Change vunmap_pmd_range() and vunmap_pud_range() to tear down huge KVA mappings when they are set. pud_clear_huge() and pmd_clear_huge() return zero when no-operation is performed, i.e. huge page mapping was not used. These changes are only enabled when CONFIG_HAVE_ARCH_HUGE_VMAP is defined on the architecture. [akpm@linux-foundation.org: use consistent code layout] Signed-off-by: Toshi Kani <toshi.kani@hp.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Robert Elliott <Elliott@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			730 lines
		
	
	
	
		
			20 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			730 lines
		
	
	
	
		
			20 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
#ifndef _ASM_GENERIC_PGTABLE_H
 | 
						|
#define _ASM_GENERIC_PGTABLE_H
 | 
						|
 | 
						|
#ifndef __ASSEMBLY__
 | 
						|
#ifdef CONFIG_MMU
 | 
						|
 | 
						|
#include <linux/mm_types.h>
 | 
						|
#include <linux/bug.h>
 | 
						|
#include <linux/errno.h>
 | 
						|
 | 
						|
#if 4 - defined(__PAGETABLE_PUD_FOLDED) - defined(__PAGETABLE_PMD_FOLDED) != \
 | 
						|
	CONFIG_PGTABLE_LEVELS
 | 
						|
#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{PUD,PMD}_FOLDED
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * On almost all architectures and configurations, 0 can be used as the
 | 
						|
 * upper ceiling to free_pgtables(): on many architectures it has the same
 | 
						|
 * effect as using TASK_SIZE.  However, there is one configuration which
 | 
						|
 * must impose a more careful limit, to avoid freeing kernel pgtables.
 | 
						|
 */
 | 
						|
#ifndef USER_PGTABLES_CEILING
 | 
						|
#define USER_PGTABLES_CEILING	0UL
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 | 
						|
extern int ptep_set_access_flags(struct vm_area_struct *vma,
 | 
						|
				 unsigned long address, pte_t *ptep,
 | 
						|
				 pte_t entry, int dirty);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
 | 
						|
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
 | 
						|
				 unsigned long address, pmd_t *pmdp,
 | 
						|
				 pmd_t entry, int dirty);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 | 
						|
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 | 
						|
					    unsigned long address,
 | 
						|
					    pte_t *ptep)
 | 
						|
{
 | 
						|
	pte_t pte = *ptep;
 | 
						|
	int r = 1;
 | 
						|
	if (!pte_young(pte))
 | 
						|
		r = 0;
 | 
						|
	else
 | 
						|
		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
 | 
						|
	return r;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 | 
						|
					    unsigned long address,
 | 
						|
					    pmd_t *pmdp)
 | 
						|
{
 | 
						|
	pmd_t pmd = *pmdp;
 | 
						|
	int r = 1;
 | 
						|
	if (!pmd_young(pmd))
 | 
						|
		r = 0;
 | 
						|
	else
 | 
						|
		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
 | 
						|
	return r;
 | 
						|
}
 | 
						|
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
 | 
						|
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 | 
						|
					    unsigned long address,
 | 
						|
					    pmd_t *pmdp)
 | 
						|
{
 | 
						|
	BUG();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 | 
						|
int ptep_clear_flush_young(struct vm_area_struct *vma,
 | 
						|
			   unsigned long address, pte_t *ptep);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 | 
						|
int pmdp_clear_flush_young(struct vm_area_struct *vma,
 | 
						|
			   unsigned long address, pmd_t *pmdp);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
 | 
						|
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 | 
						|
				       unsigned long address,
 | 
						|
				       pte_t *ptep)
 | 
						|
{
 | 
						|
	pte_t pte = *ptep;
 | 
						|
	pte_clear(mm, address, ptep);
 | 
						|
	return pte;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
 | 
						|
				       unsigned long address,
 | 
						|
				       pmd_t *pmdp)
 | 
						|
{
 | 
						|
	pmd_t pmd = *pmdp;
 | 
						|
	pmd_clear(pmdp);
 | 
						|
	return pmd;
 | 
						|
}
 | 
						|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR_FULL
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
static inline pmd_t pmdp_get_and_clear_full(struct mm_struct *mm,
 | 
						|
					    unsigned long address, pmd_t *pmdp,
 | 
						|
					    int full)
 | 
						|
{
 | 
						|
	return pmdp_get_and_clear(mm, address, pmdp);
 | 
						|
}
 | 
						|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 | 
						|
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 | 
						|
					    unsigned long address, pte_t *ptep,
 | 
						|
					    int full)
 | 
						|
{
 | 
						|
	pte_t pte;
 | 
						|
	pte = ptep_get_and_clear(mm, address, ptep);
 | 
						|
	return pte;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Some architectures may be able to avoid expensive synchronization
 | 
						|
 * primitives when modifications are made to PTE's which are already
 | 
						|
 * not present, or in the process of an address space destruction.
 | 
						|
 */
 | 
						|
#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
 | 
						|
static inline void pte_clear_not_present_full(struct mm_struct *mm,
 | 
						|
					      unsigned long address,
 | 
						|
					      pte_t *ptep,
 | 
						|
					      int full)
 | 
						|
{
 | 
						|
	pte_clear(mm, address, ptep);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
 | 
						|
extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
 | 
						|
			      unsigned long address,
 | 
						|
			      pte_t *ptep);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
 | 
						|
extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
 | 
						|
			      unsigned long address,
 | 
						|
			      pmd_t *pmdp);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
 | 
						|
struct mm_struct;
 | 
						|
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
 | 
						|
{
 | 
						|
	pte_t old_pte = *ptep;
 | 
						|
	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 | 
						|
				      unsigned long address, pmd_t *pmdp)
 | 
						|
{
 | 
						|
	pmd_t old_pmd = *pmdp;
 | 
						|
	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
 | 
						|
}
 | 
						|
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
 | 
						|
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 | 
						|
				      unsigned long address, pmd_t *pmdp)
 | 
						|
{
 | 
						|
	BUG();
 | 
						|
}
 | 
						|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
 | 
						|
extern void pmdp_splitting_flush(struct vm_area_struct *vma,
 | 
						|
				 unsigned long address, pmd_t *pmdp);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
 | 
						|
extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 | 
						|
				       pgtable_t pgtable);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
 | 
						|
extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PMDP_INVALIDATE
 | 
						|
extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
 | 
						|
			    pmd_t *pmdp);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PTE_SAME
 | 
						|
static inline int pte_same(pte_t pte_a, pte_t pte_b)
 | 
						|
{
 | 
						|
	return pte_val(pte_a) == pte_val(pte_b);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PTE_UNUSED
 | 
						|
/*
 | 
						|
 * Some architectures provide facilities to virtualization guests
 | 
						|
 * so that they can flag allocated pages as unused. This allows the
 | 
						|
 * host to transparently reclaim unused pages. This function returns
 | 
						|
 * whether the pte's page is unused.
 | 
						|
 */
 | 
						|
static inline int pte_unused(pte_t pte)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PMD_SAME
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
 | 
						|
{
 | 
						|
	return pmd_val(pmd_a) == pmd_val(pmd_b);
 | 
						|
}
 | 
						|
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
 | 
						|
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
 | 
						|
{
 | 
						|
	BUG();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
 | 
						|
#define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_MOVE_PTE
 | 
						|
#define move_pte(pte, prot, old_addr, new_addr)	(pte)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pte_accessible
 | 
						|
# define pte_accessible(mm, pte)	((void)(pte), 1)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef flush_tlb_fix_spurious_fault
 | 
						|
#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pgprot_noncached
 | 
						|
#define pgprot_noncached(prot)	(prot)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pgprot_writecombine
 | 
						|
#define pgprot_writecombine pgprot_noncached
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pgprot_device
 | 
						|
#define pgprot_device pgprot_noncached
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pgprot_modify
 | 
						|
#define pgprot_modify pgprot_modify
 | 
						|
static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
 | 
						|
{
 | 
						|
	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
 | 
						|
		newprot = pgprot_noncached(newprot);
 | 
						|
	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
 | 
						|
		newprot = pgprot_writecombine(newprot);
 | 
						|
	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
 | 
						|
		newprot = pgprot_device(newprot);
 | 
						|
	return newprot;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * When walking page tables, get the address of the next boundary,
 | 
						|
 * or the end address of the range if that comes earlier.  Although no
 | 
						|
 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
 | 
						|
 */
 | 
						|
 | 
						|
#define pgd_addr_end(addr, end)						\
 | 
						|
({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
 | 
						|
	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 | 
						|
})
 | 
						|
 | 
						|
#ifndef pud_addr_end
 | 
						|
#define pud_addr_end(addr, end)						\
 | 
						|
({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
 | 
						|
	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 | 
						|
})
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pmd_addr_end
 | 
						|
#define pmd_addr_end(addr, end)						\
 | 
						|
({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
 | 
						|
	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 | 
						|
})
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * When walking page tables, we usually want to skip any p?d_none entries;
 | 
						|
 * and any p?d_bad entries - reporting the error before resetting to none.
 | 
						|
 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
 | 
						|
 */
 | 
						|
void pgd_clear_bad(pgd_t *);
 | 
						|
void pud_clear_bad(pud_t *);
 | 
						|
void pmd_clear_bad(pmd_t *);
 | 
						|
 | 
						|
static inline int pgd_none_or_clear_bad(pgd_t *pgd)
 | 
						|
{
 | 
						|
	if (pgd_none(*pgd))
 | 
						|
		return 1;
 | 
						|
	if (unlikely(pgd_bad(*pgd))) {
 | 
						|
		pgd_clear_bad(pgd);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int pud_none_or_clear_bad(pud_t *pud)
 | 
						|
{
 | 
						|
	if (pud_none(*pud))
 | 
						|
		return 1;
 | 
						|
	if (unlikely(pud_bad(*pud))) {
 | 
						|
		pud_clear_bad(pud);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int pmd_none_or_clear_bad(pmd_t *pmd)
 | 
						|
{
 | 
						|
	if (pmd_none(*pmd))
 | 
						|
		return 1;
 | 
						|
	if (unlikely(pmd_bad(*pmd))) {
 | 
						|
		pmd_clear_bad(pmd);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
 | 
						|
					     unsigned long addr,
 | 
						|
					     pte_t *ptep)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Get the current pte state, but zero it out to make it
 | 
						|
	 * non-present, preventing the hardware from asynchronously
 | 
						|
	 * updating it.
 | 
						|
	 */
 | 
						|
	return ptep_get_and_clear(mm, addr, ptep);
 | 
						|
}
 | 
						|
 | 
						|
static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
 | 
						|
					     unsigned long addr,
 | 
						|
					     pte_t *ptep, pte_t pte)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * The pte is non-present, so there's no hardware state to
 | 
						|
	 * preserve.
 | 
						|
	 */
 | 
						|
	set_pte_at(mm, addr, ptep, pte);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
 | 
						|
/*
 | 
						|
 * Start a pte protection read-modify-write transaction, which
 | 
						|
 * protects against asynchronous hardware modifications to the pte.
 | 
						|
 * The intention is not to prevent the hardware from making pte
 | 
						|
 * updates, but to prevent any updates it may make from being lost.
 | 
						|
 *
 | 
						|
 * This does not protect against other software modifications of the
 | 
						|
 * pte; the appropriate pte lock must be held over the transation.
 | 
						|
 *
 | 
						|
 * Note that this interface is intended to be batchable, meaning that
 | 
						|
 * ptep_modify_prot_commit may not actually update the pte, but merely
 | 
						|
 * queue the update to be done at some later time.  The update must be
 | 
						|
 * actually committed before the pte lock is released, however.
 | 
						|
 */
 | 
						|
static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
 | 
						|
					   unsigned long addr,
 | 
						|
					   pte_t *ptep)
 | 
						|
{
 | 
						|
	return __ptep_modify_prot_start(mm, addr, ptep);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Commit an update to a pte, leaving any hardware-controlled bits in
 | 
						|
 * the PTE unmodified.
 | 
						|
 */
 | 
						|
static inline void ptep_modify_prot_commit(struct mm_struct *mm,
 | 
						|
					   unsigned long addr,
 | 
						|
					   pte_t *ptep, pte_t pte)
 | 
						|
{
 | 
						|
	__ptep_modify_prot_commit(mm, addr, ptep, pte);
 | 
						|
}
 | 
						|
#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
 | 
						|
#endif /* CONFIG_MMU */
 | 
						|
 | 
						|
/*
 | 
						|
 * A facility to provide lazy MMU batching.  This allows PTE updates and
 | 
						|
 * page invalidations to be delayed until a call to leave lazy MMU mode
 | 
						|
 * is issued.  Some architectures may benefit from doing this, and it is
 | 
						|
 * beneficial for both shadow and direct mode hypervisors, which may batch
 | 
						|
 * the PTE updates which happen during this window.  Note that using this
 | 
						|
 * interface requires that read hazards be removed from the code.  A read
 | 
						|
 * hazard could result in the direct mode hypervisor case, since the actual
 | 
						|
 * write to the page tables may not yet have taken place, so reads though
 | 
						|
 * a raw PTE pointer after it has been modified are not guaranteed to be
 | 
						|
 * up to date.  This mode can only be entered and left under the protection of
 | 
						|
 * the page table locks for all page tables which may be modified.  In the UP
 | 
						|
 * case, this is required so that preemption is disabled, and in the SMP case,
 | 
						|
 * it must synchronize the delayed page table writes properly on other CPUs.
 | 
						|
 */
 | 
						|
#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
 | 
						|
#define arch_enter_lazy_mmu_mode()	do {} while (0)
 | 
						|
#define arch_leave_lazy_mmu_mode()	do {} while (0)
 | 
						|
#define arch_flush_lazy_mmu_mode()	do {} while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * A facility to provide batching of the reload of page tables and
 | 
						|
 * other process state with the actual context switch code for
 | 
						|
 * paravirtualized guests.  By convention, only one of the batched
 | 
						|
 * update (lazy) modes (CPU, MMU) should be active at any given time,
 | 
						|
 * entry should never be nested, and entry and exits should always be
 | 
						|
 * paired.  This is for sanity of maintaining and reasoning about the
 | 
						|
 * kernel code.  In this case, the exit (end of the context switch) is
 | 
						|
 * in architecture-specific code, and so doesn't need a generic
 | 
						|
 * definition.
 | 
						|
 */
 | 
						|
#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
 | 
						|
#define arch_start_context_switch(prev)	do {} while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
 | 
						|
static inline int pte_soft_dirty(pte_t pte)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int pmd_soft_dirty(pmd_t pmd)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline pte_t pte_mksoft_dirty(pte_t pte)
 | 
						|
{
 | 
						|
	return pte;
 | 
						|
}
 | 
						|
 | 
						|
static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
 | 
						|
{
 | 
						|
	return pmd;
 | 
						|
}
 | 
						|
 | 
						|
static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
 | 
						|
{
 | 
						|
	return pte;
 | 
						|
}
 | 
						|
 | 
						|
static inline int pte_swp_soft_dirty(pte_t pte)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
 | 
						|
{
 | 
						|
	return pte;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_PFNMAP_TRACKING
 | 
						|
/*
 | 
						|
 * Interfaces that can be used by architecture code to keep track of
 | 
						|
 * memory type of pfn mappings specified by the remap_pfn_range,
 | 
						|
 * vm_insert_pfn.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * track_pfn_remap is called when a _new_ pfn mapping is being established
 | 
						|
 * by remap_pfn_range() for physical range indicated by pfn and size.
 | 
						|
 */
 | 
						|
static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 | 
						|
				  unsigned long pfn, unsigned long addr,
 | 
						|
				  unsigned long size)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * track_pfn_insert is called when a _new_ single pfn is established
 | 
						|
 * by vm_insert_pfn().
 | 
						|
 */
 | 
						|
static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
 | 
						|
				   unsigned long pfn)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * track_pfn_copy is called when vma that is covering the pfnmap gets
 | 
						|
 * copied through copy_page_range().
 | 
						|
 */
 | 
						|
static inline int track_pfn_copy(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
 | 
						|
 * untrack can be called for a specific region indicated by pfn and size or
 | 
						|
 * can be for the entire vma (in which case pfn, size are zero).
 | 
						|
 */
 | 
						|
static inline void untrack_pfn(struct vm_area_struct *vma,
 | 
						|
			       unsigned long pfn, unsigned long size)
 | 
						|
{
 | 
						|
}
 | 
						|
#else
 | 
						|
extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 | 
						|
			   unsigned long pfn, unsigned long addr,
 | 
						|
			   unsigned long size);
 | 
						|
extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
 | 
						|
			    unsigned long pfn);
 | 
						|
extern int track_pfn_copy(struct vm_area_struct *vma);
 | 
						|
extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
 | 
						|
			unsigned long size);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef __HAVE_COLOR_ZERO_PAGE
 | 
						|
static inline int is_zero_pfn(unsigned long pfn)
 | 
						|
{
 | 
						|
	extern unsigned long zero_pfn;
 | 
						|
	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
 | 
						|
	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
 | 
						|
}
 | 
						|
 | 
						|
#define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
 | 
						|
 | 
						|
#else
 | 
						|
static inline int is_zero_pfn(unsigned long pfn)
 | 
						|
{
 | 
						|
	extern unsigned long zero_pfn;
 | 
						|
	return pfn == zero_pfn;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned long my_zero_pfn(unsigned long addr)
 | 
						|
{
 | 
						|
	extern unsigned long zero_pfn;
 | 
						|
	return zero_pfn;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_MMU
 | 
						|
 | 
						|
#ifndef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
static inline int pmd_trans_huge(pmd_t pmd)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static inline int pmd_trans_splitting(pmd_t pmd)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#ifndef __HAVE_ARCH_PMD_WRITE
 | 
						|
static inline int pmd_write(pmd_t pmd)
 | 
						|
{
 | 
						|
	BUG();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif /* __HAVE_ARCH_PMD_WRITE */
 | 
						|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | 
						|
 | 
						|
#ifndef pmd_read_atomic
 | 
						|
static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Depend on compiler for an atomic pmd read. NOTE: this is
 | 
						|
	 * only going to work, if the pmdval_t isn't larger than
 | 
						|
	 * an unsigned long.
 | 
						|
	 */
 | 
						|
	return *pmdp;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pmd_move_must_withdraw
 | 
						|
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
 | 
						|
					 spinlock_t *old_pmd_ptl)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * With split pmd lock we also need to move preallocated
 | 
						|
	 * PTE page table if new_pmd is on different PMD page table.
 | 
						|
	 */
 | 
						|
	return new_pmd_ptl != old_pmd_ptl;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * This function is meant to be used by sites walking pagetables with
 | 
						|
 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
 | 
						|
 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
 | 
						|
 * into a null pmd and the transhuge page fault can convert a null pmd
 | 
						|
 * into an hugepmd or into a regular pmd (if the hugepage allocation
 | 
						|
 * fails). While holding the mmap_sem in read mode the pmd becomes
 | 
						|
 * stable and stops changing under us only if it's not null and not a
 | 
						|
 * transhuge pmd. When those races occurs and this function makes a
 | 
						|
 * difference vs the standard pmd_none_or_clear_bad, the result is
 | 
						|
 * undefined so behaving like if the pmd was none is safe (because it
 | 
						|
 * can return none anyway). The compiler level barrier() is critically
 | 
						|
 * important to compute the two checks atomically on the same pmdval.
 | 
						|
 *
 | 
						|
 * For 32bit kernels with a 64bit large pmd_t this automatically takes
 | 
						|
 * care of reading the pmd atomically to avoid SMP race conditions
 | 
						|
 * against pmd_populate() when the mmap_sem is hold for reading by the
 | 
						|
 * caller (a special atomic read not done by "gcc" as in the generic
 | 
						|
 * version above, is also needed when THP is disabled because the page
 | 
						|
 * fault can populate the pmd from under us).
 | 
						|
 */
 | 
						|
static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
 | 
						|
{
 | 
						|
	pmd_t pmdval = pmd_read_atomic(pmd);
 | 
						|
	/*
 | 
						|
	 * The barrier will stabilize the pmdval in a register or on
 | 
						|
	 * the stack so that it will stop changing under the code.
 | 
						|
	 *
 | 
						|
	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
 | 
						|
	 * pmd_read_atomic is allowed to return a not atomic pmdval
 | 
						|
	 * (for example pointing to an hugepage that has never been
 | 
						|
	 * mapped in the pmd). The below checks will only care about
 | 
						|
	 * the low part of the pmd with 32bit PAE x86 anyway, with the
 | 
						|
	 * exception of pmd_none(). So the important thing is that if
 | 
						|
	 * the low part of the pmd is found null, the high part will
 | 
						|
	 * be also null or the pmd_none() check below would be
 | 
						|
	 * confused.
 | 
						|
	 */
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
	barrier();
 | 
						|
#endif
 | 
						|
	if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
 | 
						|
		return 1;
 | 
						|
	if (unlikely(pmd_bad(pmdval))) {
 | 
						|
		pmd_clear_bad(pmd);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is a noop if Transparent Hugepage Support is not built into
 | 
						|
 * the kernel. Otherwise it is equivalent to
 | 
						|
 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
 | 
						|
 * places that already verified the pmd is not none and they want to
 | 
						|
 * walk ptes while holding the mmap sem in read mode (write mode don't
 | 
						|
 * need this). If THP is not enabled, the pmd can't go away under the
 | 
						|
 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
 | 
						|
 * run a pmd_trans_unstable before walking the ptes after
 | 
						|
 * split_huge_page_pmd returns (because it may have run when the pmd
 | 
						|
 * become null, but then a page fault can map in a THP and not a
 | 
						|
 * regular page).
 | 
						|
 */
 | 
						|
static inline int pmd_trans_unstable(pmd_t *pmd)
 | 
						|
{
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
	return pmd_none_or_trans_huge_or_clear_bad(pmd);
 | 
						|
#else
 | 
						|
	return 0;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#ifndef CONFIG_NUMA_BALANCING
 | 
						|
/*
 | 
						|
 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
 | 
						|
 * the only case the kernel cares is for NUMA balancing and is only ever set
 | 
						|
 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
 | 
						|
 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
 | 
						|
 * is the responsibility of the caller to distinguish between PROT_NONE
 | 
						|
 * protections and NUMA hinting fault protections.
 | 
						|
 */
 | 
						|
static inline int pte_protnone(pte_t pte)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int pmd_protnone(pmd_t pmd)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif /* CONFIG_NUMA_BALANCING */
 | 
						|
 | 
						|
#endif /* CONFIG_MMU */
 | 
						|
 | 
						|
#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
 | 
						|
int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
 | 
						|
int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
 | 
						|
int pud_clear_huge(pud_t *pud);
 | 
						|
int pmd_clear_huge(pmd_t *pmd);
 | 
						|
#else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
 | 
						|
static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static inline int pud_clear_huge(pud_t *pud)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static inline int pmd_clear_huge(pmd_t *pmd)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
 | 
						|
 | 
						|
#endif /* !__ASSEMBLY__ */
 | 
						|
 | 
						|
#ifndef io_remap_pfn_range
 | 
						|
#define io_remap_pfn_range remap_pfn_range
 | 
						|
#endif
 | 
						|
 | 
						|
#endif /* _ASM_GENERIC_PGTABLE_H */
 |