Convert many (but not all) printk(KERN_* to pr_* to simplify the code. We take the opportunity to join some printk lines together so we don't split the message across several lines, and we also add a few levels to some messages which were previously missing them. Tested-by: Andrew Lunn <andrew@lunn.ch> Tested-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
		
			
				
	
	
		
			318 lines
		
	
	
	
		
			8.6 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			318 lines
		
	
	
	
		
			8.6 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * arch/arm/kernel/topology.c
 | 
						|
 *
 | 
						|
 * Copyright (C) 2011 Linaro Limited.
 | 
						|
 * Written by: Vincent Guittot
 | 
						|
 *
 | 
						|
 * based on arch/sh/kernel/topology.c
 | 
						|
 *
 | 
						|
 * This file is subject to the terms and conditions of the GNU General Public
 | 
						|
 * License.  See the file "COPYING" in the main directory of this archive
 | 
						|
 * for more details.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/cpumask.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/percpu.h>
 | 
						|
#include <linux/node.h>
 | 
						|
#include <linux/nodemask.h>
 | 
						|
#include <linux/of.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
 | 
						|
#include <asm/cputype.h>
 | 
						|
#include <asm/topology.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * cpu capacity scale management
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * cpu capacity table
 | 
						|
 * This per cpu data structure describes the relative capacity of each core.
 | 
						|
 * On a heteregenous system, cores don't have the same computation capacity
 | 
						|
 * and we reflect that difference in the cpu_capacity field so the scheduler
 | 
						|
 * can take this difference into account during load balance. A per cpu
 | 
						|
 * structure is preferred because each CPU updates its own cpu_capacity field
 | 
						|
 * during the load balance except for idle cores. One idle core is selected
 | 
						|
 * to run the rebalance_domains for all idle cores and the cpu_capacity can be
 | 
						|
 * updated during this sequence.
 | 
						|
 */
 | 
						|
static DEFINE_PER_CPU(unsigned long, cpu_scale);
 | 
						|
 | 
						|
unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
 | 
						|
{
 | 
						|
	return per_cpu(cpu_scale, cpu);
 | 
						|
}
 | 
						|
 | 
						|
static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
 | 
						|
{
 | 
						|
	per_cpu(cpu_scale, cpu) = capacity;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_OF
 | 
						|
struct cpu_efficiency {
 | 
						|
	const char *compatible;
 | 
						|
	unsigned long efficiency;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Table of relative efficiency of each processors
 | 
						|
 * The efficiency value must fit in 20bit and the final
 | 
						|
 * cpu_scale value must be in the range
 | 
						|
 *   0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
 | 
						|
 * in order to return at most 1 when DIV_ROUND_CLOSEST
 | 
						|
 * is used to compute the capacity of a CPU.
 | 
						|
 * Processors that are not defined in the table,
 | 
						|
 * use the default SCHED_CAPACITY_SCALE value for cpu_scale.
 | 
						|
 */
 | 
						|
static const struct cpu_efficiency table_efficiency[] = {
 | 
						|
	{"arm,cortex-a15", 3891},
 | 
						|
	{"arm,cortex-a7",  2048},
 | 
						|
	{NULL, },
 | 
						|
};
 | 
						|
 | 
						|
static unsigned long *__cpu_capacity;
 | 
						|
#define cpu_capacity(cpu)	__cpu_capacity[cpu]
 | 
						|
 | 
						|
static unsigned long middle_capacity = 1;
 | 
						|
 | 
						|
/*
 | 
						|
 * Iterate all CPUs' descriptor in DT and compute the efficiency
 | 
						|
 * (as per table_efficiency). Also calculate a middle efficiency
 | 
						|
 * as close as possible to  (max{eff_i} - min{eff_i}) / 2
 | 
						|
 * This is later used to scale the cpu_capacity field such that an
 | 
						|
 * 'average' CPU is of middle capacity. Also see the comments near
 | 
						|
 * table_efficiency[] and update_cpu_capacity().
 | 
						|
 */
 | 
						|
static void __init parse_dt_topology(void)
 | 
						|
{
 | 
						|
	const struct cpu_efficiency *cpu_eff;
 | 
						|
	struct device_node *cn = NULL;
 | 
						|
	unsigned long min_capacity = ULONG_MAX;
 | 
						|
	unsigned long max_capacity = 0;
 | 
						|
	unsigned long capacity = 0;
 | 
						|
	int cpu = 0;
 | 
						|
 | 
						|
	__cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
 | 
						|
				 GFP_NOWAIT);
 | 
						|
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		const u32 *rate;
 | 
						|
		int len;
 | 
						|
 | 
						|
		/* too early to use cpu->of_node */
 | 
						|
		cn = of_get_cpu_node(cpu, NULL);
 | 
						|
		if (!cn) {
 | 
						|
			pr_err("missing device node for CPU %d\n", cpu);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
 | 
						|
			if (of_device_is_compatible(cn, cpu_eff->compatible))
 | 
						|
				break;
 | 
						|
 | 
						|
		if (cpu_eff->compatible == NULL)
 | 
						|
			continue;
 | 
						|
 | 
						|
		rate = of_get_property(cn, "clock-frequency", &len);
 | 
						|
		if (!rate || len != 4) {
 | 
						|
			pr_err("%s missing clock-frequency property\n",
 | 
						|
				cn->full_name);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
 | 
						|
 | 
						|
		/* Save min capacity of the system */
 | 
						|
		if (capacity < min_capacity)
 | 
						|
			min_capacity = capacity;
 | 
						|
 | 
						|
		/* Save max capacity of the system */
 | 
						|
		if (capacity > max_capacity)
 | 
						|
			max_capacity = capacity;
 | 
						|
 | 
						|
		cpu_capacity(cpu) = capacity;
 | 
						|
	}
 | 
						|
 | 
						|
	/* If min and max capacities are equals, we bypass the update of the
 | 
						|
	 * cpu_scale because all CPUs have the same capacity. Otherwise, we
 | 
						|
	 * compute a middle_capacity factor that will ensure that the capacity
 | 
						|
	 * of an 'average' CPU of the system will be as close as possible to
 | 
						|
	 * SCHED_CAPACITY_SCALE, which is the default value, but with the
 | 
						|
	 * constraint explained near table_efficiency[].
 | 
						|
	 */
 | 
						|
	if (4*max_capacity < (3*(max_capacity + min_capacity)))
 | 
						|
		middle_capacity = (min_capacity + max_capacity)
 | 
						|
				>> (SCHED_CAPACITY_SHIFT+1);
 | 
						|
	else
 | 
						|
		middle_capacity = ((max_capacity / 3)
 | 
						|
				>> (SCHED_CAPACITY_SHIFT-1)) + 1;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Look for a customed capacity of a CPU in the cpu_capacity table during the
 | 
						|
 * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
 | 
						|
 * function returns directly for SMP system.
 | 
						|
 */
 | 
						|
static void update_cpu_capacity(unsigned int cpu)
 | 
						|
{
 | 
						|
	if (!cpu_capacity(cpu))
 | 
						|
		return;
 | 
						|
 | 
						|
	set_capacity_scale(cpu, cpu_capacity(cpu) / middle_capacity);
 | 
						|
 | 
						|
	pr_info("CPU%u: update cpu_capacity %lu\n",
 | 
						|
		cpu, arch_scale_cpu_capacity(NULL, cpu));
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
static inline void parse_dt_topology(void) {}
 | 
						|
static inline void update_cpu_capacity(unsigned int cpuid) {}
 | 
						|
#endif
 | 
						|
 | 
						|
 /*
 | 
						|
 * cpu topology table
 | 
						|
 */
 | 
						|
struct cputopo_arm cpu_topology[NR_CPUS];
 | 
						|
EXPORT_SYMBOL_GPL(cpu_topology);
 | 
						|
 | 
						|
const struct cpumask *cpu_coregroup_mask(int cpu)
 | 
						|
{
 | 
						|
	return &cpu_topology[cpu].core_sibling;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The current assumption is that we can power gate each core independently.
 | 
						|
 * This will be superseded by DT binding once available.
 | 
						|
 */
 | 
						|
const struct cpumask *cpu_corepower_mask(int cpu)
 | 
						|
{
 | 
						|
	return &cpu_topology[cpu].thread_sibling;
 | 
						|
}
 | 
						|
 | 
						|
static void update_siblings_masks(unsigned int cpuid)
 | 
						|
{
 | 
						|
	struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	/* update core and thread sibling masks */
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		cpu_topo = &cpu_topology[cpu];
 | 
						|
 | 
						|
		if (cpuid_topo->socket_id != cpu_topo->socket_id)
 | 
						|
			continue;
 | 
						|
 | 
						|
		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
 | 
						|
		if (cpu != cpuid)
 | 
						|
			cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
 | 
						|
 | 
						|
		if (cpuid_topo->core_id != cpu_topo->core_id)
 | 
						|
			continue;
 | 
						|
 | 
						|
		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
 | 
						|
		if (cpu != cpuid)
 | 
						|
			cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
 | 
						|
	}
 | 
						|
	smp_wmb();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * store_cpu_topology is called at boot when only one cpu is running
 | 
						|
 * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
 | 
						|
 * which prevents simultaneous write access to cpu_topology array
 | 
						|
 */
 | 
						|
void store_cpu_topology(unsigned int cpuid)
 | 
						|
{
 | 
						|
	struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
 | 
						|
	unsigned int mpidr;
 | 
						|
 | 
						|
	/* If the cpu topology has been already set, just return */
 | 
						|
	if (cpuid_topo->core_id != -1)
 | 
						|
		return;
 | 
						|
 | 
						|
	mpidr = read_cpuid_mpidr();
 | 
						|
 | 
						|
	/* create cpu topology mapping */
 | 
						|
	if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
 | 
						|
		/*
 | 
						|
		 * This is a multiprocessor system
 | 
						|
		 * multiprocessor format & multiprocessor mode field are set
 | 
						|
		 */
 | 
						|
 | 
						|
		if (mpidr & MPIDR_MT_BITMASK) {
 | 
						|
			/* core performance interdependency */
 | 
						|
			cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 | 
						|
			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 | 
						|
			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
 | 
						|
		} else {
 | 
						|
			/* largely independent cores */
 | 
						|
			cpuid_topo->thread_id = -1;
 | 
						|
			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 | 
						|
			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * This is an uniprocessor system
 | 
						|
		 * we are in multiprocessor format but uniprocessor system
 | 
						|
		 * or in the old uniprocessor format
 | 
						|
		 */
 | 
						|
		cpuid_topo->thread_id = -1;
 | 
						|
		cpuid_topo->core_id = 0;
 | 
						|
		cpuid_topo->socket_id = -1;
 | 
						|
	}
 | 
						|
 | 
						|
	update_siblings_masks(cpuid);
 | 
						|
 | 
						|
	update_cpu_capacity(cpuid);
 | 
						|
 | 
						|
	pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
 | 
						|
		cpuid, cpu_topology[cpuid].thread_id,
 | 
						|
		cpu_topology[cpuid].core_id,
 | 
						|
		cpu_topology[cpuid].socket_id, mpidr);
 | 
						|
}
 | 
						|
 | 
						|
static inline int cpu_corepower_flags(void)
 | 
						|
{
 | 
						|
	return SD_SHARE_PKG_RESOURCES  | SD_SHARE_POWERDOMAIN;
 | 
						|
}
 | 
						|
 | 
						|
static struct sched_domain_topology_level arm_topology[] = {
 | 
						|
#ifdef CONFIG_SCHED_MC
 | 
						|
	{ cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) },
 | 
						|
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
 | 
						|
#endif
 | 
						|
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
 | 
						|
	{ NULL, },
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * init_cpu_topology is called at boot when only one cpu is running
 | 
						|
 * which prevent simultaneous write access to cpu_topology array
 | 
						|
 */
 | 
						|
void __init init_cpu_topology(void)
 | 
						|
{
 | 
						|
	unsigned int cpu;
 | 
						|
 | 
						|
	/* init core mask and capacity */
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
 | 
						|
 | 
						|
		cpu_topo->thread_id = -1;
 | 
						|
		cpu_topo->core_id =  -1;
 | 
						|
		cpu_topo->socket_id = -1;
 | 
						|
		cpumask_clear(&cpu_topo->core_sibling);
 | 
						|
		cpumask_clear(&cpu_topo->thread_sibling);
 | 
						|
 | 
						|
		set_capacity_scale(cpu, SCHED_CAPACITY_SCALE);
 | 
						|
	}
 | 
						|
	smp_wmb();
 | 
						|
 | 
						|
	parse_dt_topology();
 | 
						|
 | 
						|
	/* Set scheduler topology descriptor */
 | 
						|
	set_sched_topology(arm_topology);
 | 
						|
}
 |