 f56141e3e2
			
		
	
	
	f56141e3e2
	
	
	
		
			
			If an attacker can cause a controlled kernel stack overflow, overwriting the restart block is a very juicy exploit target. This is because the restart_block is held in the same memory allocation as the kernel stack. Moving the restart block to struct task_struct prevents this exploit by making the restart_block harder to locate. Note that there are other fields in thread_info that are also easy targets, at least on some architectures. It's also a decent simplification, since the restart code is more or less identical on all architectures. [james.hogan@imgtec.com: metag: align thread_info::supervisor_stack] Signed-off-by: Andy Lutomirski <luto@amacapital.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: David Miller <davem@davemloft.net> Acked-by: Richard Weinberger <richard@nod.at> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Matt Turner <mattst88@gmail.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Steven Miao <realmz6@gmail.com> Cc: Mark Salter <msalter@redhat.com> Cc: Aurelien Jacquiot <a-jacquiot@ti.com> Cc: Mikael Starvik <starvik@axis.com> Cc: Jesper Nilsson <jesper.nilsson@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Michal Simek <monstr@monstr.eu> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Helge Deller <deller@gmx.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Tested-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Chen Liqin <liqin.linux@gmail.com> Cc: Lennox Wu <lennox.wu@gmail.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: Chris Zankel <chris@zankel.net> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Guenter Roeck <linux@roeck-us.net> Signed-off-by: James Hogan <james.hogan@imgtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1475 lines
		
	
	
	
		
			38 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1475 lines
		
	
	
	
		
			38 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Implement CPU time clocks for the POSIX clock interface.
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/posix-timers.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/math64.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <trace/events/timer.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/tick.h>
 | |
| #include <linux/workqueue.h>
 | |
| 
 | |
| /*
 | |
|  * Called after updating RLIMIT_CPU to run cpu timer and update
 | |
|  * tsk->signal->cputime_expires expiration cache if necessary. Needs
 | |
|  * siglock protection since other code may update expiration cache as
 | |
|  * well.
 | |
|  */
 | |
| void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
 | |
| {
 | |
| 	cputime_t cputime = secs_to_cputime(rlim_new);
 | |
| 
 | |
| 	spin_lock_irq(&task->sighand->siglock);
 | |
| 	set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
 | |
| 	spin_unlock_irq(&task->sighand->siglock);
 | |
| }
 | |
| 
 | |
| static int check_clock(const clockid_t which_clock)
 | |
| {
 | |
| 	int error = 0;
 | |
| 	struct task_struct *p;
 | |
| 	const pid_t pid = CPUCLOCK_PID(which_clock);
 | |
| 
 | |
| 	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (pid == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	p = find_task_by_vpid(pid);
 | |
| 	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
 | |
| 		   same_thread_group(p, current) : has_group_leader_pid(p))) {
 | |
| 		error = -EINVAL;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static inline unsigned long long
 | |
| timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
 | |
| {
 | |
| 	unsigned long long ret;
 | |
| 
 | |
| 	ret = 0;		/* high half always zero when .cpu used */
 | |
| 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 | |
| 		ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
 | |
| 	} else {
 | |
| 		ret = cputime_to_expires(timespec_to_cputime(tp));
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void sample_to_timespec(const clockid_t which_clock,
 | |
| 			       unsigned long long expires,
 | |
| 			       struct timespec *tp)
 | |
| {
 | |
| 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
 | |
| 		*tp = ns_to_timespec(expires);
 | |
| 	else
 | |
| 		cputime_to_timespec((__force cputime_t)expires, tp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update expiry time from increment, and increase overrun count,
 | |
|  * given the current clock sample.
 | |
|  */
 | |
| static void bump_cpu_timer(struct k_itimer *timer,
 | |
| 			   unsigned long long now)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long long delta, incr;
 | |
| 
 | |
| 	if (timer->it.cpu.incr == 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (now < timer->it.cpu.expires)
 | |
| 		return;
 | |
| 
 | |
| 	incr = timer->it.cpu.incr;
 | |
| 	delta = now + incr - timer->it.cpu.expires;
 | |
| 
 | |
| 	/* Don't use (incr*2 < delta), incr*2 might overflow. */
 | |
| 	for (i = 0; incr < delta - incr; i++)
 | |
| 		incr = incr << 1;
 | |
| 
 | |
| 	for (; i >= 0; incr >>= 1, i--) {
 | |
| 		if (delta < incr)
 | |
| 			continue;
 | |
| 
 | |
| 		timer->it.cpu.expires += incr;
 | |
| 		timer->it_overrun += 1 << i;
 | |
| 		delta -= incr;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * task_cputime_zero - Check a task_cputime struct for all zero fields.
 | |
|  *
 | |
|  * @cputime:	The struct to compare.
 | |
|  *
 | |
|  * Checks @cputime to see if all fields are zero.  Returns true if all fields
 | |
|  * are zero, false if any field is nonzero.
 | |
|  */
 | |
| static inline int task_cputime_zero(const struct task_cputime *cputime)
 | |
| {
 | |
| 	if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline unsigned long long prof_ticks(struct task_struct *p)
 | |
| {
 | |
| 	cputime_t utime, stime;
 | |
| 
 | |
| 	task_cputime(p, &utime, &stime);
 | |
| 
 | |
| 	return cputime_to_expires(utime + stime);
 | |
| }
 | |
| static inline unsigned long long virt_ticks(struct task_struct *p)
 | |
| {
 | |
| 	cputime_t utime;
 | |
| 
 | |
| 	task_cputime(p, &utime, NULL);
 | |
| 
 | |
| 	return cputime_to_expires(utime);
 | |
| }
 | |
| 
 | |
| static int
 | |
| posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
 | |
| {
 | |
| 	int error = check_clock(which_clock);
 | |
| 	if (!error) {
 | |
| 		tp->tv_sec = 0;
 | |
| 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
 | |
| 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 | |
| 			/*
 | |
| 			 * If sched_clock is using a cycle counter, we
 | |
| 			 * don't have any idea of its true resolution
 | |
| 			 * exported, but it is much more than 1s/HZ.
 | |
| 			 */
 | |
| 			tp->tv_nsec = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static int
 | |
| posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
 | |
| {
 | |
| 	/*
 | |
| 	 * You can never reset a CPU clock, but we check for other errors
 | |
| 	 * in the call before failing with EPERM.
 | |
| 	 */
 | |
| 	int error = check_clock(which_clock);
 | |
| 	if (error == 0) {
 | |
| 		error = -EPERM;
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Sample a per-thread clock for the given task.
 | |
|  */
 | |
| static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
 | |
| 			    unsigned long long *sample)
 | |
| {
 | |
| 	switch (CPUCLOCK_WHICH(which_clock)) {
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	case CPUCLOCK_PROF:
 | |
| 		*sample = prof_ticks(p);
 | |
| 		break;
 | |
| 	case CPUCLOCK_VIRT:
 | |
| 		*sample = virt_ticks(p);
 | |
| 		break;
 | |
| 	case CPUCLOCK_SCHED:
 | |
| 		*sample = task_sched_runtime(p);
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
 | |
| {
 | |
| 	if (b->utime > a->utime)
 | |
| 		a->utime = b->utime;
 | |
| 
 | |
| 	if (b->stime > a->stime)
 | |
| 		a->stime = b->stime;
 | |
| 
 | |
| 	if (b->sum_exec_runtime > a->sum_exec_runtime)
 | |
| 		a->sum_exec_runtime = b->sum_exec_runtime;
 | |
| }
 | |
| 
 | |
| void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
 | |
| {
 | |
| 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 | |
| 	struct task_cputime sum;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!cputimer->running) {
 | |
| 		/*
 | |
| 		 * The POSIX timer interface allows for absolute time expiry
 | |
| 		 * values through the TIMER_ABSTIME flag, therefore we have
 | |
| 		 * to synchronize the timer to the clock every time we start
 | |
| 		 * it.
 | |
| 		 */
 | |
| 		thread_group_cputime(tsk, &sum);
 | |
| 		raw_spin_lock_irqsave(&cputimer->lock, flags);
 | |
| 		cputimer->running = 1;
 | |
| 		update_gt_cputime(&cputimer->cputime, &sum);
 | |
| 	} else
 | |
| 		raw_spin_lock_irqsave(&cputimer->lock, flags);
 | |
| 	*times = cputimer->cputime;
 | |
| 	raw_spin_unlock_irqrestore(&cputimer->lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sample a process (thread group) clock for the given group_leader task.
 | |
|  * Must be called with task sighand lock held for safe while_each_thread()
 | |
|  * traversal.
 | |
|  */
 | |
| static int cpu_clock_sample_group(const clockid_t which_clock,
 | |
| 				  struct task_struct *p,
 | |
| 				  unsigned long long *sample)
 | |
| {
 | |
| 	struct task_cputime cputime;
 | |
| 
 | |
| 	switch (CPUCLOCK_WHICH(which_clock)) {
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	case CPUCLOCK_PROF:
 | |
| 		thread_group_cputime(p, &cputime);
 | |
| 		*sample = cputime_to_expires(cputime.utime + cputime.stime);
 | |
| 		break;
 | |
| 	case CPUCLOCK_VIRT:
 | |
| 		thread_group_cputime(p, &cputime);
 | |
| 		*sample = cputime_to_expires(cputime.utime);
 | |
| 		break;
 | |
| 	case CPUCLOCK_SCHED:
 | |
| 		thread_group_cputime(p, &cputime);
 | |
| 		*sample = cputime.sum_exec_runtime;
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int posix_cpu_clock_get_task(struct task_struct *tsk,
 | |
| 				    const clockid_t which_clock,
 | |
| 				    struct timespec *tp)
 | |
| {
 | |
| 	int err = -EINVAL;
 | |
| 	unsigned long long rtn;
 | |
| 
 | |
| 	if (CPUCLOCK_PERTHREAD(which_clock)) {
 | |
| 		if (same_thread_group(tsk, current))
 | |
| 			err = cpu_clock_sample(which_clock, tsk, &rtn);
 | |
| 	} else {
 | |
| 		if (tsk == current || thread_group_leader(tsk))
 | |
| 			err = cpu_clock_sample_group(which_clock, tsk, &rtn);
 | |
| 	}
 | |
| 
 | |
| 	if (!err)
 | |
| 		sample_to_timespec(which_clock, rtn, tp);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
 | |
| {
 | |
| 	const pid_t pid = CPUCLOCK_PID(which_clock);
 | |
| 	int err = -EINVAL;
 | |
| 
 | |
| 	if (pid == 0) {
 | |
| 		/*
 | |
| 		 * Special case constant value for our own clocks.
 | |
| 		 * We don't have to do any lookup to find ourselves.
 | |
| 		 */
 | |
| 		err = posix_cpu_clock_get_task(current, which_clock, tp);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Find the given PID, and validate that the caller
 | |
| 		 * should be able to see it.
 | |
| 		 */
 | |
| 		struct task_struct *p;
 | |
| 		rcu_read_lock();
 | |
| 		p = find_task_by_vpid(pid);
 | |
| 		if (p)
 | |
| 			err = posix_cpu_clock_get_task(p, which_clock, tp);
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 | |
|  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
 | |
|  * new timer already all-zeros initialized.
 | |
|  */
 | |
| static int posix_cpu_timer_create(struct k_itimer *new_timer)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
 | |
| 		if (pid == 0) {
 | |
| 			p = current;
 | |
| 		} else {
 | |
| 			p = find_task_by_vpid(pid);
 | |
| 			if (p && !same_thread_group(p, current))
 | |
| 				p = NULL;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (pid == 0) {
 | |
| 			p = current->group_leader;
 | |
| 		} else {
 | |
| 			p = find_task_by_vpid(pid);
 | |
| 			if (p && !has_group_leader_pid(p))
 | |
| 				p = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	new_timer->it.cpu.task = p;
 | |
| 	if (p) {
 | |
| 		get_task_struct(p);
 | |
| 	} else {
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clean up a CPU-clock timer that is about to be destroyed.
 | |
|  * This is called from timer deletion with the timer already locked.
 | |
|  * If we return TIMER_RETRY, it's necessary to release the timer's lock
 | |
|  * and try again.  (This happens when the timer is in the middle of firing.)
 | |
|  */
 | |
| static int posix_cpu_timer_del(struct k_itimer *timer)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	unsigned long flags;
 | |
| 	struct sighand_struct *sighand;
 | |
| 	struct task_struct *p = timer->it.cpu.task;
 | |
| 
 | |
| 	WARN_ON_ONCE(p == NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Protect against sighand release/switch in exit/exec and process/
 | |
| 	 * thread timer list entry concurrent read/writes.
 | |
| 	 */
 | |
| 	sighand = lock_task_sighand(p, &flags);
 | |
| 	if (unlikely(sighand == NULL)) {
 | |
| 		/*
 | |
| 		 * We raced with the reaping of the task.
 | |
| 		 * The deletion should have cleared us off the list.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
 | |
| 	} else {
 | |
| 		if (timer->it.cpu.firing)
 | |
| 			ret = TIMER_RETRY;
 | |
| 		else
 | |
| 			list_del(&timer->it.cpu.entry);
 | |
| 
 | |
| 		unlock_task_sighand(p, &flags);
 | |
| 	}
 | |
| 
 | |
| 	if (!ret)
 | |
| 		put_task_struct(p);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void cleanup_timers_list(struct list_head *head)
 | |
| {
 | |
| 	struct cpu_timer_list *timer, *next;
 | |
| 
 | |
| 	list_for_each_entry_safe(timer, next, head, entry)
 | |
| 		list_del_init(&timer->entry);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clean out CPU timers still ticking when a thread exited.  The task
 | |
|  * pointer is cleared, and the expiry time is replaced with the residual
 | |
|  * time for later timer_gettime calls to return.
 | |
|  * This must be called with the siglock held.
 | |
|  */
 | |
| static void cleanup_timers(struct list_head *head)
 | |
| {
 | |
| 	cleanup_timers_list(head);
 | |
| 	cleanup_timers_list(++head);
 | |
| 	cleanup_timers_list(++head);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These are both called with the siglock held, when the current thread
 | |
|  * is being reaped.  When the final (leader) thread in the group is reaped,
 | |
|  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 | |
|  */
 | |
| void posix_cpu_timers_exit(struct task_struct *tsk)
 | |
| {
 | |
| 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
 | |
| 						sizeof(unsigned long long));
 | |
| 	cleanup_timers(tsk->cpu_timers);
 | |
| 
 | |
| }
 | |
| void posix_cpu_timers_exit_group(struct task_struct *tsk)
 | |
| {
 | |
| 	cleanup_timers(tsk->signal->cpu_timers);
 | |
| }
 | |
| 
 | |
| static inline int expires_gt(cputime_t expires, cputime_t new_exp)
 | |
| {
 | |
| 	return expires == 0 || expires > new_exp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Insert the timer on the appropriate list before any timers that
 | |
|  * expire later.  This must be called with the sighand lock held.
 | |
|  */
 | |
| static void arm_timer(struct k_itimer *timer)
 | |
| {
 | |
| 	struct task_struct *p = timer->it.cpu.task;
 | |
| 	struct list_head *head, *listpos;
 | |
| 	struct task_cputime *cputime_expires;
 | |
| 	struct cpu_timer_list *const nt = &timer->it.cpu;
 | |
| 	struct cpu_timer_list *next;
 | |
| 
 | |
| 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 | |
| 		head = p->cpu_timers;
 | |
| 		cputime_expires = &p->cputime_expires;
 | |
| 	} else {
 | |
| 		head = p->signal->cpu_timers;
 | |
| 		cputime_expires = &p->signal->cputime_expires;
 | |
| 	}
 | |
| 	head += CPUCLOCK_WHICH(timer->it_clock);
 | |
| 
 | |
| 	listpos = head;
 | |
| 	list_for_each_entry(next, head, entry) {
 | |
| 		if (nt->expires < next->expires)
 | |
| 			break;
 | |
| 		listpos = &next->entry;
 | |
| 	}
 | |
| 	list_add(&nt->entry, listpos);
 | |
| 
 | |
| 	if (listpos == head) {
 | |
| 		unsigned long long exp = nt->expires;
 | |
| 
 | |
| 		/*
 | |
| 		 * We are the new earliest-expiring POSIX 1.b timer, hence
 | |
| 		 * need to update expiration cache. Take into account that
 | |
| 		 * for process timers we share expiration cache with itimers
 | |
| 		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
 | |
| 		 */
 | |
| 
 | |
| 		switch (CPUCLOCK_WHICH(timer->it_clock)) {
 | |
| 		case CPUCLOCK_PROF:
 | |
| 			if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
 | |
| 				cputime_expires->prof_exp = expires_to_cputime(exp);
 | |
| 			break;
 | |
| 		case CPUCLOCK_VIRT:
 | |
| 			if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
 | |
| 				cputime_expires->virt_exp = expires_to_cputime(exp);
 | |
| 			break;
 | |
| 		case CPUCLOCK_SCHED:
 | |
| 			if (cputime_expires->sched_exp == 0 ||
 | |
| 			    cputime_expires->sched_exp > exp)
 | |
| 				cputime_expires->sched_exp = exp;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The timer is locked, fire it and arrange for its reload.
 | |
|  */
 | |
| static void cpu_timer_fire(struct k_itimer *timer)
 | |
| {
 | |
| 	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
 | |
| 		/*
 | |
| 		 * User don't want any signal.
 | |
| 		 */
 | |
| 		timer->it.cpu.expires = 0;
 | |
| 	} else if (unlikely(timer->sigq == NULL)) {
 | |
| 		/*
 | |
| 		 * This a special case for clock_nanosleep,
 | |
| 		 * not a normal timer from sys_timer_create.
 | |
| 		 */
 | |
| 		wake_up_process(timer->it_process);
 | |
| 		timer->it.cpu.expires = 0;
 | |
| 	} else if (timer->it.cpu.incr == 0) {
 | |
| 		/*
 | |
| 		 * One-shot timer.  Clear it as soon as it's fired.
 | |
| 		 */
 | |
| 		posix_timer_event(timer, 0);
 | |
| 		timer->it.cpu.expires = 0;
 | |
| 	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
 | |
| 		/*
 | |
| 		 * The signal did not get queued because the signal
 | |
| 		 * was ignored, so we won't get any callback to
 | |
| 		 * reload the timer.  But we need to keep it
 | |
| 		 * ticking in case the signal is deliverable next time.
 | |
| 		 */
 | |
| 		posix_cpu_timer_schedule(timer);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sample a process (thread group) timer for the given group_leader task.
 | |
|  * Must be called with task sighand lock held for safe while_each_thread()
 | |
|  * traversal.
 | |
|  */
 | |
| static int cpu_timer_sample_group(const clockid_t which_clock,
 | |
| 				  struct task_struct *p,
 | |
| 				  unsigned long long *sample)
 | |
| {
 | |
| 	struct task_cputime cputime;
 | |
| 
 | |
| 	thread_group_cputimer(p, &cputime);
 | |
| 	switch (CPUCLOCK_WHICH(which_clock)) {
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	case CPUCLOCK_PROF:
 | |
| 		*sample = cputime_to_expires(cputime.utime + cputime.stime);
 | |
| 		break;
 | |
| 	case CPUCLOCK_VIRT:
 | |
| 		*sample = cputime_to_expires(cputime.utime);
 | |
| 		break;
 | |
| 	case CPUCLOCK_SCHED:
 | |
| 		*sample = cputime.sum_exec_runtime;
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_FULL
 | |
| static void nohz_kick_work_fn(struct work_struct *work)
 | |
| {
 | |
| 	tick_nohz_full_kick_all();
 | |
| }
 | |
| 
 | |
| static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
 | |
| 
 | |
| /*
 | |
|  * We need the IPIs to be sent from sane process context.
 | |
|  * The posix cpu timers are always set with irqs disabled.
 | |
|  */
 | |
| static void posix_cpu_timer_kick_nohz(void)
 | |
| {
 | |
| 	if (context_tracking_is_enabled())
 | |
| 		schedule_work(&nohz_kick_work);
 | |
| }
 | |
| 
 | |
| bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
 | |
| {
 | |
| 	if (!task_cputime_zero(&tsk->cputime_expires))
 | |
| 		return false;
 | |
| 
 | |
| 	if (tsk->signal->cputimer.running)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| #else
 | |
| static inline void posix_cpu_timer_kick_nohz(void) { }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Guts of sys_timer_settime for CPU timers.
 | |
|  * This is called with the timer locked and interrupts disabled.
 | |
|  * If we return TIMER_RETRY, it's necessary to release the timer's lock
 | |
|  * and try again.  (This happens when the timer is in the middle of firing.)
 | |
|  */
 | |
| static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
 | |
| 			       struct itimerspec *new, struct itimerspec *old)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct sighand_struct *sighand;
 | |
| 	struct task_struct *p = timer->it.cpu.task;
 | |
| 	unsigned long long old_expires, new_expires, old_incr, val;
 | |
| 	int ret;
 | |
| 
 | |
| 	WARN_ON_ONCE(p == NULL);
 | |
| 
 | |
| 	new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
 | |
| 
 | |
| 	/*
 | |
| 	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
 | |
| 	 * and p->signal->cpu_timers read/write in arm_timer()
 | |
| 	 */
 | |
| 	sighand = lock_task_sighand(p, &flags);
 | |
| 	/*
 | |
| 	 * If p has just been reaped, we can no
 | |
| 	 * longer get any information about it at all.
 | |
| 	 */
 | |
| 	if (unlikely(sighand == NULL)) {
 | |
| 		return -ESRCH;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Disarm any old timer after extracting its expiry time.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(!irqs_disabled());
 | |
| 
 | |
| 	ret = 0;
 | |
| 	old_incr = timer->it.cpu.incr;
 | |
| 	old_expires = timer->it.cpu.expires;
 | |
| 	if (unlikely(timer->it.cpu.firing)) {
 | |
| 		timer->it.cpu.firing = -1;
 | |
| 		ret = TIMER_RETRY;
 | |
| 	} else
 | |
| 		list_del_init(&timer->it.cpu.entry);
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to sample the current value to convert the new
 | |
| 	 * value from to relative and absolute, and to convert the
 | |
| 	 * old value from absolute to relative.  To set a process
 | |
| 	 * timer, we need a sample to balance the thread expiry
 | |
| 	 * times (in arm_timer).  With an absolute time, we must
 | |
| 	 * check if it's already passed.  In short, we need a sample.
 | |
| 	 */
 | |
| 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 | |
| 		cpu_clock_sample(timer->it_clock, p, &val);
 | |
| 	} else {
 | |
| 		cpu_timer_sample_group(timer->it_clock, p, &val);
 | |
| 	}
 | |
| 
 | |
| 	if (old) {
 | |
| 		if (old_expires == 0) {
 | |
| 			old->it_value.tv_sec = 0;
 | |
| 			old->it_value.tv_nsec = 0;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Update the timer in case it has
 | |
| 			 * overrun already.  If it has,
 | |
| 			 * we'll report it as having overrun
 | |
| 			 * and with the next reloaded timer
 | |
| 			 * already ticking, though we are
 | |
| 			 * swallowing that pending
 | |
| 			 * notification here to install the
 | |
| 			 * new setting.
 | |
| 			 */
 | |
| 			bump_cpu_timer(timer, val);
 | |
| 			if (val < timer->it.cpu.expires) {
 | |
| 				old_expires = timer->it.cpu.expires - val;
 | |
| 				sample_to_timespec(timer->it_clock,
 | |
| 						   old_expires,
 | |
| 						   &old->it_value);
 | |
| 			} else {
 | |
| 				old->it_value.tv_nsec = 1;
 | |
| 				old->it_value.tv_sec = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(ret)) {
 | |
| 		/*
 | |
| 		 * We are colliding with the timer actually firing.
 | |
| 		 * Punt after filling in the timer's old value, and
 | |
| 		 * disable this firing since we are already reporting
 | |
| 		 * it as an overrun (thanks to bump_cpu_timer above).
 | |
| 		 */
 | |
| 		unlock_task_sighand(p, &flags);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
 | |
| 		new_expires += val;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Install the new expiry time (or zero).
 | |
| 	 * For a timer with no notification action, we don't actually
 | |
| 	 * arm the timer (we'll just fake it for timer_gettime).
 | |
| 	 */
 | |
| 	timer->it.cpu.expires = new_expires;
 | |
| 	if (new_expires != 0 && val < new_expires) {
 | |
| 		arm_timer(timer);
 | |
| 	}
 | |
| 
 | |
| 	unlock_task_sighand(p, &flags);
 | |
| 	/*
 | |
| 	 * Install the new reload setting, and
 | |
| 	 * set up the signal and overrun bookkeeping.
 | |
| 	 */
 | |
| 	timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
 | |
| 						&new->it_interval);
 | |
| 
 | |
| 	/*
 | |
| 	 * This acts as a modification timestamp for the timer,
 | |
| 	 * so any automatic reload attempt will punt on seeing
 | |
| 	 * that we have reset the timer manually.
 | |
| 	 */
 | |
| 	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
 | |
| 		~REQUEUE_PENDING;
 | |
| 	timer->it_overrun_last = 0;
 | |
| 	timer->it_overrun = -1;
 | |
| 
 | |
| 	if (new_expires != 0 && !(val < new_expires)) {
 | |
| 		/*
 | |
| 		 * The designated time already passed, so we notify
 | |
| 		 * immediately, even if the thread never runs to
 | |
| 		 * accumulate more time on this clock.
 | |
| 		 */
 | |
| 		cpu_timer_fire(timer);
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
|  out:
 | |
| 	if (old) {
 | |
| 		sample_to_timespec(timer->it_clock,
 | |
| 				   old_incr, &old->it_interval);
 | |
| 	}
 | |
| 	if (!ret)
 | |
| 		posix_cpu_timer_kick_nohz();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
 | |
| {
 | |
| 	unsigned long long now;
 | |
| 	struct task_struct *p = timer->it.cpu.task;
 | |
| 
 | |
| 	WARN_ON_ONCE(p == NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Easy part: convert the reload time.
 | |
| 	 */
 | |
| 	sample_to_timespec(timer->it_clock,
 | |
| 			   timer->it.cpu.incr, &itp->it_interval);
 | |
| 
 | |
| 	if (timer->it.cpu.expires == 0) {	/* Timer not armed at all.  */
 | |
| 		itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Sample the clock to take the difference with the expiry time.
 | |
| 	 */
 | |
| 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 | |
| 		cpu_clock_sample(timer->it_clock, p, &now);
 | |
| 	} else {
 | |
| 		struct sighand_struct *sighand;
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		/*
 | |
| 		 * Protect against sighand release/switch in exit/exec and
 | |
| 		 * also make timer sampling safe if it ends up calling
 | |
| 		 * thread_group_cputime().
 | |
| 		 */
 | |
| 		sighand = lock_task_sighand(p, &flags);
 | |
| 		if (unlikely(sighand == NULL)) {
 | |
| 			/*
 | |
| 			 * The process has been reaped.
 | |
| 			 * We can't even collect a sample any more.
 | |
| 			 * Call the timer disarmed, nothing else to do.
 | |
| 			 */
 | |
| 			timer->it.cpu.expires = 0;
 | |
| 			sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
 | |
| 					   &itp->it_value);
 | |
| 		} else {
 | |
| 			cpu_timer_sample_group(timer->it_clock, p, &now);
 | |
| 			unlock_task_sighand(p, &flags);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (now < timer->it.cpu.expires) {
 | |
| 		sample_to_timespec(timer->it_clock,
 | |
| 				   timer->it.cpu.expires - now,
 | |
| 				   &itp->it_value);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The timer should have expired already, but the firing
 | |
| 		 * hasn't taken place yet.  Say it's just about to expire.
 | |
| 		 */
 | |
| 		itp->it_value.tv_nsec = 1;
 | |
| 		itp->it_value.tv_sec = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long long
 | |
| check_timers_list(struct list_head *timers,
 | |
| 		  struct list_head *firing,
 | |
| 		  unsigned long long curr)
 | |
| {
 | |
| 	int maxfire = 20;
 | |
| 
 | |
| 	while (!list_empty(timers)) {
 | |
| 		struct cpu_timer_list *t;
 | |
| 
 | |
| 		t = list_first_entry(timers, struct cpu_timer_list, entry);
 | |
| 
 | |
| 		if (!--maxfire || curr < t->expires)
 | |
| 			return t->expires;
 | |
| 
 | |
| 		t->firing = 1;
 | |
| 		list_move_tail(&t->entry, firing);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for any per-thread CPU timers that have fired and move them off
 | |
|  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 | |
|  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 | |
|  */
 | |
| static void check_thread_timers(struct task_struct *tsk,
 | |
| 				struct list_head *firing)
 | |
| {
 | |
| 	struct list_head *timers = tsk->cpu_timers;
 | |
| 	struct signal_struct *const sig = tsk->signal;
 | |
| 	struct task_cputime *tsk_expires = &tsk->cputime_expires;
 | |
| 	unsigned long long expires;
 | |
| 	unsigned long soft;
 | |
| 
 | |
| 	expires = check_timers_list(timers, firing, prof_ticks(tsk));
 | |
| 	tsk_expires->prof_exp = expires_to_cputime(expires);
 | |
| 
 | |
| 	expires = check_timers_list(++timers, firing, virt_ticks(tsk));
 | |
| 	tsk_expires->virt_exp = expires_to_cputime(expires);
 | |
| 
 | |
| 	tsk_expires->sched_exp = check_timers_list(++timers, firing,
 | |
| 						   tsk->se.sum_exec_runtime);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for the special case thread timers.
 | |
| 	 */
 | |
| 	soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
 | |
| 	if (soft != RLIM_INFINITY) {
 | |
| 		unsigned long hard =
 | |
| 			ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
 | |
| 
 | |
| 		if (hard != RLIM_INFINITY &&
 | |
| 		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
 | |
| 			/*
 | |
| 			 * At the hard limit, we just die.
 | |
| 			 * No need to calculate anything else now.
 | |
| 			 */
 | |
| 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 | |
| 			return;
 | |
| 		}
 | |
| 		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
 | |
| 			/*
 | |
| 			 * At the soft limit, send a SIGXCPU every second.
 | |
| 			 */
 | |
| 			if (soft < hard) {
 | |
| 				soft += USEC_PER_SEC;
 | |
| 				sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
 | |
| 			}
 | |
| 			printk(KERN_INFO
 | |
| 				"RT Watchdog Timeout: %s[%d]\n",
 | |
| 				tsk->comm, task_pid_nr(tsk));
 | |
| 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void stop_process_timers(struct signal_struct *sig)
 | |
| {
 | |
| 	struct thread_group_cputimer *cputimer = &sig->cputimer;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&cputimer->lock, flags);
 | |
| 	cputimer->running = 0;
 | |
| 	raw_spin_unlock_irqrestore(&cputimer->lock, flags);
 | |
| }
 | |
| 
 | |
| static u32 onecputick;
 | |
| 
 | |
| static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
 | |
| 			     unsigned long long *expires,
 | |
| 			     unsigned long long cur_time, int signo)
 | |
| {
 | |
| 	if (!it->expires)
 | |
| 		return;
 | |
| 
 | |
| 	if (cur_time >= it->expires) {
 | |
| 		if (it->incr) {
 | |
| 			it->expires += it->incr;
 | |
| 			it->error += it->incr_error;
 | |
| 			if (it->error >= onecputick) {
 | |
| 				it->expires -= cputime_one_jiffy;
 | |
| 				it->error -= onecputick;
 | |
| 			}
 | |
| 		} else {
 | |
| 			it->expires = 0;
 | |
| 		}
 | |
| 
 | |
| 		trace_itimer_expire(signo == SIGPROF ?
 | |
| 				    ITIMER_PROF : ITIMER_VIRTUAL,
 | |
| 				    tsk->signal->leader_pid, cur_time);
 | |
| 		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
 | |
| 	}
 | |
| 
 | |
| 	if (it->expires && (!*expires || it->expires < *expires)) {
 | |
| 		*expires = it->expires;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for any per-thread CPU timers that have fired and move them
 | |
|  * off the tsk->*_timers list onto the firing list.  Per-thread timers
 | |
|  * have already been taken off.
 | |
|  */
 | |
| static void check_process_timers(struct task_struct *tsk,
 | |
| 				 struct list_head *firing)
 | |
| {
 | |
| 	struct signal_struct *const sig = tsk->signal;
 | |
| 	unsigned long long utime, ptime, virt_expires, prof_expires;
 | |
| 	unsigned long long sum_sched_runtime, sched_expires;
 | |
| 	struct list_head *timers = sig->cpu_timers;
 | |
| 	struct task_cputime cputime;
 | |
| 	unsigned long soft;
 | |
| 
 | |
| 	/*
 | |
| 	 * Collect the current process totals.
 | |
| 	 */
 | |
| 	thread_group_cputimer(tsk, &cputime);
 | |
| 	utime = cputime_to_expires(cputime.utime);
 | |
| 	ptime = utime + cputime_to_expires(cputime.stime);
 | |
| 	sum_sched_runtime = cputime.sum_exec_runtime;
 | |
| 
 | |
| 	prof_expires = check_timers_list(timers, firing, ptime);
 | |
| 	virt_expires = check_timers_list(++timers, firing, utime);
 | |
| 	sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for the special case process timers.
 | |
| 	 */
 | |
| 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
 | |
| 			 SIGPROF);
 | |
| 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
 | |
| 			 SIGVTALRM);
 | |
| 	soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
 | |
| 	if (soft != RLIM_INFINITY) {
 | |
| 		unsigned long psecs = cputime_to_secs(ptime);
 | |
| 		unsigned long hard =
 | |
| 			ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
 | |
| 		cputime_t x;
 | |
| 		if (psecs >= hard) {
 | |
| 			/*
 | |
| 			 * At the hard limit, we just die.
 | |
| 			 * No need to calculate anything else now.
 | |
| 			 */
 | |
| 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 | |
| 			return;
 | |
| 		}
 | |
| 		if (psecs >= soft) {
 | |
| 			/*
 | |
| 			 * At the soft limit, send a SIGXCPU every second.
 | |
| 			 */
 | |
| 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 | |
| 			if (soft < hard) {
 | |
| 				soft++;
 | |
| 				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
 | |
| 			}
 | |
| 		}
 | |
| 		x = secs_to_cputime(soft);
 | |
| 		if (!prof_expires || x < prof_expires) {
 | |
| 			prof_expires = x;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
 | |
| 	sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
 | |
| 	sig->cputime_expires.sched_exp = sched_expires;
 | |
| 	if (task_cputime_zero(&sig->cputime_expires))
 | |
| 		stop_process_timers(sig);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called from the signal code (via do_schedule_next_timer)
 | |
|  * when the last timer signal was delivered and we have to reload the timer.
 | |
|  */
 | |
| void posix_cpu_timer_schedule(struct k_itimer *timer)
 | |
| {
 | |
| 	struct sighand_struct *sighand;
 | |
| 	unsigned long flags;
 | |
| 	struct task_struct *p = timer->it.cpu.task;
 | |
| 	unsigned long long now;
 | |
| 
 | |
| 	WARN_ON_ONCE(p == NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Fetch the current sample and update the timer's expiry time.
 | |
| 	 */
 | |
| 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 | |
| 		cpu_clock_sample(timer->it_clock, p, &now);
 | |
| 		bump_cpu_timer(timer, now);
 | |
| 		if (unlikely(p->exit_state))
 | |
| 			goto out;
 | |
| 
 | |
| 		/* Protect timer list r/w in arm_timer() */
 | |
| 		sighand = lock_task_sighand(p, &flags);
 | |
| 		if (!sighand)
 | |
| 			goto out;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Protect arm_timer() and timer sampling in case of call to
 | |
| 		 * thread_group_cputime().
 | |
| 		 */
 | |
| 		sighand = lock_task_sighand(p, &flags);
 | |
| 		if (unlikely(sighand == NULL)) {
 | |
| 			/*
 | |
| 			 * The process has been reaped.
 | |
| 			 * We can't even collect a sample any more.
 | |
| 			 */
 | |
| 			timer->it.cpu.expires = 0;
 | |
| 			goto out;
 | |
| 		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
 | |
| 			unlock_task_sighand(p, &flags);
 | |
| 			/* Optimizations: if the process is dying, no need to rearm */
 | |
| 			goto out;
 | |
| 		}
 | |
| 		cpu_timer_sample_group(timer->it_clock, p, &now);
 | |
| 		bump_cpu_timer(timer, now);
 | |
| 		/* Leave the sighand locked for the call below.  */
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now re-arm for the new expiry time.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(!irqs_disabled());
 | |
| 	arm_timer(timer);
 | |
| 	unlock_task_sighand(p, &flags);
 | |
| 
 | |
| 	/* Kick full dynticks CPUs in case they need to tick on the new timer */
 | |
| 	posix_cpu_timer_kick_nohz();
 | |
| out:
 | |
| 	timer->it_overrun_last = timer->it_overrun;
 | |
| 	timer->it_overrun = -1;
 | |
| 	++timer->it_requeue_pending;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * task_cputime_expired - Compare two task_cputime entities.
 | |
|  *
 | |
|  * @sample:	The task_cputime structure to be checked for expiration.
 | |
|  * @expires:	Expiration times, against which @sample will be checked.
 | |
|  *
 | |
|  * Checks @sample against @expires to see if any field of @sample has expired.
 | |
|  * Returns true if any field of the former is greater than the corresponding
 | |
|  * field of the latter if the latter field is set.  Otherwise returns false.
 | |
|  */
 | |
| static inline int task_cputime_expired(const struct task_cputime *sample,
 | |
| 					const struct task_cputime *expires)
 | |
| {
 | |
| 	if (expires->utime && sample->utime >= expires->utime)
 | |
| 		return 1;
 | |
| 	if (expires->stime && sample->utime + sample->stime >= expires->stime)
 | |
| 		return 1;
 | |
| 	if (expires->sum_exec_runtime != 0 &&
 | |
| 	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fastpath_timer_check - POSIX CPU timers fast path.
 | |
|  *
 | |
|  * @tsk:	The task (thread) being checked.
 | |
|  *
 | |
|  * Check the task and thread group timers.  If both are zero (there are no
 | |
|  * timers set) return false.  Otherwise snapshot the task and thread group
 | |
|  * timers and compare them with the corresponding expiration times.  Return
 | |
|  * true if a timer has expired, else return false.
 | |
|  */
 | |
| static inline int fastpath_timer_check(struct task_struct *tsk)
 | |
| {
 | |
| 	struct signal_struct *sig;
 | |
| 	cputime_t utime, stime;
 | |
| 
 | |
| 	task_cputime(tsk, &utime, &stime);
 | |
| 
 | |
| 	if (!task_cputime_zero(&tsk->cputime_expires)) {
 | |
| 		struct task_cputime task_sample = {
 | |
| 			.utime = utime,
 | |
| 			.stime = stime,
 | |
| 			.sum_exec_runtime = tsk->se.sum_exec_runtime
 | |
| 		};
 | |
| 
 | |
| 		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	sig = tsk->signal;
 | |
| 	if (sig->cputimer.running) {
 | |
| 		struct task_cputime group_sample;
 | |
| 
 | |
| 		raw_spin_lock(&sig->cputimer.lock);
 | |
| 		group_sample = sig->cputimer.cputime;
 | |
| 		raw_spin_unlock(&sig->cputimer.lock);
 | |
| 
 | |
| 		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called from the timer interrupt handler.  The irq handler has
 | |
|  * already updated our counts.  We need to check if any timers fire now.
 | |
|  * Interrupts are disabled.
 | |
|  */
 | |
| void run_posix_cpu_timers(struct task_struct *tsk)
 | |
| {
 | |
| 	LIST_HEAD(firing);
 | |
| 	struct k_itimer *timer, *next;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	WARN_ON_ONCE(!irqs_disabled());
 | |
| 
 | |
| 	/*
 | |
| 	 * The fast path checks that there are no expired thread or thread
 | |
| 	 * group timers.  If that's so, just return.
 | |
| 	 */
 | |
| 	if (!fastpath_timer_check(tsk))
 | |
| 		return;
 | |
| 
 | |
| 	if (!lock_task_sighand(tsk, &flags))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Here we take off tsk->signal->cpu_timers[N] and
 | |
| 	 * tsk->cpu_timers[N] all the timers that are firing, and
 | |
| 	 * put them on the firing list.
 | |
| 	 */
 | |
| 	check_thread_timers(tsk, &firing);
 | |
| 	/*
 | |
| 	 * If there are any active process wide timers (POSIX 1.b, itimers,
 | |
| 	 * RLIMIT_CPU) cputimer must be running.
 | |
| 	 */
 | |
| 	if (tsk->signal->cputimer.running)
 | |
| 		check_process_timers(tsk, &firing);
 | |
| 
 | |
| 	/*
 | |
| 	 * We must release these locks before taking any timer's lock.
 | |
| 	 * There is a potential race with timer deletion here, as the
 | |
| 	 * siglock now protects our private firing list.  We have set
 | |
| 	 * the firing flag in each timer, so that a deletion attempt
 | |
| 	 * that gets the timer lock before we do will give it up and
 | |
| 	 * spin until we've taken care of that timer below.
 | |
| 	 */
 | |
| 	unlock_task_sighand(tsk, &flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that all the timers on our list have the firing flag,
 | |
| 	 * no one will touch their list entries but us.  We'll take
 | |
| 	 * each timer's lock before clearing its firing flag, so no
 | |
| 	 * timer call will interfere.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
 | |
| 		int cpu_firing;
 | |
| 
 | |
| 		spin_lock(&timer->it_lock);
 | |
| 		list_del_init(&timer->it.cpu.entry);
 | |
| 		cpu_firing = timer->it.cpu.firing;
 | |
| 		timer->it.cpu.firing = 0;
 | |
| 		/*
 | |
| 		 * The firing flag is -1 if we collided with a reset
 | |
| 		 * of the timer, which already reported this
 | |
| 		 * almost-firing as an overrun.  So don't generate an event.
 | |
| 		 */
 | |
| 		if (likely(cpu_firing >= 0))
 | |
| 			cpu_timer_fire(timer);
 | |
| 		spin_unlock(&timer->it_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
 | |
|  * The tsk->sighand->siglock must be held by the caller.
 | |
|  */
 | |
| void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
 | |
| 			   cputime_t *newval, cputime_t *oldval)
 | |
| {
 | |
| 	unsigned long long now;
 | |
| 
 | |
| 	WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
 | |
| 	cpu_timer_sample_group(clock_idx, tsk, &now);
 | |
| 
 | |
| 	if (oldval) {
 | |
| 		/*
 | |
| 		 * We are setting itimer. The *oldval is absolute and we update
 | |
| 		 * it to be relative, *newval argument is relative and we update
 | |
| 		 * it to be absolute.
 | |
| 		 */
 | |
| 		if (*oldval) {
 | |
| 			if (*oldval <= now) {
 | |
| 				/* Just about to fire. */
 | |
| 				*oldval = cputime_one_jiffy;
 | |
| 			} else {
 | |
| 				*oldval -= now;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (!*newval)
 | |
| 			goto out;
 | |
| 		*newval += now;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Update expiration cache if we are the earliest timer, or eventually
 | |
| 	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
 | |
| 	 */
 | |
| 	switch (clock_idx) {
 | |
| 	case CPUCLOCK_PROF:
 | |
| 		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
 | |
| 			tsk->signal->cputime_expires.prof_exp = *newval;
 | |
| 		break;
 | |
| 	case CPUCLOCK_VIRT:
 | |
| 		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
 | |
| 			tsk->signal->cputime_expires.virt_exp = *newval;
 | |
| 		break;
 | |
| 	}
 | |
| out:
 | |
| 	posix_cpu_timer_kick_nohz();
 | |
| }
 | |
| 
 | |
| static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
 | |
| 			    struct timespec *rqtp, struct itimerspec *it)
 | |
| {
 | |
| 	struct k_itimer timer;
 | |
| 	int error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up a temporary timer and then wait for it to go off.
 | |
| 	 */
 | |
| 	memset(&timer, 0, sizeof timer);
 | |
| 	spin_lock_init(&timer.it_lock);
 | |
| 	timer.it_clock = which_clock;
 | |
| 	timer.it_overrun = -1;
 | |
| 	error = posix_cpu_timer_create(&timer);
 | |
| 	timer.it_process = current;
 | |
| 	if (!error) {
 | |
| 		static struct itimerspec zero_it;
 | |
| 
 | |
| 		memset(it, 0, sizeof *it);
 | |
| 		it->it_value = *rqtp;
 | |
| 
 | |
| 		spin_lock_irq(&timer.it_lock);
 | |
| 		error = posix_cpu_timer_set(&timer, flags, it, NULL);
 | |
| 		if (error) {
 | |
| 			spin_unlock_irq(&timer.it_lock);
 | |
| 			return error;
 | |
| 		}
 | |
| 
 | |
| 		while (!signal_pending(current)) {
 | |
| 			if (timer.it.cpu.expires == 0) {
 | |
| 				/*
 | |
| 				 * Our timer fired and was reset, below
 | |
| 				 * deletion can not fail.
 | |
| 				 */
 | |
| 				posix_cpu_timer_del(&timer);
 | |
| 				spin_unlock_irq(&timer.it_lock);
 | |
| 				return 0;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Block until cpu_timer_fire (or a signal) wakes us.
 | |
| 			 */
 | |
| 			__set_current_state(TASK_INTERRUPTIBLE);
 | |
| 			spin_unlock_irq(&timer.it_lock);
 | |
| 			schedule();
 | |
| 			spin_lock_irq(&timer.it_lock);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We were interrupted by a signal.
 | |
| 		 */
 | |
| 		sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
 | |
| 		error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
 | |
| 		if (!error) {
 | |
| 			/*
 | |
| 			 * Timer is now unarmed, deletion can not fail.
 | |
| 			 */
 | |
| 			posix_cpu_timer_del(&timer);
 | |
| 		}
 | |
| 		spin_unlock_irq(&timer.it_lock);
 | |
| 
 | |
| 		while (error == TIMER_RETRY) {
 | |
| 			/*
 | |
| 			 * We need to handle case when timer was or is in the
 | |
| 			 * middle of firing. In other cases we already freed
 | |
| 			 * resources.
 | |
| 			 */
 | |
| 			spin_lock_irq(&timer.it_lock);
 | |
| 			error = posix_cpu_timer_del(&timer);
 | |
| 			spin_unlock_irq(&timer.it_lock);
 | |
| 		}
 | |
| 
 | |
| 		if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
 | |
| 			/*
 | |
| 			 * It actually did fire already.
 | |
| 			 */
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		error = -ERESTART_RESTARTBLOCK;
 | |
| 	}
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
 | |
| 
 | |
| static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
 | |
| 			    struct timespec *rqtp, struct timespec __user *rmtp)
 | |
| {
 | |
| 	struct restart_block *restart_block = ¤t->restart_block;
 | |
| 	struct itimerspec it;
 | |
| 	int error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Diagnose required errors first.
 | |
| 	 */
 | |
| 	if (CPUCLOCK_PERTHREAD(which_clock) &&
 | |
| 	    (CPUCLOCK_PID(which_clock) == 0 ||
 | |
| 	     CPUCLOCK_PID(which_clock) == current->pid))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
 | |
| 
 | |
| 	if (error == -ERESTART_RESTARTBLOCK) {
 | |
| 
 | |
| 		if (flags & TIMER_ABSTIME)
 | |
| 			return -ERESTARTNOHAND;
 | |
| 		/*
 | |
| 		 * Report back to the user the time still remaining.
 | |
| 		 */
 | |
| 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		restart_block->fn = posix_cpu_nsleep_restart;
 | |
| 		restart_block->nanosleep.clockid = which_clock;
 | |
| 		restart_block->nanosleep.rmtp = rmtp;
 | |
| 		restart_block->nanosleep.expires = timespec_to_ns(rqtp);
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
 | |
| {
 | |
| 	clockid_t which_clock = restart_block->nanosleep.clockid;
 | |
| 	struct timespec t;
 | |
| 	struct itimerspec it;
 | |
| 	int error;
 | |
| 
 | |
| 	t = ns_to_timespec(restart_block->nanosleep.expires);
 | |
| 
 | |
| 	error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
 | |
| 
 | |
| 	if (error == -ERESTART_RESTARTBLOCK) {
 | |
| 		struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
 | |
| 		/*
 | |
| 		 * Report back to the user the time still remaining.
 | |
| 		 */
 | |
| 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		restart_block->nanosleep.expires = timespec_to_ns(&t);
 | |
| 	}
 | |
| 	return error;
 | |
| 
 | |
| }
 | |
| 
 | |
| #define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
 | |
| #define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
 | |
| 
 | |
| static int process_cpu_clock_getres(const clockid_t which_clock,
 | |
| 				    struct timespec *tp)
 | |
| {
 | |
| 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
 | |
| }
 | |
| static int process_cpu_clock_get(const clockid_t which_clock,
 | |
| 				 struct timespec *tp)
 | |
| {
 | |
| 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
 | |
| }
 | |
| static int process_cpu_timer_create(struct k_itimer *timer)
 | |
| {
 | |
| 	timer->it_clock = PROCESS_CLOCK;
 | |
| 	return posix_cpu_timer_create(timer);
 | |
| }
 | |
| static int process_cpu_nsleep(const clockid_t which_clock, int flags,
 | |
| 			      struct timespec *rqtp,
 | |
| 			      struct timespec __user *rmtp)
 | |
| {
 | |
| 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
 | |
| }
 | |
| static long process_cpu_nsleep_restart(struct restart_block *restart_block)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| static int thread_cpu_clock_getres(const clockid_t which_clock,
 | |
| 				   struct timespec *tp)
 | |
| {
 | |
| 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
 | |
| }
 | |
| static int thread_cpu_clock_get(const clockid_t which_clock,
 | |
| 				struct timespec *tp)
 | |
| {
 | |
| 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
 | |
| }
 | |
| static int thread_cpu_timer_create(struct k_itimer *timer)
 | |
| {
 | |
| 	timer->it_clock = THREAD_CLOCK;
 | |
| 	return posix_cpu_timer_create(timer);
 | |
| }
 | |
| 
 | |
| struct k_clock clock_posix_cpu = {
 | |
| 	.clock_getres	= posix_cpu_clock_getres,
 | |
| 	.clock_set	= posix_cpu_clock_set,
 | |
| 	.clock_get	= posix_cpu_clock_get,
 | |
| 	.timer_create	= posix_cpu_timer_create,
 | |
| 	.nsleep		= posix_cpu_nsleep,
 | |
| 	.nsleep_restart	= posix_cpu_nsleep_restart,
 | |
| 	.timer_set	= posix_cpu_timer_set,
 | |
| 	.timer_del	= posix_cpu_timer_del,
 | |
| 	.timer_get	= posix_cpu_timer_get,
 | |
| };
 | |
| 
 | |
| static __init int init_posix_cpu_timers(void)
 | |
| {
 | |
| 	struct k_clock process = {
 | |
| 		.clock_getres	= process_cpu_clock_getres,
 | |
| 		.clock_get	= process_cpu_clock_get,
 | |
| 		.timer_create	= process_cpu_timer_create,
 | |
| 		.nsleep		= process_cpu_nsleep,
 | |
| 		.nsleep_restart	= process_cpu_nsleep_restart,
 | |
| 	};
 | |
| 	struct k_clock thread = {
 | |
| 		.clock_getres	= thread_cpu_clock_getres,
 | |
| 		.clock_get	= thread_cpu_clock_get,
 | |
| 		.timer_create	= thread_cpu_timer_create,
 | |
| 	};
 | |
| 	struct timespec ts;
 | |
| 
 | |
| 	posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
 | |
| 	posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
 | |
| 
 | |
| 	cputime_to_timespec(cputime_one_jiffy, &ts);
 | |
| 	onecputick = ts.tv_nsec;
 | |
| 	WARN_ON(ts.tv_sec != 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(init_posix_cpu_timers);
 |