 707e8a0715
			
		
	
	
	707e8a0715
	
	
	
		
			
			The nodesize and leafsize were never of different values. Unify the usage and make nodesize the one. Cleanup the redundant checks and helpers. Shaves a few bytes from .text: text data bss dec hex filename 852418 24560 23112 900090 dbbfa btrfs.ko.before 851074 24584 23112 898770 db6d2 btrfs.ko.after Signed-off-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com>
		
			
				
	
	
		
			995 lines
		
	
	
	
		
			25 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			995 lines
		
	
	
	
		
			25 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2011 STRATO.  All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public
 | |
|  * License v2 as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public
 | |
|  * License along with this program; if not, write to the
 | |
|  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
|  * Boston, MA 021110-1307, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/rbtree.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include "ctree.h"
 | |
| #include "volumes.h"
 | |
| #include "disk-io.h"
 | |
| #include "transaction.h"
 | |
| #include "dev-replace.h"
 | |
| 
 | |
| #undef DEBUG
 | |
| 
 | |
| /*
 | |
|  * This is the implementation for the generic read ahead framework.
 | |
|  *
 | |
|  * To trigger a readahead, btrfs_reada_add must be called. It will start
 | |
|  * a read ahead for the given range [start, end) on tree root. The returned
 | |
|  * handle can either be used to wait on the readahead to finish
 | |
|  * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
 | |
|  *
 | |
|  * The read ahead works as follows:
 | |
|  * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
 | |
|  * reada_start_machine will then search for extents to prefetch and trigger
 | |
|  * some reads. When a read finishes for a node, all contained node/leaf
 | |
|  * pointers that lie in the given range will also be enqueued. The reads will
 | |
|  * be triggered in sequential order, thus giving a big win over a naive
 | |
|  * enumeration. It will also make use of multi-device layouts. Each disk
 | |
|  * will have its on read pointer and all disks will by utilized in parallel.
 | |
|  * Also will no two disks read both sides of a mirror simultaneously, as this
 | |
|  * would waste seeking capacity. Instead both disks will read different parts
 | |
|  * of the filesystem.
 | |
|  * Any number of readaheads can be started in parallel. The read order will be
 | |
|  * determined globally, i.e. 2 parallel readaheads will normally finish faster
 | |
|  * than the 2 started one after another.
 | |
|  */
 | |
| 
 | |
| #define MAX_IN_FLIGHT 6
 | |
| 
 | |
| struct reada_extctl {
 | |
| 	struct list_head	list;
 | |
| 	struct reada_control	*rc;
 | |
| 	u64			generation;
 | |
| };
 | |
| 
 | |
| struct reada_extent {
 | |
| 	u64			logical;
 | |
| 	struct btrfs_key	top;
 | |
| 	u32			blocksize;
 | |
| 	int			err;
 | |
| 	struct list_head	extctl;
 | |
| 	int 			refcnt;
 | |
| 	spinlock_t		lock;
 | |
| 	struct reada_zone	*zones[BTRFS_MAX_MIRRORS];
 | |
| 	int			nzones;
 | |
| 	struct btrfs_device	*scheduled_for;
 | |
| };
 | |
| 
 | |
| struct reada_zone {
 | |
| 	u64			start;
 | |
| 	u64			end;
 | |
| 	u64			elems;
 | |
| 	struct list_head	list;
 | |
| 	spinlock_t		lock;
 | |
| 	int			locked;
 | |
| 	struct btrfs_device	*device;
 | |
| 	struct btrfs_device	*devs[BTRFS_MAX_MIRRORS]; /* full list, incl
 | |
| 							   * self */
 | |
| 	int			ndevs;
 | |
| 	struct kref		refcnt;
 | |
| };
 | |
| 
 | |
| struct reada_machine_work {
 | |
| 	struct btrfs_work	work;
 | |
| 	struct btrfs_fs_info	*fs_info;
 | |
| };
 | |
| 
 | |
| static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
 | |
| static void reada_control_release(struct kref *kref);
 | |
| static void reada_zone_release(struct kref *kref);
 | |
| static void reada_start_machine(struct btrfs_fs_info *fs_info);
 | |
| static void __reada_start_machine(struct btrfs_fs_info *fs_info);
 | |
| 
 | |
| static int reada_add_block(struct reada_control *rc, u64 logical,
 | |
| 			   struct btrfs_key *top, int level, u64 generation);
 | |
| 
 | |
| /* recurses */
 | |
| /* in case of err, eb might be NULL */
 | |
| static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
 | |
| 			    u64 start, int err)
 | |
| {
 | |
| 	int level = 0;
 | |
| 	int nritems;
 | |
| 	int i;
 | |
| 	u64 bytenr;
 | |
| 	u64 generation;
 | |
| 	struct reada_extent *re;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct list_head list;
 | |
| 	unsigned long index = start >> PAGE_CACHE_SHIFT;
 | |
| 	struct btrfs_device *for_dev;
 | |
| 
 | |
| 	if (eb)
 | |
| 		level = btrfs_header_level(eb);
 | |
| 
 | |
| 	/* find extent */
 | |
| 	spin_lock(&fs_info->reada_lock);
 | |
| 	re = radix_tree_lookup(&fs_info->reada_tree, index);
 | |
| 	if (re)
 | |
| 		re->refcnt++;
 | |
| 	spin_unlock(&fs_info->reada_lock);
 | |
| 
 | |
| 	if (!re)
 | |
| 		return -1;
 | |
| 
 | |
| 	spin_lock(&re->lock);
 | |
| 	/*
 | |
| 	 * just take the full list from the extent. afterwards we
 | |
| 	 * don't need the lock anymore
 | |
| 	 */
 | |
| 	list_replace_init(&re->extctl, &list);
 | |
| 	for_dev = re->scheduled_for;
 | |
| 	re->scheduled_for = NULL;
 | |
| 	spin_unlock(&re->lock);
 | |
| 
 | |
| 	if (err == 0) {
 | |
| 		nritems = level ? btrfs_header_nritems(eb) : 0;
 | |
| 		generation = btrfs_header_generation(eb);
 | |
| 		/*
 | |
| 		 * FIXME: currently we just set nritems to 0 if this is a leaf,
 | |
| 		 * effectively ignoring the content. In a next step we could
 | |
| 		 * trigger more readahead depending from the content, e.g.
 | |
| 		 * fetch the checksums for the extents in the leaf.
 | |
| 		 */
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * this is the error case, the extent buffer has not been
 | |
| 		 * read correctly. We won't access anything from it and
 | |
| 		 * just cleanup our data structures. Effectively this will
 | |
| 		 * cut the branch below this node from read ahead.
 | |
| 		 */
 | |
| 		nritems = 0;
 | |
| 		generation = 0;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nritems; i++) {
 | |
| 		struct reada_extctl *rec;
 | |
| 		u64 n_gen;
 | |
| 		struct btrfs_key key;
 | |
| 		struct btrfs_key next_key;
 | |
| 
 | |
| 		btrfs_node_key_to_cpu(eb, &key, i);
 | |
| 		if (i + 1 < nritems)
 | |
| 			btrfs_node_key_to_cpu(eb, &next_key, i + 1);
 | |
| 		else
 | |
| 			next_key = re->top;
 | |
| 		bytenr = btrfs_node_blockptr(eb, i);
 | |
| 		n_gen = btrfs_node_ptr_generation(eb, i);
 | |
| 
 | |
| 		list_for_each_entry(rec, &list, list) {
 | |
| 			struct reada_control *rc = rec->rc;
 | |
| 
 | |
| 			/*
 | |
| 			 * if the generation doesn't match, just ignore this
 | |
| 			 * extctl. This will probably cut off a branch from
 | |
| 			 * prefetch. Alternatively one could start a new (sub-)
 | |
| 			 * prefetch for this branch, starting again from root.
 | |
| 			 * FIXME: move the generation check out of this loop
 | |
| 			 */
 | |
| #ifdef DEBUG
 | |
| 			if (rec->generation != generation) {
 | |
| 				btrfs_debug(root->fs_info,
 | |
| 					   "generation mismatch for (%llu,%d,%llu) %llu != %llu",
 | |
| 				       key.objectid, key.type, key.offset,
 | |
| 				       rec->generation, generation);
 | |
| 			}
 | |
| #endif
 | |
| 			if (rec->generation == generation &&
 | |
| 			    btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
 | |
| 			    btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
 | |
| 				reada_add_block(rc, bytenr, &next_key,
 | |
| 						level - 1, n_gen);
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * free extctl records
 | |
| 	 */
 | |
| 	while (!list_empty(&list)) {
 | |
| 		struct reada_control *rc;
 | |
| 		struct reada_extctl *rec;
 | |
| 
 | |
| 		rec = list_first_entry(&list, struct reada_extctl, list);
 | |
| 		list_del(&rec->list);
 | |
| 		rc = rec->rc;
 | |
| 		kfree(rec);
 | |
| 
 | |
| 		kref_get(&rc->refcnt);
 | |
| 		if (atomic_dec_and_test(&rc->elems)) {
 | |
| 			kref_put(&rc->refcnt, reada_control_release);
 | |
| 			wake_up(&rc->wait);
 | |
| 		}
 | |
| 		kref_put(&rc->refcnt, reada_control_release);
 | |
| 
 | |
| 		reada_extent_put(fs_info, re);	/* one ref for each entry */
 | |
| 	}
 | |
| 	reada_extent_put(fs_info, re);	/* our ref */
 | |
| 	if (for_dev)
 | |
| 		atomic_dec(&for_dev->reada_in_flight);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * start is passed separately in case eb in NULL, which may be the case with
 | |
|  * failed I/O
 | |
|  */
 | |
| int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
 | |
| 			 u64 start, int err)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = __readahead_hook(root, eb, start, err);
 | |
| 
 | |
| 	reada_start_machine(root->fs_info);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
 | |
| 					  struct btrfs_device *dev, u64 logical,
 | |
| 					  struct btrfs_bio *bbio)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct reada_zone *zone;
 | |
| 	struct btrfs_block_group_cache *cache = NULL;
 | |
| 	u64 start;
 | |
| 	u64 end;
 | |
| 	int i;
 | |
| 
 | |
| 	zone = NULL;
 | |
| 	spin_lock(&fs_info->reada_lock);
 | |
| 	ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
 | |
| 				     logical >> PAGE_CACHE_SHIFT, 1);
 | |
| 	if (ret == 1)
 | |
| 		kref_get(&zone->refcnt);
 | |
| 	spin_unlock(&fs_info->reada_lock);
 | |
| 
 | |
| 	if (ret == 1) {
 | |
| 		if (logical >= zone->start && logical < zone->end)
 | |
| 			return zone;
 | |
| 		spin_lock(&fs_info->reada_lock);
 | |
| 		kref_put(&zone->refcnt, reada_zone_release);
 | |
| 		spin_unlock(&fs_info->reada_lock);
 | |
| 	}
 | |
| 
 | |
| 	cache = btrfs_lookup_block_group(fs_info, logical);
 | |
| 	if (!cache)
 | |
| 		return NULL;
 | |
| 
 | |
| 	start = cache->key.objectid;
 | |
| 	end = start + cache->key.offset - 1;
 | |
| 	btrfs_put_block_group(cache);
 | |
| 
 | |
| 	zone = kzalloc(sizeof(*zone), GFP_NOFS);
 | |
| 	if (!zone)
 | |
| 		return NULL;
 | |
| 
 | |
| 	zone->start = start;
 | |
| 	zone->end = end;
 | |
| 	INIT_LIST_HEAD(&zone->list);
 | |
| 	spin_lock_init(&zone->lock);
 | |
| 	zone->locked = 0;
 | |
| 	kref_init(&zone->refcnt);
 | |
| 	zone->elems = 0;
 | |
| 	zone->device = dev; /* our device always sits at index 0 */
 | |
| 	for (i = 0; i < bbio->num_stripes; ++i) {
 | |
| 		/* bounds have already been checked */
 | |
| 		zone->devs[i] = bbio->stripes[i].dev;
 | |
| 	}
 | |
| 	zone->ndevs = bbio->num_stripes;
 | |
| 
 | |
| 	spin_lock(&fs_info->reada_lock);
 | |
| 	ret = radix_tree_insert(&dev->reada_zones,
 | |
| 				(unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
 | |
| 				zone);
 | |
| 
 | |
| 	if (ret == -EEXIST) {
 | |
| 		kfree(zone);
 | |
| 		ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
 | |
| 					     logical >> PAGE_CACHE_SHIFT, 1);
 | |
| 		if (ret == 1)
 | |
| 			kref_get(&zone->refcnt);
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->reada_lock);
 | |
| 
 | |
| 	return zone;
 | |
| }
 | |
| 
 | |
| static struct reada_extent *reada_find_extent(struct btrfs_root *root,
 | |
| 					      u64 logical,
 | |
| 					      struct btrfs_key *top, int level)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct reada_extent *re = NULL;
 | |
| 	struct reada_extent *re_exist = NULL;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_bio *bbio = NULL;
 | |
| 	struct btrfs_device *dev;
 | |
| 	struct btrfs_device *prev_dev;
 | |
| 	u32 blocksize;
 | |
| 	u64 length;
 | |
| 	int nzones = 0;
 | |
| 	int i;
 | |
| 	unsigned long index = logical >> PAGE_CACHE_SHIFT;
 | |
| 	int dev_replace_is_ongoing;
 | |
| 
 | |
| 	spin_lock(&fs_info->reada_lock);
 | |
| 	re = radix_tree_lookup(&fs_info->reada_tree, index);
 | |
| 	if (re)
 | |
| 		re->refcnt++;
 | |
| 	spin_unlock(&fs_info->reada_lock);
 | |
| 
 | |
| 	if (re)
 | |
| 		return re;
 | |
| 
 | |
| 	re = kzalloc(sizeof(*re), GFP_NOFS);
 | |
| 	if (!re)
 | |
| 		return NULL;
 | |
| 
 | |
| 	blocksize = root->nodesize;
 | |
| 	re->logical = logical;
 | |
| 	re->blocksize = blocksize;
 | |
| 	re->top = *top;
 | |
| 	INIT_LIST_HEAD(&re->extctl);
 | |
| 	spin_lock_init(&re->lock);
 | |
| 	re->refcnt = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * map block
 | |
| 	 */
 | |
| 	length = blocksize;
 | |
| 	ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
 | |
| 			      &bbio, 0);
 | |
| 	if (ret || !bbio || length < blocksize)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
 | |
| 		btrfs_err(root->fs_info,
 | |
| 			   "readahead: more than %d copies not supported",
 | |
| 			   BTRFS_MAX_MIRRORS);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	for (nzones = 0; nzones < bbio->num_stripes; ++nzones) {
 | |
| 		struct reada_zone *zone;
 | |
| 
 | |
| 		dev = bbio->stripes[nzones].dev;
 | |
| 		zone = reada_find_zone(fs_info, dev, logical, bbio);
 | |
| 		if (!zone)
 | |
| 			break;
 | |
| 
 | |
| 		re->zones[nzones] = zone;
 | |
| 		spin_lock(&zone->lock);
 | |
| 		if (!zone->elems)
 | |
| 			kref_get(&zone->refcnt);
 | |
| 		++zone->elems;
 | |
| 		spin_unlock(&zone->lock);
 | |
| 		spin_lock(&fs_info->reada_lock);
 | |
| 		kref_put(&zone->refcnt, reada_zone_release);
 | |
| 		spin_unlock(&fs_info->reada_lock);
 | |
| 	}
 | |
| 	re->nzones = nzones;
 | |
| 	if (nzones == 0) {
 | |
| 		/* not a single zone found, error and out */
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	/* insert extent in reada_tree + all per-device trees, all or nothing */
 | |
| 	btrfs_dev_replace_lock(&fs_info->dev_replace);
 | |
| 	spin_lock(&fs_info->reada_lock);
 | |
| 	ret = radix_tree_insert(&fs_info->reada_tree, index, re);
 | |
| 	if (ret == -EEXIST) {
 | |
| 		re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
 | |
| 		BUG_ON(!re_exist);
 | |
| 		re_exist->refcnt++;
 | |
| 		spin_unlock(&fs_info->reada_lock);
 | |
| 		btrfs_dev_replace_unlock(&fs_info->dev_replace);
 | |
| 		goto error;
 | |
| 	}
 | |
| 	if (ret) {
 | |
| 		spin_unlock(&fs_info->reada_lock);
 | |
| 		btrfs_dev_replace_unlock(&fs_info->dev_replace);
 | |
| 		goto error;
 | |
| 	}
 | |
| 	prev_dev = NULL;
 | |
| 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
 | |
| 			&fs_info->dev_replace);
 | |
| 	for (i = 0; i < nzones; ++i) {
 | |
| 		dev = bbio->stripes[i].dev;
 | |
| 		if (dev == prev_dev) {
 | |
| 			/*
 | |
| 			 * in case of DUP, just add the first zone. As both
 | |
| 			 * are on the same device, there's nothing to gain
 | |
| 			 * from adding both.
 | |
| 			 * Also, it wouldn't work, as the tree is per device
 | |
| 			 * and adding would fail with EEXIST
 | |
| 			 */
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!dev->bdev) {
 | |
| 			/*
 | |
| 			 * cannot read ahead on missing device, but for RAID5/6,
 | |
| 			 * REQ_GET_READ_MIRRORS return 1. So don't skip missing
 | |
| 			 * device for such case.
 | |
| 			 */
 | |
| 			if (nzones > 1)
 | |
| 				continue;
 | |
| 		}
 | |
| 		if (dev_replace_is_ongoing &&
 | |
| 		    dev == fs_info->dev_replace.tgtdev) {
 | |
| 			/*
 | |
| 			 * as this device is selected for reading only as
 | |
| 			 * a last resort, skip it for read ahead.
 | |
| 			 */
 | |
| 			continue;
 | |
| 		}
 | |
| 		prev_dev = dev;
 | |
| 		ret = radix_tree_insert(&dev->reada_extents, index, re);
 | |
| 		if (ret) {
 | |
| 			while (--i >= 0) {
 | |
| 				dev = bbio->stripes[i].dev;
 | |
| 				BUG_ON(dev == NULL);
 | |
| 				/* ignore whether the entry was inserted */
 | |
| 				radix_tree_delete(&dev->reada_extents, index);
 | |
| 			}
 | |
| 			BUG_ON(fs_info == NULL);
 | |
| 			radix_tree_delete(&fs_info->reada_tree, index);
 | |
| 			spin_unlock(&fs_info->reada_lock);
 | |
| 			btrfs_dev_replace_unlock(&fs_info->dev_replace);
 | |
| 			goto error;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->reada_lock);
 | |
| 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
 | |
| 
 | |
| 	kfree(bbio);
 | |
| 	return re;
 | |
| 
 | |
| error:
 | |
| 	while (nzones) {
 | |
| 		struct reada_zone *zone;
 | |
| 
 | |
| 		--nzones;
 | |
| 		zone = re->zones[nzones];
 | |
| 		kref_get(&zone->refcnt);
 | |
| 		spin_lock(&zone->lock);
 | |
| 		--zone->elems;
 | |
| 		if (zone->elems == 0) {
 | |
| 			/*
 | |
| 			 * no fs_info->reada_lock needed, as this can't be
 | |
| 			 * the last ref
 | |
| 			 */
 | |
| 			kref_put(&zone->refcnt, reada_zone_release);
 | |
| 		}
 | |
| 		spin_unlock(&zone->lock);
 | |
| 
 | |
| 		spin_lock(&fs_info->reada_lock);
 | |
| 		kref_put(&zone->refcnt, reada_zone_release);
 | |
| 		spin_unlock(&fs_info->reada_lock);
 | |
| 	}
 | |
| 	kfree(bbio);
 | |
| 	kfree(re);
 | |
| 	return re_exist;
 | |
| }
 | |
| 
 | |
| static void reada_extent_put(struct btrfs_fs_info *fs_info,
 | |
| 			     struct reada_extent *re)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 	spin_lock(&fs_info->reada_lock);
 | |
| 	if (--re->refcnt) {
 | |
| 		spin_unlock(&fs_info->reada_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	radix_tree_delete(&fs_info->reada_tree, index);
 | |
| 	for (i = 0; i < re->nzones; ++i) {
 | |
| 		struct reada_zone *zone = re->zones[i];
 | |
| 
 | |
| 		radix_tree_delete(&zone->device->reada_extents, index);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&fs_info->reada_lock);
 | |
| 
 | |
| 	for (i = 0; i < re->nzones; ++i) {
 | |
| 		struct reada_zone *zone = re->zones[i];
 | |
| 
 | |
| 		kref_get(&zone->refcnt);
 | |
| 		spin_lock(&zone->lock);
 | |
| 		--zone->elems;
 | |
| 		if (zone->elems == 0) {
 | |
| 			/* no fs_info->reada_lock needed, as this can't be
 | |
| 			 * the last ref */
 | |
| 			kref_put(&zone->refcnt, reada_zone_release);
 | |
| 		}
 | |
| 		spin_unlock(&zone->lock);
 | |
| 
 | |
| 		spin_lock(&fs_info->reada_lock);
 | |
| 		kref_put(&zone->refcnt, reada_zone_release);
 | |
| 		spin_unlock(&fs_info->reada_lock);
 | |
| 	}
 | |
| 	if (re->scheduled_for)
 | |
| 		atomic_dec(&re->scheduled_for->reada_in_flight);
 | |
| 
 | |
| 	kfree(re);
 | |
| }
 | |
| 
 | |
| static void reada_zone_release(struct kref *kref)
 | |
| {
 | |
| 	struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
 | |
| 
 | |
| 	radix_tree_delete(&zone->device->reada_zones,
 | |
| 			  zone->end >> PAGE_CACHE_SHIFT);
 | |
| 
 | |
| 	kfree(zone);
 | |
| }
 | |
| 
 | |
| static void reada_control_release(struct kref *kref)
 | |
| {
 | |
| 	struct reada_control *rc = container_of(kref, struct reada_control,
 | |
| 						refcnt);
 | |
| 
 | |
| 	kfree(rc);
 | |
| }
 | |
| 
 | |
| static int reada_add_block(struct reada_control *rc, u64 logical,
 | |
| 			   struct btrfs_key *top, int level, u64 generation)
 | |
| {
 | |
| 	struct btrfs_root *root = rc->root;
 | |
| 	struct reada_extent *re;
 | |
| 	struct reada_extctl *rec;
 | |
| 
 | |
| 	re = reada_find_extent(root, logical, top, level); /* takes one ref */
 | |
| 	if (!re)
 | |
| 		return -1;
 | |
| 
 | |
| 	rec = kzalloc(sizeof(*rec), GFP_NOFS);
 | |
| 	if (!rec) {
 | |
| 		reada_extent_put(root->fs_info, re);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	rec->rc = rc;
 | |
| 	rec->generation = generation;
 | |
| 	atomic_inc(&rc->elems);
 | |
| 
 | |
| 	spin_lock(&re->lock);
 | |
| 	list_add_tail(&rec->list, &re->extctl);
 | |
| 	spin_unlock(&re->lock);
 | |
| 
 | |
| 	/* leave the ref on the extent */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * called with fs_info->reada_lock held
 | |
|  */
 | |
| static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 	for (i = 0; i < zone->ndevs; ++i) {
 | |
| 		struct reada_zone *peer;
 | |
| 		peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
 | |
| 		if (peer && peer->device != zone->device)
 | |
| 			peer->locked = lock;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * called with fs_info->reada_lock held
 | |
|  */
 | |
| static int reada_pick_zone(struct btrfs_device *dev)
 | |
| {
 | |
| 	struct reada_zone *top_zone = NULL;
 | |
| 	struct reada_zone *top_locked_zone = NULL;
 | |
| 	u64 top_elems = 0;
 | |
| 	u64 top_locked_elems = 0;
 | |
| 	unsigned long index = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (dev->reada_curr_zone) {
 | |
| 		reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
 | |
| 		kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
 | |
| 		dev->reada_curr_zone = NULL;
 | |
| 	}
 | |
| 	/* pick the zone with the most elements */
 | |
| 	while (1) {
 | |
| 		struct reada_zone *zone;
 | |
| 
 | |
| 		ret = radix_tree_gang_lookup(&dev->reada_zones,
 | |
| 					     (void **)&zone, index, 1);
 | |
| 		if (ret == 0)
 | |
| 			break;
 | |
| 		index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
 | |
| 		if (zone->locked) {
 | |
| 			if (zone->elems > top_locked_elems) {
 | |
| 				top_locked_elems = zone->elems;
 | |
| 				top_locked_zone = zone;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (zone->elems > top_elems) {
 | |
| 				top_elems = zone->elems;
 | |
| 				top_zone = zone;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if (top_zone)
 | |
| 		dev->reada_curr_zone = top_zone;
 | |
| 	else if (top_locked_zone)
 | |
| 		dev->reada_curr_zone = top_locked_zone;
 | |
| 	else
 | |
| 		return 0;
 | |
| 
 | |
| 	dev->reada_next = dev->reada_curr_zone->start;
 | |
| 	kref_get(&dev->reada_curr_zone->refcnt);
 | |
| 	reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
 | |
| 				   struct btrfs_device *dev)
 | |
| {
 | |
| 	struct reada_extent *re = NULL;
 | |
| 	int mirror_num = 0;
 | |
| 	struct extent_buffer *eb = NULL;
 | |
| 	u64 logical;
 | |
| 	u32 blocksize;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 	int need_kick = 0;
 | |
| 
 | |
| 	spin_lock(&fs_info->reada_lock);
 | |
| 	if (dev->reada_curr_zone == NULL) {
 | |
| 		ret = reada_pick_zone(dev);
 | |
| 		if (!ret) {
 | |
| 			spin_unlock(&fs_info->reada_lock);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * FIXME currently we issue the reads one extent at a time. If we have
 | |
| 	 * a contiguous block of extents, we could also coagulate them or use
 | |
| 	 * plugging to speed things up
 | |
| 	 */
 | |
| 	ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
 | |
| 				     dev->reada_next >> PAGE_CACHE_SHIFT, 1);
 | |
| 	if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
 | |
| 		ret = reada_pick_zone(dev);
 | |
| 		if (!ret) {
 | |
| 			spin_unlock(&fs_info->reada_lock);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		re = NULL;
 | |
| 		ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
 | |
| 					dev->reada_next >> PAGE_CACHE_SHIFT, 1);
 | |
| 	}
 | |
| 	if (ret == 0) {
 | |
| 		spin_unlock(&fs_info->reada_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	dev->reada_next = re->logical + re->blocksize;
 | |
| 	re->refcnt++;
 | |
| 
 | |
| 	spin_unlock(&fs_info->reada_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * find mirror num
 | |
| 	 */
 | |
| 	for (i = 0; i < re->nzones; ++i) {
 | |
| 		if (re->zones[i]->device == dev) {
 | |
| 			mirror_num = i + 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	logical = re->logical;
 | |
| 	blocksize = re->blocksize;
 | |
| 
 | |
| 	spin_lock(&re->lock);
 | |
| 	if (re->scheduled_for == NULL) {
 | |
| 		re->scheduled_for = dev;
 | |
| 		need_kick = 1;
 | |
| 	}
 | |
| 	spin_unlock(&re->lock);
 | |
| 
 | |
| 	reada_extent_put(fs_info, re);
 | |
| 
 | |
| 	if (!need_kick)
 | |
| 		return 0;
 | |
| 
 | |
| 	atomic_inc(&dev->reada_in_flight);
 | |
| 	ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize,
 | |
| 			 mirror_num, &eb);
 | |
| 	if (ret)
 | |
| 		__readahead_hook(fs_info->extent_root, NULL, logical, ret);
 | |
| 	else if (eb)
 | |
| 		__readahead_hook(fs_info->extent_root, eb, eb->start, ret);
 | |
| 
 | |
| 	if (eb)
 | |
| 		free_extent_buffer(eb);
 | |
| 
 | |
| 	return 1;
 | |
| 
 | |
| }
 | |
| 
 | |
| static void reada_start_machine_worker(struct btrfs_work *work)
 | |
| {
 | |
| 	struct reada_machine_work *rmw;
 | |
| 	struct btrfs_fs_info *fs_info;
 | |
| 	int old_ioprio;
 | |
| 
 | |
| 	rmw = container_of(work, struct reada_machine_work, work);
 | |
| 	fs_info = rmw->fs_info;
 | |
| 
 | |
| 	kfree(rmw);
 | |
| 
 | |
| 	old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
 | |
| 				       task_nice_ioprio(current));
 | |
| 	set_task_ioprio(current, BTRFS_IOPRIO_READA);
 | |
| 	__reada_start_machine(fs_info);
 | |
| 	set_task_ioprio(current, old_ioprio);
 | |
| }
 | |
| 
 | |
| static void __reada_start_machine(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 | |
| 	u64 enqueued;
 | |
| 	u64 total = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	do {
 | |
| 		enqueued = 0;
 | |
| 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
 | |
| 			if (atomic_read(&device->reada_in_flight) <
 | |
| 			    MAX_IN_FLIGHT)
 | |
| 				enqueued += reada_start_machine_dev(fs_info,
 | |
| 								    device);
 | |
| 		}
 | |
| 		total += enqueued;
 | |
| 	} while (enqueued && total < 10000);
 | |
| 
 | |
| 	if (enqueued == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If everything is already in the cache, this is effectively single
 | |
| 	 * threaded. To a) not hold the caller for too long and b) to utilize
 | |
| 	 * more cores, we broke the loop above after 10000 iterations and now
 | |
| 	 * enqueue to workers to finish it. This will distribute the load to
 | |
| 	 * the cores.
 | |
| 	 */
 | |
| 	for (i = 0; i < 2; ++i)
 | |
| 		reada_start_machine(fs_info);
 | |
| }
 | |
| 
 | |
| static void reada_start_machine(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct reada_machine_work *rmw;
 | |
| 
 | |
| 	rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
 | |
| 	if (!rmw) {
 | |
| 		/* FIXME we cannot handle this properly right now */
 | |
| 		BUG();
 | |
| 	}
 | |
| 	btrfs_init_work(&rmw->work, btrfs_readahead_helper,
 | |
| 			reada_start_machine_worker, NULL, NULL);
 | |
| 	rmw->fs_info = fs_info;
 | |
| 
 | |
| 	btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
 | |
| }
 | |
| 
 | |
| #ifdef DEBUG
 | |
| static void dump_devs(struct btrfs_fs_info *fs_info, int all)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 | |
| 	unsigned long index;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 	int j;
 | |
| 	int cnt;
 | |
| 
 | |
| 	spin_lock(&fs_info->reada_lock);
 | |
| 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
 | |
| 		printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
 | |
| 			atomic_read(&device->reada_in_flight));
 | |
| 		index = 0;
 | |
| 		while (1) {
 | |
| 			struct reada_zone *zone;
 | |
| 			ret = radix_tree_gang_lookup(&device->reada_zones,
 | |
| 						     (void **)&zone, index, 1);
 | |
| 			if (ret == 0)
 | |
| 				break;
 | |
| 			printk(KERN_DEBUG "  zone %llu-%llu elems %llu locked "
 | |
| 				"%d devs", zone->start, zone->end, zone->elems,
 | |
| 				zone->locked);
 | |
| 			for (j = 0; j < zone->ndevs; ++j) {
 | |
| 				printk(KERN_CONT " %lld",
 | |
| 					zone->devs[j]->devid);
 | |
| 			}
 | |
| 			if (device->reada_curr_zone == zone)
 | |
| 				printk(KERN_CONT " curr off %llu",
 | |
| 					device->reada_next - zone->start);
 | |
| 			printk(KERN_CONT "\n");
 | |
| 			index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
 | |
| 		}
 | |
| 		cnt = 0;
 | |
| 		index = 0;
 | |
| 		while (all) {
 | |
| 			struct reada_extent *re = NULL;
 | |
| 
 | |
| 			ret = radix_tree_gang_lookup(&device->reada_extents,
 | |
| 						     (void **)&re, index, 1);
 | |
| 			if (ret == 0)
 | |
| 				break;
 | |
| 			printk(KERN_DEBUG
 | |
| 				"  re: logical %llu size %u empty %d for %lld",
 | |
| 				re->logical, re->blocksize,
 | |
| 				list_empty(&re->extctl), re->scheduled_for ?
 | |
| 				re->scheduled_for->devid : -1);
 | |
| 
 | |
| 			for (i = 0; i < re->nzones; ++i) {
 | |
| 				printk(KERN_CONT " zone %llu-%llu devs",
 | |
| 					re->zones[i]->start,
 | |
| 					re->zones[i]->end);
 | |
| 				for (j = 0; j < re->zones[i]->ndevs; ++j) {
 | |
| 					printk(KERN_CONT " %lld",
 | |
| 						re->zones[i]->devs[j]->devid);
 | |
| 				}
 | |
| 			}
 | |
| 			printk(KERN_CONT "\n");
 | |
| 			index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
 | |
| 			if (++cnt > 15)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	index = 0;
 | |
| 	cnt = 0;
 | |
| 	while (all) {
 | |
| 		struct reada_extent *re = NULL;
 | |
| 
 | |
| 		ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
 | |
| 					     index, 1);
 | |
| 		if (ret == 0)
 | |
| 			break;
 | |
| 		if (!re->scheduled_for) {
 | |
| 			index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 		printk(KERN_DEBUG
 | |
| 			"re: logical %llu size %u list empty %d for %lld",
 | |
| 			re->logical, re->blocksize, list_empty(&re->extctl),
 | |
| 			re->scheduled_for ? re->scheduled_for->devid : -1);
 | |
| 		for (i = 0; i < re->nzones; ++i) {
 | |
| 			printk(KERN_CONT " zone %llu-%llu devs",
 | |
| 				re->zones[i]->start,
 | |
| 				re->zones[i]->end);
 | |
| 			for (i = 0; i < re->nzones; ++i) {
 | |
| 				printk(KERN_CONT " zone %llu-%llu devs",
 | |
| 					re->zones[i]->start,
 | |
| 					re->zones[i]->end);
 | |
| 				for (j = 0; j < re->zones[i]->ndevs; ++j) {
 | |
| 					printk(KERN_CONT " %lld",
 | |
| 						re->zones[i]->devs[j]->devid);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		printk(KERN_CONT "\n");
 | |
| 		index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->reada_lock);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * interface
 | |
|  */
 | |
| struct reada_control *btrfs_reada_add(struct btrfs_root *root,
 | |
| 			struct btrfs_key *key_start, struct btrfs_key *key_end)
 | |
| {
 | |
| 	struct reada_control *rc;
 | |
| 	u64 start;
 | |
| 	u64 generation;
 | |
| 	int level;
 | |
| 	struct extent_buffer *node;
 | |
| 	static struct btrfs_key max_key = {
 | |
| 		.objectid = (u64)-1,
 | |
| 		.type = (u8)-1,
 | |
| 		.offset = (u64)-1
 | |
| 	};
 | |
| 
 | |
| 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
 | |
| 	if (!rc)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	rc->root = root;
 | |
| 	rc->key_start = *key_start;
 | |
| 	rc->key_end = *key_end;
 | |
| 	atomic_set(&rc->elems, 0);
 | |
| 	init_waitqueue_head(&rc->wait);
 | |
| 	kref_init(&rc->refcnt);
 | |
| 	kref_get(&rc->refcnt); /* one ref for having elements */
 | |
| 
 | |
| 	node = btrfs_root_node(root);
 | |
| 	start = node->start;
 | |
| 	level = btrfs_header_level(node);
 | |
| 	generation = btrfs_header_generation(node);
 | |
| 	free_extent_buffer(node);
 | |
| 
 | |
| 	if (reada_add_block(rc, start, &max_key, level, generation)) {
 | |
| 		kfree(rc);
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	reada_start_machine(root->fs_info);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| #ifdef DEBUG
 | |
| int btrfs_reada_wait(void *handle)
 | |
| {
 | |
| 	struct reada_control *rc = handle;
 | |
| 
 | |
| 	while (atomic_read(&rc->elems)) {
 | |
| 		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
 | |
| 				   5 * HZ);
 | |
| 		dump_devs(rc->root->fs_info,
 | |
| 			  atomic_read(&rc->elems) < 10 ? 1 : 0);
 | |
| 	}
 | |
| 
 | |
| 	dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
 | |
| 
 | |
| 	kref_put(&rc->refcnt, reada_control_release);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| int btrfs_reada_wait(void *handle)
 | |
| {
 | |
| 	struct reada_control *rc = handle;
 | |
| 
 | |
| 	while (atomic_read(&rc->elems)) {
 | |
| 		wait_event(rc->wait, atomic_read(&rc->elems) == 0);
 | |
| 	}
 | |
| 
 | |
| 	kref_put(&rc->refcnt, reada_control_release);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void btrfs_reada_detach(void *handle)
 | |
| {
 | |
| 	struct reada_control *rc = handle;
 | |
| 
 | |
| 	kref_put(&rc->refcnt, reada_control_release);
 | |
| }
 |