 61c7a080a5
			
		
	
	
	61c7a080a5
	
	
	
		
			
			The following structure elements duplicate the information in 'struct device.of_node' and so are being eliminated. This patch makes all readers of these elements use device.of_node instead. (struct of_device *)->node (struct dev_archdata *)->prom_node (sparc) (struct dev_archdata *)->of_node (powerpc & microblaze) Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
		
			
				
	
	
		
			735 lines
		
	
	
	
		
			20 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			735 lines
		
	
	
	
		
			20 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ioport.c:  Simple io mapping allocator.
 | |
|  *
 | |
|  * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
 | |
|  * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
 | |
|  *
 | |
|  * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev.
 | |
|  *
 | |
|  * 2000/01/29
 | |
|  * <rth> zait: as long as pci_alloc_consistent produces something addressable, 
 | |
|  *	things are ok.
 | |
|  * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a
 | |
|  *	pointer into the big page mapping
 | |
|  * <rth> zait: so what?
 | |
|  * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page()))
 | |
|  * <zaitcev> Hmm
 | |
|  * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())).
 | |
|  *	So far so good.
 | |
|  * <zaitcev> Now, driver calls pci_free_consistent(with result of
 | |
|  *	remap_it_my_way()).
 | |
|  * <zaitcev> How do you find the address to pass to free_pages()?
 | |
|  * <rth> zait: walk the page tables?  It's only two or three level after all.
 | |
|  * <rth> zait: you have to walk them anyway to remove the mapping.
 | |
|  * <zaitcev> Hmm
 | |
|  * <zaitcev> Sounds reasonable
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/pci.h>		/* struct pci_dev */
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include <linux/of_device.h>
 | |
| 
 | |
| #include <asm/io.h>
 | |
| #include <asm/vaddrs.h>
 | |
| #include <asm/oplib.h>
 | |
| #include <asm/prom.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/dma.h>
 | |
| #include <asm/iommu.h>
 | |
| #include <asm/io-unit.h>
 | |
| #include <asm/leon.h>
 | |
| 
 | |
| #ifdef CONFIG_SPARC_LEON
 | |
| #define mmu_inval_dma_area(p, l) leon_flush_dcache_all()
 | |
| #else
 | |
| #define mmu_inval_dma_area(p, l)	/* Anton pulled it out for 2.4.0-xx */
 | |
| #endif
 | |
| 
 | |
| static struct resource *_sparc_find_resource(struct resource *r,
 | |
| 					     unsigned long);
 | |
| 
 | |
| static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz);
 | |
| static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
 | |
|     unsigned long size, char *name);
 | |
| static void _sparc_free_io(struct resource *res);
 | |
| 
 | |
| static void register_proc_sparc_ioport(void);
 | |
| 
 | |
| /* This points to the next to use virtual memory for DVMA mappings */
 | |
| static struct resource _sparc_dvma = {
 | |
| 	.name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1
 | |
| };
 | |
| /* This points to the start of I/O mappings, cluable from outside. */
 | |
| /*ext*/ struct resource sparc_iomap = {
 | |
| 	.name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Our mini-allocator...
 | |
|  * Boy this is gross! We need it because we must map I/O for
 | |
|  * timers and interrupt controller before the kmalloc is available.
 | |
|  */
 | |
| 
 | |
| #define XNMLN  15
 | |
| #define XNRES  10	/* SS-10 uses 8 */
 | |
| 
 | |
| struct xresource {
 | |
| 	struct resource xres;	/* Must be first */
 | |
| 	int xflag;		/* 1 == used */
 | |
| 	char xname[XNMLN+1];
 | |
| };
 | |
| 
 | |
| static struct xresource xresv[XNRES];
 | |
| 
 | |
| static struct xresource *xres_alloc(void) {
 | |
| 	struct xresource *xrp;
 | |
| 	int n;
 | |
| 
 | |
| 	xrp = xresv;
 | |
| 	for (n = 0; n < XNRES; n++) {
 | |
| 		if (xrp->xflag == 0) {
 | |
| 			xrp->xflag = 1;
 | |
| 			return xrp;
 | |
| 		}
 | |
| 		xrp++;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void xres_free(struct xresource *xrp) {
 | |
| 	xrp->xflag = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These are typically used in PCI drivers
 | |
|  * which are trying to be cross-platform.
 | |
|  *
 | |
|  * Bus type is always zero on IIep.
 | |
|  */
 | |
| void __iomem *ioremap(unsigned long offset, unsigned long size)
 | |
| {
 | |
| 	char name[14];
 | |
| 
 | |
| 	sprintf(name, "phys_%08x", (u32)offset);
 | |
| 	return _sparc_alloc_io(0, offset, size, name);
 | |
| }
 | |
| EXPORT_SYMBOL(ioremap);
 | |
| 
 | |
| /*
 | |
|  * Comlimentary to ioremap().
 | |
|  */
 | |
| void iounmap(volatile void __iomem *virtual)
 | |
| {
 | |
| 	unsigned long vaddr = (unsigned long) virtual & PAGE_MASK;
 | |
| 	struct resource *res;
 | |
| 
 | |
| 	if ((res = _sparc_find_resource(&sparc_iomap, vaddr)) == NULL) {
 | |
| 		printk("free_io/iounmap: cannot free %lx\n", vaddr);
 | |
| 		return;
 | |
| 	}
 | |
| 	_sparc_free_io(res);
 | |
| 
 | |
| 	if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) {
 | |
| 		xres_free((struct xresource *)res);
 | |
| 	} else {
 | |
| 		kfree(res);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(iounmap);
 | |
| 
 | |
| void __iomem *of_ioremap(struct resource *res, unsigned long offset,
 | |
| 			 unsigned long size, char *name)
 | |
| {
 | |
| 	return _sparc_alloc_io(res->flags & 0xF,
 | |
| 			       res->start + offset,
 | |
| 			       size, name);
 | |
| }
 | |
| EXPORT_SYMBOL(of_ioremap);
 | |
| 
 | |
| void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
 | |
| {
 | |
| 	iounmap(base);
 | |
| }
 | |
| EXPORT_SYMBOL(of_iounmap);
 | |
| 
 | |
| /*
 | |
|  * Meat of mapping
 | |
|  */
 | |
| static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
 | |
|     unsigned long size, char *name)
 | |
| {
 | |
| 	static int printed_full;
 | |
| 	struct xresource *xres;
 | |
| 	struct resource *res;
 | |
| 	char *tack;
 | |
| 	int tlen;
 | |
| 	void __iomem *va;	/* P3 diag */
 | |
| 
 | |
| 	if (name == NULL) name = "???";
 | |
| 
 | |
| 	if ((xres = xres_alloc()) != 0) {
 | |
| 		tack = xres->xname;
 | |
| 		res = &xres->xres;
 | |
| 	} else {
 | |
| 		if (!printed_full) {
 | |
| 			printk("ioremap: done with statics, switching to malloc\n");
 | |
| 			printed_full = 1;
 | |
| 		}
 | |
| 		tlen = strlen(name);
 | |
| 		tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL);
 | |
| 		if (tack == NULL) return NULL;
 | |
| 		memset(tack, 0, sizeof(struct resource));
 | |
| 		res = (struct resource *) tack;
 | |
| 		tack += sizeof (struct resource);
 | |
| 	}
 | |
| 
 | |
| 	strlcpy(tack, name, XNMLN+1);
 | |
| 	res->name = tack;
 | |
| 
 | |
| 	va = _sparc_ioremap(res, busno, phys, size);
 | |
| 	/* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */
 | |
| 	return va;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  */
 | |
| static void __iomem *
 | |
| _sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz)
 | |
| {
 | |
| 	unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK);
 | |
| 
 | |
| 	if (allocate_resource(&sparc_iomap, res,
 | |
| 	    (offset + sz + PAGE_SIZE-1) & PAGE_MASK,
 | |
| 	    sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) {
 | |
| 		/* Usually we cannot see printks in this case. */
 | |
| 		prom_printf("alloc_io_res(%s): cannot occupy\n",
 | |
| 		    (res->name != NULL)? res->name: "???");
 | |
| 		prom_halt();
 | |
| 	}
 | |
| 
 | |
| 	pa &= PAGE_MASK;
 | |
| 	sparc_mapiorange(bus, pa, res->start, res->end - res->start + 1);
 | |
| 
 | |
| 	return (void __iomem *)(unsigned long)(res->start + offset);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Comlimentary to _sparc_ioremap().
 | |
|  */
 | |
| static void _sparc_free_io(struct resource *res)
 | |
| {
 | |
| 	unsigned long plen;
 | |
| 
 | |
| 	plen = res->end - res->start + 1;
 | |
| 	BUG_ON((plen & (PAGE_SIZE-1)) != 0);
 | |
| 	sparc_unmapiorange(res->start, plen);
 | |
| 	release_resource(res);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SBUS
 | |
| 
 | |
| void sbus_set_sbus64(struct device *dev, int x)
 | |
| {
 | |
| 	printk("sbus_set_sbus64: unsupported\n");
 | |
| }
 | |
| EXPORT_SYMBOL(sbus_set_sbus64);
 | |
| 
 | |
| /*
 | |
|  * Allocate a chunk of memory suitable for DMA.
 | |
|  * Typically devices use them for control blocks.
 | |
|  * CPU may access them without any explicit flushing.
 | |
|  */
 | |
| static void *sbus_alloc_coherent(struct device *dev, size_t len,
 | |
| 				 dma_addr_t *dma_addrp, gfp_t gfp)
 | |
| {
 | |
| 	struct of_device *op = to_of_device(dev);
 | |
| 	unsigned long len_total = (len + PAGE_SIZE-1) & PAGE_MASK;
 | |
| 	unsigned long va;
 | |
| 	struct resource *res;
 | |
| 	int order;
 | |
| 
 | |
| 	/* XXX why are some lengths signed, others unsigned? */
 | |
| 	if (len <= 0) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	/* XXX So what is maxphys for us and how do drivers know it? */
 | |
| 	if (len > 256*1024) {			/* __get_free_pages() limit */
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	order = get_order(len_total);
 | |
| 	if ((va = __get_free_pages(GFP_KERNEL|__GFP_COMP, order)) == 0)
 | |
| 		goto err_nopages;
 | |
| 
 | |
| 	if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL)
 | |
| 		goto err_nomem;
 | |
| 
 | |
| 	if (allocate_resource(&_sparc_dvma, res, len_total,
 | |
| 	    _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
 | |
| 		printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total);
 | |
| 		goto err_nova;
 | |
| 	}
 | |
| 	mmu_inval_dma_area(va, len_total);
 | |
| 	// XXX The mmu_map_dma_area does this for us below, see comments.
 | |
| 	// sparc_mapiorange(0, virt_to_phys(va), res->start, len_total);
 | |
| 	/*
 | |
| 	 * XXX That's where sdev would be used. Currently we load
 | |
| 	 * all iommu tables with the same translations.
 | |
| 	 */
 | |
| 	if (mmu_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0)
 | |
| 		goto err_noiommu;
 | |
| 
 | |
| 	res->name = op->dev.of_node->name;
 | |
| 
 | |
| 	return (void *)(unsigned long)res->start;
 | |
| 
 | |
| err_noiommu:
 | |
| 	release_resource(res);
 | |
| err_nova:
 | |
| 	free_pages(va, order);
 | |
| err_nomem:
 | |
| 	kfree(res);
 | |
| err_nopages:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void sbus_free_coherent(struct device *dev, size_t n, void *p,
 | |
| 			       dma_addr_t ba)
 | |
| {
 | |
| 	struct resource *res;
 | |
| 	struct page *pgv;
 | |
| 
 | |
| 	if ((res = _sparc_find_resource(&_sparc_dvma,
 | |
| 	    (unsigned long)p)) == NULL) {
 | |
| 		printk("sbus_free_consistent: cannot free %p\n", p);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
 | |
| 		printk("sbus_free_consistent: unaligned va %p\n", p);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	n = (n + PAGE_SIZE-1) & PAGE_MASK;
 | |
| 	if ((res->end-res->start)+1 != n) {
 | |
| 		printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n",
 | |
| 		    (long)((res->end-res->start)+1), n);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	release_resource(res);
 | |
| 	kfree(res);
 | |
| 
 | |
| 	/* mmu_inval_dma_area(va, n); */ /* it's consistent, isn't it */
 | |
| 	pgv = virt_to_page(p);
 | |
| 	mmu_unmap_dma_area(dev, ba, n);
 | |
| 
 | |
| 	__free_pages(pgv, get_order(n));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Map a chunk of memory so that devices can see it.
 | |
|  * CPU view of this memory may be inconsistent with
 | |
|  * a device view and explicit flushing is necessary.
 | |
|  */
 | |
| static dma_addr_t sbus_map_page(struct device *dev, struct page *page,
 | |
| 				unsigned long offset, size_t len,
 | |
| 				enum dma_data_direction dir,
 | |
| 				struct dma_attrs *attrs)
 | |
| {
 | |
| 	void *va = page_address(page) + offset;
 | |
| 
 | |
| 	/* XXX why are some lengths signed, others unsigned? */
 | |
| 	if (len <= 0) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 	/* XXX So what is maxphys for us and how do drivers know it? */
 | |
| 	if (len > 256*1024) {			/* __get_free_pages() limit */
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return mmu_get_scsi_one(dev, va, len);
 | |
| }
 | |
| 
 | |
| static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n,
 | |
| 			    enum dma_data_direction dir, struct dma_attrs *attrs)
 | |
| {
 | |
| 	mmu_release_scsi_one(dev, ba, n);
 | |
| }
 | |
| 
 | |
| static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n,
 | |
| 		       enum dma_data_direction dir, struct dma_attrs *attrs)
 | |
| {
 | |
| 	mmu_get_scsi_sgl(dev, sg, n);
 | |
| 
 | |
| 	/*
 | |
| 	 * XXX sparc64 can return a partial length here. sun4c should do this
 | |
| 	 * but it currently panics if it can't fulfill the request - Anton
 | |
| 	 */
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n,
 | |
| 			  enum dma_data_direction dir, struct dma_attrs *attrs)
 | |
| {
 | |
| 	mmu_release_scsi_sgl(dev, sg, n);
 | |
| }
 | |
| 
 | |
| static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
 | |
| 				 int n,	enum dma_data_direction dir)
 | |
| {
 | |
| 	BUG();
 | |
| }
 | |
| 
 | |
| static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 | |
| 				    int n, enum dma_data_direction dir)
 | |
| {
 | |
| 	BUG();
 | |
| }
 | |
| 
 | |
| struct dma_map_ops sbus_dma_ops = {
 | |
| 	.alloc_coherent		= sbus_alloc_coherent,
 | |
| 	.free_coherent		= sbus_free_coherent,
 | |
| 	.map_page		= sbus_map_page,
 | |
| 	.unmap_page		= sbus_unmap_page,
 | |
| 	.map_sg			= sbus_map_sg,
 | |
| 	.unmap_sg		= sbus_unmap_sg,
 | |
| 	.sync_sg_for_cpu	= sbus_sync_sg_for_cpu,
 | |
| 	.sync_sg_for_device	= sbus_sync_sg_for_device,
 | |
| };
 | |
| 
 | |
| struct dma_map_ops *dma_ops = &sbus_dma_ops;
 | |
| EXPORT_SYMBOL(dma_ops);
 | |
| 
 | |
| static int __init sparc_register_ioport(void)
 | |
| {
 | |
| 	register_proc_sparc_ioport();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| arch_initcall(sparc_register_ioport);
 | |
| 
 | |
| #endif /* CONFIG_SBUS */
 | |
| 
 | |
| #ifdef CONFIG_PCI
 | |
| 
 | |
| /* Allocate and map kernel buffer using consistent mode DMA for a device.
 | |
|  * hwdev should be valid struct pci_dev pointer for PCI devices.
 | |
|  */
 | |
| static void *pci32_alloc_coherent(struct device *dev, size_t len,
 | |
| 				  dma_addr_t *pba, gfp_t gfp)
 | |
| {
 | |
| 	unsigned long len_total = (len + PAGE_SIZE-1) & PAGE_MASK;
 | |
| 	unsigned long va;
 | |
| 	struct resource *res;
 | |
| 	int order;
 | |
| 
 | |
| 	if (len == 0) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (len > 256*1024) {			/* __get_free_pages() limit */
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	order = get_order(len_total);
 | |
| 	va = __get_free_pages(GFP_KERNEL, order);
 | |
| 	if (va == 0) {
 | |
| 		printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
 | |
| 		free_pages(va, order);
 | |
| 		printk("pci_alloc_consistent: no core\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (allocate_resource(&_sparc_dvma, res, len_total,
 | |
| 	    _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
 | |
| 		printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total);
 | |
| 		free_pages(va, order);
 | |
| 		kfree(res);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	mmu_inval_dma_area(va, len_total);
 | |
| #if 0
 | |
| /* P3 */ printk("pci_alloc_consistent: kva %lx uncva %lx phys %lx size %lx\n",
 | |
|   (long)va, (long)res->start, (long)virt_to_phys(va), len_total);
 | |
| #endif
 | |
| 	sparc_mapiorange(0, virt_to_phys(va), res->start, len_total);
 | |
| 
 | |
| 	*pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */
 | |
| 	return (void *) res->start;
 | |
| }
 | |
| 
 | |
| /* Free and unmap a consistent DMA buffer.
 | |
|  * cpu_addr is what was returned from pci_alloc_consistent,
 | |
|  * size must be the same as what as passed into pci_alloc_consistent,
 | |
|  * and likewise dma_addr must be the same as what *dma_addrp was set to.
 | |
|  *
 | |
|  * References to the memory and mappings associated with cpu_addr/dma_addr
 | |
|  * past this call are illegal.
 | |
|  */
 | |
| static void pci32_free_coherent(struct device *dev, size_t n, void *p,
 | |
| 				dma_addr_t ba)
 | |
| {
 | |
| 	struct resource *res;
 | |
| 	unsigned long pgp;
 | |
| 
 | |
| 	if ((res = _sparc_find_resource(&_sparc_dvma,
 | |
| 	    (unsigned long)p)) == NULL) {
 | |
| 		printk("pci_free_consistent: cannot free %p\n", p);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
 | |
| 		printk("pci_free_consistent: unaligned va %p\n", p);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	n = (n + PAGE_SIZE-1) & PAGE_MASK;
 | |
| 	if ((res->end-res->start)+1 != n) {
 | |
| 		printk("pci_free_consistent: region 0x%lx asked 0x%lx\n",
 | |
| 		    (long)((res->end-res->start)+1), (long)n);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pgp = (unsigned long) phys_to_virt(ba);	/* bus_to_virt actually */
 | |
| 	mmu_inval_dma_area(pgp, n);
 | |
| 	sparc_unmapiorange((unsigned long)p, n);
 | |
| 
 | |
| 	release_resource(res);
 | |
| 	kfree(res);
 | |
| 
 | |
| 	free_pages(pgp, get_order(n));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Same as pci_map_single, but with pages.
 | |
|  */
 | |
| static dma_addr_t pci32_map_page(struct device *dev, struct page *page,
 | |
| 				 unsigned long offset, size_t size,
 | |
| 				 enum dma_data_direction dir,
 | |
| 				 struct dma_attrs *attrs)
 | |
| {
 | |
| 	/* IIep is write-through, not flushing. */
 | |
| 	return page_to_phys(page) + offset;
 | |
| }
 | |
| 
 | |
| /* Map a set of buffers described by scatterlist in streaming
 | |
|  * mode for DMA.  This is the scather-gather version of the
 | |
|  * above pci_map_single interface.  Here the scatter gather list
 | |
|  * elements are each tagged with the appropriate dma address
 | |
|  * and length.  They are obtained via sg_dma_{address,length}(SG).
 | |
|  *
 | |
|  * NOTE: An implementation may be able to use a smaller number of
 | |
|  *       DMA address/length pairs than there are SG table elements.
 | |
|  *       (for example via virtual mapping capabilities)
 | |
|  *       The routine returns the number of addr/length pairs actually
 | |
|  *       used, at most nents.
 | |
|  *
 | |
|  * Device ownership issues as mentioned above for pci_map_single are
 | |
|  * the same here.
 | |
|  */
 | |
| static int pci32_map_sg(struct device *device, struct scatterlist *sgl,
 | |
| 			int nents, enum dma_data_direction dir,
 | |
| 			struct dma_attrs *attrs)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	int n;
 | |
| 
 | |
| 	/* IIep is write-through, not flushing. */
 | |
| 	for_each_sg(sgl, sg, nents, n) {
 | |
| 		BUG_ON(page_address(sg_page(sg)) == NULL);
 | |
| 		sg->dma_address = virt_to_phys(sg_virt(sg));
 | |
| 		sg->dma_length = sg->length;
 | |
| 	}
 | |
| 	return nents;
 | |
| }
 | |
| 
 | |
| /* Unmap a set of streaming mode DMA translations.
 | |
|  * Again, cpu read rules concerning calls here are the same as for
 | |
|  * pci_unmap_single() above.
 | |
|  */
 | |
| static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl,
 | |
| 			   int nents, enum dma_data_direction dir,
 | |
| 			   struct dma_attrs *attrs)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	int n;
 | |
| 
 | |
| 	if (dir != PCI_DMA_TODEVICE) {
 | |
| 		for_each_sg(sgl, sg, nents, n) {
 | |
| 			BUG_ON(page_address(sg_page(sg)) == NULL);
 | |
| 			mmu_inval_dma_area(
 | |
| 			    (unsigned long) page_address(sg_page(sg)),
 | |
| 			    (sg->length + PAGE_SIZE-1) & PAGE_MASK);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Make physical memory consistent for a single
 | |
|  * streaming mode DMA translation before or after a transfer.
 | |
|  *
 | |
|  * If you perform a pci_map_single() but wish to interrogate the
 | |
|  * buffer using the cpu, yet do not wish to teardown the PCI dma
 | |
|  * mapping, you must call this function before doing so.  At the
 | |
|  * next point you give the PCI dma address back to the card, you
 | |
|  * must first perform a pci_dma_sync_for_device, and then the
 | |
|  * device again owns the buffer.
 | |
|  */
 | |
| static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba,
 | |
| 				      size_t size, enum dma_data_direction dir)
 | |
| {
 | |
| 	if (dir != PCI_DMA_TODEVICE) {
 | |
| 		mmu_inval_dma_area((unsigned long)phys_to_virt(ba),
 | |
| 		    (size + PAGE_SIZE-1) & PAGE_MASK);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba,
 | |
| 					 size_t size, enum dma_data_direction dir)
 | |
| {
 | |
| 	if (dir != PCI_DMA_TODEVICE) {
 | |
| 		mmu_inval_dma_area((unsigned long)phys_to_virt(ba),
 | |
| 		    (size + PAGE_SIZE-1) & PAGE_MASK);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Make physical memory consistent for a set of streaming
 | |
|  * mode DMA translations after a transfer.
 | |
|  *
 | |
|  * The same as pci_dma_sync_single_* but for a scatter-gather list,
 | |
|  * same rules and usage.
 | |
|  */
 | |
| static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
 | |
| 				  int nents, enum dma_data_direction dir)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	int n;
 | |
| 
 | |
| 	if (dir != PCI_DMA_TODEVICE) {
 | |
| 		for_each_sg(sgl, sg, nents, n) {
 | |
| 			BUG_ON(page_address(sg_page(sg)) == NULL);
 | |
| 			mmu_inval_dma_area(
 | |
| 			    (unsigned long) page_address(sg_page(sg)),
 | |
| 			    (sg->length + PAGE_SIZE-1) & PAGE_MASK);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl,
 | |
| 				     int nents, enum dma_data_direction dir)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	int n;
 | |
| 
 | |
| 	if (dir != PCI_DMA_TODEVICE) {
 | |
| 		for_each_sg(sgl, sg, nents, n) {
 | |
| 			BUG_ON(page_address(sg_page(sg)) == NULL);
 | |
| 			mmu_inval_dma_area(
 | |
| 			    (unsigned long) page_address(sg_page(sg)),
 | |
| 			    (sg->length + PAGE_SIZE-1) & PAGE_MASK);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct dma_map_ops pci32_dma_ops = {
 | |
| 	.alloc_coherent		= pci32_alloc_coherent,
 | |
| 	.free_coherent		= pci32_free_coherent,
 | |
| 	.map_page		= pci32_map_page,
 | |
| 	.map_sg			= pci32_map_sg,
 | |
| 	.unmap_sg		= pci32_unmap_sg,
 | |
| 	.sync_single_for_cpu	= pci32_sync_single_for_cpu,
 | |
| 	.sync_single_for_device	= pci32_sync_single_for_device,
 | |
| 	.sync_sg_for_cpu	= pci32_sync_sg_for_cpu,
 | |
| 	.sync_sg_for_device	= pci32_sync_sg_for_device,
 | |
| };
 | |
| EXPORT_SYMBOL(pci32_dma_ops);
 | |
| 
 | |
| #endif /* CONFIG_PCI */
 | |
| 
 | |
| /*
 | |
|  * Return whether the given PCI device DMA address mask can be
 | |
|  * supported properly.  For example, if your device can only drive the
 | |
|  * low 24-bits during PCI bus mastering, then you would pass
 | |
|  * 0x00ffffff as the mask to this function.
 | |
|  */
 | |
| int dma_supported(struct device *dev, u64 mask)
 | |
| {
 | |
| #ifdef CONFIG_PCI
 | |
| 	if (dev->bus == &pci_bus_type)
 | |
| 		return 1;
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(dma_supported);
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| 
 | |
| static int sparc_io_proc_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct resource *root = m->private, *r;
 | |
| 	const char *nm;
 | |
| 
 | |
| 	for (r = root->child; r != NULL; r = r->sibling) {
 | |
| 		if ((nm = r->name) == 0) nm = "???";
 | |
| 		seq_printf(m, "%016llx-%016llx: %s\n",
 | |
| 				(unsigned long long)r->start,
 | |
| 				(unsigned long long)r->end, nm);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sparc_io_proc_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return single_open(file, sparc_io_proc_show, PDE(inode)->data);
 | |
| }
 | |
| 
 | |
| static const struct file_operations sparc_io_proc_fops = {
 | |
| 	.owner		= THIS_MODULE,
 | |
| 	.open		= sparc_io_proc_open,
 | |
| 	.read		= seq_read,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= single_release,
 | |
| };
 | |
| #endif /* CONFIG_PROC_FS */
 | |
| 
 | |
| /*
 | |
|  * This is a version of find_resource and it belongs to kernel/resource.c.
 | |
|  * Until we have agreement with Linus and Martin, it lingers here.
 | |
|  *
 | |
|  * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case.
 | |
|  * This probably warrants some sort of hashing.
 | |
|  */
 | |
| static struct resource *_sparc_find_resource(struct resource *root,
 | |
| 					     unsigned long hit)
 | |
| {
 | |
|         struct resource *tmp;
 | |
| 
 | |
| 	for (tmp = root->child; tmp != 0; tmp = tmp->sibling) {
 | |
| 		if (tmp->start <= hit && tmp->end >= hit)
 | |
| 			return tmp;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void register_proc_sparc_ioport(void)
 | |
| {
 | |
| #ifdef CONFIG_PROC_FS
 | |
| 	proc_create_data("io_map", 0, NULL, &sparc_io_proc_fops, &sparc_iomap);
 | |
| 	proc_create_data("dvma_map", 0, NULL, &sparc_io_proc_fops, &_sparc_dvma);
 | |
| #endif
 | |
| }
 |