)
 | |
| {
 | |
| 	if (up) {
 | |
| 		formac_rcv_restart(smc) ;	/* enable receive function */
 | |
| 		smc->hw.mac_ring_is_up = TRUE ;
 | |
| 		llc_restart_tx(smc) ;		/* TX queue */
 | |
| 	}
 | |
| 	else {
 | |
| 		/* disable receive function */
 | |
| 		SETMASK(FM_A(FM_MDREG1),FM_MDISRCV,FM_ADDET) ;
 | |
| 
 | |
| 		/* abort current transmit activity */
 | |
| 		outpw(FM_A(FM_CMDREG2),FM_IACTR) ;
 | |
| 
 | |
| 		smc->hw.mac_ring_is_up = FALSE ;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*--------------------------- ISR handling ----------------------------------*/
 | |
| /*
 | |
|  * mac1_irq is in drvfbi.c
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * mac2_irq:	status bits for the receive queue 1, and ring status
 | |
|  * 		ring status indication bits
 | |
|  */
 | |
| void mac2_irq(struct s_smc *smc, u_short code_s2u, u_short code_s2l)
 | |
| {
 | |
| 	u_short	change_s2l ;
 | |
| 	u_short	change_s2u ;
 | |
| 
 | |
| 	/* (jd) 22-Feb-1999
 | |
| 	 * Restart 2_DMax Timer after end of claiming or beaconing
 | |
| 	 */
 | |
| 	if (code_s2u & (FM_SCLM|FM_SHICLM|FM_SBEC|FM_SOTRBEC)) {
 | |
| 		queue_event(smc,EVENT_RMT,RM_TX_STATE_CHANGE) ;
 | |
| 	}
 | |
| 	else if (code_s2l & (FM_STKISS)) {
 | |
| 		queue_event(smc,EVENT_RMT,RM_TX_STATE_CHANGE) ;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * XOR current st bits with the last to avoid useless RMT event queuing
 | |
| 	 */
 | |
| 	change_s2l = smc->hw.fp.s2l ^ code_s2l ;
 | |
| 	change_s2u = smc->hw.fp.s2u ^ code_s2u ;
 | |
| 
 | |
| 	if ((change_s2l & FM_SRNGOP) ||
 | |
| 		(!smc->hw.mac_ring_is_up && ((code_s2l & FM_SRNGOP)))) {
 | |
| 		if (code_s2l & FM_SRNGOP) {
 | |
| 			mac_ring_up(smc,1) ;
 | |
| 			queue_event(smc,EVENT_RMT,RM_RING_OP) ;
 | |
| 			smc->mib.m[MAC0].fddiMACRingOp_Ct++ ;
 | |
| 		}
 | |
| 		else {
 | |
| 			mac_ring_up(smc,0) ;
 | |
| 			queue_event(smc,EVENT_RMT,RM_RING_NON_OP) ;
 | |
| 		}
 | |
| 		goto mac2_end ;
 | |
| 	}
 | |
| 	if (code_s2l & FM_SMISFRM) {	/* missed frame */
 | |
| 		smc->mib.m[MAC0].fddiMACNotCopied_Ct++ ;
 | |
| 	}
 | |
| 	if (code_s2u & (FM_SRCVOVR |	/* recv. FIFO overflow */
 | |
| 			FM_SRBFL)) {	/* recv. buffer full */
 | |
| 		smc->hw.mac_ct.mac_r_restart_counter++ ;
 | |
| /*		formac_rcv_restart(smc) ;	*/
 | |
| 		smt_stat_counter(smc,1) ;
 | |
| /*		goto mac2_end ;			*/
 | |
| 	}
 | |
| 	if (code_s2u & FM_SOTRBEC)
 | |
| 		queue_event(smc,EVENT_RMT,RM_OTHER_BEACON) ;
 | |
| 	if (code_s2u & FM_SMYBEC)
 | |
| 		queue_event(smc,EVENT_RMT,RM_MY_BEACON) ;
 | |
| 	if (change_s2u & code_s2u & FM_SLOCLM) {
 | |
| 		DB_RMTN(2,"RMT : lower claim received\n",0,0) ;
 | |
| 	}
 | |
| 	if ((code_s2u & FM_SMYCLM) && !(code_s2l & FM_SDUPCLM)) {
 | |
| 		/*
 | |
| 		 * This is my claim and that claim is not detected as a
 | |
| 		 * duplicate one.
 | |
| 		 */
 | |
| 		queue_event(smc,EVENT_RMT,RM_MY_CLAIM) ;
 | |
| 	}
 | |
| 	if (code_s2l & FM_SDUPCLM) {
 | |
| 		/*
 | |
| 		 * If a duplicate claim frame (same SA but T_Bid != T_Req)
 | |
| 		 * this flag will be set.
 | |
| 		 * In the RMT state machine we need a RM_VALID_CLAIM event
 | |
| 		 * to do the appropriate state change.
 | |
| 		 * RM(34c)
 | |
| 		 */
 | |
| 		queue_event(smc,EVENT_RMT,RM_VALID_CLAIM) ;
 | |
| 	}
 | |
| 	if (change_s2u & code_s2u & FM_SHICLM) {
 | |
| 		DB_RMTN(2,"RMT : higher claim received\n",0,0) ;
 | |
| 	}
 | |
| 	if ( (code_s2l & FM_STRTEXP) ||
 | |
| 	     (code_s2l & FM_STRTEXR) )
 | |
| 		queue_event(smc,EVENT_RMT,RM_TRT_EXP) ;
 | |
| 	if (code_s2l & FM_SMULTDA) {
 | |
| 		/*
 | |
| 		 * The MAC has found a 2. MAC with the same address.
 | |
| 		 * Signal dup_addr_test = failed to RMT state machine.
 | |
| 		 * RM(25)
 | |
| 		 */
 | |
| 		smc->r.dup_addr_test = DA_FAILED ;
 | |
| 		queue_event(smc,EVENT_RMT,RM_DUP_ADDR) ;
 | |
| 	}
 | |
| 	if (code_s2u & FM_SBEC)
 | |
| 		smc->hw.fp.err_stats.err_bec_stat++ ;
 | |
| 	if (code_s2u & FM_SCLM)
 | |
| 		smc->hw.fp.err_stats.err_clm_stat++ ;
 | |
| 	if (code_s2l & FM_STVXEXP)
 | |
| 		smc->mib.m[MAC0].fddiMACTvxExpired_Ct++ ;
 | |
| 	if ((code_s2u & (FM_SBEC|FM_SCLM))) {
 | |
| 		if (!(change_s2l & FM_SRNGOP) && (smc->hw.fp.s2l & FM_SRNGOP)) {
 | |
| 			mac_ring_up(smc,0) ;
 | |
| 			queue_event(smc,EVENT_RMT,RM_RING_NON_OP) ;
 | |
| 
 | |
| 			mac_ring_up(smc,1) ;
 | |
| 			queue_event(smc,EVENT_RMT,RM_RING_OP) ;
 | |
| 			smc->mib.m[MAC0].fddiMACRingOp_Ct++ ;
 | |
| 		}
 | |
| 	}
 | |
| 	if (code_s2l & FM_SPHINV)
 | |
| 		smc->hw.fp.err_stats.err_phinv++ ;
 | |
| 	if (code_s2l & FM_SSIFG)
 | |
| 		smc->hw.fp.err_stats.err_sifg_det++ ;
 | |
| 	if (code_s2l & FM_STKISS)
 | |
| 		smc->hw.fp.err_stats.err_tkiss++ ;
 | |
| 	if (code_s2l & FM_STKERR)
 | |
| 		smc->hw.fp.err_stats.err_tkerr++ ;
 | |
| 	if (code_s2l & FM_SFRMCTR)
 | |
| 		smc->mib.m[MAC0].fddiMACFrame_Ct += 0x10000L ;
 | |
| 	if (code_s2l & FM_SERRCTR)
 | |
| 		smc->mib.m[MAC0].fddiMACError_Ct += 0x10000L ;
 | |
| 	if (code_s2l & FM_SLSTCTR)
 | |
| 		smc->mib.m[MAC0].fddiMACLost_Ct  += 0x10000L ;
 | |
| 	if (code_s2u & FM_SERRSF) {
 | |
| 		SMT_PANIC(smc,SMT_E0114, SMT_E0114_MSG) ;
 | |
| 	}
 | |
| mac2_end:
 | |
| 	/* notice old status */
 | |
| 	smc->hw.fp.s2l = code_s2l ;
 | |
| 	smc->hw.fp.s2u = code_s2u ;
 | |
| 	outpw(FM_A(FM_IMSK2U),~mac_imsk2u) ;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mac3_irq:	receive queue 2 bits and address detection bits
 | |
|  */
 | |
| void mac3_irq(struct s_smc *smc, u_short code_s3u, u_short code_s3l)
 | |
| {
 | |
| 	UNUSED(code_s3l) ;
 | |
| 
 | |
| 	if (code_s3u & (FM_SRCVOVR2 |	/* recv. FIFO overflow */
 | |
| 			FM_SRBFL2)) {	/* recv. buffer full */
 | |
| 		smc->hw.mac_ct.mac_r_restart_counter++ ;
 | |
| 		smt_stat_counter(smc,1);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	if (code_s3u & FM_SRPERRQ2) {	/* parity error receive queue 2 */
 | |
| 		SMT_PANIC(smc,SMT_E0115, SMT_E0115_MSG) ;
 | |
| 	}
 | |
| 	if (code_s3u & FM_SRPERRQ1) {	/* parity error receive queue 2 */
 | |
| 		SMT_PANIC(smc,SMT_E0116, SMT_E0116_MSG) ;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * take formac offline
 | |
|  */
 | |
| static void formac_offline(struct s_smc *smc)
 | |
| {
 | |
| 	outpw(FM_A(FM_CMDREG2),FM_IACTR) ;/* abort current transmit activity */
 | |
| 
 | |
| 	/* disable receive function */
 | |
| 	SETMASK(FM_A(FM_MDREG1),FM_MDISRCV,FM_ADDET) ;
 | |
| 
 | |
| 	/* FORMAC+ 'Initialize Mode' */
 | |
| 	SETMASK(FM_A(FM_MDREG1),FM_MINIT,FM_MMODE) ;
 | |
| 
 | |
| 	disable_formac(smc) ;
 | |
| 	smc->hw.mac_ring_is_up = FALSE ;
 | |
| 	smc->hw.hw_state = STOPPED ;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * bring formac online
 | |
|  */
 | |
| static void formac_online(struct s_smc *smc)
 | |
| {
 | |
| 	enable_formac(smc) ;
 | |
| 	SETMASK(FM_A(FM_MDREG1),FM_MONLINE | FM_SELRA | MDR1INIT |
 | |
| 		smc->hw.fp.rx_mode, FM_MMODE | FM_SELRA | FM_ADDRX) ;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * FORMAC+ full init. (tx, rx, timer, counter, claim & beacon)
 | |
|  */
 | |
| int init_fplus(struct s_smc *smc)
 | |
| {
 | |
| 	smc->hw.fp.nsa_mode = FM_MRNNSAFNMA ;
 | |
| 	smc->hw.fp.rx_mode = FM_MDAMA ;
 | |
| 	smc->hw.fp.group_addr = fddi_broadcast ;
 | |
| 	smc->hw.fp.func_addr = 0 ;
 | |
| 	smc->hw.fp.frselreg_init = 0 ;
 | |
| 
 | |
| 	init_driver_fplus(smc) ;
 | |
| 	if (smc->s.sas == SMT_DAS)
 | |
| 		smc->hw.fp.mdr3init |= FM_MENDAS ;
 | |
| 
 | |
| 	smc->hw.mac_ct.mac_nobuf_counter = 0 ;
 | |
| 	smc->hw.mac_ct.mac_r_restart_counter = 0 ;
 | |
| 
 | |
| 	smc->hw.fp.fm_st1u = (HW_PTR) ADDR(B0_ST1U) ;
 | |
| 	smc->hw.fp.fm_st1l = (HW_PTR) ADDR(B0_ST1L) ;
 | |
| 	smc->hw.fp.fm_st2u = (HW_PTR) ADDR(B0_ST2U) ;
 | |
| 	smc->hw.fp.fm_st2l = (HW_PTR) ADDR(B0_ST2L) ;
 | |
| 	smc->hw.fp.fm_st3u = (HW_PTR) ADDR(B0_ST3U) ;
 | |
| 	smc->hw.fp.fm_st3l = (HW_PTR) ADDR(B0_ST3L) ;
 | |
| 
 | |
| 	smc->hw.fp.s2l = smc->hw.fp.s2u = 0 ;
 | |
| 	smc->hw.mac_ring_is_up = 0 ;
 | |
| 
 | |
| 	mac_counter_init(smc) ;
 | |
| 
 | |
| 	/* convert BCKL units to symbol time */
 | |
| 	smc->hw.mac_pa.t_neg = (u_long)0 ;
 | |
| 	smc->hw.mac_pa.t_pri = (u_long)0 ;
 | |
| 
 | |
| 	/* make sure all PCI settings are correct */
 | |
| 	mac_do_pci_fix(smc) ;
 | |
| 
 | |
| 	return init_mac(smc, 1);
 | |
| 	/* enable_formac(smc) ; */
 | |
| }
 | |
| 
 | |
| static int init_mac(struct s_smc *smc, int all)
 | |
| {
 | |
| 	u_short	t_max,x ;
 | |
| 	u_long	time=0 ;
 | |
| 
 | |
| 	/*
 | |
| 	 * clear memory
 | |
| 	 */
 | |
| 	outpw(FM_A(FM_MDREG1),FM_MINIT) ;	/* FORMAC+ init mode */
 | |
| 	set_formac_addr(smc) ;
 | |
| 	outpw(FM_A(FM_MDREG1),FM_MMEMACT) ;	/* FORMAC+ memory activ mode */
 | |
| 	/* Note: Mode register 2 is set here, incase parity is enabled. */
 | |
| 	outpw(FM_A(FM_MDREG2),smc->hw.fp.mdr2init) ;
 | |
| 
 | |
| 	if (all) {
 | |
| 		init_ram(smc) ;
 | |
| 	}
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * reset the HPI, the Master and the BMUs
 | |
| 		 */
 | |
| 		outp(ADDR(B0_CTRL), CTRL_HPI_SET) ;
 | |
| 		time = hwt_quick_read(smc) ;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * set all pointers, frames etc
 | |
| 	 */
 | |
| 	smt_split_up_fifo(smc) ;
 | |
| 
 | |
| 	init_tx(smc) ;
 | |
| 	init_rx(smc) ;
 | |
| 	init_rbc(smc) ;
 | |
| 
 | |
| 	build_claim_beacon(smc,smc->mib.m[MAC0].fddiMACT_Req) ;
 | |
| 
 | |
| 	/* set RX threshold */
 | |
| 	/* see Errata #SN2 Phantom receive overflow */
 | |
| 	outpw(FM_A(FM_FRMTHR),14<<12) ;		/* switch on */
 | |
| 
 | |
| 	/* set formac work mode */
 | |
| 	outpw(FM_A(FM_MDREG1),MDR1INIT | FM_SELRA | smc->hw.fp.rx_mode) ;
 | |
| 	outpw(FM_A(FM_MDREG2),smc->hw.fp.mdr2init) ;
 | |
| 	outpw(FM_A(FM_MDREG3),smc->hw.fp.mdr3init) ;
 | |
| 	outpw(FM_A(FM_FRSELREG),smc->hw.fp.frselreg_init) ;
 | |
| 
 | |
| 	/* set timer */
 | |
| 	/*
 | |
| 	 * errata #22 fplus:
 | |
| 	 * T_MAX must not be FFFE
 | |
| 	 * or one of FFDF, FFB8, FF91 (-0x27 etc..)
 | |
| 	 */
 | |
| 	t_max = (u_short)(smc->mib.m[MAC0].fddiMACT_Max/32) ;
 | |
| 	x = t_max/0x27 ;
 | |
| 	x *= 0x27 ;
 | |
| 	if ((t_max == 0xfffe) || (t_max - x == 0x16))
 | |
| 		t_max-- ;
 | |
| 	outpw(FM_A(FM_TMAX),(u_short)t_max) ;
 | |
| 
 | |
| 	/* BugFix for report #10204 */
 | |
| 	if (smc->mib.m[MAC0].fddiMACTvxValue < (u_long) (- US2BCLK(52))) {
 | |
| 		outpw(FM_A(FM_TVX), (u_short) (- US2BCLK(52))/255 & MB) ;
 | |
| 	} else {
 | |
| 		outpw(FM_A(FM_TVX),
 | |
| 			(u_short)((smc->mib.m[MAC0].fddiMACTvxValue/255) & MB)) ;
 | |
| 	}
 | |
| 
 | |
| 	outpw(FM_A(FM_CMDREG1),FM_ICLLS) ;	/* clear s-frame lock */
 | |
| 	outpw(FM_A(FM_CMDREG1),FM_ICLLA0) ;	/* clear a-frame lock */
 | |
| 	outpw(FM_A(FM_CMDREG1),FM_ICLLR);	/* clear receive lock */
 | |
| 
 | |
| 	/* Auto unlock receice threshold for receive queue 1 and 2 */
 | |
| 	outpw(FM_A(FM_UNLCKDLY),(0xff|(0xff<<8))) ;
 | |
| 
 | |
| 	rtm_init(smc) ;				/* RT-Monitor */
 | |
| 
 | |
| 	if (!all) {
 | |
| 		/*
 | |
| 		 * after 10ms, reset the BMUs and repair the rings
 | |
| 		 */
 | |
| 		hwt_wait_time(smc,time,MS2BCLK(10)) ;
 | |
| 		outpd(ADDR(B0_R1_CSR),CSR_SET_RESET) ;
 | |
| 		outpd(ADDR(B0_XA_CSR),CSR_SET_RESET) ;
 | |
| 		outpd(ADDR(B0_XS_CSR),CSR_SET_RESET) ;
 | |
| 		outp(ADDR(B0_CTRL), CTRL_HPI_CLR) ;
 | |
| 		outpd(ADDR(B0_R1_CSR),CSR_CLR_RESET) ;
 | |
| 		outpd(ADDR(B0_XA_CSR),CSR_CLR_RESET) ;
 | |
| 		outpd(ADDR(B0_XS_CSR),CSR_CLR_RESET) ;
 | |
| 		if (!smc->hw.hw_is_64bit) {
 | |
| 			outpd(ADDR(B4_R1_F), RX_WATERMARK) ;
 | |
| 			outpd(ADDR(B5_XA_F), TX_WATERMARK) ;
 | |
| 			outpd(ADDR(B5_XS_F), TX_WATERMARK) ;
 | |
| 		}
 | |
| 		smc->hw.hw_state = STOPPED ;
 | |
| 		mac_drv_repair_descr(smc) ;
 | |
| 	}
 | |
| 	smc->hw.hw_state = STARTED ;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * called by CFM
 | |
|  */
 | |
| void config_mux(struct s_smc *smc, int mux)
 | |
| {
 | |
| 	plc_config_mux(smc,mux) ;
 | |
| 
 | |
| 	SETMASK(FM_A(FM_MDREG1),FM_SELRA,FM_SELRA) ;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * called by RMT
 | |
|  * enable CLAIM/BEACON interrupts
 | |
|  * (only called if these events are of interest, e.g. in DETECT state
 | |
|  * the interrupt must not be permanently enabled
 | |
|  * RMT calls this function periodically (timer driven polling)
 | |
|  */
 | |
| void sm_mac_check_beacon_claim(struct s_smc *smc)
 | |
| {
 | |
| 	/* set formac IMSK : 0 enables irq */
 | |
| 	outpw(FM_A(FM_IMSK2U),~(mac_imsk2u | mac_beacon_imsk2u)) ;
 | |
| 	/* the driver must receive the directed beacons */
 | |
| 	formac_rcv_restart(smc) ;
 | |
| 	process_receive(smc) ;
 | |
| }
 | |
| 
 | |
| /*-------------------------- interface functions ----------------------------*/
 | |
| /*
 | |
|  * control MAC layer	(called by RMT)
 | |
|  */
 | |
| void sm_ma_control(struct s_smc *smc, int mode)
 | |
| {
 | |
| 	switch(mode) {
 | |
| 	case MA_OFFLINE :
 | |
| 		/* Add to make the MAC offline in RM0_ISOLATED state */
 | |
| 		formac_offline(smc) ;
 | |
| 		break ;
 | |
| 	case MA_RESET :
 | |
| 		(void)init_mac(smc,0) ;
 | |
| 		break ;
 | |
| 	case MA_BEACON :
 | |
| 		formac_online(smc) ;
 | |
| 		break ;
 | |
| 	case MA_DIRECTED :
 | |
| 		directed_beacon(smc) ;
 | |
| 		break ;
 | |
| 	case MA_TREQ :
 | |
| 		/*
 | |
| 		 * no actions necessary, TREQ is already set
 | |
| 		 */
 | |
| 		break ;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int sm_mac_get_tx_state(struct s_smc *smc)
 | |
| {
 | |
| 	return (inpw(FM_A(FM_STMCHN))>>4) & 7;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * multicast functions
 | |
|  */
 | |
| 
 | |
| static struct s_fpmc* mac_get_mc_table(struct s_smc *smc,
 | |
| 				       struct fddi_addr *user,
 | |
| 				       struct fddi_addr *own,
 | |
| 				       int del, int can)
 | |
| {
 | |
| 	struct s_fpmc	*tb ;
 | |
| 	struct s_fpmc	*slot ;
 | |
| 	u_char	*p ;
 | |
| 	int i ;
 | |
| 
 | |
| 	/*
 | |
| 	 * set own = can(user)
 | |
| 	 */
 | |
| 	*own = *user ;
 | |
| 	if (can) {
 | |
| 		p = own->a ;
 | |
| 		for (i = 0 ; i < 6 ; i++, p++)
 | |
| 			*p = bitrev8(*p);
 | |
| 	}
 | |
| 	slot = NULL;
 | |
| 	for (i = 0, tb = smc->hw.fp.mc.table ; i < FPMAX_MULTICAST ; i++, tb++){
 | |
| 		if (!tb->n) {		/* not used */
 | |
| 			if (!del && !slot)	/* if !del save first free */
 | |
| 				slot = tb ;
 | |
| 			continue ;
 | |
| 		}
 | |
| 		if (memcmp((char *)&tb->a,(char *)own,6))
 | |
| 			continue ;
 | |
| 		return tb;
 | |
| 	}
 | |
| 	return slot;			/* return first free or NULL */
 | |
| }
 | |
| 
 | |
| /*
 | |
| 	BEGIN_MANUAL_ENTRY(if,func;others;2)
 | |
| 
 | |
| 	void mac_clear_multicast(smc)
 | |
| 	struct s_smc *smc ;
 | |
| 
 | |
| Function	DOWNCALL	(SMT, fplustm.c)
 | |
| 		Clear all multicast entries
 | |
| 
 | |
| 	END_MANUAL_ENTRY()
 | |
|  */
 | |
| void mac_clear_multicast(struct s_smc *smc)
 | |
| {
 | |
| 	struct s_fpmc	*tb ;
 | |
| 	int i ;
 | |
| 
 | |
| 	smc->hw.fp.os_slots_used = 0 ;	/* note the SMT addresses */
 | |
| 					/* will not be deleted */
 | |
| 	for (i = 0, tb = smc->hw.fp.mc.table ; i < FPMAX_MULTICAST ; i++, tb++){
 | |
| 		if (!tb->perm) {
 | |
| 			tb->n = 0 ;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
| 	BEGIN_MANUAL_ENTRY(if,func;others;2)
 | |
| 
 | |
| 	int mac_add_multicast(smc,addr,can)
 | |
| 	struct s_smc *smc ;
 | |
| 	struct fddi_addr *addr ;
 | |
| 	int can ;
 | |
| 
 | |
| Function	DOWNCALL	(SMC, fplustm.c)
 | |
| 		Add an entry to the multicast table
 | |
| 
 | |
| Para	addr	pointer to a multicast address
 | |
| 	can	= 0:	the multicast address has the physical format
 | |
| 		= 1:	the multicast address has the canonical format
 | |
| 		| 0x80	permanent
 | |
| 
 | |
| Returns	0: success
 | |
| 	1: address table full
 | |
| 
 | |
| Note	After a 'driver reset' or a 'station set address' all
 | |
| 	entries of the multicast table are cleared.
 | |
| 	In this case the driver has to fill the multicast table again.
 | |
| 	After the operating system dependent module filled
 | |
| 	the multicast table it must call mac_update_multicast
 | |
| 	to activate the new multicast addresses!
 | |
| 
 | |
| 	END_MANUAL_ENTRY()
 | |
|  */
 | |
| int mac_add_multicast(struct s_smc *smc, struct fddi_addr *addr, int can)
 | |
| {
 | |
| 	SK_LOC_DECL(struct fddi_addr,own) ;
 | |
| 	struct s_fpmc	*tb ;
 | |
| 
 | |
| 	/*
 | |
| 	 * check if there are free table entries
 | |
| 	 */
 | |
| 	if (can & 0x80) {
 | |
| 		if (smc->hw.fp.smt_slots_used >= SMT_MAX_MULTI) {
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		if (smc->hw.fp.os_slots_used >= FPMAX_MULTICAST-SMT_MAX_MULTI) {
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * find empty slot
 | |
| 	 */
 | |
| 	if (!(tb = mac_get_mc_table(smc,addr,&own,0,can & ~0x80)))
 | |
| 		return 1;
 | |
| 	tb->n++ ;
 | |
| 	tb->a = own ;
 | |
| 	tb->perm = (can & 0x80) ? 1 : 0 ;
 | |
| 
 | |
| 	if (can & 0x80)
 | |
| 		smc->hw.fp.smt_slots_used++ ;
 | |
| 	else
 | |
| 		smc->hw.fp.os_slots_used++ ;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mode
 | |
|  */
 | |
| 
 | |
| #define RX_MODE_PROM		0x1
 | |
| #define RX_MODE_ALL_MULTI	0x2
 | |
| 
 | |
| /*
 | |
| 	BEGIN_MANUAL_ENTRY(if,func;others;2)
 | |
| 
 | |
| 	void mac_update_multicast(smc)
 | |
| 	struct s_smc *smc ;
 | |
| 
 | |
| Function	DOWNCALL	(SMT, fplustm.c)
 | |
| 		Update FORMAC multicast registers
 | |
| 
 | |
| 	END_MANUAL_ENTRY()
 | |
|  */
 | |
| void mac_update_multicast(struct s_smc *smc)
 | |
| {
 | |
| 	struct s_fpmc	*tb ;
 | |
| 	u_char	*fu ;
 | |
| 	int	i ;
 | |
| 
 | |
| 	/*
 | |
| 	 * invalidate the CAM
 | |
| 	 */
 | |
| 	outpw(FM_A(FM_AFCMD),FM_IINV_CAM) ;
 | |
| 
 | |
| 	/*
 | |
| 	 * set the functional address
 | |
| 	 */
 | |
| 	if (smc->hw.fp.func_addr) {
 | |
| 		fu = (u_char *) &smc->hw.fp.func_addr ;
 | |
| 		outpw(FM_A(FM_AFMASK2),0xffff) ;
 | |
| 		outpw(FM_A(FM_AFMASK1),(u_short) ~((fu[0] << 8) + fu[1])) ;
 | |
| 		outpw(FM_A(FM_AFMASK0),(u_short) ~((fu[2] << 8) + fu[3])) ;
 | |
| 		outpw(FM_A(FM_AFPERS),FM_VALID|FM_DA) ;
 | |
| 		outpw(FM_A(FM_AFCOMP2), 0xc000) ;
 | |
| 		outpw(FM_A(FM_AFCOMP1), 0x0000) ;
 | |
| 		outpw(FM_A(FM_AFCOMP0), 0x0000) ;
 | |
| 		outpw(FM_A(FM_AFCMD),FM_IWRITE_CAM) ;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * set the mask and the personality register(s)
 | |
| 	 */
 | |
| 	outpw(FM_A(FM_AFMASK0),0xffff) ;
 | |
| 	outpw(FM_A(FM_AFMASK1),0xffff) ;
 | |
| 	outpw(FM_A(FM_AFMASK2),0xffff) ;
 | |
| 	outpw(FM_A(FM_AFPERS),FM_VALID|FM_DA) ;
 | |
| 
 | |
| 	for (i = 0, tb = smc->hw.fp.mc.table; i < FPMAX_MULTICAST; i++, tb++) {
 | |
| 		if (tb->n) {
 | |
| 			CHECK_CAM() ;
 | |
| 
 | |
| 			/*
 | |
| 			 * write the multicast address into the CAM
 | |
| 			 */
 | |
| 			outpw(FM_A(FM_AFCOMP2),
 | |
| 				(u_short)((tb->a.a[0]<<8)+tb->a.a[1])) ;
 | |
| 			outpw(FM_A(FM_AFCOMP1),
 | |
| 				(u_short)((tb->a.a[2]<<8)+tb->a.a[3])) ;
 | |
| 			outpw(FM_A(FM_AFCOMP0),
 | |
| 				(u_short)((tb->a.a[4]<<8)+tb->a.a[5])) ;
 | |
| 			outpw(FM_A(FM_AFCMD),FM_IWRITE_CAM) ;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
| 	BEGIN_MANUAL_ENTRY(if,func;others;3)
 | |
| 
 | |
| 	void mac_set_rx_mode(smc,mode)
 | |
| 	struct s_smc *smc ;
 | |
| 	int mode ;
 | |
| 
 | |
| Function	DOWNCALL/INTERN	(SMT, fplustm.c)
 | |
| 		This function enables / disables the selected receive.
 | |
| 		Don't call this function if the hardware module is
 | |
| 		used -- use mac_drv_rx_mode() instead of.
 | |
| 
 | |
| Para	mode =	1	RX_ENABLE_ALLMULTI	enable all multicasts
 | |
| 		2	RX_DISABLE_ALLMULTI	disable "enable all multicasts"
 | |
| 		3	RX_ENABLE_PROMISC	enable promiscous
 | |
| 		4	RX_DISABLE_PROMISC	disable promiscous
 | |
| 		5	RX_ENABLE_NSA		enable reception of NSA frames
 | |
| 		6	RX_DISABLE_NSA		disable reception of NSA frames
 | |
| 
 | |
| Note	The selected receive modes will be lost after 'driver reset'
 | |
| 	or 'set station address'
 | |
| 
 | |
| 	END_MANUAL_ENTRY
 | |
|  */
 | |
| void mac_set_rx_mode(struct s_smc *smc, int mode)
 | |
| {
 | |
| 	switch (mode) {
 | |
| 	case RX_ENABLE_ALLMULTI :
 | |
| 		smc->hw.fp.rx_prom |= RX_MODE_ALL_MULTI ;
 | |
| 		break ;
 | |
| 	case RX_DISABLE_ALLMULTI :
 | |
| 		smc->hw.fp.rx_prom &= ~RX_MODE_ALL_MULTI ;
 | |
| 		break ;
 | |
| 	case RX_ENABLE_PROMISC :
 | |
| 		smc->hw.fp.rx_prom |= RX_MODE_PROM ;
 | |
| 		break ;
 | |
| 	case RX_DISABLE_PROMISC :
 | |
| 		smc->hw.fp.rx_prom &= ~RX_MODE_PROM ;
 | |
| 		break ;
 | |
| 	case RX_ENABLE_NSA :
 | |
| 		smc->hw.fp.nsa_mode = FM_MDAMA ;
 | |
| 		smc->hw.fp.rx_mode = (smc->hw.fp.rx_mode & ~FM_ADDET) |
 | |
| 			smc->hw.fp.nsa_mode ;
 | |
| 		break ;
 | |
| 	case RX_DISABLE_NSA :
 | |
| 		smc->hw.fp.nsa_mode = FM_MRNNSAFNMA ;
 | |
| 		smc->hw.fp.rx_mode = (smc->hw.fp.rx_mode & ~FM_ADDET) |
 | |
| 			smc->hw.fp.nsa_mode ;
 | |
| 		break ;
 | |
| 	}
 | |
| 	if (smc->hw.fp.rx_prom & RX_MODE_PROM) {
 | |
| 		smc->hw.fp.rx_mode = FM_MLIMPROM ;
 | |
| 	}
 | |
| 	else if (smc->hw.fp.rx_prom & RX_MODE_ALL_MULTI) {
 | |
| 		smc->hw.fp.rx_mode = smc->hw.fp.nsa_mode | FM_EXGPA0 ;
 | |
| 	}
 | |
| 	else
 | |
| 		smc->hw.fp.rx_mode = smc->hw.fp.nsa_mode ;
 | |
| 	SETMASK(FM_A(FM_MDREG1),smc->hw.fp.rx_mode,FM_ADDRX) ;
 | |
| 	mac_update_multicast(smc) ;
 | |
| }
 | |
| 
 | |
| /*
 | |
| 	BEGIN_MANUAL_ENTRY(module;tests;3)
 | |
| 	How to test the Restricted Token Monitor
 | |
| 	----------------------------------------------------------------
 | |
| 
 | |
| 	o Insert a break point in the function rtm_irq()
 | |
| 	o Remove all stations with a restricted token monitor from the
 | |
| 	  network.
 | |
| 	o Connect a UPPS ISA or EISA station to the network.
 | |
| 	o Give the FORMAC of UPPS station the command to send
 | |
| 	  restricted tokens until the ring becomes instable.
 | |
| 	o Now connect your test test client.
 | |
| 	o The restricted token monitor should detect the restricted token,
 | |
| 	  and your break point will be reached.
 | |
| 	o You can ovserve how the station will clean the ring.
 | |
| 
 | |
| 	END_MANUAL_ENTRY
 | |
|  */
 | |
| void rtm_irq(struct s_smc *smc)
 | |
| {
 | |
| 	outpw(ADDR(B2_RTM_CRTL),TIM_CL_IRQ) ;		/* clear IRQ */
 | |
| 	if (inpw(ADDR(B2_RTM_CRTL)) & TIM_RES_TOK) {
 | |
| 		outpw(FM_A(FM_CMDREG1),FM_ICL) ;	/* force claim */
 | |
| 		DB_RMT("RMT: fddiPATHT_Rmode expired\n",0,0) ;
 | |
| 		AIX_EVENT(smc, (u_long) FDDI_RING_STATUS,
 | |
| 				(u_long) FDDI_SMT_EVENT,
 | |
| 				(u_long) FDDI_RTT, smt_get_event_word(smc));
 | |
| 	}
 | |
| 	outpw(ADDR(B2_RTM_CRTL),TIM_START) ;	/* enable RTM monitoring */
 | |
| }
 | |
| 
 | |
| static void rtm_init(struct s_smc *smc)
 | |
| {
 | |
| 	outpd(ADDR(B2_RTM_INI),0) ;		/* timer = 0 */
 | |
| 	outpw(ADDR(B2_RTM_CRTL),TIM_START) ;	/* enable IRQ */
 | |
| }
 | |
| 
 | |
| void rtm_set_timer(struct s_smc *smc)
 | |
| {
 | |
| 	/*
 | |
| 	 * MIB timer and hardware timer have the same resolution of 80nS
 | |
| 	 */
 | |
| 	DB_RMT("RMT: setting new fddiPATHT_Rmode, t = %d ns\n",
 | |
| 		(int) smc->mib.a[PATH0].fddiPATHT_Rmode,0) ;
 | |
| 	outpd(ADDR(B2_RTM_INI),smc->mib.a[PATH0].fddiPATHT_Rmode) ;
 | |
| }
 | |
| 
 | |
| static void smt_split_up_fifo(struct s_smc *smc)
 | |
| {
 | |
| 
 | |
| /*
 | |
| 	BEGIN_MANUAL_ENTRY(module;mem;1)
 | |
| 	-------------------------------------------------------------
 | |
| 	RECEIVE BUFFER MEMORY DIVERSION
 | |
| 	-------------------------------------------------------------
 | |
| 
 | |
| 	R1_RxD == SMT_R1_RXD_COUNT
 | |
| 	R2_RxD == SMT_R2_RXD_COUNT
 | |
| 
 | |
| 	SMT_R1_RXD_COUNT must be unequal zero
 | |
| 
 | |
| 		   | R1_RxD R2_RxD |R1_RxD R2_RxD | R1_RxD R2_RxD
 | |
| 		   |   x      0	   |  x	    1-3	  |   x     < 3
 | |
| 	----------------------------------------------------------------------
 | |
| 		   |   63,75 kB	   |    54,75	  |	R1_RxD
 | |
| 	rx queue 1 | RX_FIFO_SPACE | RX_LARGE_FIFO| ------------- * 63,75 kB
 | |
| 		   |		   |		  | R1_RxD+R2_RxD
 | |
| 	----------------------------------------------------------------------
 | |
| 		   |		   |    9 kB	  |     R2_RxD
 | |
| 	rx queue 2 |	0 kB	   | RX_SMALL_FIFO| ------------- * 63,75 kB
 | |
| 		   |  (not used)   |		  | R1_RxD+R2_RxD
 | |
| 
 | |
| 	END_MANUAL_ENTRY
 | |
| */
 | |
| 
 | |
| 	if (SMT_R1_RXD_COUNT == 0) {
 | |
| 		SMT_PANIC(smc,SMT_E0117, SMT_E0117_MSG) ;
 | |
| 	}
 | |
| 
 | |
| 	switch(SMT_R2_RXD_COUNT) {
 | |
| 	case 0:
 | |
| 		smc->hw.fp.fifo.rx1_fifo_size = RX_FIFO_SPACE ;
 | |
| 		smc->hw.fp.fifo.rx2_fifo_size = 0 ;
 | |
| 		break ;
 | |
| 	case 1:
 | |
| 	case 2:
 | |
| 	case 3:
 | |
| 		smc->hw.fp.fifo.rx1_fifo_size = RX_LARGE_FIFO ;
 | |
| 		smc->hw.fp.fifo.rx2_fifo_size = RX_SMALL_FIFO ;
 | |
| 		break ;
 | |
| 	default:	/* this is not the real defaule */
 | |
| 		smc->hw.fp.fifo.rx1_fifo_size = RX_FIFO_SPACE *
 | |
| 		SMT_R1_RXD_COUNT/(SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT) ;
 | |
| 		smc->hw.fp.fifo.rx2_fifo_size = RX_FIFO_SPACE *
 | |
| 		SMT_R2_RXD_COUNT/(SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT) ;
 | |
| 		break ;
 | |
| 	}
 | |
| 
 | |
| /*
 | |
| 	BEGIN_MANUAL_ENTRY(module;mem;1)
 | |
| 	-------------------------------------------------------------
 | |
| 	TRANSMIT BUFFER MEMORY DIVERSION
 | |
| 	-------------------------------------------------------------
 | |
| 
 | |
| 
 | |
| 		 | no sync bw	| sync bw available and | sync bw available and
 | |
| 		 | available	| SynchTxMode = SPLIT	| SynchTxMode = ALL
 | |
| 	-----------------------------------------------------------------------
 | |
| 	sync tx	 |     0 kB	|	32 kB		|	55 kB
 | |
| 	queue	 |		|   TX_MEDIUM_FIFO	|   TX_LARGE_FIFO
 | |
| 	-----------------------------------------------------------------------
 | |
| 	async tx |    64 kB	|	32 kB		|	 9 k
 | |
| 	queue	 | TX_FIFO_SPACE|   TX_MEDIUM_FIFO	|   TX_SMALL_FIFO
 | |
| 
 | |
| 	END_MANUAL_ENTRY
 | |
| */
 | |
| 
 | |
| 	/*
 | |
| 	 * set the tx mode bits
 | |
| 	 */
 | |
| 	if (smc->mib.a[PATH0].fddiPATHSbaPayload) {
 | |
| #ifdef ESS
 | |
| 		smc->hw.fp.fifo.fifo_config_mode |=
 | |
| 			smc->mib.fddiESSSynchTxMode | SYNC_TRAFFIC_ON ;
 | |
| #endif
 | |
| 	}
 | |
| 	else {
 | |
| 		smc->hw.fp.fifo.fifo_config_mode &=
 | |
| 			~(SEND_ASYNC_AS_SYNC|SYNC_TRAFFIC_ON) ;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * split up the FIFO
 | |
| 	 */
 | |
| 	if (smc->hw.fp.fifo.fifo_config_mode & SYNC_TRAFFIC_ON) {
 | |
| 		if (smc->hw.fp.fifo.fifo_config_mode & SEND_ASYNC_AS_SYNC) {
 | |
| 			smc->hw.fp.fifo.tx_s_size = TX_LARGE_FIFO ;
 | |
| 			smc->hw.fp.fifo.tx_a0_size = TX_SMALL_FIFO ;
 | |
| 		}
 | |
| 		else {
 | |
| 			smc->hw.fp.fifo.tx_s_size = TX_MEDIUM_FIFO ;
 | |
| 			smc->hw.fp.fifo.tx_a0_size = TX_MEDIUM_FIFO ;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 			smc->hw.fp.fifo.tx_s_size = 0 ;
 | |
| 			smc->hw.fp.fifo.tx_a0_size = TX_FIFO_SPACE ;
 | |
| 	}
 | |
| 
 | |
| 	smc->hw.fp.fifo.rx1_fifo_start = smc->hw.fp.fifo.rbc_ram_start +
 | |
| 		RX_FIFO_OFF ;
 | |
| 	smc->hw.fp.fifo.tx_s_start = smc->hw.fp.fifo.rx1_fifo_start +
 | |
| 		smc->hw.fp.fifo.rx1_fifo_size ;
 | |
| 	smc->hw.fp.fifo.tx_a0_start = smc->hw.fp.fifo.tx_s_start +
 | |
| 		smc->hw.fp.fifo.tx_s_size ;
 | |
| 	smc->hw.fp.fifo.rx2_fifo_start = smc->hw.fp.fifo.tx_a0_start +
 | |
| 		smc->hw.fp.fifo.tx_a0_size ;
 | |
| 
 | |
| 	DB_SMT("FIFO split: mode = %x\n",smc->hw.fp.fifo.fifo_config_mode,0) ;
 | |
| 	DB_SMT("rbc_ram_start =	%x	 rbc_ram_end = 	%x\n",
 | |
| 		smc->hw.fp.fifo.rbc_ram_start, smc->hw.fp.fifo.rbc_ram_end) ;
 | |
| 	DB_SMT("rx1_fifo_start = %x	 tx_s_start = 	%x\n",
 | |
| 		smc->hw.fp.fifo.rx1_fifo_start, smc->hw.fp.fifo.tx_s_start) ;
 | |
| 	DB_SMT("tx_a0_start =	%x	 rx2_fifo_start = 	%x\n",
 | |
| 		smc->hw.fp.fifo.tx_a0_start, smc->hw.fp.fifo.rx2_fifo_start) ;
 | |
| }
 | |
| 
 | |
| void formac_reinit_tx(struct s_smc *smc)
 | |
| {
 | |
| 	/*
 | |
| 	 * Split up the FIFO and reinitialize the MAC if synchronous
 | |
| 	 * bandwidth becomes available but no synchronous queue is
 | |
| 	 * configured.
 | |
| 	 */
 | |
| 	if (!smc->hw.fp.fifo.tx_s_size && smc->mib.a[PATH0].fddiPATHSbaPayload){
 | |
| 		(void)init_mac(smc,0) ;
 | |
| 	}
 | |
| }
 | |
| 
 |