We've replaced remap_file_pages(2) implementation with emulation. Nobody creates non-linear mapping anymore. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			602 lines
		
	
	
	
		
			17 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			602 lines
		
	
	
	
		
			17 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
#ifndef _ASM_POWERPC_PGTABLE_PPC64_H_
 | 
						|
#define _ASM_POWERPC_PGTABLE_PPC64_H_
 | 
						|
/*
 | 
						|
 * This file contains the functions and defines necessary to modify and use
 | 
						|
 * the ppc64 hashed page table.
 | 
						|
 */
 | 
						|
 | 
						|
#ifdef CONFIG_PPC_64K_PAGES
 | 
						|
#include <asm/pgtable-ppc64-64k.h>
 | 
						|
#else
 | 
						|
#include <asm/pgtable-ppc64-4k.h>
 | 
						|
#endif
 | 
						|
#include <asm/barrier.h>
 | 
						|
 | 
						|
#define FIRST_USER_ADDRESS	0UL
 | 
						|
 | 
						|
/*
 | 
						|
 * Size of EA range mapped by our pagetables.
 | 
						|
 */
 | 
						|
#define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
 | 
						|
                	    PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
 | 
						|
#define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
 | 
						|
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
#define PMD_CACHE_INDEX	(PMD_INDEX_SIZE + 1)
 | 
						|
#else
 | 
						|
#define PMD_CACHE_INDEX	PMD_INDEX_SIZE
 | 
						|
#endif
 | 
						|
/*
 | 
						|
 * Define the address range of the kernel non-linear virtual area
 | 
						|
 */
 | 
						|
 | 
						|
#ifdef CONFIG_PPC_BOOK3E
 | 
						|
#define KERN_VIRT_START ASM_CONST(0x8000000000000000)
 | 
						|
#else
 | 
						|
#define KERN_VIRT_START ASM_CONST(0xD000000000000000)
 | 
						|
#endif
 | 
						|
#define KERN_VIRT_SIZE	ASM_CONST(0x0000100000000000)
 | 
						|
 | 
						|
/*
 | 
						|
 * The vmalloc space starts at the beginning of that region, and
 | 
						|
 * occupies half of it on hash CPUs and a quarter of it on Book3E
 | 
						|
 * (we keep a quarter for the virtual memmap)
 | 
						|
 */
 | 
						|
#define VMALLOC_START	KERN_VIRT_START
 | 
						|
#ifdef CONFIG_PPC_BOOK3E
 | 
						|
#define VMALLOC_SIZE	(KERN_VIRT_SIZE >> 2)
 | 
						|
#else
 | 
						|
#define VMALLOC_SIZE	(KERN_VIRT_SIZE >> 1)
 | 
						|
#endif
 | 
						|
#define VMALLOC_END	(VMALLOC_START + VMALLOC_SIZE)
 | 
						|
 | 
						|
/*
 | 
						|
 * The second half of the kernel virtual space is used for IO mappings,
 | 
						|
 * it's itself carved into the PIO region (ISA and PHB IO space) and
 | 
						|
 * the ioremap space
 | 
						|
 *
 | 
						|
 *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
 | 
						|
 *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
 | 
						|
 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
 | 
						|
 */
 | 
						|
#define KERN_IO_START	(KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
 | 
						|
#define FULL_IO_SIZE	0x80000000ul
 | 
						|
#define  ISA_IO_BASE	(KERN_IO_START)
 | 
						|
#define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
 | 
						|
#define  PHB_IO_BASE	(ISA_IO_END)
 | 
						|
#define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
 | 
						|
#define IOREMAP_BASE	(PHB_IO_END)
 | 
						|
#define IOREMAP_END	(KERN_VIRT_START + KERN_VIRT_SIZE)
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Region IDs
 | 
						|
 */
 | 
						|
#define REGION_SHIFT		60UL
 | 
						|
#define REGION_MASK		(0xfUL << REGION_SHIFT)
 | 
						|
#define REGION_ID(ea)		(((unsigned long)(ea)) >> REGION_SHIFT)
 | 
						|
 | 
						|
#define VMALLOC_REGION_ID	(REGION_ID(VMALLOC_START))
 | 
						|
#define KERNEL_REGION_ID	(REGION_ID(PAGE_OFFSET))
 | 
						|
#define VMEMMAP_REGION_ID	(0xfUL)	/* Server only */
 | 
						|
#define USER_REGION_ID		(0UL)
 | 
						|
 | 
						|
/*
 | 
						|
 * Defines the address of the vmemap area, in its own region on
 | 
						|
 * hash table CPUs and after the vmalloc space on Book3E
 | 
						|
 */
 | 
						|
#ifdef CONFIG_PPC_BOOK3E
 | 
						|
#define VMEMMAP_BASE		VMALLOC_END
 | 
						|
#define VMEMMAP_END		KERN_IO_START
 | 
						|
#else
 | 
						|
#define VMEMMAP_BASE		(VMEMMAP_REGION_ID << REGION_SHIFT)
 | 
						|
#endif
 | 
						|
#define vmemmap			((struct page *)VMEMMAP_BASE)
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Include the PTE bits definitions
 | 
						|
 */
 | 
						|
#ifdef CONFIG_PPC_BOOK3S
 | 
						|
#include <asm/pte-hash64.h>
 | 
						|
#else
 | 
						|
#include <asm/pte-book3e.h>
 | 
						|
#endif
 | 
						|
#include <asm/pte-common.h>
 | 
						|
 | 
						|
#ifdef CONFIG_PPC_MM_SLICES
 | 
						|
#define HAVE_ARCH_UNMAPPED_AREA
 | 
						|
#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
 | 
						|
#endif /* CONFIG_PPC_MM_SLICES */
 | 
						|
 | 
						|
#ifndef __ASSEMBLY__
 | 
						|
 | 
						|
/*
 | 
						|
 * This is the default implementation of various PTE accessors, it's
 | 
						|
 * used in all cases except Book3S with 64K pages where we have a
 | 
						|
 * concept of sub-pages
 | 
						|
 */
 | 
						|
#ifndef __real_pte
 | 
						|
 | 
						|
#ifdef STRICT_MM_TYPECHECKS
 | 
						|
#define __real_pte(e,p)		((real_pte_t){(e)})
 | 
						|
#define __rpte_to_pte(r)	((r).pte)
 | 
						|
#else
 | 
						|
#define __real_pte(e,p)		(e)
 | 
						|
#define __rpte_to_pte(r)	(__pte(r))
 | 
						|
#endif
 | 
						|
#define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> 12)
 | 
						|
 | 
						|
#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
 | 
						|
	do {							         \
 | 
						|
		index = 0;					         \
 | 
						|
		shift = mmu_psize_defs[psize].shift;		         \
 | 
						|
 | 
						|
#define pte_iterate_hashed_end() } while(0)
 | 
						|
 | 
						|
#ifdef CONFIG_PPC_HAS_HASH_64K
 | 
						|
#define pte_pagesize_index(mm, addr, pte)	get_slice_psize(mm, addr)
 | 
						|
#else
 | 
						|
#define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
 | 
						|
#endif
 | 
						|
 | 
						|
#endif /* __real_pte */
 | 
						|
 | 
						|
 | 
						|
/* pte_clear moved to later in this file */
 | 
						|
 | 
						|
#define PMD_BAD_BITS		(PTE_TABLE_SIZE-1)
 | 
						|
#define PUD_BAD_BITS		(PMD_TABLE_SIZE-1)
 | 
						|
 | 
						|
#define pmd_set(pmdp, pmdval) 	(pmd_val(*(pmdp)) = (pmdval))
 | 
						|
#define pmd_none(pmd)		(!pmd_val(pmd))
 | 
						|
#define	pmd_bad(pmd)		(!is_kernel_addr(pmd_val(pmd)) \
 | 
						|
				 || (pmd_val(pmd) & PMD_BAD_BITS))
 | 
						|
#define	pmd_present(pmd)	(!pmd_none(pmd))
 | 
						|
#define	pmd_clear(pmdp)		(pmd_val(*(pmdp)) = 0)
 | 
						|
#define pmd_page_vaddr(pmd)	(pmd_val(pmd) & ~PMD_MASKED_BITS)
 | 
						|
extern struct page *pmd_page(pmd_t pmd);
 | 
						|
 | 
						|
#define pud_set(pudp, pudval)	(pud_val(*(pudp)) = (pudval))
 | 
						|
#define pud_none(pud)		(!pud_val(pud))
 | 
						|
#define	pud_bad(pud)		(!is_kernel_addr(pud_val(pud)) \
 | 
						|
				 || (pud_val(pud) & PUD_BAD_BITS))
 | 
						|
#define pud_present(pud)	(pud_val(pud) != 0)
 | 
						|
#define pud_clear(pudp)		(pud_val(*(pudp)) = 0)
 | 
						|
#define pud_page_vaddr(pud)	(pud_val(pud) & ~PUD_MASKED_BITS)
 | 
						|
 | 
						|
extern struct page *pud_page(pud_t pud);
 | 
						|
 | 
						|
static inline pte_t pud_pte(pud_t pud)
 | 
						|
{
 | 
						|
	return __pte(pud_val(pud));
 | 
						|
}
 | 
						|
 | 
						|
static inline pud_t pte_pud(pte_t pte)
 | 
						|
{
 | 
						|
	return __pud(pte_val(pte));
 | 
						|
}
 | 
						|
#define pud_write(pud)		pte_write(pud_pte(pud))
 | 
						|
#define pgd_set(pgdp, pudp)	({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
 | 
						|
#define pgd_write(pgd)		pte_write(pgd_pte(pgd))
 | 
						|
 | 
						|
/*
 | 
						|
 * Find an entry in a page-table-directory.  We combine the address region
 | 
						|
 * (the high order N bits) and the pgd portion of the address.
 | 
						|
 */
 | 
						|
#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
 | 
						|
 | 
						|
#define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
 | 
						|
 | 
						|
#define pmd_offset(pudp,addr) \
 | 
						|
  (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
 | 
						|
 | 
						|
#define pte_offset_kernel(dir,addr) \
 | 
						|
  (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
 | 
						|
 | 
						|
#define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr))
 | 
						|
#define pte_unmap(pte)			do { } while(0)
 | 
						|
 | 
						|
/* to find an entry in a kernel page-table-directory */
 | 
						|
/* This now only contains the vmalloc pages */
 | 
						|
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
 | 
						|
extern void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
 | 
						|
			    pte_t *ptep, unsigned long pte, int huge);
 | 
						|
 | 
						|
/* Atomic PTE updates */
 | 
						|
static inline unsigned long pte_update(struct mm_struct *mm,
 | 
						|
				       unsigned long addr,
 | 
						|
				       pte_t *ptep, unsigned long clr,
 | 
						|
				       unsigned long set,
 | 
						|
				       int huge)
 | 
						|
{
 | 
						|
#ifdef PTE_ATOMIC_UPDATES
 | 
						|
	unsigned long old, tmp;
 | 
						|
 | 
						|
	__asm__ __volatile__(
 | 
						|
	"1:	ldarx	%0,0,%3		# pte_update\n\
 | 
						|
	andi.	%1,%0,%6\n\
 | 
						|
	bne-	1b \n\
 | 
						|
	andc	%1,%0,%4 \n\
 | 
						|
	or	%1,%1,%7\n\
 | 
						|
	stdcx.	%1,0,%3 \n\
 | 
						|
	bne-	1b"
 | 
						|
	: "=&r" (old), "=&r" (tmp), "=m" (*ptep)
 | 
						|
	: "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY), "r" (set)
 | 
						|
	: "cc" );
 | 
						|
#else
 | 
						|
	unsigned long old = pte_val(*ptep);
 | 
						|
	*ptep = __pte((old & ~clr) | set);
 | 
						|
#endif
 | 
						|
	/* huge pages use the old page table lock */
 | 
						|
	if (!huge)
 | 
						|
		assert_pte_locked(mm, addr);
 | 
						|
 | 
						|
#ifdef CONFIG_PPC_STD_MMU_64
 | 
						|
	if (old & _PAGE_HASHPTE)
 | 
						|
		hpte_need_flush(mm, addr, ptep, old, huge);
 | 
						|
#endif
 | 
						|
 | 
						|
	return old;
 | 
						|
}
 | 
						|
 | 
						|
static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
 | 
						|
					      unsigned long addr, pte_t *ptep)
 | 
						|
{
 | 
						|
	unsigned long old;
 | 
						|
 | 
						|
	if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
 | 
						|
		return 0;
 | 
						|
	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
 | 
						|
	return (old & _PAGE_ACCESSED) != 0;
 | 
						|
}
 | 
						|
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 | 
						|
#define ptep_test_and_clear_young(__vma, __addr, __ptep)		   \
 | 
						|
({									   \
 | 
						|
	int __r;							   \
 | 
						|
	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
 | 
						|
	__r;								   \
 | 
						|
})
 | 
						|
 | 
						|
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
 | 
						|
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
 | 
						|
				      pte_t *ptep)
 | 
						|
{
 | 
						|
 | 
						|
	if ((pte_val(*ptep) & _PAGE_RW) == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
 | 
						|
}
 | 
						|
 | 
						|
static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
 | 
						|
					   unsigned long addr, pte_t *ptep)
 | 
						|
{
 | 
						|
	if ((pte_val(*ptep) & _PAGE_RW) == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	pte_update(mm, addr, ptep, _PAGE_RW, 0, 1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We currently remove entries from the hashtable regardless of whether
 | 
						|
 * the entry was young or dirty. The generic routines only flush if the
 | 
						|
 * entry was young or dirty which is not good enough.
 | 
						|
 *
 | 
						|
 * We should be more intelligent about this but for the moment we override
 | 
						|
 * these functions and force a tlb flush unconditionally
 | 
						|
 */
 | 
						|
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 | 
						|
#define ptep_clear_flush_young(__vma, __address, __ptep)		\
 | 
						|
({									\
 | 
						|
	int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
 | 
						|
						  __ptep);		\
 | 
						|
	__young;							\
 | 
						|
})
 | 
						|
 | 
						|
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 | 
						|
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 | 
						|
				       unsigned long addr, pte_t *ptep)
 | 
						|
{
 | 
						|
	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
 | 
						|
	return __pte(old);
 | 
						|
}
 | 
						|
 | 
						|
static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
 | 
						|
			     pte_t * ptep)
 | 
						|
{
 | 
						|
	pte_update(mm, addr, ptep, ~0UL, 0, 0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Set the dirty and/or accessed bits atomically in a linux PTE, this
 | 
						|
 * function doesn't need to flush the hash entry
 | 
						|
 */
 | 
						|
static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
 | 
						|
{
 | 
						|
	unsigned long bits = pte_val(entry) &
 | 
						|
		(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
 | 
						|
 | 
						|
#ifdef PTE_ATOMIC_UPDATES
 | 
						|
	unsigned long old, tmp;
 | 
						|
 | 
						|
	__asm__ __volatile__(
 | 
						|
	"1:	ldarx	%0,0,%4\n\
 | 
						|
		andi.	%1,%0,%6\n\
 | 
						|
		bne-	1b \n\
 | 
						|
		or	%0,%3,%0\n\
 | 
						|
		stdcx.	%0,0,%4\n\
 | 
						|
		bne-	1b"
 | 
						|
	:"=&r" (old), "=&r" (tmp), "=m" (*ptep)
 | 
						|
	:"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
 | 
						|
	:"cc");
 | 
						|
#else
 | 
						|
	unsigned long old = pte_val(*ptep);
 | 
						|
	*ptep = __pte(old | bits);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#define __HAVE_ARCH_PTE_SAME
 | 
						|
#define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
 | 
						|
 | 
						|
#define pte_ERROR(e) \
 | 
						|
	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
 | 
						|
#define pmd_ERROR(e) \
 | 
						|
	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
 | 
						|
#define pgd_ERROR(e) \
 | 
						|
	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
 | 
						|
 | 
						|
/* Encode and de-code a swap entry */
 | 
						|
#define __swp_type(entry)	(((entry).val >> 1) & 0x3f)
 | 
						|
#define __swp_offset(entry)	((entry).val >> 8)
 | 
						|
#define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
 | 
						|
#define __pte_to_swp_entry(pte)	((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
 | 
						|
#define __swp_entry_to_pte(x)	((pte_t) { (x).val << PTE_RPN_SHIFT })
 | 
						|
 | 
						|
void pgtable_cache_add(unsigned shift, void (*ctor)(void *));
 | 
						|
void pgtable_cache_init(void);
 | 
						|
#endif /* __ASSEMBLY__ */
 | 
						|
 | 
						|
/*
 | 
						|
 * THP pages can't be special. So use the _PAGE_SPECIAL
 | 
						|
 */
 | 
						|
#define _PAGE_SPLITTING _PAGE_SPECIAL
 | 
						|
 | 
						|
/*
 | 
						|
 * We need to differentiate between explicit huge page and THP huge
 | 
						|
 * page, since THP huge page also need to track real subpage details
 | 
						|
 */
 | 
						|
#define _PAGE_THP_HUGE  _PAGE_4K_PFN
 | 
						|
 | 
						|
/*
 | 
						|
 * set of bits not changed in pmd_modify.
 | 
						|
 */
 | 
						|
#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS |		\
 | 
						|
			 _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPLITTING | \
 | 
						|
			 _PAGE_THP_HUGE)
 | 
						|
 | 
						|
#ifndef __ASSEMBLY__
 | 
						|
/*
 | 
						|
 * The linux hugepage PMD now include the pmd entries followed by the address
 | 
						|
 * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
 | 
						|
 * [ 1 bit secondary | 3 bit hidx | 1 bit valid | 000]. We use one byte per
 | 
						|
 * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
 | 
						|
 * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
 | 
						|
 *
 | 
						|
 * The last three bits are intentionally left to zero. This memory location
 | 
						|
 * are also used as normal page PTE pointers. So if we have any pointers
 | 
						|
 * left around while we collapse a hugepage, we need to make sure
 | 
						|
 * _PAGE_PRESENT bit of that is zero when we look at them
 | 
						|
 */
 | 
						|
static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
 | 
						|
{
 | 
						|
	return (hpte_slot_array[index] >> 3) & 0x1;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
 | 
						|
					   int index)
 | 
						|
{
 | 
						|
	return hpte_slot_array[index] >> 4;
 | 
						|
}
 | 
						|
 | 
						|
static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
 | 
						|
					unsigned int index, unsigned int hidx)
 | 
						|
{
 | 
						|
	hpte_slot_array[index] = hidx << 4 | 0x1 << 3;
 | 
						|
}
 | 
						|
 | 
						|
struct page *realmode_pfn_to_page(unsigned long pfn);
 | 
						|
 | 
						|
static inline char *get_hpte_slot_array(pmd_t *pmdp)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * The hpte hindex is stored in the pgtable whose address is in the
 | 
						|
	 * second half of the PMD
 | 
						|
	 *
 | 
						|
	 * Order this load with the test for pmd_trans_huge in the caller
 | 
						|
	 */
 | 
						|
	smp_rmb();
 | 
						|
	return *(char **)(pmdp + PTRS_PER_PMD);
 | 
						|
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
extern void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
 | 
						|
				   pmd_t *pmdp, unsigned long old_pmd);
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
 | 
						|
extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
 | 
						|
extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
 | 
						|
extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
 | 
						|
		       pmd_t *pmdp, pmd_t pmd);
 | 
						|
extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
 | 
						|
				 pmd_t *pmd);
 | 
						|
/*
 | 
						|
 *
 | 
						|
 * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
 | 
						|
 * page. The hugetlbfs page table walking and mangling paths are totally
 | 
						|
 * separated form the core VM paths and they're differentiated by
 | 
						|
 *  VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
 | 
						|
 *
 | 
						|
 * pmd_trans_huge() is defined as false at build time if
 | 
						|
 * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
 | 
						|
 * time in such case.
 | 
						|
 *
 | 
						|
 * For ppc64 we need to differntiate from explicit hugepages from THP, because
 | 
						|
 * for THP we also track the subpage details at the pmd level. We don't do
 | 
						|
 * that for explicit huge pages.
 | 
						|
 *
 | 
						|
 */
 | 
						|
static inline int pmd_trans_huge(pmd_t pmd)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * leaf pte for huge page, bottom two bits != 00
 | 
						|
	 */
 | 
						|
	return (pmd_val(pmd) & 0x3) && (pmd_val(pmd) & _PAGE_THP_HUGE);
 | 
						|
}
 | 
						|
 | 
						|
static inline int pmd_trans_splitting(pmd_t pmd)
 | 
						|
{
 | 
						|
	if (pmd_trans_huge(pmd))
 | 
						|
		return pmd_val(pmd) & _PAGE_SPLITTING;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
extern int has_transparent_hugepage(void);
 | 
						|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | 
						|
 | 
						|
static inline int pmd_large(pmd_t pmd)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * leaf pte for huge page, bottom two bits != 00
 | 
						|
	 */
 | 
						|
	return ((pmd_val(pmd) & 0x3) != 0x0);
 | 
						|
}
 | 
						|
 | 
						|
static inline pte_t pmd_pte(pmd_t pmd)
 | 
						|
{
 | 
						|
	return __pte(pmd_val(pmd));
 | 
						|
}
 | 
						|
 | 
						|
static inline pmd_t pte_pmd(pte_t pte)
 | 
						|
{
 | 
						|
	return __pmd(pte_val(pte));
 | 
						|
}
 | 
						|
 | 
						|
static inline pte_t *pmdp_ptep(pmd_t *pmd)
 | 
						|
{
 | 
						|
	return (pte_t *)pmd;
 | 
						|
}
 | 
						|
 | 
						|
#define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
 | 
						|
#define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
 | 
						|
#define pmd_young(pmd)		pte_young(pmd_pte(pmd))
 | 
						|
#define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
 | 
						|
#define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
 | 
						|
#define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
 | 
						|
#define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
 | 
						|
#define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
 | 
						|
 | 
						|
#define __HAVE_ARCH_PMD_WRITE
 | 
						|
#define pmd_write(pmd)		pte_write(pmd_pte(pmd))
 | 
						|
 | 
						|
static inline pmd_t pmd_mkhuge(pmd_t pmd)
 | 
						|
{
 | 
						|
	/* Do nothing, mk_pmd() does this part.  */
 | 
						|
	return pmd;
 | 
						|
}
 | 
						|
 | 
						|
static inline pmd_t pmd_mknotpresent(pmd_t pmd)
 | 
						|
{
 | 
						|
	pmd_val(pmd) &= ~_PAGE_PRESENT;
 | 
						|
	return pmd;
 | 
						|
}
 | 
						|
 | 
						|
static inline pmd_t pmd_mksplitting(pmd_t pmd)
 | 
						|
{
 | 
						|
	pmd_val(pmd) |= _PAGE_SPLITTING;
 | 
						|
	return pmd;
 | 
						|
}
 | 
						|
 | 
						|
#define __HAVE_ARCH_PMD_SAME
 | 
						|
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
 | 
						|
{
 | 
						|
	return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0);
 | 
						|
}
 | 
						|
 | 
						|
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
 | 
						|
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
 | 
						|
				 unsigned long address, pmd_t *pmdp,
 | 
						|
				 pmd_t entry, int dirty);
 | 
						|
 | 
						|
extern unsigned long pmd_hugepage_update(struct mm_struct *mm,
 | 
						|
					 unsigned long addr,
 | 
						|
					 pmd_t *pmdp,
 | 
						|
					 unsigned long clr,
 | 
						|
					 unsigned long set);
 | 
						|
 | 
						|
static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
 | 
						|
					      unsigned long addr, pmd_t *pmdp)
 | 
						|
{
 | 
						|
	unsigned long old;
 | 
						|
 | 
						|
	if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
 | 
						|
		return 0;
 | 
						|
	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
 | 
						|
	return ((old & _PAGE_ACCESSED) != 0);
 | 
						|
}
 | 
						|
 | 
						|
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
 | 
						|
extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 | 
						|
				     unsigned long address, pmd_t *pmdp);
 | 
						|
#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 | 
						|
extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 | 
						|
				  unsigned long address, pmd_t *pmdp);
 | 
						|
 | 
						|
#define __HAVE_ARCH_PMDP_GET_AND_CLEAR
 | 
						|
extern pmd_t pmdp_get_and_clear(struct mm_struct *mm,
 | 
						|
				unsigned long addr, pmd_t *pmdp);
 | 
						|
 | 
						|
#define __HAVE_ARCH_PMDP_CLEAR_FLUSH
 | 
						|
extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address,
 | 
						|
			      pmd_t *pmdp);
 | 
						|
 | 
						|
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
 | 
						|
static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
 | 
						|
				      pmd_t *pmdp)
 | 
						|
{
 | 
						|
 | 
						|
	if ((pmd_val(*pmdp) & _PAGE_RW) == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW, 0);
 | 
						|
}
 | 
						|
 | 
						|
#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
 | 
						|
extern void pmdp_splitting_flush(struct vm_area_struct *vma,
 | 
						|
				 unsigned long address, pmd_t *pmdp);
 | 
						|
 | 
						|
#define __HAVE_ARCH_PGTABLE_DEPOSIT
 | 
						|
extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 | 
						|
				       pgtable_t pgtable);
 | 
						|
#define __HAVE_ARCH_PGTABLE_WITHDRAW
 | 
						|
extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
 | 
						|
 | 
						|
#define __HAVE_ARCH_PMDP_INVALIDATE
 | 
						|
extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
 | 
						|
			    pmd_t *pmdp);
 | 
						|
 | 
						|
#define pmd_move_must_withdraw pmd_move_must_withdraw
 | 
						|
struct spinlock;
 | 
						|
static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
 | 
						|
					 struct spinlock *old_pmd_ptl)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Archs like ppc64 use pgtable to store per pmd
 | 
						|
	 * specific information. So when we switch the pmd,
 | 
						|
	 * we should also withdraw and deposit the pgtable
 | 
						|
	 */
 | 
						|
	return true;
 | 
						|
}
 | 
						|
#endif /* __ASSEMBLY__ */
 | 
						|
#endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */
 |