 58f9b0b024
			
		
	
	
	58f9b0b024
	
	
	
		
			
			This patch eliminates the node pointer from struct of_device and the
of_node (or prom_node) pointer from struct dev_archdata since the node
pointer is now part of struct device proper when CONFIG_OF is set, and
all users of the old pointer locations have already been converted over
to use device->of_node.
Also remove dev_archdata_{get,set}_node() as it is no longer used by
anything.
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
		
	
			
		
			
				
	
	
		
			739 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			739 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <linux/string.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mod_devicetable.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/of_device.h>
 | |
| #include <linux/of_platform.h>
 | |
| 
 | |
| #include "of_device_common.h"
 | |
| 
 | |
| void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name)
 | |
| {
 | |
| 	unsigned long ret = res->start + offset;
 | |
| 	struct resource *r;
 | |
| 
 | |
| 	if (res->flags & IORESOURCE_MEM)
 | |
| 		r = request_mem_region(ret, size, name);
 | |
| 	else
 | |
| 		r = request_region(ret, size, name);
 | |
| 	if (!r)
 | |
| 		ret = 0;
 | |
| 
 | |
| 	return (void __iomem *) ret;
 | |
| }
 | |
| EXPORT_SYMBOL(of_ioremap);
 | |
| 
 | |
| void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
 | |
| {
 | |
| 	if (res->flags & IORESOURCE_MEM)
 | |
| 		release_mem_region((unsigned long) base, size);
 | |
| 	else
 | |
| 		release_region((unsigned long) base, size);
 | |
| }
 | |
| EXPORT_SYMBOL(of_iounmap);
 | |
| 
 | |
| /*
 | |
|  * PCI bus specific translator
 | |
|  */
 | |
| 
 | |
| static int of_bus_pci_match(struct device_node *np)
 | |
| {
 | |
| 	if (!strcmp(np->name, "pci")) {
 | |
| 		const char *model = of_get_property(np, "model", NULL);
 | |
| 
 | |
| 		if (model && !strcmp(model, "SUNW,simba"))
 | |
| 			return 0;
 | |
| 
 | |
| 		/* Do not do PCI specific frobbing if the
 | |
| 		 * PCI bridge lacks a ranges property.  We
 | |
| 		 * want to pass it through up to the next
 | |
| 		 * parent as-is, not with the PCI translate
 | |
| 		 * method which chops off the top address cell.
 | |
| 		 */
 | |
| 		if (!of_find_property(np, "ranges", NULL))
 | |
| 			return 0;
 | |
| 
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int of_bus_simba_match(struct device_node *np)
 | |
| {
 | |
| 	const char *model = of_get_property(np, "model", NULL);
 | |
| 
 | |
| 	if (model && !strcmp(model, "SUNW,simba"))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Treat PCI busses lacking ranges property just like
 | |
| 	 * simba.
 | |
| 	 */
 | |
| 	if (!strcmp(np->name, "pci")) {
 | |
| 		if (!of_find_property(np, "ranges", NULL))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int of_bus_simba_map(u32 *addr, const u32 *range,
 | |
| 			    int na, int ns, int pna)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void of_bus_pci_count_cells(struct device_node *np,
 | |
| 				   int *addrc, int *sizec)
 | |
| {
 | |
| 	if (addrc)
 | |
| 		*addrc = 3;
 | |
| 	if (sizec)
 | |
| 		*sizec = 2;
 | |
| }
 | |
| 
 | |
| static int of_bus_pci_map(u32 *addr, const u32 *range,
 | |
| 			  int na, int ns, int pna)
 | |
| {
 | |
| 	u32 result[OF_MAX_ADDR_CELLS];
 | |
| 	int i;
 | |
| 
 | |
| 	/* Check address type match */
 | |
| 	if (!((addr[0] ^ range[0]) & 0x03000000))
 | |
| 		goto type_match;
 | |
| 
 | |
| 	/* Special exception, we can map a 64-bit address into
 | |
| 	 * a 32-bit range.
 | |
| 	 */
 | |
| 	if ((addr[0] & 0x03000000) == 0x03000000 &&
 | |
| 	    (range[0] & 0x03000000) == 0x02000000)
 | |
| 		goto type_match;
 | |
| 
 | |
| 	return -EINVAL;
 | |
| 
 | |
| type_match:
 | |
| 	if (of_out_of_range(addr + 1, range + 1, range + na + pna,
 | |
| 			    na - 1, ns))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Start with the parent range base.  */
 | |
| 	memcpy(result, range + na, pna * 4);
 | |
| 
 | |
| 	/* Add in the child address offset, skipping high cell.  */
 | |
| 	for (i = 0; i < na - 1; i++)
 | |
| 		result[pna - 1 - i] +=
 | |
| 			(addr[na - 1 - i] -
 | |
| 			 range[na - 1 - i]);
 | |
| 
 | |
| 	memcpy(addr, result, pna * 4);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned long of_bus_pci_get_flags(const u32 *addr, unsigned long flags)
 | |
| {
 | |
| 	u32 w = addr[0];
 | |
| 
 | |
| 	/* For PCI, we override whatever child busses may have used.  */
 | |
| 	flags = 0;
 | |
| 	switch((w >> 24) & 0x03) {
 | |
| 	case 0x01:
 | |
| 		flags |= IORESOURCE_IO;
 | |
| 		break;
 | |
| 
 | |
| 	case 0x02: /* 32 bits */
 | |
| 	case 0x03: /* 64 bits */
 | |
| 		flags |= IORESOURCE_MEM;
 | |
| 		break;
 | |
| 	}
 | |
| 	if (w & 0x40000000)
 | |
| 		flags |= IORESOURCE_PREFETCH;
 | |
| 	return flags;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * FHC/Central bus specific translator.
 | |
|  *
 | |
|  * This is just needed to hard-code the address and size cell
 | |
|  * counts.  'fhc' and 'central' nodes lack the #address-cells and
 | |
|  * #size-cells properties, and if you walk to the root on such
 | |
|  * Enterprise boxes all you'll get is a #size-cells of 2 which is
 | |
|  * not what we want to use.
 | |
|  */
 | |
| static int of_bus_fhc_match(struct device_node *np)
 | |
| {
 | |
| 	return !strcmp(np->name, "fhc") ||
 | |
| 		!strcmp(np->name, "central");
 | |
| }
 | |
| 
 | |
| #define of_bus_fhc_count_cells of_bus_sbus_count_cells
 | |
| 
 | |
| /*
 | |
|  * Array of bus specific translators
 | |
|  */
 | |
| 
 | |
| static struct of_bus of_busses[] = {
 | |
| 	/* PCI */
 | |
| 	{
 | |
| 		.name = "pci",
 | |
| 		.addr_prop_name = "assigned-addresses",
 | |
| 		.match = of_bus_pci_match,
 | |
| 		.count_cells = of_bus_pci_count_cells,
 | |
| 		.map = of_bus_pci_map,
 | |
| 		.get_flags = of_bus_pci_get_flags,
 | |
| 	},
 | |
| 	/* SIMBA */
 | |
| 	{
 | |
| 		.name = "simba",
 | |
| 		.addr_prop_name = "assigned-addresses",
 | |
| 		.match = of_bus_simba_match,
 | |
| 		.count_cells = of_bus_pci_count_cells,
 | |
| 		.map = of_bus_simba_map,
 | |
| 		.get_flags = of_bus_pci_get_flags,
 | |
| 	},
 | |
| 	/* SBUS */
 | |
| 	{
 | |
| 		.name = "sbus",
 | |
| 		.addr_prop_name = "reg",
 | |
| 		.match = of_bus_sbus_match,
 | |
| 		.count_cells = of_bus_sbus_count_cells,
 | |
| 		.map = of_bus_default_map,
 | |
| 		.get_flags = of_bus_default_get_flags,
 | |
| 	},
 | |
| 	/* FHC */
 | |
| 	{
 | |
| 		.name = "fhc",
 | |
| 		.addr_prop_name = "reg",
 | |
| 		.match = of_bus_fhc_match,
 | |
| 		.count_cells = of_bus_fhc_count_cells,
 | |
| 		.map = of_bus_default_map,
 | |
| 		.get_flags = of_bus_default_get_flags,
 | |
| 	},
 | |
| 	/* Default */
 | |
| 	{
 | |
| 		.name = "default",
 | |
| 		.addr_prop_name = "reg",
 | |
| 		.match = NULL,
 | |
| 		.count_cells = of_bus_default_count_cells,
 | |
| 		.map = of_bus_default_map,
 | |
| 		.get_flags = of_bus_default_get_flags,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static struct of_bus *of_match_bus(struct device_node *np)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(of_busses); i ++)
 | |
| 		if (!of_busses[i].match || of_busses[i].match(np))
 | |
| 			return &of_busses[i];
 | |
| 	BUG();
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int __init build_one_resource(struct device_node *parent,
 | |
| 				     struct of_bus *bus,
 | |
| 				     struct of_bus *pbus,
 | |
| 				     u32 *addr,
 | |
| 				     int na, int ns, int pna)
 | |
| {
 | |
| 	const u32 *ranges;
 | |
| 	int rone, rlen;
 | |
| 
 | |
| 	ranges = of_get_property(parent, "ranges", &rlen);
 | |
| 	if (ranges == NULL || rlen == 0) {
 | |
| 		u32 result[OF_MAX_ADDR_CELLS];
 | |
| 		int i;
 | |
| 
 | |
| 		memset(result, 0, pna * 4);
 | |
| 		for (i = 0; i < na; i++)
 | |
| 			result[pna - 1 - i] =
 | |
| 				addr[na - 1 - i];
 | |
| 
 | |
| 		memcpy(addr, result, pna * 4);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Now walk through the ranges */
 | |
| 	rlen /= 4;
 | |
| 	rone = na + pna + ns;
 | |
| 	for (; rlen >= rone; rlen -= rone, ranges += rone) {
 | |
| 		if (!bus->map(addr, ranges, na, ns, pna))
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* When we miss an I/O space match on PCI, just pass it up
 | |
| 	 * to the next PCI bridge and/or controller.
 | |
| 	 */
 | |
| 	if (!strcmp(bus->name, "pci") &&
 | |
| 	    (addr[0] & 0x03000000) == 0x01000000)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int __init use_1to1_mapping(struct device_node *pp)
 | |
| {
 | |
| 	/* If we have a ranges property in the parent, use it.  */
 | |
| 	if (of_find_property(pp, "ranges", NULL) != NULL)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If the parent is the dma node of an ISA bus, pass
 | |
| 	 * the translation up to the root.
 | |
| 	 *
 | |
| 	 * Some SBUS devices use intermediate nodes to express
 | |
| 	 * hierarchy within the device itself.  These aren't
 | |
| 	 * real bus nodes, and don't have a 'ranges' property.
 | |
| 	 * But, we should still pass the translation work up
 | |
| 	 * to the SBUS itself.
 | |
| 	 */
 | |
| 	if (!strcmp(pp->name, "dma") ||
 | |
| 	    !strcmp(pp->name, "espdma") ||
 | |
| 	    !strcmp(pp->name, "ledma") ||
 | |
| 	    !strcmp(pp->name, "lebuffer"))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Similarly for all PCI bridges, if we get this far
 | |
| 	 * it lacks a ranges property, and this will include
 | |
| 	 * cases like Simba.
 | |
| 	 */
 | |
| 	if (!strcmp(pp->name, "pci"))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int of_resource_verbose;
 | |
| 
 | |
| static void __init build_device_resources(struct of_device *op,
 | |
| 					  struct device *parent)
 | |
| {
 | |
| 	struct of_device *p_op;
 | |
| 	struct of_bus *bus;
 | |
| 	int na, ns;
 | |
| 	int index, num_reg;
 | |
| 	const void *preg;
 | |
| 
 | |
| 	if (!parent)
 | |
| 		return;
 | |
| 
 | |
| 	p_op = to_of_device(parent);
 | |
| 	bus = of_match_bus(p_op->dev.of_node);
 | |
| 	bus->count_cells(op->dev.of_node, &na, &ns);
 | |
| 
 | |
| 	preg = of_get_property(op->dev.of_node, bus->addr_prop_name, &num_reg);
 | |
| 	if (!preg || num_reg == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* Convert to num-cells.  */
 | |
| 	num_reg /= 4;
 | |
| 
 | |
| 	/* Convert to num-entries.  */
 | |
| 	num_reg /= na + ns;
 | |
| 
 | |
| 	/* Prevent overrunning the op->resources[] array.  */
 | |
| 	if (num_reg > PROMREG_MAX) {
 | |
| 		printk(KERN_WARNING "%s: Too many regs (%d), "
 | |
| 		       "limiting to %d.\n",
 | |
| 		       op->dev.of_node->full_name, num_reg, PROMREG_MAX);
 | |
| 		num_reg = PROMREG_MAX;
 | |
| 	}
 | |
| 
 | |
| 	for (index = 0; index < num_reg; index++) {
 | |
| 		struct resource *r = &op->resource[index];
 | |
| 		u32 addr[OF_MAX_ADDR_CELLS];
 | |
| 		const u32 *reg = (preg + (index * ((na + ns) * 4)));
 | |
| 		struct device_node *dp = op->dev.of_node;
 | |
| 		struct device_node *pp = p_op->dev.of_node;
 | |
| 		struct of_bus *pbus, *dbus;
 | |
| 		u64 size, result = OF_BAD_ADDR;
 | |
| 		unsigned long flags;
 | |
| 		int dna, dns;
 | |
| 		int pna, pns;
 | |
| 
 | |
| 		size = of_read_addr(reg + na, ns);
 | |
| 		memcpy(addr, reg, na * 4);
 | |
| 
 | |
| 		flags = bus->get_flags(addr, 0);
 | |
| 
 | |
| 		if (use_1to1_mapping(pp)) {
 | |
| 			result = of_read_addr(addr, na);
 | |
| 			goto build_res;
 | |
| 		}
 | |
| 
 | |
| 		dna = na;
 | |
| 		dns = ns;
 | |
| 		dbus = bus;
 | |
| 
 | |
| 		while (1) {
 | |
| 			dp = pp;
 | |
| 			pp = dp->parent;
 | |
| 			if (!pp) {
 | |
| 				result = of_read_addr(addr, dna);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			pbus = of_match_bus(pp);
 | |
| 			pbus->count_cells(dp, &pna, &pns);
 | |
| 
 | |
| 			if (build_one_resource(dp, dbus, pbus, addr,
 | |
| 					       dna, dns, pna))
 | |
| 				break;
 | |
| 
 | |
| 			flags = pbus->get_flags(addr, flags);
 | |
| 
 | |
| 			dna = pna;
 | |
| 			dns = pns;
 | |
| 			dbus = pbus;
 | |
| 		}
 | |
| 
 | |
| 	build_res:
 | |
| 		memset(r, 0, sizeof(*r));
 | |
| 
 | |
| 		if (of_resource_verbose)
 | |
| 			printk("%s reg[%d] -> %llx\n",
 | |
| 			       op->dev.of_node->full_name, index,
 | |
| 			       result);
 | |
| 
 | |
| 		if (result != OF_BAD_ADDR) {
 | |
| 			if (tlb_type == hypervisor)
 | |
| 				result &= 0x0fffffffffffffffUL;
 | |
| 
 | |
| 			r->start = result;
 | |
| 			r->end = result + size - 1;
 | |
| 			r->flags = flags;
 | |
| 		}
 | |
| 		r->name = op->dev.of_node->name;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct device_node * __init
 | |
| apply_interrupt_map(struct device_node *dp, struct device_node *pp,
 | |
| 		    const u32 *imap, int imlen, const u32 *imask,
 | |
| 		    unsigned int *irq_p)
 | |
| {
 | |
| 	struct device_node *cp;
 | |
| 	unsigned int irq = *irq_p;
 | |
| 	struct of_bus *bus;
 | |
| 	phandle handle;
 | |
| 	const u32 *reg;
 | |
| 	int na, num_reg, i;
 | |
| 
 | |
| 	bus = of_match_bus(pp);
 | |
| 	bus->count_cells(dp, &na, NULL);
 | |
| 
 | |
| 	reg = of_get_property(dp, "reg", &num_reg);
 | |
| 	if (!reg || !num_reg)
 | |
| 		return NULL;
 | |
| 
 | |
| 	imlen /= ((na + 3) * 4);
 | |
| 	handle = 0;
 | |
| 	for (i = 0; i < imlen; i++) {
 | |
| 		int j;
 | |
| 
 | |
| 		for (j = 0; j < na; j++) {
 | |
| 			if ((reg[j] & imask[j]) != imap[j])
 | |
| 				goto next;
 | |
| 		}
 | |
| 		if (imap[na] == irq) {
 | |
| 			handle = imap[na + 1];
 | |
| 			irq = imap[na + 2];
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	next:
 | |
| 		imap += (na + 3);
 | |
| 	}
 | |
| 	if (i == imlen) {
 | |
| 		/* Psycho and Sabre PCI controllers can have 'interrupt-map'
 | |
| 		 * properties that do not include the on-board device
 | |
| 		 * interrupts.  Instead, the device's 'interrupts' property
 | |
| 		 * is already a fully specified INO value.
 | |
| 		 *
 | |
| 		 * Handle this by deciding that, if we didn't get a
 | |
| 		 * match in the parent's 'interrupt-map', and the
 | |
| 		 * parent is an IRQ translater, then use the parent as
 | |
| 		 * our IRQ controller.
 | |
| 		 */
 | |
| 		if (pp->irq_trans)
 | |
| 			return pp;
 | |
| 
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	*irq_p = irq;
 | |
| 	cp = of_find_node_by_phandle(handle);
 | |
| 
 | |
| 	return cp;
 | |
| }
 | |
| 
 | |
| static unsigned int __init pci_irq_swizzle(struct device_node *dp,
 | |
| 					   struct device_node *pp,
 | |
| 					   unsigned int irq)
 | |
| {
 | |
| 	const struct linux_prom_pci_registers *regs;
 | |
| 	unsigned int bus, devfn, slot, ret;
 | |
| 
 | |
| 	if (irq < 1 || irq > 4)
 | |
| 		return irq;
 | |
| 
 | |
| 	regs = of_get_property(dp, "reg", NULL);
 | |
| 	if (!regs)
 | |
| 		return irq;
 | |
| 
 | |
| 	bus = (regs->phys_hi >> 16) & 0xff;
 | |
| 	devfn = (regs->phys_hi >> 8) & 0xff;
 | |
| 	slot = (devfn >> 3) & 0x1f;
 | |
| 
 | |
| 	if (pp->irq_trans) {
 | |
| 		/* Derived from Table 8-3, U2P User's Manual.  This branch
 | |
| 		 * is handling a PCI controller that lacks a proper set of
 | |
| 		 * interrupt-map and interrupt-map-mask properties.  The
 | |
| 		 * Ultra-E450 is one example.
 | |
| 		 *
 | |
| 		 * The bit layout is BSSLL, where:
 | |
| 		 * B: 0 on bus A, 1 on bus B
 | |
| 		 * D: 2-bit slot number, derived from PCI device number as
 | |
| 		 *    (dev - 1) for bus A, or (dev - 2) for bus B
 | |
| 		 * L: 2-bit line number
 | |
| 		 */
 | |
| 		if (bus & 0x80) {
 | |
| 			/* PBM-A */
 | |
| 			bus  = 0x00;
 | |
| 			slot = (slot - 1) << 2;
 | |
| 		} else {
 | |
| 			/* PBM-B */
 | |
| 			bus  = 0x10;
 | |
| 			slot = (slot - 2) << 2;
 | |
| 		}
 | |
| 		irq -= 1;
 | |
| 
 | |
| 		ret = (bus | slot | irq);
 | |
| 	} else {
 | |
| 		/* Going through a PCI-PCI bridge that lacks a set of
 | |
| 		 * interrupt-map and interrupt-map-mask properties.
 | |
| 		 */
 | |
| 		ret = ((irq - 1 + (slot & 3)) & 3) + 1;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int of_irq_verbose;
 | |
| 
 | |
| static unsigned int __init build_one_device_irq(struct of_device *op,
 | |
| 						struct device *parent,
 | |
| 						unsigned int irq)
 | |
| {
 | |
| 	struct device_node *dp = op->dev.of_node;
 | |
| 	struct device_node *pp, *ip;
 | |
| 	unsigned int orig_irq = irq;
 | |
| 	int nid;
 | |
| 
 | |
| 	if (irq == 0xffffffff)
 | |
| 		return irq;
 | |
| 
 | |
| 	if (dp->irq_trans) {
 | |
| 		irq = dp->irq_trans->irq_build(dp, irq,
 | |
| 					       dp->irq_trans->data);
 | |
| 
 | |
| 		if (of_irq_verbose)
 | |
| 			printk("%s: direct translate %x --> %x\n",
 | |
| 			       dp->full_name, orig_irq, irq);
 | |
| 
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Something more complicated.  Walk up to the root, applying
 | |
| 	 * interrupt-map or bus specific translations, until we hit
 | |
| 	 * an IRQ translator.
 | |
| 	 *
 | |
| 	 * If we hit a bus type or situation we cannot handle, we
 | |
| 	 * stop and assume that the original IRQ number was in a
 | |
| 	 * format which has special meaning to it's immediate parent.
 | |
| 	 */
 | |
| 	pp = dp->parent;
 | |
| 	ip = NULL;
 | |
| 	while (pp) {
 | |
| 		const void *imap, *imsk;
 | |
| 		int imlen;
 | |
| 
 | |
| 		imap = of_get_property(pp, "interrupt-map", &imlen);
 | |
| 		imsk = of_get_property(pp, "interrupt-map-mask", NULL);
 | |
| 		if (imap && imsk) {
 | |
| 			struct device_node *iret;
 | |
| 			int this_orig_irq = irq;
 | |
| 
 | |
| 			iret = apply_interrupt_map(dp, pp,
 | |
| 						   imap, imlen, imsk,
 | |
| 						   &irq);
 | |
| 
 | |
| 			if (of_irq_verbose)
 | |
| 				printk("%s: Apply [%s:%x] imap --> [%s:%x]\n",
 | |
| 				       op->dev.of_node->full_name,
 | |
| 				       pp->full_name, this_orig_irq,
 | |
| 				       (iret ? iret->full_name : "NULL"), irq);
 | |
| 
 | |
| 			if (!iret)
 | |
| 				break;
 | |
| 
 | |
| 			if (iret->irq_trans) {
 | |
| 				ip = iret;
 | |
| 				break;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (!strcmp(pp->name, "pci")) {
 | |
| 				unsigned int this_orig_irq = irq;
 | |
| 
 | |
| 				irq = pci_irq_swizzle(dp, pp, irq);
 | |
| 				if (of_irq_verbose)
 | |
| 					printk("%s: PCI swizzle [%s] "
 | |
| 					       "%x --> %x\n",
 | |
| 					       op->dev.of_node->full_name,
 | |
| 					       pp->full_name, this_orig_irq,
 | |
| 					       irq);
 | |
| 
 | |
| 			}
 | |
| 
 | |
| 			if (pp->irq_trans) {
 | |
| 				ip = pp;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		dp = pp;
 | |
| 		pp = pp->parent;
 | |
| 	}
 | |
| 	if (!ip)
 | |
| 		return orig_irq;
 | |
| 
 | |
| 	irq = ip->irq_trans->irq_build(op->dev.of_node, irq,
 | |
| 				       ip->irq_trans->data);
 | |
| 	if (of_irq_verbose)
 | |
| 		printk("%s: Apply IRQ trans [%s] %x --> %x\n",
 | |
| 		      op->dev.of_node->full_name, ip->full_name, orig_irq, irq);
 | |
| 
 | |
| out:
 | |
| 	nid = of_node_to_nid(dp);
 | |
| 	if (nid != -1) {
 | |
| 		cpumask_t numa_mask = *cpumask_of_node(nid);
 | |
| 
 | |
| 		irq_set_affinity(irq, &numa_mask);
 | |
| 	}
 | |
| 
 | |
| 	return irq;
 | |
| }
 | |
| 
 | |
| static struct of_device * __init scan_one_device(struct device_node *dp,
 | |
| 						 struct device *parent)
 | |
| {
 | |
| 	struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL);
 | |
| 	const unsigned int *irq;
 | |
| 	struct dev_archdata *sd;
 | |
| 	int len, i;
 | |
| 
 | |
| 	if (!op)
 | |
| 		return NULL;
 | |
| 
 | |
| 	sd = &op->dev.archdata;
 | |
| 	sd->op = op;
 | |
| 
 | |
| 	op->dev.of_node = dp;
 | |
| 
 | |
| 	op->clock_freq = of_getintprop_default(dp, "clock-frequency",
 | |
| 					       (25*1000*1000));
 | |
| 	op->portid = of_getintprop_default(dp, "upa-portid", -1);
 | |
| 	if (op->portid == -1)
 | |
| 		op->portid = of_getintprop_default(dp, "portid", -1);
 | |
| 
 | |
| 	irq = of_get_property(dp, "interrupts", &len);
 | |
| 	if (irq) {
 | |
| 		op->num_irqs = len / 4;
 | |
| 
 | |
| 		/* Prevent overrunning the op->irqs[] array.  */
 | |
| 		if (op->num_irqs > PROMINTR_MAX) {
 | |
| 			printk(KERN_WARNING "%s: Too many irqs (%d), "
 | |
| 			       "limiting to %d.\n",
 | |
| 			       dp->full_name, op->num_irqs, PROMINTR_MAX);
 | |
| 			op->num_irqs = PROMINTR_MAX;
 | |
| 		}
 | |
| 		memcpy(op->irqs, irq, op->num_irqs * 4);
 | |
| 	} else {
 | |
| 		op->num_irqs = 0;
 | |
| 	}
 | |
| 
 | |
| 	build_device_resources(op, parent);
 | |
| 	for (i = 0; i < op->num_irqs; i++)
 | |
| 		op->irqs[i] = build_one_device_irq(op, parent, op->irqs[i]);
 | |
| 
 | |
| 	op->dev.parent = parent;
 | |
| 	op->dev.bus = &of_platform_bus_type;
 | |
| 	if (!parent)
 | |
| 		dev_set_name(&op->dev, "root");
 | |
| 	else
 | |
| 		dev_set_name(&op->dev, "%08x", dp->phandle);
 | |
| 
 | |
| 	if (of_device_register(op)) {
 | |
| 		printk("%s: Could not register of device.\n",
 | |
| 		       dp->full_name);
 | |
| 		kfree(op);
 | |
| 		op = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return op;
 | |
| }
 | |
| 
 | |
| static void __init scan_tree(struct device_node *dp, struct device *parent)
 | |
| {
 | |
| 	while (dp) {
 | |
| 		struct of_device *op = scan_one_device(dp, parent);
 | |
| 
 | |
| 		if (op)
 | |
| 			scan_tree(dp->child, &op->dev);
 | |
| 
 | |
| 		dp = dp->sibling;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init scan_of_devices(void)
 | |
| {
 | |
| 	struct device_node *root = of_find_node_by_path("/");
 | |
| 	struct of_device *parent;
 | |
| 
 | |
| 	parent = scan_one_device(root, NULL);
 | |
| 	if (!parent)
 | |
| 		return;
 | |
| 
 | |
| 	scan_tree(root->child, &parent->dev);
 | |
| }
 | |
| 
 | |
| static int __init of_bus_driver_init(void)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = of_bus_type_init(&of_platform_bus_type, "of");
 | |
| 	if (!err)
 | |
| 		scan_of_devices();
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| postcore_initcall(of_bus_driver_init);
 | |
| 
 | |
| static int __init of_debug(char *str)
 | |
| {
 | |
| 	int val = 0;
 | |
| 
 | |
| 	get_option(&str, &val);
 | |
| 	if (val & 1)
 | |
| 		of_resource_verbose = 1;
 | |
| 	if (val & 2)
 | |
| 		of_irq_verbose = 1;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("of_debug=", of_debug);
 |