 eb18cba78c
			
		
	
	
	eb18cba78c
	
	
	
		
			
			Commit f792685006 ("math64: New
div64_u64_rem helper") implemented div64_u64 in terms of div64_u64_rem.
But div64_u64_rem was removed because it slowed down div64_u64 (and
there were no other users of div64_u64_rem).
Device Mapper's I/O statistics support has a need for div64_u64_rem;
reintroduce this helper as a separate method that doesn't slow down
div64_u64, especially on 32-bit systems.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
		
	
			
		
			
				
	
	
		
			183 lines
		
	
	
	
		
			4 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			183 lines
		
	
	
	
		
			4 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
 | |
|  *
 | |
|  * Based on former do_div() implementation from asm-parisc/div64.h:
 | |
|  *	Copyright (C) 1999 Hewlett-Packard Co
 | |
|  *	Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
 | |
|  *
 | |
|  *
 | |
|  * Generic C version of 64bit/32bit division and modulo, with
 | |
|  * 64bit result and 32bit remainder.
 | |
|  *
 | |
|  * The fast case for (n>>32 == 0) is handled inline by do_div(). 
 | |
|  *
 | |
|  * Code generated for this function might be very inefficient
 | |
|  * for some CPUs. __div64_32() can be overridden by linking arch-specific
 | |
|  * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S.
 | |
|  */
 | |
| 
 | |
| #include <linux/export.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/math64.h>
 | |
| 
 | |
| /* Not needed on 64bit architectures */
 | |
| #if BITS_PER_LONG == 32
 | |
| 
 | |
| uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
 | |
| {
 | |
| 	uint64_t rem = *n;
 | |
| 	uint64_t b = base;
 | |
| 	uint64_t res, d = 1;
 | |
| 	uint32_t high = rem >> 32;
 | |
| 
 | |
| 	/* Reduce the thing a bit first */
 | |
| 	res = 0;
 | |
| 	if (high >= base) {
 | |
| 		high /= base;
 | |
| 		res = (uint64_t) high << 32;
 | |
| 		rem -= (uint64_t) (high*base) << 32;
 | |
| 	}
 | |
| 
 | |
| 	while ((int64_t)b > 0 && b < rem) {
 | |
| 		b = b+b;
 | |
| 		d = d+d;
 | |
| 	}
 | |
| 
 | |
| 	do {
 | |
| 		if (rem >= b) {
 | |
| 			rem -= b;
 | |
| 			res += d;
 | |
| 		}
 | |
| 		b >>= 1;
 | |
| 		d >>= 1;
 | |
| 	} while (d);
 | |
| 
 | |
| 	*n = res;
 | |
| 	return rem;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(__div64_32);
 | |
| 
 | |
| #ifndef div_s64_rem
 | |
| s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
 | |
| {
 | |
| 	u64 quotient;
 | |
| 
 | |
| 	if (dividend < 0) {
 | |
| 		quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
 | |
| 		*remainder = -*remainder;
 | |
| 		if (divisor > 0)
 | |
| 			quotient = -quotient;
 | |
| 	} else {
 | |
| 		quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
 | |
| 		if (divisor < 0)
 | |
| 			quotient = -quotient;
 | |
| 	}
 | |
| 	return quotient;
 | |
| }
 | |
| EXPORT_SYMBOL(div_s64_rem);
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
 | |
|  * @dividend:	64bit dividend
 | |
|  * @divisor:	64bit divisor
 | |
|  * @remainder:  64bit remainder
 | |
|  *
 | |
|  * This implementation is a comparable to algorithm used by div64_u64.
 | |
|  * But this operation, which includes math for calculating the remainder,
 | |
|  * is kept distinct to avoid slowing down the div64_u64 operation on 32bit
 | |
|  * systems.
 | |
|  */
 | |
| #ifndef div64_u64_rem
 | |
| u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
 | |
| {
 | |
| 	u32 high = divisor >> 32;
 | |
| 	u64 quot;
 | |
| 
 | |
| 	if (high == 0) {
 | |
| 		u32 rem32;
 | |
| 		quot = div_u64_rem(dividend, divisor, &rem32);
 | |
| 		*remainder = rem32;
 | |
| 	} else {
 | |
| 		int n = 1 + fls(high);
 | |
| 		quot = div_u64(dividend >> n, divisor >> n);
 | |
| 
 | |
| 		if (quot != 0)
 | |
| 			quot--;
 | |
| 
 | |
| 		*remainder = dividend - quot * divisor;
 | |
| 		if (*remainder >= divisor) {
 | |
| 			quot++;
 | |
| 			*remainder -= divisor;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return quot;
 | |
| }
 | |
| EXPORT_SYMBOL(div64_u64_rem);
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * div64_u64 - unsigned 64bit divide with 64bit divisor
 | |
|  * @dividend:	64bit dividend
 | |
|  * @divisor:	64bit divisor
 | |
|  *
 | |
|  * This implementation is a modified version of the algorithm proposed
 | |
|  * by the book 'Hacker's Delight'.  The original source and full proof
 | |
|  * can be found here and is available for use without restriction.
 | |
|  *
 | |
|  * 'http://www.hackersdelight.org/HDcode/newCode/divDouble.c.txt'
 | |
|  */
 | |
| #ifndef div64_u64
 | |
| u64 div64_u64(u64 dividend, u64 divisor)
 | |
| {
 | |
| 	u32 high = divisor >> 32;
 | |
| 	u64 quot;
 | |
| 
 | |
| 	if (high == 0) {
 | |
| 		quot = div_u64(dividend, divisor);
 | |
| 	} else {
 | |
| 		int n = 1 + fls(high);
 | |
| 		quot = div_u64(dividend >> n, divisor >> n);
 | |
| 
 | |
| 		if (quot != 0)
 | |
| 			quot--;
 | |
| 		if ((dividend - quot * divisor) >= divisor)
 | |
| 			quot++;
 | |
| 	}
 | |
| 
 | |
| 	return quot;
 | |
| }
 | |
| EXPORT_SYMBOL(div64_u64);
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * div64_s64 - signed 64bit divide with 64bit divisor
 | |
|  * @dividend:	64bit dividend
 | |
|  * @divisor:	64bit divisor
 | |
|  */
 | |
| #ifndef div64_s64
 | |
| s64 div64_s64(s64 dividend, s64 divisor)
 | |
| {
 | |
| 	s64 quot, t;
 | |
| 
 | |
| 	quot = div64_u64(abs64(dividend), abs64(divisor));
 | |
| 	t = (dividend ^ divisor) >> 63;
 | |
| 
 | |
| 	return (quot ^ t) - t;
 | |
| }
 | |
| EXPORT_SYMBOL(div64_s64);
 | |
| #endif
 | |
| 
 | |
| #endif /* BITS_PER_LONG == 32 */
 | |
| 
 | |
| /*
 | |
|  * Iterative div/mod for use when dividend is not expected to be much
 | |
|  * bigger than divisor.
 | |
|  */
 | |
| u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
 | |
| {
 | |
| 	return __iter_div_u64_rem(dividend, divisor, remainder);
 | |
| }
 | |
| EXPORT_SYMBOL(iter_div_u64_rem);
 |