1491 lines
		
	
	
	
		
			35 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1491 lines
		
	
	
	
		
			35 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* smp.c: Sparc64 SMP support.
 | |
|  *
 | |
|  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/threads.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/cache.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/profile.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/ftrace.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include <asm/head.h>
 | |
| #include <asm/ptrace.h>
 | |
| #include <asm/atomic.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/cpudata.h>
 | |
| #include <asm/hvtramp.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/timer.h>
 | |
| 
 | |
| #include <asm/irq.h>
 | |
| #include <asm/irq_regs.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/oplib.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/starfire.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/prom.h>
 | |
| #include <asm/mdesc.h>
 | |
| #include <asm/ldc.h>
 | |
| #include <asm/hypervisor.h>
 | |
| 
 | |
| #include "cpumap.h"
 | |
| 
 | |
| int sparc64_multi_core __read_mostly;
 | |
| 
 | |
| DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
 | |
| cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
 | |
| 	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
 | |
| 
 | |
| EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
 | |
| EXPORT_SYMBOL(cpu_core_map);
 | |
| 
 | |
| static cpumask_t smp_commenced_mask;
 | |
| 
 | |
| void smp_info(struct seq_file *m)
 | |
| {
 | |
| 	int i;
 | |
| 	
 | |
| 	seq_printf(m, "State:\n");
 | |
| 	for_each_online_cpu(i)
 | |
| 		seq_printf(m, "CPU%d:\t\tonline\n", i);
 | |
| }
 | |
| 
 | |
| void smp_bogo(struct seq_file *m)
 | |
| {
 | |
| 	int i;
 | |
| 	
 | |
| 	for_each_online_cpu(i)
 | |
| 		seq_printf(m,
 | |
| 			   "Cpu%dClkTck\t: %016lx\n",
 | |
| 			   i, cpu_data(i).clock_tick);
 | |
| }
 | |
| 
 | |
| extern void setup_sparc64_timer(void);
 | |
| 
 | |
| static volatile unsigned long callin_flag = 0;
 | |
| 
 | |
| void __cpuinit smp_callin(void)
 | |
| {
 | |
| 	int cpuid = hard_smp_processor_id();
 | |
| 
 | |
| 	__local_per_cpu_offset = __per_cpu_offset(cpuid);
 | |
| 
 | |
| 	if (tlb_type == hypervisor)
 | |
| 		sun4v_ktsb_register();
 | |
| 
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| 	setup_sparc64_timer();
 | |
| 
 | |
| 	if (cheetah_pcache_forced_on)
 | |
| 		cheetah_enable_pcache();
 | |
| 
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	callin_flag = 1;
 | |
| 	__asm__ __volatile__("membar #Sync\n\t"
 | |
| 			     "flush  %%g6" : : : "memory");
 | |
| 
 | |
| 	/* Clear this or we will die instantly when we
 | |
| 	 * schedule back to this idler...
 | |
| 	 */
 | |
| 	current_thread_info()->new_child = 0;
 | |
| 
 | |
| 	/* Attach to the address space of init_task. */
 | |
| 	atomic_inc(&init_mm.mm_count);
 | |
| 	current->active_mm = &init_mm;
 | |
| 
 | |
| 	/* inform the notifiers about the new cpu */
 | |
| 	notify_cpu_starting(cpuid);
 | |
| 
 | |
| 	while (!cpu_isset(cpuid, smp_commenced_mask))
 | |
| 		rmb();
 | |
| 
 | |
| 	ipi_call_lock_irq();
 | |
| 	cpu_set(cpuid, cpu_online_map);
 | |
| 	ipi_call_unlock_irq();
 | |
| 
 | |
| 	/* idle thread is expected to have preempt disabled */
 | |
| 	preempt_disable();
 | |
| }
 | |
| 
 | |
| void cpu_panic(void)
 | |
| {
 | |
| 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 | |
| 	panic("SMP bolixed\n");
 | |
| }
 | |
| 
 | |
| /* This tick register synchronization scheme is taken entirely from
 | |
|  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 | |
|  *
 | |
|  * The only change I've made is to rework it so that the master
 | |
|  * initiates the synchonization instead of the slave. -DaveM
 | |
|  */
 | |
| 
 | |
| #define MASTER	0
 | |
| #define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
 | |
| 
 | |
| #define NUM_ROUNDS	64	/* magic value */
 | |
| #define NUM_ITERS	5	/* likewise */
 | |
| 
 | |
| static DEFINE_SPINLOCK(itc_sync_lock);
 | |
| static unsigned long go[SLAVE + 1];
 | |
| 
 | |
| #define DEBUG_TICK_SYNC	0
 | |
| 
 | |
| static inline long get_delta (long *rt, long *master)
 | |
| {
 | |
| 	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 | |
| 	unsigned long tcenter, t0, t1, tm;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	for (i = 0; i < NUM_ITERS; i++) {
 | |
| 		t0 = tick_ops->get_tick();
 | |
| 		go[MASTER] = 1;
 | |
| 		membar_safe("#StoreLoad");
 | |
| 		while (!(tm = go[SLAVE]))
 | |
| 			rmb();
 | |
| 		go[SLAVE] = 0;
 | |
| 		wmb();
 | |
| 		t1 = tick_ops->get_tick();
 | |
| 
 | |
| 		if (t1 - t0 < best_t1 - best_t0)
 | |
| 			best_t0 = t0, best_t1 = t1, best_tm = tm;
 | |
| 	}
 | |
| 
 | |
| 	*rt = best_t1 - best_t0;
 | |
| 	*master = best_tm - best_t0;
 | |
| 
 | |
| 	/* average best_t0 and best_t1 without overflow: */
 | |
| 	tcenter = (best_t0/2 + best_t1/2);
 | |
| 	if (best_t0 % 2 + best_t1 % 2 == 2)
 | |
| 		tcenter++;
 | |
| 	return tcenter - best_tm;
 | |
| }
 | |
| 
 | |
| void smp_synchronize_tick_client(void)
 | |
| {
 | |
| 	long i, delta, adj, adjust_latency = 0, done = 0;
 | |
| 	unsigned long flags, rt, master_time_stamp, bound;
 | |
| #if DEBUG_TICK_SYNC
 | |
| 	struct {
 | |
| 		long rt;	/* roundtrip time */
 | |
| 		long master;	/* master's timestamp */
 | |
| 		long diff;	/* difference between midpoint and master's timestamp */
 | |
| 		long lat;	/* estimate of itc adjustment latency */
 | |
| 	} t[NUM_ROUNDS];
 | |
| #endif
 | |
| 
 | |
| 	go[MASTER] = 1;
 | |
| 
 | |
| 	while (go[MASTER])
 | |
| 		rmb();
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	{
 | |
| 		for (i = 0; i < NUM_ROUNDS; i++) {
 | |
| 			delta = get_delta(&rt, &master_time_stamp);
 | |
| 			if (delta == 0) {
 | |
| 				done = 1;	/* let's lock on to this... */
 | |
| 				bound = rt;
 | |
| 			}
 | |
| 
 | |
| 			if (!done) {
 | |
| 				if (i > 0) {
 | |
| 					adjust_latency += -delta;
 | |
| 					adj = -delta + adjust_latency/4;
 | |
| 				} else
 | |
| 					adj = -delta;
 | |
| 
 | |
| 				tick_ops->add_tick(adj);
 | |
| 			}
 | |
| #if DEBUG_TICK_SYNC
 | |
| 			t[i].rt = rt;
 | |
| 			t[i].master = master_time_stamp;
 | |
| 			t[i].diff = delta;
 | |
| 			t[i].lat = adjust_latency/4;
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| #if DEBUG_TICK_SYNC
 | |
| 	for (i = 0; i < NUM_ROUNDS; i++)
 | |
| 		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 | |
| 		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 | |
| #endif
 | |
| 
 | |
| 	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 | |
| 	       "(last diff %ld cycles, maxerr %lu cycles)\n",
 | |
| 	       smp_processor_id(), delta, rt);
 | |
| }
 | |
| 
 | |
| static void smp_start_sync_tick_client(int cpu);
 | |
| 
 | |
| static void smp_synchronize_one_tick(int cpu)
 | |
| {
 | |
| 	unsigned long flags, i;
 | |
| 
 | |
| 	go[MASTER] = 0;
 | |
| 
 | |
| 	smp_start_sync_tick_client(cpu);
 | |
| 
 | |
| 	/* wait for client to be ready */
 | |
| 	while (!go[MASTER])
 | |
| 		rmb();
 | |
| 
 | |
| 	/* now let the client proceed into his loop */
 | |
| 	go[MASTER] = 0;
 | |
| 	membar_safe("#StoreLoad");
 | |
| 
 | |
| 	spin_lock_irqsave(&itc_sync_lock, flags);
 | |
| 	{
 | |
| 		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 | |
| 			while (!go[MASTER])
 | |
| 				rmb();
 | |
| 			go[MASTER] = 0;
 | |
| 			wmb();
 | |
| 			go[SLAVE] = tick_ops->get_tick();
 | |
| 			membar_safe("#StoreLoad");
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&itc_sync_lock, flags);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 | |
| /* XXX Put this in some common place. XXX */
 | |
| static unsigned long kimage_addr_to_ra(void *p)
 | |
| {
 | |
| 	unsigned long val = (unsigned long) p;
 | |
| 
 | |
| 	return kern_base + (val - KERNBASE);
 | |
| }
 | |
| 
 | |
| static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
 | |
| {
 | |
| 	extern unsigned long sparc64_ttable_tl0;
 | |
| 	extern unsigned long kern_locked_tte_data;
 | |
| 	struct hvtramp_descr *hdesc;
 | |
| 	unsigned long trampoline_ra;
 | |
| 	struct trap_per_cpu *tb;
 | |
| 	u64 tte_vaddr, tte_data;
 | |
| 	unsigned long hv_err;
 | |
| 	int i;
 | |
| 
 | |
| 	hdesc = kzalloc(sizeof(*hdesc) +
 | |
| 			(sizeof(struct hvtramp_mapping) *
 | |
| 			 num_kernel_image_mappings - 1),
 | |
| 			GFP_KERNEL);
 | |
| 	if (!hdesc) {
 | |
| 		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 | |
| 		       "hvtramp_descr.\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	*descrp = hdesc;
 | |
| 
 | |
| 	hdesc->cpu = cpu;
 | |
| 	hdesc->num_mappings = num_kernel_image_mappings;
 | |
| 
 | |
| 	tb = &trap_block[cpu];
 | |
| 
 | |
| 	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 | |
| 	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 | |
| 
 | |
| 	hdesc->thread_reg = thread_reg;
 | |
| 
 | |
| 	tte_vaddr = (unsigned long) KERNBASE;
 | |
| 	tte_data = kern_locked_tte_data;
 | |
| 
 | |
| 	for (i = 0; i < hdesc->num_mappings; i++) {
 | |
| 		hdesc->maps[i].vaddr = tte_vaddr;
 | |
| 		hdesc->maps[i].tte   = tte_data;
 | |
| 		tte_vaddr += 0x400000;
 | |
| 		tte_data  += 0x400000;
 | |
| 	}
 | |
| 
 | |
| 	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 | |
| 
 | |
| 	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 | |
| 				 kimage_addr_to_ra(&sparc64_ttable_tl0),
 | |
| 				 __pa(hdesc));
 | |
| 	if (hv_err)
 | |
| 		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 | |
| 		       "gives error %lu\n", hv_err);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| extern unsigned long sparc64_cpu_startup;
 | |
| 
 | |
| /* The OBP cpu startup callback truncates the 3rd arg cookie to
 | |
|  * 32-bits (I think) so to be safe we have it read the pointer
 | |
|  * contained here so we work on >4GB machines. -DaveM
 | |
|  */
 | |
| static struct thread_info *cpu_new_thread = NULL;
 | |
| 
 | |
| static int __cpuinit smp_boot_one_cpu(unsigned int cpu)
 | |
| {
 | |
| 	unsigned long entry =
 | |
| 		(unsigned long)(&sparc64_cpu_startup);
 | |
| 	unsigned long cookie =
 | |
| 		(unsigned long)(&cpu_new_thread);
 | |
| 	struct task_struct *p;
 | |
| 	void *descr = NULL;
 | |
| 	int timeout, ret;
 | |
| 
 | |
| 	p = fork_idle(cpu);
 | |
| 	if (IS_ERR(p))
 | |
| 		return PTR_ERR(p);
 | |
| 	callin_flag = 0;
 | |
| 	cpu_new_thread = task_thread_info(p);
 | |
| 
 | |
| 	if (tlb_type == hypervisor) {
 | |
| #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 | |
| 		if (ldom_domaining_enabled)
 | |
| 			ldom_startcpu_cpuid(cpu,
 | |
| 					    (unsigned long) cpu_new_thread,
 | |
| 					    &descr);
 | |
| 		else
 | |
| #endif
 | |
| 			prom_startcpu_cpuid(cpu, entry, cookie);
 | |
| 	} else {
 | |
| 		struct device_node *dp = of_find_node_by_cpuid(cpu);
 | |
| 
 | |
| 		prom_startcpu(dp->phandle, entry, cookie);
 | |
| 	}
 | |
| 
 | |
| 	for (timeout = 0; timeout < 50000; timeout++) {
 | |
| 		if (callin_flag)
 | |
| 			break;
 | |
| 		udelay(100);
 | |
| 	}
 | |
| 
 | |
| 	if (callin_flag) {
 | |
| 		ret = 0;
 | |
| 	} else {
 | |
| 		printk("Processor %d is stuck.\n", cpu);
 | |
| 		ret = -ENODEV;
 | |
| 	}
 | |
| 	cpu_new_thread = NULL;
 | |
| 
 | |
| 	kfree(descr);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 | |
| {
 | |
| 	u64 result, target;
 | |
| 	int stuck, tmp;
 | |
| 
 | |
| 	if (this_is_starfire) {
 | |
| 		/* map to real upaid */
 | |
| 		cpu = (((cpu & 0x3c) << 1) |
 | |
| 			((cpu & 0x40) >> 4) |
 | |
| 			(cpu & 0x3));
 | |
| 	}
 | |
| 
 | |
| 	target = (cpu << 14) | 0x70;
 | |
| again:
 | |
| 	/* Ok, this is the real Spitfire Errata #54.
 | |
| 	 * One must read back from a UDB internal register
 | |
| 	 * after writes to the UDB interrupt dispatch, but
 | |
| 	 * before the membar Sync for that write.
 | |
| 	 * So we use the high UDB control register (ASI 0x7f,
 | |
| 	 * ADDR 0x20) for the dummy read. -DaveM
 | |
| 	 */
 | |
| 	tmp = 0x40;
 | |
| 	__asm__ __volatile__(
 | |
| 	"wrpr	%1, %2, %%pstate\n\t"
 | |
| 	"stxa	%4, [%0] %3\n\t"
 | |
| 	"stxa	%5, [%0+%8] %3\n\t"
 | |
| 	"add	%0, %8, %0\n\t"
 | |
| 	"stxa	%6, [%0+%8] %3\n\t"
 | |
| 	"membar	#Sync\n\t"
 | |
| 	"stxa	%%g0, [%7] %3\n\t"
 | |
| 	"membar	#Sync\n\t"
 | |
| 	"mov	0x20, %%g1\n\t"
 | |
| 	"ldxa	[%%g1] 0x7f, %%g0\n\t"
 | |
| 	"membar	#Sync"
 | |
| 	: "=r" (tmp)
 | |
| 	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 | |
| 	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
 | |
| 	  "r" (0x10), "0" (tmp)
 | |
|         : "g1");
 | |
| 
 | |
| 	/* NOTE: PSTATE_IE is still clear. */
 | |
| 	stuck = 100000;
 | |
| 	do {
 | |
| 		__asm__ __volatile__("ldxa [%%g0] %1, %0"
 | |
| 			: "=r" (result)
 | |
| 			: "i" (ASI_INTR_DISPATCH_STAT));
 | |
| 		if (result == 0) {
 | |
| 			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 | |
| 					     : : "r" (pstate));
 | |
| 			return;
 | |
| 		}
 | |
| 		stuck -= 1;
 | |
| 		if (stuck == 0)
 | |
| 			break;
 | |
| 	} while (result & 0x1);
 | |
| 	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 | |
| 			     : : "r" (pstate));
 | |
| 	if (stuck == 0) {
 | |
| 		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 | |
| 		       smp_processor_id(), result);
 | |
| 	} else {
 | |
| 		udelay(2);
 | |
| 		goto again;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 | |
| {
 | |
| 	u64 *mondo, data0, data1, data2;
 | |
| 	u16 *cpu_list;
 | |
| 	u64 pstate;
 | |
| 	int i;
 | |
| 
 | |
| 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 | |
| 	cpu_list = __va(tb->cpu_list_pa);
 | |
| 	mondo = __va(tb->cpu_mondo_block_pa);
 | |
| 	data0 = mondo[0];
 | |
| 	data1 = mondo[1];
 | |
| 	data2 = mondo[2];
 | |
| 	for (i = 0; i < cnt; i++)
 | |
| 		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 | |
| }
 | |
| 
 | |
| /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 | |
|  * packet, but we have no use for that.  However we do take advantage of
 | |
|  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 | |
|  */
 | |
| static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 | |
| {
 | |
| 	int nack_busy_id, is_jbus, need_more;
 | |
| 	u64 *mondo, pstate, ver, busy_mask;
 | |
| 	u16 *cpu_list;
 | |
| 
 | |
| 	cpu_list = __va(tb->cpu_list_pa);
 | |
| 	mondo = __va(tb->cpu_mondo_block_pa);
 | |
| 
 | |
| 	/* Unfortunately, someone at Sun had the brilliant idea to make the
 | |
| 	 * busy/nack fields hard-coded by ITID number for this Ultra-III
 | |
| 	 * derivative processor.
 | |
| 	 */
 | |
| 	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 | |
| 	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 | |
| 		   (ver >> 32) == __SERRANO_ID);
 | |
| 
 | |
| 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 | |
| 
 | |
| retry:
 | |
| 	need_more = 0;
 | |
| 	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 | |
| 			     : : "r" (pstate), "i" (PSTATE_IE));
 | |
| 
 | |
| 	/* Setup the dispatch data registers. */
 | |
| 	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
 | |
| 			     "stxa	%1, [%4] %6\n\t"
 | |
| 			     "stxa	%2, [%5] %6\n\t"
 | |
| 			     "membar	#Sync\n\t"
 | |
| 			     : /* no outputs */
 | |
| 			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 | |
| 			       "r" (0x40), "r" (0x50), "r" (0x60),
 | |
| 			       "i" (ASI_INTR_W));
 | |
| 
 | |
| 	nack_busy_id = 0;
 | |
| 	busy_mask = 0;
 | |
| 	{
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < cnt; i++) {
 | |
| 			u64 target, nr;
 | |
| 
 | |
| 			nr = cpu_list[i];
 | |
| 			if (nr == 0xffff)
 | |
| 				continue;
 | |
| 
 | |
| 			target = (nr << 14) | 0x70;
 | |
| 			if (is_jbus) {
 | |
| 				busy_mask |= (0x1UL << (nr * 2));
 | |
| 			} else {
 | |
| 				target |= (nack_busy_id << 24);
 | |
| 				busy_mask |= (0x1UL <<
 | |
| 					      (nack_busy_id * 2));
 | |
| 			}
 | |
| 			__asm__ __volatile__(
 | |
| 				"stxa	%%g0, [%0] %1\n\t"
 | |
| 				"membar	#Sync\n\t"
 | |
| 				: /* no outputs */
 | |
| 				: "r" (target), "i" (ASI_INTR_W));
 | |
| 			nack_busy_id++;
 | |
| 			if (nack_busy_id == 32) {
 | |
| 				need_more = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Now, poll for completion. */
 | |
| 	{
 | |
| 		u64 dispatch_stat, nack_mask;
 | |
| 		long stuck;
 | |
| 
 | |
| 		stuck = 100000 * nack_busy_id;
 | |
| 		nack_mask = busy_mask << 1;
 | |
| 		do {
 | |
| 			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
 | |
| 					     : "=r" (dispatch_stat)
 | |
| 					     : "i" (ASI_INTR_DISPATCH_STAT));
 | |
| 			if (!(dispatch_stat & (busy_mask | nack_mask))) {
 | |
| 				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 | |
| 						     : : "r" (pstate));
 | |
| 				if (unlikely(need_more)) {
 | |
| 					int i, this_cnt = 0;
 | |
| 					for (i = 0; i < cnt; i++) {
 | |
| 						if (cpu_list[i] == 0xffff)
 | |
| 							continue;
 | |
| 						cpu_list[i] = 0xffff;
 | |
| 						this_cnt++;
 | |
| 						if (this_cnt == 32)
 | |
| 							break;
 | |
| 					}
 | |
| 					goto retry;
 | |
| 				}
 | |
| 				return;
 | |
| 			}
 | |
| 			if (!--stuck)
 | |
| 				break;
 | |
| 		} while (dispatch_stat & busy_mask);
 | |
| 
 | |
| 		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 | |
| 				     : : "r" (pstate));
 | |
| 
 | |
| 		if (dispatch_stat & busy_mask) {
 | |
| 			/* Busy bits will not clear, continue instead
 | |
| 			 * of freezing up on this cpu.
 | |
| 			 */
 | |
| 			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 | |
| 			       smp_processor_id(), dispatch_stat);
 | |
| 		} else {
 | |
| 			int i, this_busy_nack = 0;
 | |
| 
 | |
| 			/* Delay some random time with interrupts enabled
 | |
| 			 * to prevent deadlock.
 | |
| 			 */
 | |
| 			udelay(2 * nack_busy_id);
 | |
| 
 | |
| 			/* Clear out the mask bits for cpus which did not
 | |
| 			 * NACK us.
 | |
| 			 */
 | |
| 			for (i = 0; i < cnt; i++) {
 | |
| 				u64 check_mask, nr;
 | |
| 
 | |
| 				nr = cpu_list[i];
 | |
| 				if (nr == 0xffff)
 | |
| 					continue;
 | |
| 
 | |
| 				if (is_jbus)
 | |
| 					check_mask = (0x2UL << (2*nr));
 | |
| 				else
 | |
| 					check_mask = (0x2UL <<
 | |
| 						      this_busy_nack);
 | |
| 				if ((dispatch_stat & check_mask) == 0)
 | |
| 					cpu_list[i] = 0xffff;
 | |
| 				this_busy_nack += 2;
 | |
| 				if (this_busy_nack == 64)
 | |
| 					break;
 | |
| 			}
 | |
| 
 | |
| 			goto retry;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Multi-cpu list version.  */
 | |
| static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 | |
| {
 | |
| 	int retries, this_cpu, prev_sent, i, saw_cpu_error;
 | |
| 	unsigned long status;
 | |
| 	u16 *cpu_list;
 | |
| 
 | |
| 	this_cpu = smp_processor_id();
 | |
| 
 | |
| 	cpu_list = __va(tb->cpu_list_pa);
 | |
| 
 | |
| 	saw_cpu_error = 0;
 | |
| 	retries = 0;
 | |
| 	prev_sent = 0;
 | |
| 	do {
 | |
| 		int forward_progress, n_sent;
 | |
| 
 | |
| 		status = sun4v_cpu_mondo_send(cnt,
 | |
| 					      tb->cpu_list_pa,
 | |
| 					      tb->cpu_mondo_block_pa);
 | |
| 
 | |
| 		/* HV_EOK means all cpus received the xcall, we're done.  */
 | |
| 		if (likely(status == HV_EOK))
 | |
| 			break;
 | |
| 
 | |
| 		/* First, see if we made any forward progress.
 | |
| 		 *
 | |
| 		 * The hypervisor indicates successful sends by setting
 | |
| 		 * cpu list entries to the value 0xffff.
 | |
| 		 */
 | |
| 		n_sent = 0;
 | |
| 		for (i = 0; i < cnt; i++) {
 | |
| 			if (likely(cpu_list[i] == 0xffff))
 | |
| 				n_sent++;
 | |
| 		}
 | |
| 
 | |
| 		forward_progress = 0;
 | |
| 		if (n_sent > prev_sent)
 | |
| 			forward_progress = 1;
 | |
| 
 | |
| 		prev_sent = n_sent;
 | |
| 
 | |
| 		/* If we get a HV_ECPUERROR, then one or more of the cpus
 | |
| 		 * in the list are in error state.  Use the cpu_state()
 | |
| 		 * hypervisor call to find out which cpus are in error state.
 | |
| 		 */
 | |
| 		if (unlikely(status == HV_ECPUERROR)) {
 | |
| 			for (i = 0; i < cnt; i++) {
 | |
| 				long err;
 | |
| 				u16 cpu;
 | |
| 
 | |
| 				cpu = cpu_list[i];
 | |
| 				if (cpu == 0xffff)
 | |
| 					continue;
 | |
| 
 | |
| 				err = sun4v_cpu_state(cpu);
 | |
| 				if (err == HV_CPU_STATE_ERROR) {
 | |
| 					saw_cpu_error = (cpu + 1);
 | |
| 					cpu_list[i] = 0xffff;
 | |
| 				}
 | |
| 			}
 | |
| 		} else if (unlikely(status != HV_EWOULDBLOCK))
 | |
| 			goto fatal_mondo_error;
 | |
| 
 | |
| 		/* Don't bother rewriting the CPU list, just leave the
 | |
| 		 * 0xffff and non-0xffff entries in there and the
 | |
| 		 * hypervisor will do the right thing.
 | |
| 		 *
 | |
| 		 * Only advance timeout state if we didn't make any
 | |
| 		 * forward progress.
 | |
| 		 */
 | |
| 		if (unlikely(!forward_progress)) {
 | |
| 			if (unlikely(++retries > 10000))
 | |
| 				goto fatal_mondo_timeout;
 | |
| 
 | |
| 			/* Delay a little bit to let other cpus catch up
 | |
| 			 * on their cpu mondo queue work.
 | |
| 			 */
 | |
| 			udelay(2 * cnt);
 | |
| 		}
 | |
| 	} while (1);
 | |
| 
 | |
| 	if (unlikely(saw_cpu_error))
 | |
| 		goto fatal_mondo_cpu_error;
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| fatal_mondo_cpu_error:
 | |
| 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
 | |
| 	       "(including %d) were in error state\n",
 | |
| 	       this_cpu, saw_cpu_error - 1);
 | |
| 	return;
 | |
| 
 | |
| fatal_mondo_timeout:
 | |
| 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
 | |
| 	       " progress after %d retries.\n",
 | |
| 	       this_cpu, retries);
 | |
| 	goto dump_cpu_list_and_out;
 | |
| 
 | |
| fatal_mondo_error:
 | |
| 	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
 | |
| 	       this_cpu, status);
 | |
| 	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
 | |
| 	       "mondo_block_pa(%lx)\n",
 | |
| 	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 | |
| 
 | |
| dump_cpu_list_and_out:
 | |
| 	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
 | |
| 	for (i = 0; i < cnt; i++)
 | |
| 		printk("%u ", cpu_list[i]);
 | |
| 	printk("]\n");
 | |
| }
 | |
| 
 | |
| static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 | |
| 
 | |
| static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 | |
| {
 | |
| 	struct trap_per_cpu *tb;
 | |
| 	int this_cpu, i, cnt;
 | |
| 	unsigned long flags;
 | |
| 	u16 *cpu_list;
 | |
| 	u64 *mondo;
 | |
| 
 | |
| 	/* We have to do this whole thing with interrupts fully disabled.
 | |
| 	 * Otherwise if we send an xcall from interrupt context it will
 | |
| 	 * corrupt both our mondo block and cpu list state.
 | |
| 	 *
 | |
| 	 * One consequence of this is that we cannot use timeout mechanisms
 | |
| 	 * that depend upon interrupts being delivered locally.  So, for
 | |
| 	 * example, we cannot sample jiffies and expect it to advance.
 | |
| 	 *
 | |
| 	 * Fortunately, udelay() uses %stick/%tick so we can use that.
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	this_cpu = smp_processor_id();
 | |
| 	tb = &trap_block[this_cpu];
 | |
| 
 | |
| 	mondo = __va(tb->cpu_mondo_block_pa);
 | |
| 	mondo[0] = data0;
 | |
| 	mondo[1] = data1;
 | |
| 	mondo[2] = data2;
 | |
| 	wmb();
 | |
| 
 | |
| 	cpu_list = __va(tb->cpu_list_pa);
 | |
| 
 | |
| 	/* Setup the initial cpu list.  */
 | |
| 	cnt = 0;
 | |
| 	for_each_cpu(i, mask) {
 | |
| 		if (i == this_cpu || !cpu_online(i))
 | |
| 			continue;
 | |
| 		cpu_list[cnt++] = i;
 | |
| 	}
 | |
| 
 | |
| 	if (cnt)
 | |
| 		xcall_deliver_impl(tb, cnt);
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /* Send cross call to all processors mentioned in MASK_P
 | |
|  * except self.  Really, there are only two cases currently,
 | |
|  * "&cpu_online_map" and "&mm->cpu_vm_mask".
 | |
|  */
 | |
| static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 | |
| {
 | |
| 	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 | |
| 
 | |
| 	xcall_deliver(data0, data1, data2, mask);
 | |
| }
 | |
| 
 | |
| /* Send cross call to all processors except self. */
 | |
| static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 | |
| {
 | |
| 	smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map);
 | |
| }
 | |
| 
 | |
| extern unsigned long xcall_sync_tick;
 | |
| 
 | |
| static void smp_start_sync_tick_client(int cpu)
 | |
| {
 | |
| 	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 | |
| 		      &cpumask_of_cpu(cpu));
 | |
| }
 | |
| 
 | |
| extern unsigned long xcall_call_function;
 | |
| 
 | |
| void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 | |
| {
 | |
| 	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 | |
| }
 | |
| 
 | |
| extern unsigned long xcall_call_function_single;
 | |
| 
 | |
| void arch_send_call_function_single_ipi(int cpu)
 | |
| {
 | |
| 	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 | |
| 		      &cpumask_of_cpu(cpu));
 | |
| }
 | |
| 
 | |
| void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 | |
| {
 | |
| 	clear_softint(1 << irq);
 | |
| 	generic_smp_call_function_interrupt();
 | |
| }
 | |
| 
 | |
| void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 | |
| {
 | |
| 	clear_softint(1 << irq);
 | |
| 	generic_smp_call_function_single_interrupt();
 | |
| }
 | |
| 
 | |
| static void tsb_sync(void *info)
 | |
| {
 | |
| 	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 | |
| 	struct mm_struct *mm = info;
 | |
| 
 | |
| 	/* It is not valid to test "currrent->active_mm == mm" here.
 | |
| 	 *
 | |
| 	 * The value of "current" is not changed atomically with
 | |
| 	 * switch_mm().  But that's OK, we just need to check the
 | |
| 	 * current cpu's trap block PGD physical address.
 | |
| 	 */
 | |
| 	if (tp->pgd_paddr == __pa(mm->pgd))
 | |
| 		tsb_context_switch(mm);
 | |
| }
 | |
| 
 | |
| void smp_tsb_sync(struct mm_struct *mm)
 | |
| {
 | |
| 	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 | |
| }
 | |
| 
 | |
| extern unsigned long xcall_flush_tlb_mm;
 | |
| extern unsigned long xcall_flush_tlb_pending;
 | |
| extern unsigned long xcall_flush_tlb_kernel_range;
 | |
| extern unsigned long xcall_fetch_glob_regs;
 | |
| extern unsigned long xcall_receive_signal;
 | |
| extern unsigned long xcall_new_mmu_context_version;
 | |
| #ifdef CONFIG_KGDB
 | |
| extern unsigned long xcall_kgdb_capture;
 | |
| #endif
 | |
| 
 | |
| #ifdef DCACHE_ALIASING_POSSIBLE
 | |
| extern unsigned long xcall_flush_dcache_page_cheetah;
 | |
| #endif
 | |
| extern unsigned long xcall_flush_dcache_page_spitfire;
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_DCFLUSH
 | |
| extern atomic_t dcpage_flushes;
 | |
| extern atomic_t dcpage_flushes_xcall;
 | |
| #endif
 | |
| 
 | |
| static inline void __local_flush_dcache_page(struct page *page)
 | |
| {
 | |
| #ifdef DCACHE_ALIASING_POSSIBLE
 | |
| 	__flush_dcache_page(page_address(page),
 | |
| 			    ((tlb_type == spitfire) &&
 | |
| 			     page_mapping(page) != NULL));
 | |
| #else
 | |
| 	if (page_mapping(page) != NULL &&
 | |
| 	    tlb_type == spitfire)
 | |
| 		__flush_icache_page(__pa(page_address(page)));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void smp_flush_dcache_page_impl(struct page *page, int cpu)
 | |
| {
 | |
| 	int this_cpu;
 | |
| 
 | |
| 	if (tlb_type == hypervisor)
 | |
| 		return;
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_DCFLUSH
 | |
| 	atomic_inc(&dcpage_flushes);
 | |
| #endif
 | |
| 
 | |
| 	this_cpu = get_cpu();
 | |
| 
 | |
| 	if (cpu == this_cpu) {
 | |
| 		__local_flush_dcache_page(page);
 | |
| 	} else if (cpu_online(cpu)) {
 | |
| 		void *pg_addr = page_address(page);
 | |
| 		u64 data0 = 0;
 | |
| 
 | |
| 		if (tlb_type == spitfire) {
 | |
| 			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 | |
| 			if (page_mapping(page) != NULL)
 | |
| 				data0 |= ((u64)1 << 32);
 | |
| 		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 | |
| #ifdef DCACHE_ALIASING_POSSIBLE
 | |
| 			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
 | |
| #endif
 | |
| 		}
 | |
| 		if (data0) {
 | |
| 			xcall_deliver(data0, __pa(pg_addr),
 | |
| 				      (u64) pg_addr, &cpumask_of_cpu(cpu));
 | |
| #ifdef CONFIG_DEBUG_DCFLUSH
 | |
| 			atomic_inc(&dcpage_flushes_xcall);
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
 | |
| {
 | |
| 	void *pg_addr;
 | |
| 	int this_cpu;
 | |
| 	u64 data0;
 | |
| 
 | |
| 	if (tlb_type == hypervisor)
 | |
| 		return;
 | |
| 
 | |
| 	this_cpu = get_cpu();
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_DCFLUSH
 | |
| 	atomic_inc(&dcpage_flushes);
 | |
| #endif
 | |
| 	data0 = 0;
 | |
| 	pg_addr = page_address(page);
 | |
| 	if (tlb_type == spitfire) {
 | |
| 		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 | |
| 		if (page_mapping(page) != NULL)
 | |
| 			data0 |= ((u64)1 << 32);
 | |
| 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 | |
| #ifdef DCACHE_ALIASING_POSSIBLE
 | |
| 		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 | |
| #endif
 | |
| 	}
 | |
| 	if (data0) {
 | |
| 		xcall_deliver(data0, __pa(pg_addr),
 | |
| 			      (u64) pg_addr, &cpu_online_map);
 | |
| #ifdef CONFIG_DEBUG_DCFLUSH
 | |
| 		atomic_inc(&dcpage_flushes_xcall);
 | |
| #endif
 | |
| 	}
 | |
| 	__local_flush_dcache_page(page);
 | |
| 
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
 | |
| {
 | |
| 	struct mm_struct *mm;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	clear_softint(1 << irq);
 | |
| 
 | |
| 	/* See if we need to allocate a new TLB context because
 | |
| 	 * the version of the one we are using is now out of date.
 | |
| 	 */
 | |
| 	mm = current->active_mm;
 | |
| 	if (unlikely(!mm || (mm == &init_mm)))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irqsave(&mm->context.lock, flags);
 | |
| 
 | |
| 	if (unlikely(!CTX_VALID(mm->context)))
 | |
| 		get_new_mmu_context(mm);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&mm->context.lock, flags);
 | |
| 
 | |
| 	load_secondary_context(mm);
 | |
| 	__flush_tlb_mm(CTX_HWBITS(mm->context),
 | |
| 		       SECONDARY_CONTEXT);
 | |
| }
 | |
| 
 | |
| void smp_new_mmu_context_version(void)
 | |
| {
 | |
| 	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KGDB
 | |
| void kgdb_roundup_cpus(unsigned long flags)
 | |
| {
 | |
| 	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void smp_fetch_global_regs(void)
 | |
| {
 | |
| 	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
 | |
| }
 | |
| 
 | |
| /* We know that the window frames of the user have been flushed
 | |
|  * to the stack before we get here because all callers of us
 | |
|  * are flush_tlb_*() routines, and these run after flush_cache_*()
 | |
|  * which performs the flushw.
 | |
|  *
 | |
|  * The SMP TLB coherency scheme we use works as follows:
 | |
|  *
 | |
|  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
 | |
|  *    space has (potentially) executed on, this is the heuristic
 | |
|  *    we use to avoid doing cross calls.
 | |
|  *
 | |
|  *    Also, for flushing from kswapd and also for clones, we
 | |
|  *    use cpu_vm_mask as the list of cpus to make run the TLB.
 | |
|  *
 | |
|  * 2) TLB context numbers are shared globally across all processors
 | |
|  *    in the system, this allows us to play several games to avoid
 | |
|  *    cross calls.
 | |
|  *
 | |
|  *    One invariant is that when a cpu switches to a process, and
 | |
|  *    that processes tsk->active_mm->cpu_vm_mask does not have the
 | |
|  *    current cpu's bit set, that tlb context is flushed locally.
 | |
|  *
 | |
|  *    If the address space is non-shared (ie. mm->count == 1) we avoid
 | |
|  *    cross calls when we want to flush the currently running process's
 | |
|  *    tlb state.  This is done by clearing all cpu bits except the current
 | |
|  *    processor's in current->mm->cpu_vm_mask and performing the
 | |
|  *    flush locally only.  This will force any subsequent cpus which run
 | |
|  *    this task to flush the context from the local tlb if the process
 | |
|  *    migrates to another cpu (again).
 | |
|  *
 | |
|  * 3) For shared address spaces (threads) and swapping we bite the
 | |
|  *    bullet for most cases and perform the cross call (but only to
 | |
|  *    the cpus listed in cpu_vm_mask).
 | |
|  *
 | |
|  *    The performance gain from "optimizing" away the cross call for threads is
 | |
|  *    questionable (in theory the big win for threads is the massive sharing of
 | |
|  *    address space state across processors).
 | |
|  */
 | |
| 
 | |
| /* This currently is only used by the hugetlb arch pre-fault
 | |
|  * hook on UltraSPARC-III+ and later when changing the pagesize
 | |
|  * bits of the context register for an address space.
 | |
|  */
 | |
| void smp_flush_tlb_mm(struct mm_struct *mm)
 | |
| {
 | |
| 	u32 ctx = CTX_HWBITS(mm->context);
 | |
| 	int cpu = get_cpu();
 | |
| 
 | |
| 	if (atomic_read(&mm->mm_users) == 1) {
 | |
| 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
 | |
| 		goto local_flush_and_out;
 | |
| 	}
 | |
| 
 | |
| 	smp_cross_call_masked(&xcall_flush_tlb_mm,
 | |
| 			      ctx, 0, 0,
 | |
| 			      mm_cpumask(mm));
 | |
| 
 | |
| local_flush_and_out:
 | |
| 	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
 | |
| 
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
 | |
| {
 | |
| 	u32 ctx = CTX_HWBITS(mm->context);
 | |
| 	int cpu = get_cpu();
 | |
| 
 | |
| 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
 | |
| 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
 | |
| 	else
 | |
| 		smp_cross_call_masked(&xcall_flush_tlb_pending,
 | |
| 				      ctx, nr, (unsigned long) vaddrs,
 | |
| 				      mm_cpumask(mm));
 | |
| 
 | |
| 	__flush_tlb_pending(ctx, nr, vaddrs);
 | |
| 
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	start &= PAGE_MASK;
 | |
| 	end    = PAGE_ALIGN(end);
 | |
| 	if (start != end) {
 | |
| 		smp_cross_call(&xcall_flush_tlb_kernel_range,
 | |
| 			       0, start, end);
 | |
| 
 | |
| 		__flush_tlb_kernel_range(start, end);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* CPU capture. */
 | |
| /* #define CAPTURE_DEBUG */
 | |
| extern unsigned long xcall_capture;
 | |
| 
 | |
| static atomic_t smp_capture_depth = ATOMIC_INIT(0);
 | |
| static atomic_t smp_capture_registry = ATOMIC_INIT(0);
 | |
| static unsigned long penguins_are_doing_time;
 | |
| 
 | |
| void smp_capture(void)
 | |
| {
 | |
| 	int result = atomic_add_ret(1, &smp_capture_depth);
 | |
| 
 | |
| 	if (result == 1) {
 | |
| 		int ncpus = num_online_cpus();
 | |
| 
 | |
| #ifdef CAPTURE_DEBUG
 | |
| 		printk("CPU[%d]: Sending penguins to jail...",
 | |
| 		       smp_processor_id());
 | |
| #endif
 | |
| 		penguins_are_doing_time = 1;
 | |
| 		atomic_inc(&smp_capture_registry);
 | |
| 		smp_cross_call(&xcall_capture, 0, 0, 0);
 | |
| 		while (atomic_read(&smp_capture_registry) != ncpus)
 | |
| 			rmb();
 | |
| #ifdef CAPTURE_DEBUG
 | |
| 		printk("done\n");
 | |
| #endif
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void smp_release(void)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&smp_capture_depth)) {
 | |
| #ifdef CAPTURE_DEBUG
 | |
| 		printk("CPU[%d]: Giving pardon to "
 | |
| 		       "imprisoned penguins\n",
 | |
| 		       smp_processor_id());
 | |
| #endif
 | |
| 		penguins_are_doing_time = 0;
 | |
| 		membar_safe("#StoreLoad");
 | |
| 		atomic_dec(&smp_capture_registry);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
 | |
|  * set, so they can service tlb flush xcalls...
 | |
|  */
 | |
| extern void prom_world(int);
 | |
| 
 | |
| void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
 | |
| {
 | |
| 	clear_softint(1 << irq);
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	__asm__ __volatile__("flushw");
 | |
| 	prom_world(1);
 | |
| 	atomic_inc(&smp_capture_registry);
 | |
| 	membar_safe("#StoreLoad");
 | |
| 	while (penguins_are_doing_time)
 | |
| 		rmb();
 | |
| 	atomic_dec(&smp_capture_registry);
 | |
| 	prom_world(0);
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| /* /proc/profile writes can call this, don't __init it please. */
 | |
| int setup_profiling_timer(unsigned int multiplier)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| void __init smp_prepare_cpus(unsigned int max_cpus)
 | |
| {
 | |
| }
 | |
| 
 | |
| void __devinit smp_prepare_boot_cpu(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| void __init smp_setup_processor_id(void)
 | |
| {
 | |
| 	if (tlb_type == spitfire)
 | |
| 		xcall_deliver_impl = spitfire_xcall_deliver;
 | |
| 	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
 | |
| 		xcall_deliver_impl = cheetah_xcall_deliver;
 | |
| 	else
 | |
| 		xcall_deliver_impl = hypervisor_xcall_deliver;
 | |
| }
 | |
| 
 | |
| void __devinit smp_fill_in_sib_core_maps(void)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for_each_present_cpu(i) {
 | |
| 		unsigned int j;
 | |
| 
 | |
| 		cpus_clear(cpu_core_map[i]);
 | |
| 		if (cpu_data(i).core_id == 0) {
 | |
| 			cpu_set(i, cpu_core_map[i]);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		for_each_present_cpu(j) {
 | |
| 			if (cpu_data(i).core_id ==
 | |
| 			    cpu_data(j).core_id)
 | |
| 				cpu_set(j, cpu_core_map[i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for_each_present_cpu(i) {
 | |
| 		unsigned int j;
 | |
| 
 | |
| 		cpus_clear(per_cpu(cpu_sibling_map, i));
 | |
| 		if (cpu_data(i).proc_id == -1) {
 | |
| 			cpu_set(i, per_cpu(cpu_sibling_map, i));
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		for_each_present_cpu(j) {
 | |
| 			if (cpu_data(i).proc_id ==
 | |
| 			    cpu_data(j).proc_id)
 | |
| 				cpu_set(j, per_cpu(cpu_sibling_map, i));
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int __cpuinit __cpu_up(unsigned int cpu)
 | |
| {
 | |
| 	int ret = smp_boot_one_cpu(cpu);
 | |
| 
 | |
| 	if (!ret) {
 | |
| 		cpu_set(cpu, smp_commenced_mask);
 | |
| 		while (!cpu_isset(cpu, cpu_online_map))
 | |
| 			mb();
 | |
| 		if (!cpu_isset(cpu, cpu_online_map)) {
 | |
| 			ret = -ENODEV;
 | |
| 		} else {
 | |
| 			/* On SUN4V, writes to %tick and %stick are
 | |
| 			 * not allowed.
 | |
| 			 */
 | |
| 			if (tlb_type != hypervisor)
 | |
| 				smp_synchronize_one_tick(cpu);
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| void cpu_play_dead(void)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 	unsigned long pstate;
 | |
| 
 | |
| 	idle_task_exit();
 | |
| 
 | |
| 	if (tlb_type == hypervisor) {
 | |
| 		struct trap_per_cpu *tb = &trap_block[cpu];
 | |
| 
 | |
| 		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
 | |
| 				tb->cpu_mondo_pa, 0);
 | |
| 		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
 | |
| 				tb->dev_mondo_pa, 0);
 | |
| 		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
 | |
| 				tb->resum_mondo_pa, 0);
 | |
| 		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
 | |
| 				tb->nonresum_mondo_pa, 0);
 | |
| 	}
 | |
| 
 | |
| 	cpu_clear(cpu, smp_commenced_mask);
 | |
| 	membar_safe("#Sync");
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 
 | |
| 	__asm__ __volatile__(
 | |
| 		"rdpr	%%pstate, %0\n\t"
 | |
| 		"wrpr	%0, %1, %%pstate"
 | |
| 		: "=r" (pstate)
 | |
| 		: "i" (PSTATE_IE));
 | |
| 
 | |
| 	while (1)
 | |
| 		barrier();
 | |
| }
 | |
| 
 | |
| int __cpu_disable(void)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 	cpuinfo_sparc *c;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_cpu_mask(i, cpu_core_map[cpu])
 | |
| 		cpu_clear(cpu, cpu_core_map[i]);
 | |
| 	cpus_clear(cpu_core_map[cpu]);
 | |
| 
 | |
| 	for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
 | |
| 		cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
 | |
| 	cpus_clear(per_cpu(cpu_sibling_map, cpu));
 | |
| 
 | |
| 	c = &cpu_data(cpu);
 | |
| 
 | |
| 	c->core_id = 0;
 | |
| 	c->proc_id = -1;
 | |
| 
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	/* Make sure no interrupts point to this cpu.  */
 | |
| 	fixup_irqs();
 | |
| 
 | |
| 	local_irq_enable();
 | |
| 	mdelay(1);
 | |
| 	local_irq_disable();
 | |
| 
 | |
| 	ipi_call_lock();
 | |
| 	cpu_clear(cpu, cpu_online_map);
 | |
| 	ipi_call_unlock();
 | |
| 
 | |
| 	cpu_map_rebuild();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __cpu_die(unsigned int cpu)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < 100; i++) {
 | |
| 		smp_rmb();
 | |
| 		if (!cpu_isset(cpu, smp_commenced_mask))
 | |
| 			break;
 | |
| 		msleep(100);
 | |
| 	}
 | |
| 	if (cpu_isset(cpu, smp_commenced_mask)) {
 | |
| 		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
 | |
| 	} else {
 | |
| #if defined(CONFIG_SUN_LDOMS)
 | |
| 		unsigned long hv_err;
 | |
| 		int limit = 100;
 | |
| 
 | |
| 		do {
 | |
| 			hv_err = sun4v_cpu_stop(cpu);
 | |
| 			if (hv_err == HV_EOK) {
 | |
| 				cpu_clear(cpu, cpu_present_map);
 | |
| 				break;
 | |
| 			}
 | |
| 		} while (--limit > 0);
 | |
| 		if (limit <= 0) {
 | |
| 			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
 | |
| 			       hv_err);
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void __init smp_cpus_done(unsigned int max_cpus)
 | |
| {
 | |
| }
 | |
| 
 | |
| void smp_send_reschedule(int cpu)
 | |
| {
 | |
| 	xcall_deliver((u64) &xcall_receive_signal, 0, 0,
 | |
| 		      &cpumask_of_cpu(cpu));
 | |
| }
 | |
| 
 | |
| void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
 | |
| {
 | |
| 	clear_softint(1 << irq);
 | |
| }
 | |
| 
 | |
| /* This is a nop because we capture all other cpus
 | |
|  * anyways when making the PROM active.
 | |
|  */
 | |
| void smp_send_stop(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
 | |
|  * @cpu: cpu to allocate for
 | |
|  * @size: size allocation in bytes
 | |
|  * @align: alignment
 | |
|  *
 | |
|  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
 | |
|  * does the right thing for NUMA regardless of the current
 | |
|  * configuration.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Pointer to the allocated area on success, NULL on failure.
 | |
|  */
 | |
| static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
 | |
| 					size_t align)
 | |
| {
 | |
| 	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
 | |
| #ifdef CONFIG_NEED_MULTIPLE_NODES
 | |
| 	int node = cpu_to_node(cpu);
 | |
| 	void *ptr;
 | |
| 
 | |
| 	if (!node_online(node) || !NODE_DATA(node)) {
 | |
| 		ptr = __alloc_bootmem(size, align, goal);
 | |
| 		pr_info("cpu %d has no node %d or node-local memory\n",
 | |
| 			cpu, node);
 | |
| 		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
 | |
| 			 cpu, size, __pa(ptr));
 | |
| 	} else {
 | |
| 		ptr = __alloc_bootmem_node(NODE_DATA(node),
 | |
| 					   size, align, goal);
 | |
| 		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
 | |
| 			 "%016lx\n", cpu, size, node, __pa(ptr));
 | |
| 	}
 | |
| 	return ptr;
 | |
| #else
 | |
| 	return __alloc_bootmem(size, align, goal);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void __init pcpu_free_bootmem(void *ptr, size_t size)
 | |
| {
 | |
| 	free_bootmem(__pa(ptr), size);
 | |
| }
 | |
| 
 | |
| static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
 | |
| {
 | |
| 	if (cpu_to_node(from) == cpu_to_node(to))
 | |
| 		return LOCAL_DISTANCE;
 | |
| 	else
 | |
| 		return REMOTE_DISTANCE;
 | |
| }
 | |
| 
 | |
| static void __init pcpu_populate_pte(unsigned long addr)
 | |
| {
 | |
| 	pgd_t *pgd = pgd_offset_k(addr);
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 
 | |
| 	pud = pud_offset(pgd, addr);
 | |
| 	if (pud_none(*pud)) {
 | |
| 		pmd_t *new;
 | |
| 
 | |
| 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
 | |
| 		pud_populate(&init_mm, pud, new);
 | |
| 	}
 | |
| 
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	if (!pmd_present(*pmd)) {
 | |
| 		pte_t *new;
 | |
| 
 | |
| 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
 | |
| 		pmd_populate_kernel(&init_mm, pmd, new);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init setup_per_cpu_areas(void)
 | |
| {
 | |
| 	unsigned long delta;
 | |
| 	unsigned int cpu;
 | |
| 	int rc = -EINVAL;
 | |
| 
 | |
| 	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
 | |
| 		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
 | |
| 					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
 | |
| 					    pcpu_cpu_distance,
 | |
| 					    pcpu_alloc_bootmem,
 | |
| 					    pcpu_free_bootmem);
 | |
| 		if (rc)
 | |
| 			pr_warning("PERCPU: %s allocator failed (%d), "
 | |
| 				   "falling back to page size\n",
 | |
| 				   pcpu_fc_names[pcpu_chosen_fc], rc);
 | |
| 	}
 | |
| 	if (rc < 0)
 | |
| 		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
 | |
| 					   pcpu_alloc_bootmem,
 | |
| 					   pcpu_free_bootmem,
 | |
| 					   pcpu_populate_pte);
 | |
| 	if (rc < 0)
 | |
| 		panic("cannot initialize percpu area (err=%d)", rc);
 | |
| 
 | |
| 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
 | |
| 
 | |
| 	/* Setup %g5 for the boot cpu.  */
 | |
| 	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
 | |
| 
 | |
| 	of_fill_in_cpu_data();
 | |
| 	if (tlb_type == hypervisor)
 | |
| 		mdesc_fill_in_cpu_data(cpu_all_mask);
 | |
| }
 | 
