 a1bb7d6123
			
		
	
	
	a1bb7d6123
	
	
	
		
			
			http://bugzilla.kernel.org/show_bug.cgi?id=12239 The image writing code dropped a reference to the current swap device. This doesn't show up if the hibernation succeeds - because it doesn't affect the image which gets resumed. But it means multiple _failed_ hibernations end up freeing the swap device while it is still use! swsusp_write() finds the block device for the swap file using swap_type_of(). It then uses blkdev_get() / blkdev_put() to open and close the block device. Unfortunately, blkdev_get() assumes ownership of the inode of the block_device passed to it. So blkdev_put() calls iput() on the inode. This is by design and other callers expect this behaviour. The fix is for swap_type_of() to take a reference on the inode using bdget(). Signed-off-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Cc: Len Brown <lenb@kernel.org> Cc: Greg KH <gregkh@suse.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			2038 lines
		
	
	
	
		
			50 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2038 lines
		
	
	
	
		
			50 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/mm/swapfile.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 | |
|  *  Swap reorganised 29.12.95, Stephen Tweedie
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/namei.h>
 | |
| #include <linux/shm.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/memcontrol.h>
 | |
| 
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/page_cgroup.h>
 | |
| 
 | |
| static DEFINE_SPINLOCK(swap_lock);
 | |
| static unsigned int nr_swapfiles;
 | |
| long nr_swap_pages;
 | |
| long total_swap_pages;
 | |
| static int swap_overflow;
 | |
| static int least_priority;
 | |
| 
 | |
| static const char Bad_file[] = "Bad swap file entry ";
 | |
| static const char Unused_file[] = "Unused swap file entry ";
 | |
| static const char Bad_offset[] = "Bad swap offset entry ";
 | |
| static const char Unused_offset[] = "Unused swap offset entry ";
 | |
| 
 | |
| static struct swap_list_t swap_list = {-1, -1};
 | |
| 
 | |
| static struct swap_info_struct swap_info[MAX_SWAPFILES];
 | |
| 
 | |
| static DEFINE_MUTEX(swapon_mutex);
 | |
| 
 | |
| /*
 | |
|  * We need this because the bdev->unplug_fn can sleep and we cannot
 | |
|  * hold swap_lock while calling the unplug_fn. And swap_lock
 | |
|  * cannot be turned into a mutex.
 | |
|  */
 | |
| static DECLARE_RWSEM(swap_unplug_sem);
 | |
| 
 | |
| void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
 | |
| {
 | |
| 	swp_entry_t entry;
 | |
| 
 | |
| 	down_read(&swap_unplug_sem);
 | |
| 	entry.val = page_private(page);
 | |
| 	if (PageSwapCache(page)) {
 | |
| 		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
 | |
| 		struct backing_dev_info *bdi;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the page is removed from swapcache from under us (with a
 | |
| 		 * racy try_to_unuse/swapoff) we need an additional reference
 | |
| 		 * count to avoid reading garbage from page_private(page) above.
 | |
| 		 * If the WARN_ON triggers during a swapoff it maybe the race
 | |
| 		 * condition and it's harmless. However if it triggers without
 | |
| 		 * swapoff it signals a problem.
 | |
| 		 */
 | |
| 		WARN_ON(page_count(page) <= 1);
 | |
| 
 | |
| 		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
 | |
| 		blk_run_backing_dev(bdi, page);
 | |
| 	}
 | |
| 	up_read(&swap_unplug_sem);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * swapon tell device that all the old swap contents can be discarded,
 | |
|  * to allow the swap device to optimize its wear-levelling.
 | |
|  */
 | |
| static int discard_swap(struct swap_info_struct *si)
 | |
| {
 | |
| 	struct swap_extent *se;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	list_for_each_entry(se, &si->extent_list, list) {
 | |
| 		sector_t start_block = se->start_block << (PAGE_SHIFT - 9);
 | |
| 		sector_t nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 | |
| 
 | |
| 		if (se->start_page == 0) {
 | |
| 			/* Do not discard the swap header page! */
 | |
| 			start_block += 1 << (PAGE_SHIFT - 9);
 | |
| 			nr_blocks -= 1 << (PAGE_SHIFT - 9);
 | |
| 			if (!nr_blocks)
 | |
| 				continue;
 | |
| 		}
 | |
| 
 | |
| 		err = blkdev_issue_discard(si->bdev, start_block,
 | |
| 						nr_blocks, GFP_KERNEL);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	return err;		/* That will often be -EOPNOTSUPP */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * swap allocation tell device that a cluster of swap can now be discarded,
 | |
|  * to allow the swap device to optimize its wear-levelling.
 | |
|  */
 | |
| static void discard_swap_cluster(struct swap_info_struct *si,
 | |
| 				 pgoff_t start_page, pgoff_t nr_pages)
 | |
| {
 | |
| 	struct swap_extent *se = si->curr_swap_extent;
 | |
| 	int found_extent = 0;
 | |
| 
 | |
| 	while (nr_pages) {
 | |
| 		struct list_head *lh;
 | |
| 
 | |
| 		if (se->start_page <= start_page &&
 | |
| 		    start_page < se->start_page + se->nr_pages) {
 | |
| 			pgoff_t offset = start_page - se->start_page;
 | |
| 			sector_t start_block = se->start_block + offset;
 | |
| 			sector_t nr_blocks = se->nr_pages - offset;
 | |
| 
 | |
| 			if (nr_blocks > nr_pages)
 | |
| 				nr_blocks = nr_pages;
 | |
| 			start_page += nr_blocks;
 | |
| 			nr_pages -= nr_blocks;
 | |
| 
 | |
| 			if (!found_extent++)
 | |
| 				si->curr_swap_extent = se;
 | |
| 
 | |
| 			start_block <<= PAGE_SHIFT - 9;
 | |
| 			nr_blocks <<= PAGE_SHIFT - 9;
 | |
| 			if (blkdev_issue_discard(si->bdev, start_block,
 | |
| 							nr_blocks, GFP_NOIO))
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		lh = se->list.next;
 | |
| 		if (lh == &si->extent_list)
 | |
| 			lh = lh->next;
 | |
| 		se = list_entry(lh, struct swap_extent, list);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int wait_for_discard(void *word)
 | |
| {
 | |
| 	schedule();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define SWAPFILE_CLUSTER	256
 | |
| #define LATENCY_LIMIT		256
 | |
| 
 | |
| static inline unsigned long scan_swap_map(struct swap_info_struct *si)
 | |
| {
 | |
| 	unsigned long offset;
 | |
| 	unsigned long scan_base;
 | |
| 	unsigned long last_in_cluster = 0;
 | |
| 	int latency_ration = LATENCY_LIMIT;
 | |
| 	int found_free_cluster = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We try to cluster swap pages by allocating them sequentially
 | |
| 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 | |
| 	 * way, however, we resort to first-free allocation, starting
 | |
| 	 * a new cluster.  This prevents us from scattering swap pages
 | |
| 	 * all over the entire swap partition, so that we reduce
 | |
| 	 * overall disk seek times between swap pages.  -- sct
 | |
| 	 * But we do now try to find an empty cluster.  -Andrea
 | |
| 	 * And we let swap pages go all over an SSD partition.  Hugh
 | |
| 	 */
 | |
| 
 | |
| 	si->flags += SWP_SCANNING;
 | |
| 	scan_base = offset = si->cluster_next;
 | |
| 
 | |
| 	if (unlikely(!si->cluster_nr--)) {
 | |
| 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 | |
| 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 | |
| 			goto checks;
 | |
| 		}
 | |
| 		if (si->flags & SWP_DISCARDABLE) {
 | |
| 			/*
 | |
| 			 * Start range check on racing allocations, in case
 | |
| 			 * they overlap the cluster we eventually decide on
 | |
| 			 * (we scan without swap_lock to allow preemption).
 | |
| 			 * It's hardly conceivable that cluster_nr could be
 | |
| 			 * wrapped during our scan, but don't depend on it.
 | |
| 			 */
 | |
| 			if (si->lowest_alloc)
 | |
| 				goto checks;
 | |
| 			si->lowest_alloc = si->max;
 | |
| 			si->highest_alloc = 0;
 | |
| 		}
 | |
| 		spin_unlock(&swap_lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * If seek is expensive, start searching for new cluster from
 | |
| 		 * start of partition, to minimize the span of allocated swap.
 | |
| 		 * But if seek is cheap, search from our current position, so
 | |
| 		 * that swap is allocated from all over the partition: if the
 | |
| 		 * Flash Translation Layer only remaps within limited zones,
 | |
| 		 * we don't want to wear out the first zone too quickly.
 | |
| 		 */
 | |
| 		if (!(si->flags & SWP_SOLIDSTATE))
 | |
| 			scan_base = offset = si->lowest_bit;
 | |
| 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 | |
| 
 | |
| 		/* Locate the first empty (unaligned) cluster */
 | |
| 		for (; last_in_cluster <= si->highest_bit; offset++) {
 | |
| 			if (si->swap_map[offset])
 | |
| 				last_in_cluster = offset + SWAPFILE_CLUSTER;
 | |
| 			else if (offset == last_in_cluster) {
 | |
| 				spin_lock(&swap_lock);
 | |
| 				offset -= SWAPFILE_CLUSTER - 1;
 | |
| 				si->cluster_next = offset;
 | |
| 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 | |
| 				found_free_cluster = 1;
 | |
| 				goto checks;
 | |
| 			}
 | |
| 			if (unlikely(--latency_ration < 0)) {
 | |
| 				cond_resched();
 | |
| 				latency_ration = LATENCY_LIMIT;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		offset = si->lowest_bit;
 | |
| 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 | |
| 
 | |
| 		/* Locate the first empty (unaligned) cluster */
 | |
| 		for (; last_in_cluster < scan_base; offset++) {
 | |
| 			if (si->swap_map[offset])
 | |
| 				last_in_cluster = offset + SWAPFILE_CLUSTER;
 | |
| 			else if (offset == last_in_cluster) {
 | |
| 				spin_lock(&swap_lock);
 | |
| 				offset -= SWAPFILE_CLUSTER - 1;
 | |
| 				si->cluster_next = offset;
 | |
| 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 | |
| 				found_free_cluster = 1;
 | |
| 				goto checks;
 | |
| 			}
 | |
| 			if (unlikely(--latency_ration < 0)) {
 | |
| 				cond_resched();
 | |
| 				latency_ration = LATENCY_LIMIT;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		offset = scan_base;
 | |
| 		spin_lock(&swap_lock);
 | |
| 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 | |
| 		si->lowest_alloc = 0;
 | |
| 	}
 | |
| 
 | |
| checks:
 | |
| 	if (!(si->flags & SWP_WRITEOK))
 | |
| 		goto no_page;
 | |
| 	if (!si->highest_bit)
 | |
| 		goto no_page;
 | |
| 	if (offset > si->highest_bit)
 | |
| 		scan_base = offset = si->lowest_bit;
 | |
| 	if (si->swap_map[offset])
 | |
| 		goto scan;
 | |
| 
 | |
| 	if (offset == si->lowest_bit)
 | |
| 		si->lowest_bit++;
 | |
| 	if (offset == si->highest_bit)
 | |
| 		si->highest_bit--;
 | |
| 	si->inuse_pages++;
 | |
| 	if (si->inuse_pages == si->pages) {
 | |
| 		si->lowest_bit = si->max;
 | |
| 		si->highest_bit = 0;
 | |
| 	}
 | |
| 	si->swap_map[offset] = 1;
 | |
| 	si->cluster_next = offset + 1;
 | |
| 	si->flags -= SWP_SCANNING;
 | |
| 
 | |
| 	if (si->lowest_alloc) {
 | |
| 		/*
 | |
| 		 * Only set when SWP_DISCARDABLE, and there's a scan
 | |
| 		 * for a free cluster in progress or just completed.
 | |
| 		 */
 | |
| 		if (found_free_cluster) {
 | |
| 			/*
 | |
| 			 * To optimize wear-levelling, discard the
 | |
| 			 * old data of the cluster, taking care not to
 | |
| 			 * discard any of its pages that have already
 | |
| 			 * been allocated by racing tasks (offset has
 | |
| 			 * already stepped over any at the beginning).
 | |
| 			 */
 | |
| 			if (offset < si->highest_alloc &&
 | |
| 			    si->lowest_alloc <= last_in_cluster)
 | |
| 				last_in_cluster = si->lowest_alloc - 1;
 | |
| 			si->flags |= SWP_DISCARDING;
 | |
| 			spin_unlock(&swap_lock);
 | |
| 
 | |
| 			if (offset < last_in_cluster)
 | |
| 				discard_swap_cluster(si, offset,
 | |
| 					last_in_cluster - offset + 1);
 | |
| 
 | |
| 			spin_lock(&swap_lock);
 | |
| 			si->lowest_alloc = 0;
 | |
| 			si->flags &= ~SWP_DISCARDING;
 | |
| 
 | |
| 			smp_mb();	/* wake_up_bit advises this */
 | |
| 			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
 | |
| 
 | |
| 		} else if (si->flags & SWP_DISCARDING) {
 | |
| 			/*
 | |
| 			 * Delay using pages allocated by racing tasks
 | |
| 			 * until the whole discard has been issued. We
 | |
| 			 * could defer that delay until swap_writepage,
 | |
| 			 * but it's easier to keep this self-contained.
 | |
| 			 */
 | |
| 			spin_unlock(&swap_lock);
 | |
| 			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
 | |
| 				wait_for_discard, TASK_UNINTERRUPTIBLE);
 | |
| 			spin_lock(&swap_lock);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Note pages allocated by racing tasks while
 | |
| 			 * scan for a free cluster is in progress, so
 | |
| 			 * that its final discard can exclude them.
 | |
| 			 */
 | |
| 			if (offset < si->lowest_alloc)
 | |
| 				si->lowest_alloc = offset;
 | |
| 			if (offset > si->highest_alloc)
 | |
| 				si->highest_alloc = offset;
 | |
| 		}
 | |
| 	}
 | |
| 	return offset;
 | |
| 
 | |
| scan:
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	while (++offset <= si->highest_bit) {
 | |
| 		if (!si->swap_map[offset]) {
 | |
| 			spin_lock(&swap_lock);
 | |
| 			goto checks;
 | |
| 		}
 | |
| 		if (unlikely(--latency_ration < 0)) {
 | |
| 			cond_resched();
 | |
| 			latency_ration = LATENCY_LIMIT;
 | |
| 		}
 | |
| 	}
 | |
| 	offset = si->lowest_bit;
 | |
| 	while (++offset < scan_base) {
 | |
| 		if (!si->swap_map[offset]) {
 | |
| 			spin_lock(&swap_lock);
 | |
| 			goto checks;
 | |
| 		}
 | |
| 		if (unlikely(--latency_ration < 0)) {
 | |
| 			cond_resched();
 | |
| 			latency_ration = LATENCY_LIMIT;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_lock(&swap_lock);
 | |
| 
 | |
| no_page:
 | |
| 	si->flags -= SWP_SCANNING;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| swp_entry_t get_swap_page(void)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 	pgoff_t offset;
 | |
| 	int type, next;
 | |
| 	int wrapped = 0;
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	if (nr_swap_pages <= 0)
 | |
| 		goto noswap;
 | |
| 	nr_swap_pages--;
 | |
| 
 | |
| 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
 | |
| 		si = swap_info + type;
 | |
| 		next = si->next;
 | |
| 		if (next < 0 ||
 | |
| 		    (!wrapped && si->prio != swap_info[next].prio)) {
 | |
| 			next = swap_list.head;
 | |
| 			wrapped++;
 | |
| 		}
 | |
| 
 | |
| 		if (!si->highest_bit)
 | |
| 			continue;
 | |
| 		if (!(si->flags & SWP_WRITEOK))
 | |
| 			continue;
 | |
| 
 | |
| 		swap_list.next = next;
 | |
| 		offset = scan_swap_map(si);
 | |
| 		if (offset) {
 | |
| 			spin_unlock(&swap_lock);
 | |
| 			return swp_entry(type, offset);
 | |
| 		}
 | |
| 		next = swap_list.next;
 | |
| 	}
 | |
| 
 | |
| 	nr_swap_pages++;
 | |
| noswap:
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	return (swp_entry_t) {0};
 | |
| }
 | |
| 
 | |
| swp_entry_t get_swap_page_of_type(int type)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 	pgoff_t offset;
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	si = swap_info + type;
 | |
| 	if (si->flags & SWP_WRITEOK) {
 | |
| 		nr_swap_pages--;
 | |
| 		offset = scan_swap_map(si);
 | |
| 		if (offset) {
 | |
| 			spin_unlock(&swap_lock);
 | |
| 			return swp_entry(type, offset);
 | |
| 		}
 | |
| 		nr_swap_pages++;
 | |
| 	}
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	return (swp_entry_t) {0};
 | |
| }
 | |
| 
 | |
| static struct swap_info_struct * swap_info_get(swp_entry_t entry)
 | |
| {
 | |
| 	struct swap_info_struct * p;
 | |
| 	unsigned long offset, type;
 | |
| 
 | |
| 	if (!entry.val)
 | |
| 		goto out;
 | |
| 	type = swp_type(entry);
 | |
| 	if (type >= nr_swapfiles)
 | |
| 		goto bad_nofile;
 | |
| 	p = & swap_info[type];
 | |
| 	if (!(p->flags & SWP_USED))
 | |
| 		goto bad_device;
 | |
| 	offset = swp_offset(entry);
 | |
| 	if (offset >= p->max)
 | |
| 		goto bad_offset;
 | |
| 	if (!p->swap_map[offset])
 | |
| 		goto bad_free;
 | |
| 	spin_lock(&swap_lock);
 | |
| 	return p;
 | |
| 
 | |
| bad_free:
 | |
| 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
 | |
| 	goto out;
 | |
| bad_offset:
 | |
| 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
 | |
| 	goto out;
 | |
| bad_device:
 | |
| 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
 | |
| 	goto out;
 | |
| bad_nofile:
 | |
| 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
 | |
| out:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int swap_entry_free(struct swap_info_struct *p, swp_entry_t ent)
 | |
| {
 | |
| 	unsigned long offset = swp_offset(ent);
 | |
| 	int count = p->swap_map[offset];
 | |
| 
 | |
| 	if (count < SWAP_MAP_MAX) {
 | |
| 		count--;
 | |
| 		p->swap_map[offset] = count;
 | |
| 		if (!count) {
 | |
| 			if (offset < p->lowest_bit)
 | |
| 				p->lowest_bit = offset;
 | |
| 			if (offset > p->highest_bit)
 | |
| 				p->highest_bit = offset;
 | |
| 			if (p->prio > swap_info[swap_list.next].prio)
 | |
| 				swap_list.next = p - swap_info;
 | |
| 			nr_swap_pages++;
 | |
| 			p->inuse_pages--;
 | |
| 			mem_cgroup_uncharge_swap(ent);
 | |
| 		}
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Caller has made sure that the swapdevice corresponding to entry
 | |
|  * is still around or has not been recycled.
 | |
|  */
 | |
| void swap_free(swp_entry_t entry)
 | |
| {
 | |
| 	struct swap_info_struct * p;
 | |
| 
 | |
| 	p = swap_info_get(entry);
 | |
| 	if (p) {
 | |
| 		swap_entry_free(p, entry);
 | |
| 		spin_unlock(&swap_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * How many references to page are currently swapped out?
 | |
|  */
 | |
| static inline int page_swapcount(struct page *page)
 | |
| {
 | |
| 	int count = 0;
 | |
| 	struct swap_info_struct *p;
 | |
| 	swp_entry_t entry;
 | |
| 
 | |
| 	entry.val = page_private(page);
 | |
| 	p = swap_info_get(entry);
 | |
| 	if (p) {
 | |
| 		/* Subtract the 1 for the swap cache itself */
 | |
| 		count = p->swap_map[swp_offset(entry)] - 1;
 | |
| 		spin_unlock(&swap_lock);
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We can write to an anon page without COW if there are no other references
 | |
|  * to it.  And as a side-effect, free up its swap: because the old content
 | |
|  * on disk will never be read, and seeking back there to write new content
 | |
|  * later would only waste time away from clustering.
 | |
|  */
 | |
| int reuse_swap_page(struct page *page)
 | |
| {
 | |
| 	int count;
 | |
| 
 | |
| 	VM_BUG_ON(!PageLocked(page));
 | |
| 	count = page_mapcount(page);
 | |
| 	if (count <= 1 && PageSwapCache(page)) {
 | |
| 		count += page_swapcount(page);
 | |
| 		if (count == 1 && !PageWriteback(page)) {
 | |
| 			delete_from_swap_cache(page);
 | |
| 			SetPageDirty(page);
 | |
| 		}
 | |
| 	}
 | |
| 	return count == 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If swap is getting full, or if there are no more mappings of this page,
 | |
|  * then try_to_free_swap is called to free its swap space.
 | |
|  */
 | |
| int try_to_free_swap(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON(!PageLocked(page));
 | |
| 
 | |
| 	if (!PageSwapCache(page))
 | |
| 		return 0;
 | |
| 	if (PageWriteback(page))
 | |
| 		return 0;
 | |
| 	if (page_swapcount(page))
 | |
| 		return 0;
 | |
| 
 | |
| 	delete_from_swap_cache(page);
 | |
| 	SetPageDirty(page);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free the swap entry like above, but also try to
 | |
|  * free the page cache entry if it is the last user.
 | |
|  */
 | |
| int free_swap_and_cache(swp_entry_t entry)
 | |
| {
 | |
| 	struct swap_info_struct *p;
 | |
| 	struct page *page = NULL;
 | |
| 
 | |
| 	if (is_migration_entry(entry))
 | |
| 		return 1;
 | |
| 
 | |
| 	p = swap_info_get(entry);
 | |
| 	if (p) {
 | |
| 		if (swap_entry_free(p, entry) == 1) {
 | |
| 			page = find_get_page(&swapper_space, entry.val);
 | |
| 			if (page && !trylock_page(page)) {
 | |
| 				page_cache_release(page);
 | |
| 				page = NULL;
 | |
| 			}
 | |
| 		}
 | |
| 		spin_unlock(&swap_lock);
 | |
| 	}
 | |
| 	if (page) {
 | |
| 		/*
 | |
| 		 * Not mapped elsewhere, or swap space full? Free it!
 | |
| 		 * Also recheck PageSwapCache now page is locked (above).
 | |
| 		 */
 | |
| 		if (PageSwapCache(page) && !PageWriteback(page) &&
 | |
| 				(!page_mapped(page) || vm_swap_full())) {
 | |
| 			delete_from_swap_cache(page);
 | |
| 			SetPageDirty(page);
 | |
| 		}
 | |
| 		unlock_page(page);
 | |
| 		page_cache_release(page);
 | |
| 	}
 | |
| 	return p != NULL;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIBERNATION
 | |
| /*
 | |
|  * Find the swap type that corresponds to given device (if any).
 | |
|  *
 | |
|  * @offset - number of the PAGE_SIZE-sized block of the device, starting
 | |
|  * from 0, in which the swap header is expected to be located.
 | |
|  *
 | |
|  * This is needed for the suspend to disk (aka swsusp).
 | |
|  */
 | |
| int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
 | |
| {
 | |
| 	struct block_device *bdev = NULL;
 | |
| 	int i;
 | |
| 
 | |
| 	if (device)
 | |
| 		bdev = bdget(device);
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	for (i = 0; i < nr_swapfiles; i++) {
 | |
| 		struct swap_info_struct *sis = swap_info + i;
 | |
| 
 | |
| 		if (!(sis->flags & SWP_WRITEOK))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!bdev) {
 | |
| 			if (bdev_p)
 | |
| 				*bdev_p = bdget(sis->bdev->bd_dev);
 | |
| 
 | |
| 			spin_unlock(&swap_lock);
 | |
| 			return i;
 | |
| 		}
 | |
| 		if (bdev == sis->bdev) {
 | |
| 			struct swap_extent *se;
 | |
| 
 | |
| 			se = list_entry(sis->extent_list.next,
 | |
| 					struct swap_extent, list);
 | |
| 			if (se->start_block == offset) {
 | |
| 				if (bdev_p)
 | |
| 					*bdev_p = bdget(sis->bdev->bd_dev);
 | |
| 
 | |
| 				spin_unlock(&swap_lock);
 | |
| 				bdput(bdev);
 | |
| 				return i;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	if (bdev)
 | |
| 		bdput(bdev);
 | |
| 
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return either the total number of swap pages of given type, or the number
 | |
|  * of free pages of that type (depending on @free)
 | |
|  *
 | |
|  * This is needed for software suspend
 | |
|  */
 | |
| unsigned int count_swap_pages(int type, int free)
 | |
| {
 | |
| 	unsigned int n = 0;
 | |
| 
 | |
| 	if (type < nr_swapfiles) {
 | |
| 		spin_lock(&swap_lock);
 | |
| 		if (swap_info[type].flags & SWP_WRITEOK) {
 | |
| 			n = swap_info[type].pages;
 | |
| 			if (free)
 | |
| 				n -= swap_info[type].inuse_pages;
 | |
| 		}
 | |
| 		spin_unlock(&swap_lock);
 | |
| 	}
 | |
| 	return n;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * No need to decide whether this PTE shares the swap entry with others,
 | |
|  * just let do_wp_page work it out if a write is requested later - to
 | |
|  * force COW, vm_page_prot omits write permission from any private vma.
 | |
|  */
 | |
| static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
 | |
| 		unsigned long addr, swp_entry_t entry, struct page *page)
 | |
| {
 | |
| 	struct mem_cgroup *ptr = NULL;
 | |
| 	spinlock_t *ptl;
 | |
| 	pte_t *pte;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out_nolock;
 | |
| 	}
 | |
| 
 | |
| 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 | |
| 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
 | |
| 		if (ret > 0)
 | |
| 			mem_cgroup_cancel_charge_swapin(ptr);
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	inc_mm_counter(vma->vm_mm, anon_rss);
 | |
| 	get_page(page);
 | |
| 	set_pte_at(vma->vm_mm, addr, pte,
 | |
| 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
 | |
| 	page_add_anon_rmap(page, vma, addr);
 | |
| 	mem_cgroup_commit_charge_swapin(page, ptr);
 | |
| 	swap_free(entry);
 | |
| 	/*
 | |
| 	 * Move the page to the active list so it is not
 | |
| 	 * immediately swapped out again after swapon.
 | |
| 	 */
 | |
| 	activate_page(page);
 | |
| out:
 | |
| 	pte_unmap_unlock(pte, ptl);
 | |
| out_nolock:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 | |
| 				unsigned long addr, unsigned long end,
 | |
| 				swp_entry_t entry, struct page *page)
 | |
| {
 | |
| 	pte_t swp_pte = swp_entry_to_pte(entry);
 | |
| 	pte_t *pte;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't actually need pte lock while scanning for swp_pte: since
 | |
| 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
 | |
| 	 * page table while we're scanning; though it could get zapped, and on
 | |
| 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
 | |
| 	 * of unmatched parts which look like swp_pte, so unuse_pte must
 | |
| 	 * recheck under pte lock.  Scanning without pte lock lets it be
 | |
| 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
 | |
| 	 */
 | |
| 	pte = pte_offset_map(pmd, addr);
 | |
| 	do {
 | |
| 		/*
 | |
| 		 * swapoff spends a _lot_ of time in this loop!
 | |
| 		 * Test inline before going to call unuse_pte.
 | |
| 		 */
 | |
| 		if (unlikely(pte_same(*pte, swp_pte))) {
 | |
| 			pte_unmap(pte);
 | |
| 			ret = unuse_pte(vma, pmd, addr, entry, page);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 			pte = pte_offset_map(pmd, addr);
 | |
| 		}
 | |
| 	} while (pte++, addr += PAGE_SIZE, addr != end);
 | |
| 	pte_unmap(pte - 1);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 | |
| 				unsigned long addr, unsigned long end,
 | |
| 				swp_entry_t entry, struct page *page)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long next;
 | |
| 	int ret;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	do {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		if (pmd_none_or_clear_bad(pmd))
 | |
| 			continue;
 | |
| 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 | |
| 				unsigned long addr, unsigned long end,
 | |
| 				swp_entry_t entry, struct page *page)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long next;
 | |
| 	int ret;
 | |
| 
 | |
| 	pud = pud_offset(pgd, addr);
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		if (pud_none_or_clear_bad(pud))
 | |
| 			continue;
 | |
| 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int unuse_vma(struct vm_area_struct *vma,
 | |
| 				swp_entry_t entry, struct page *page)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	unsigned long addr, end, next;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (page->mapping) {
 | |
| 		addr = page_address_in_vma(page, vma);
 | |
| 		if (addr == -EFAULT)
 | |
| 			return 0;
 | |
| 		else
 | |
| 			end = addr + PAGE_SIZE;
 | |
| 	} else {
 | |
| 		addr = vma->vm_start;
 | |
| 		end = vma->vm_end;
 | |
| 	}
 | |
| 
 | |
| 	pgd = pgd_offset(vma->vm_mm, addr);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		if (pgd_none_or_clear_bad(pgd))
 | |
| 			continue;
 | |
| 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int unuse_mm(struct mm_struct *mm,
 | |
| 				swp_entry_t entry, struct page *page)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!down_read_trylock(&mm->mmap_sem)) {
 | |
| 		/*
 | |
| 		 * Activate page so shrink_inactive_list is unlikely to unmap
 | |
| 		 * its ptes while lock is dropped, so swapoff can make progress.
 | |
| 		 */
 | |
| 		activate_page(page);
 | |
| 		unlock_page(page);
 | |
| 		down_read(&mm->mmap_sem);
 | |
| 		lock_page(page);
 | |
| 	}
 | |
| 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 | |
| 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
 | |
| 			break;
 | |
| 	}
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 	return (ret < 0)? ret: 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan swap_map from current position to next entry still in use.
 | |
|  * Recycle to start on reaching the end, returning 0 when empty.
 | |
|  */
 | |
| static unsigned int find_next_to_unuse(struct swap_info_struct *si,
 | |
| 					unsigned int prev)
 | |
| {
 | |
| 	unsigned int max = si->max;
 | |
| 	unsigned int i = prev;
 | |
| 	int count;
 | |
| 
 | |
| 	/*
 | |
| 	 * No need for swap_lock here: we're just looking
 | |
| 	 * for whether an entry is in use, not modifying it; false
 | |
| 	 * hits are okay, and sys_swapoff() has already prevented new
 | |
| 	 * allocations from this area (while holding swap_lock).
 | |
| 	 */
 | |
| 	for (;;) {
 | |
| 		if (++i >= max) {
 | |
| 			if (!prev) {
 | |
| 				i = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * No entries in use at top of swap_map,
 | |
| 			 * loop back to start and recheck there.
 | |
| 			 */
 | |
| 			max = prev + 1;
 | |
| 			prev = 0;
 | |
| 			i = 1;
 | |
| 		}
 | |
| 		count = si->swap_map[i];
 | |
| 		if (count && count != SWAP_MAP_BAD)
 | |
| 			break;
 | |
| 	}
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We completely avoid races by reading each swap page in advance,
 | |
|  * and then search for the process using it.  All the necessary
 | |
|  * page table adjustments can then be made atomically.
 | |
|  */
 | |
| static int try_to_unuse(unsigned int type)
 | |
| {
 | |
| 	struct swap_info_struct * si = &swap_info[type];
 | |
| 	struct mm_struct *start_mm;
 | |
| 	unsigned short *swap_map;
 | |
| 	unsigned short swcount;
 | |
| 	struct page *page;
 | |
| 	swp_entry_t entry;
 | |
| 	unsigned int i = 0;
 | |
| 	int retval = 0;
 | |
| 	int reset_overflow = 0;
 | |
| 	int shmem;
 | |
| 
 | |
| 	/*
 | |
| 	 * When searching mms for an entry, a good strategy is to
 | |
| 	 * start at the first mm we freed the previous entry from
 | |
| 	 * (though actually we don't notice whether we or coincidence
 | |
| 	 * freed the entry).  Initialize this start_mm with a hold.
 | |
| 	 *
 | |
| 	 * A simpler strategy would be to start at the last mm we
 | |
| 	 * freed the previous entry from; but that would take less
 | |
| 	 * advantage of mmlist ordering, which clusters forked mms
 | |
| 	 * together, child after parent.  If we race with dup_mmap(), we
 | |
| 	 * prefer to resolve parent before child, lest we miss entries
 | |
| 	 * duplicated after we scanned child: using last mm would invert
 | |
| 	 * that.  Though it's only a serious concern when an overflowed
 | |
| 	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
 | |
| 	 */
 | |
| 	start_mm = &init_mm;
 | |
| 	atomic_inc(&init_mm.mm_users);
 | |
| 
 | |
| 	/*
 | |
| 	 * Keep on scanning until all entries have gone.  Usually,
 | |
| 	 * one pass through swap_map is enough, but not necessarily:
 | |
| 	 * there are races when an instance of an entry might be missed.
 | |
| 	 */
 | |
| 	while ((i = find_next_to_unuse(si, i)) != 0) {
 | |
| 		if (signal_pending(current)) {
 | |
| 			retval = -EINTR;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Get a page for the entry, using the existing swap
 | |
| 		 * cache page if there is one.  Otherwise, get a clean
 | |
| 		 * page and read the swap into it.
 | |
| 		 */
 | |
| 		swap_map = &si->swap_map[i];
 | |
| 		entry = swp_entry(type, i);
 | |
| 		page = read_swap_cache_async(entry,
 | |
| 					GFP_HIGHUSER_MOVABLE, NULL, 0);
 | |
| 		if (!page) {
 | |
| 			/*
 | |
| 			 * Either swap_duplicate() failed because entry
 | |
| 			 * has been freed independently, and will not be
 | |
| 			 * reused since sys_swapoff() already disabled
 | |
| 			 * allocation from here, or alloc_page() failed.
 | |
| 			 */
 | |
| 			if (!*swap_map)
 | |
| 				continue;
 | |
| 			retval = -ENOMEM;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't hold on to start_mm if it looks like exiting.
 | |
| 		 */
 | |
| 		if (atomic_read(&start_mm->mm_users) == 1) {
 | |
| 			mmput(start_mm);
 | |
| 			start_mm = &init_mm;
 | |
| 			atomic_inc(&init_mm.mm_users);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Wait for and lock page.  When do_swap_page races with
 | |
| 		 * try_to_unuse, do_swap_page can handle the fault much
 | |
| 		 * faster than try_to_unuse can locate the entry.  This
 | |
| 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
 | |
| 		 * defer to do_swap_page in such a case - in some tests,
 | |
| 		 * do_swap_page and try_to_unuse repeatedly compete.
 | |
| 		 */
 | |
| 		wait_on_page_locked(page);
 | |
| 		wait_on_page_writeback(page);
 | |
| 		lock_page(page);
 | |
| 		wait_on_page_writeback(page);
 | |
| 
 | |
| 		/*
 | |
| 		 * Remove all references to entry.
 | |
| 		 * Whenever we reach init_mm, there's no address space
 | |
| 		 * to search, but use it as a reminder to search shmem.
 | |
| 		 */
 | |
| 		shmem = 0;
 | |
| 		swcount = *swap_map;
 | |
| 		if (swcount > 1) {
 | |
| 			if (start_mm == &init_mm)
 | |
| 				shmem = shmem_unuse(entry, page);
 | |
| 			else
 | |
| 				retval = unuse_mm(start_mm, entry, page);
 | |
| 		}
 | |
| 		if (*swap_map > 1) {
 | |
| 			int set_start_mm = (*swap_map >= swcount);
 | |
| 			struct list_head *p = &start_mm->mmlist;
 | |
| 			struct mm_struct *new_start_mm = start_mm;
 | |
| 			struct mm_struct *prev_mm = start_mm;
 | |
| 			struct mm_struct *mm;
 | |
| 
 | |
| 			atomic_inc(&new_start_mm->mm_users);
 | |
| 			atomic_inc(&prev_mm->mm_users);
 | |
| 			spin_lock(&mmlist_lock);
 | |
| 			while (*swap_map > 1 && !retval && !shmem &&
 | |
| 					(p = p->next) != &start_mm->mmlist) {
 | |
| 				mm = list_entry(p, struct mm_struct, mmlist);
 | |
| 				if (!atomic_inc_not_zero(&mm->mm_users))
 | |
| 					continue;
 | |
| 				spin_unlock(&mmlist_lock);
 | |
| 				mmput(prev_mm);
 | |
| 				prev_mm = mm;
 | |
| 
 | |
| 				cond_resched();
 | |
| 
 | |
| 				swcount = *swap_map;
 | |
| 				if (swcount <= 1)
 | |
| 					;
 | |
| 				else if (mm == &init_mm) {
 | |
| 					set_start_mm = 1;
 | |
| 					shmem = shmem_unuse(entry, page);
 | |
| 				} else
 | |
| 					retval = unuse_mm(mm, entry, page);
 | |
| 				if (set_start_mm && *swap_map < swcount) {
 | |
| 					mmput(new_start_mm);
 | |
| 					atomic_inc(&mm->mm_users);
 | |
| 					new_start_mm = mm;
 | |
| 					set_start_mm = 0;
 | |
| 				}
 | |
| 				spin_lock(&mmlist_lock);
 | |
| 			}
 | |
| 			spin_unlock(&mmlist_lock);
 | |
| 			mmput(prev_mm);
 | |
| 			mmput(start_mm);
 | |
| 			start_mm = new_start_mm;
 | |
| 		}
 | |
| 		if (shmem) {
 | |
| 			/* page has already been unlocked and released */
 | |
| 			if (shmem > 0)
 | |
| 				continue;
 | |
| 			retval = shmem;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (retval) {
 | |
| 			unlock_page(page);
 | |
| 			page_cache_release(page);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * How could swap count reach 0x7fff when the maximum
 | |
| 		 * pid is 0x7fff, and there's no way to repeat a swap
 | |
| 		 * page within an mm (except in shmem, where it's the
 | |
| 		 * shared object which takes the reference count)?
 | |
| 		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
 | |
| 		 *
 | |
| 		 * If that's wrong, then we should worry more about
 | |
| 		 * exit_mmap() and do_munmap() cases described above:
 | |
| 		 * we might be resetting SWAP_MAP_MAX too early here.
 | |
| 		 * We know "Undead"s can happen, they're okay, so don't
 | |
| 		 * report them; but do report if we reset SWAP_MAP_MAX.
 | |
| 		 */
 | |
| 		if (*swap_map == SWAP_MAP_MAX) {
 | |
| 			spin_lock(&swap_lock);
 | |
| 			*swap_map = 1;
 | |
| 			spin_unlock(&swap_lock);
 | |
| 			reset_overflow = 1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If a reference remains (rare), we would like to leave
 | |
| 		 * the page in the swap cache; but try_to_unmap could
 | |
| 		 * then re-duplicate the entry once we drop page lock,
 | |
| 		 * so we might loop indefinitely; also, that page could
 | |
| 		 * not be swapped out to other storage meanwhile.  So:
 | |
| 		 * delete from cache even if there's another reference,
 | |
| 		 * after ensuring that the data has been saved to disk -
 | |
| 		 * since if the reference remains (rarer), it will be
 | |
| 		 * read from disk into another page.  Splitting into two
 | |
| 		 * pages would be incorrect if swap supported "shared
 | |
| 		 * private" pages, but they are handled by tmpfs files.
 | |
| 		 */
 | |
| 		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
 | |
| 			struct writeback_control wbc = {
 | |
| 				.sync_mode = WB_SYNC_NONE,
 | |
| 			};
 | |
| 
 | |
| 			swap_writepage(page, &wbc);
 | |
| 			lock_page(page);
 | |
| 			wait_on_page_writeback(page);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * It is conceivable that a racing task removed this page from
 | |
| 		 * swap cache just before we acquired the page lock at the top,
 | |
| 		 * or while we dropped it in unuse_mm().  The page might even
 | |
| 		 * be back in swap cache on another swap area: that we must not
 | |
| 		 * delete, since it may not have been written out to swap yet.
 | |
| 		 */
 | |
| 		if (PageSwapCache(page) &&
 | |
| 		    likely(page_private(page) == entry.val))
 | |
| 			delete_from_swap_cache(page);
 | |
| 
 | |
| 		/*
 | |
| 		 * So we could skip searching mms once swap count went
 | |
| 		 * to 1, we did not mark any present ptes as dirty: must
 | |
| 		 * mark page dirty so shrink_page_list will preserve it.
 | |
| 		 */
 | |
| 		SetPageDirty(page);
 | |
| 		unlock_page(page);
 | |
| 		page_cache_release(page);
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure that we aren't completely killing
 | |
| 		 * interactive performance.
 | |
| 		 */
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	mmput(start_mm);
 | |
| 	if (reset_overflow) {
 | |
| 		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
 | |
| 		swap_overflow = 0;
 | |
| 	}
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * After a successful try_to_unuse, if no swap is now in use, we know
 | |
|  * we can empty the mmlist.  swap_lock must be held on entry and exit.
 | |
|  * Note that mmlist_lock nests inside swap_lock, and an mm must be
 | |
|  * added to the mmlist just after page_duplicate - before would be racy.
 | |
|  */
 | |
| static void drain_mmlist(void)
 | |
| {
 | |
| 	struct list_head *p, *next;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < nr_swapfiles; i++)
 | |
| 		if (swap_info[i].inuse_pages)
 | |
| 			return;
 | |
| 	spin_lock(&mmlist_lock);
 | |
| 	list_for_each_safe(p, next, &init_mm.mmlist)
 | |
| 		list_del_init(p);
 | |
| 	spin_unlock(&mmlist_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
 | |
|  * corresponds to page offset `offset'.
 | |
|  */
 | |
| sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
 | |
| {
 | |
| 	struct swap_extent *se = sis->curr_swap_extent;
 | |
| 	struct swap_extent *start_se = se;
 | |
| 
 | |
| 	for ( ; ; ) {
 | |
| 		struct list_head *lh;
 | |
| 
 | |
| 		if (se->start_page <= offset &&
 | |
| 				offset < (se->start_page + se->nr_pages)) {
 | |
| 			return se->start_block + (offset - se->start_page);
 | |
| 		}
 | |
| 		lh = se->list.next;
 | |
| 		if (lh == &sis->extent_list)
 | |
| 			lh = lh->next;
 | |
| 		se = list_entry(lh, struct swap_extent, list);
 | |
| 		sis->curr_swap_extent = se;
 | |
| 		BUG_ON(se == start_se);		/* It *must* be present */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIBERNATION
 | |
| /*
 | |
|  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
 | |
|  * corresponding to given index in swap_info (swap type).
 | |
|  */
 | |
| sector_t swapdev_block(int swap_type, pgoff_t offset)
 | |
| {
 | |
| 	struct swap_info_struct *sis;
 | |
| 
 | |
| 	if (swap_type >= nr_swapfiles)
 | |
| 		return 0;
 | |
| 
 | |
| 	sis = swap_info + swap_type;
 | |
| 	return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
 | |
| }
 | |
| #endif /* CONFIG_HIBERNATION */
 | |
| 
 | |
| /*
 | |
|  * Free all of a swapdev's extent information
 | |
|  */
 | |
| static void destroy_swap_extents(struct swap_info_struct *sis)
 | |
| {
 | |
| 	while (!list_empty(&sis->extent_list)) {
 | |
| 		struct swap_extent *se;
 | |
| 
 | |
| 		se = list_entry(sis->extent_list.next,
 | |
| 				struct swap_extent, list);
 | |
| 		list_del(&se->list);
 | |
| 		kfree(se);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a block range (and the corresponding page range) into this swapdev's
 | |
|  * extent list.  The extent list is kept sorted in page order.
 | |
|  *
 | |
|  * This function rather assumes that it is called in ascending page order.
 | |
|  */
 | |
| static int
 | |
| add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
 | |
| 		unsigned long nr_pages, sector_t start_block)
 | |
| {
 | |
| 	struct swap_extent *se;
 | |
| 	struct swap_extent *new_se;
 | |
| 	struct list_head *lh;
 | |
| 
 | |
| 	lh = sis->extent_list.prev;	/* The highest page extent */
 | |
| 	if (lh != &sis->extent_list) {
 | |
| 		se = list_entry(lh, struct swap_extent, list);
 | |
| 		BUG_ON(se->start_page + se->nr_pages != start_page);
 | |
| 		if (se->start_block + se->nr_pages == start_block) {
 | |
| 			/* Merge it */
 | |
| 			se->nr_pages += nr_pages;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * No merge.  Insert a new extent, preserving ordering.
 | |
| 	 */
 | |
| 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
 | |
| 	if (new_se == NULL)
 | |
| 		return -ENOMEM;
 | |
| 	new_se->start_page = start_page;
 | |
| 	new_se->nr_pages = nr_pages;
 | |
| 	new_se->start_block = start_block;
 | |
| 
 | |
| 	list_add_tail(&new_se->list, &sis->extent_list);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A `swap extent' is a simple thing which maps a contiguous range of pages
 | |
|  * onto a contiguous range of disk blocks.  An ordered list of swap extents
 | |
|  * is built at swapon time and is then used at swap_writepage/swap_readpage
 | |
|  * time for locating where on disk a page belongs.
 | |
|  *
 | |
|  * If the swapfile is an S_ISBLK block device, a single extent is installed.
 | |
|  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
 | |
|  * swap files identically.
 | |
|  *
 | |
|  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
 | |
|  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
 | |
|  * swapfiles are handled *identically* after swapon time.
 | |
|  *
 | |
|  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
 | |
|  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
 | |
|  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
 | |
|  * requirements, they are simply tossed out - we will never use those blocks
 | |
|  * for swapping.
 | |
|  *
 | |
|  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
 | |
|  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
 | |
|  * which will scribble on the fs.
 | |
|  *
 | |
|  * The amount of disk space which a single swap extent represents varies.
 | |
|  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
 | |
|  * extents in the list.  To avoid much list walking, we cache the previous
 | |
|  * search location in `curr_swap_extent', and start new searches from there.
 | |
|  * This is extremely effective.  The average number of iterations in
 | |
|  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
 | |
|  */
 | |
| static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	unsigned blocks_per_page;
 | |
| 	unsigned long page_no;
 | |
| 	unsigned blkbits;
 | |
| 	sector_t probe_block;
 | |
| 	sector_t last_block;
 | |
| 	sector_t lowest_block = -1;
 | |
| 	sector_t highest_block = 0;
 | |
| 	int nr_extents = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	inode = sis->swap_file->f_mapping->host;
 | |
| 	if (S_ISBLK(inode->i_mode)) {
 | |
| 		ret = add_swap_extent(sis, 0, sis->max, 0);
 | |
| 		*span = sis->pages;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	blkbits = inode->i_blkbits;
 | |
| 	blocks_per_page = PAGE_SIZE >> blkbits;
 | |
| 
 | |
| 	/*
 | |
| 	 * Map all the blocks into the extent list.  This code doesn't try
 | |
| 	 * to be very smart.
 | |
| 	 */
 | |
| 	probe_block = 0;
 | |
| 	page_no = 0;
 | |
| 	last_block = i_size_read(inode) >> blkbits;
 | |
| 	while ((probe_block + blocks_per_page) <= last_block &&
 | |
| 			page_no < sis->max) {
 | |
| 		unsigned block_in_page;
 | |
| 		sector_t first_block;
 | |
| 
 | |
| 		first_block = bmap(inode, probe_block);
 | |
| 		if (first_block == 0)
 | |
| 			goto bad_bmap;
 | |
| 
 | |
| 		/*
 | |
| 		 * It must be PAGE_SIZE aligned on-disk
 | |
| 		 */
 | |
| 		if (first_block & (blocks_per_page - 1)) {
 | |
| 			probe_block++;
 | |
| 			goto reprobe;
 | |
| 		}
 | |
| 
 | |
| 		for (block_in_page = 1; block_in_page < blocks_per_page;
 | |
| 					block_in_page++) {
 | |
| 			sector_t block;
 | |
| 
 | |
| 			block = bmap(inode, probe_block + block_in_page);
 | |
| 			if (block == 0)
 | |
| 				goto bad_bmap;
 | |
| 			if (block != first_block + block_in_page) {
 | |
| 				/* Discontiguity */
 | |
| 				probe_block++;
 | |
| 				goto reprobe;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		first_block >>= (PAGE_SHIFT - blkbits);
 | |
| 		if (page_no) {	/* exclude the header page */
 | |
| 			if (first_block < lowest_block)
 | |
| 				lowest_block = first_block;
 | |
| 			if (first_block > highest_block)
 | |
| 				highest_block = first_block;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
 | |
| 		 */
 | |
| 		ret = add_swap_extent(sis, page_no, 1, first_block);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 		nr_extents += ret;
 | |
| 		page_no++;
 | |
| 		probe_block += blocks_per_page;
 | |
| reprobe:
 | |
| 		continue;
 | |
| 	}
 | |
| 	ret = nr_extents;
 | |
| 	*span = 1 + highest_block - lowest_block;
 | |
| 	if (page_no == 0)
 | |
| 		page_no = 1;	/* force Empty message */
 | |
| 	sis->max = page_no;
 | |
| 	sis->pages = page_no - 1;
 | |
| 	sis->highest_bit = page_no - 1;
 | |
| done:
 | |
| 	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
 | |
| 					struct swap_extent, list);
 | |
| 	goto out;
 | |
| bad_bmap:
 | |
| 	printk(KERN_ERR "swapon: swapfile has holes\n");
 | |
| 	ret = -EINVAL;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
 | |
| {
 | |
| 	struct swap_info_struct * p = NULL;
 | |
| 	unsigned short *swap_map;
 | |
| 	struct file *swap_file, *victim;
 | |
| 	struct address_space *mapping;
 | |
| 	struct inode *inode;
 | |
| 	char * pathname;
 | |
| 	int i, type, prev;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!capable(CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	pathname = getname(specialfile);
 | |
| 	err = PTR_ERR(pathname);
 | |
| 	if (IS_ERR(pathname))
 | |
| 		goto out;
 | |
| 
 | |
| 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
 | |
| 	putname(pathname);
 | |
| 	err = PTR_ERR(victim);
 | |
| 	if (IS_ERR(victim))
 | |
| 		goto out;
 | |
| 
 | |
| 	mapping = victim->f_mapping;
 | |
| 	prev = -1;
 | |
| 	spin_lock(&swap_lock);
 | |
| 	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
 | |
| 		p = swap_info + type;
 | |
| 		if (p->flags & SWP_WRITEOK) {
 | |
| 			if (p->swap_file->f_mapping == mapping)
 | |
| 				break;
 | |
| 		}
 | |
| 		prev = type;
 | |
| 	}
 | |
| 	if (type < 0) {
 | |
| 		err = -EINVAL;
 | |
| 		spin_unlock(&swap_lock);
 | |
| 		goto out_dput;
 | |
| 	}
 | |
| 	if (!security_vm_enough_memory(p->pages))
 | |
| 		vm_unacct_memory(p->pages);
 | |
| 	else {
 | |
| 		err = -ENOMEM;
 | |
| 		spin_unlock(&swap_lock);
 | |
| 		goto out_dput;
 | |
| 	}
 | |
| 	if (prev < 0) {
 | |
| 		swap_list.head = p->next;
 | |
| 	} else {
 | |
| 		swap_info[prev].next = p->next;
 | |
| 	}
 | |
| 	if (type == swap_list.next) {
 | |
| 		/* just pick something that's safe... */
 | |
| 		swap_list.next = swap_list.head;
 | |
| 	}
 | |
| 	if (p->prio < 0) {
 | |
| 		for (i = p->next; i >= 0; i = swap_info[i].next)
 | |
| 			swap_info[i].prio = p->prio--;
 | |
| 		least_priority++;
 | |
| 	}
 | |
| 	nr_swap_pages -= p->pages;
 | |
| 	total_swap_pages -= p->pages;
 | |
| 	p->flags &= ~SWP_WRITEOK;
 | |
| 	spin_unlock(&swap_lock);
 | |
| 
 | |
| 	current->flags |= PF_SWAPOFF;
 | |
| 	err = try_to_unuse(type);
 | |
| 	current->flags &= ~PF_SWAPOFF;
 | |
| 
 | |
| 	if (err) {
 | |
| 		/* re-insert swap space back into swap_list */
 | |
| 		spin_lock(&swap_lock);
 | |
| 		if (p->prio < 0)
 | |
| 			p->prio = --least_priority;
 | |
| 		prev = -1;
 | |
| 		for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
 | |
| 			if (p->prio >= swap_info[i].prio)
 | |
| 				break;
 | |
| 			prev = i;
 | |
| 		}
 | |
| 		p->next = i;
 | |
| 		if (prev < 0)
 | |
| 			swap_list.head = swap_list.next = p - swap_info;
 | |
| 		else
 | |
| 			swap_info[prev].next = p - swap_info;
 | |
| 		nr_swap_pages += p->pages;
 | |
| 		total_swap_pages += p->pages;
 | |
| 		p->flags |= SWP_WRITEOK;
 | |
| 		spin_unlock(&swap_lock);
 | |
| 		goto out_dput;
 | |
| 	}
 | |
| 
 | |
| 	/* wait for any unplug function to finish */
 | |
| 	down_write(&swap_unplug_sem);
 | |
| 	up_write(&swap_unplug_sem);
 | |
| 
 | |
| 	destroy_swap_extents(p);
 | |
| 	mutex_lock(&swapon_mutex);
 | |
| 	spin_lock(&swap_lock);
 | |
| 	drain_mmlist();
 | |
| 
 | |
| 	/* wait for anyone still in scan_swap_map */
 | |
| 	p->highest_bit = 0;		/* cuts scans short */
 | |
| 	while (p->flags >= SWP_SCANNING) {
 | |
| 		spin_unlock(&swap_lock);
 | |
| 		schedule_timeout_uninterruptible(1);
 | |
| 		spin_lock(&swap_lock);
 | |
| 	}
 | |
| 
 | |
| 	swap_file = p->swap_file;
 | |
| 	p->swap_file = NULL;
 | |
| 	p->max = 0;
 | |
| 	swap_map = p->swap_map;
 | |
| 	p->swap_map = NULL;
 | |
| 	p->flags = 0;
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	mutex_unlock(&swapon_mutex);
 | |
| 	vfree(swap_map);
 | |
| 	/* Destroy swap account informatin */
 | |
| 	swap_cgroup_swapoff(type);
 | |
| 
 | |
| 	inode = mapping->host;
 | |
| 	if (S_ISBLK(inode->i_mode)) {
 | |
| 		struct block_device *bdev = I_BDEV(inode);
 | |
| 		set_blocksize(bdev, p->old_block_size);
 | |
| 		bd_release(bdev);
 | |
| 	} else {
 | |
| 		mutex_lock(&inode->i_mutex);
 | |
| 		inode->i_flags &= ~S_SWAPFILE;
 | |
| 		mutex_unlock(&inode->i_mutex);
 | |
| 	}
 | |
| 	filp_close(swap_file, NULL);
 | |
| 	err = 0;
 | |
| 
 | |
| out_dput:
 | |
| 	filp_close(victim, NULL);
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| /* iterator */
 | |
| static void *swap_start(struct seq_file *swap, loff_t *pos)
 | |
| {
 | |
| 	struct swap_info_struct *ptr = swap_info;
 | |
| 	int i;
 | |
| 	loff_t l = *pos;
 | |
| 
 | |
| 	mutex_lock(&swapon_mutex);
 | |
| 
 | |
| 	if (!l)
 | |
| 		return SEQ_START_TOKEN;
 | |
| 
 | |
| 	for (i = 0; i < nr_swapfiles; i++, ptr++) {
 | |
| 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
 | |
| 			continue;
 | |
| 		if (!--l)
 | |
| 			return ptr;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
 | |
| {
 | |
| 	struct swap_info_struct *ptr;
 | |
| 	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
 | |
| 
 | |
| 	if (v == SEQ_START_TOKEN)
 | |
| 		ptr = swap_info;
 | |
| 	else {
 | |
| 		ptr = v;
 | |
| 		ptr++;
 | |
| 	}
 | |
| 
 | |
| 	for (; ptr < endptr; ptr++) {
 | |
| 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
 | |
| 			continue;
 | |
| 		++*pos;
 | |
| 		return ptr;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void swap_stop(struct seq_file *swap, void *v)
 | |
| {
 | |
| 	mutex_unlock(&swapon_mutex);
 | |
| }
 | |
| 
 | |
| static int swap_show(struct seq_file *swap, void *v)
 | |
| {
 | |
| 	struct swap_info_struct *ptr = v;
 | |
| 	struct file *file;
 | |
| 	int len;
 | |
| 
 | |
| 	if (ptr == SEQ_START_TOKEN) {
 | |
| 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	file = ptr->swap_file;
 | |
| 	len = seq_path(swap, &file->f_path, " \t\n\\");
 | |
| 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
 | |
| 			len < 40 ? 40 - len : 1, " ",
 | |
| 			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
 | |
| 				"partition" : "file\t",
 | |
| 			ptr->pages << (PAGE_SHIFT - 10),
 | |
| 			ptr->inuse_pages << (PAGE_SHIFT - 10),
 | |
| 			ptr->prio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct seq_operations swaps_op = {
 | |
| 	.start =	swap_start,
 | |
| 	.next =		swap_next,
 | |
| 	.stop =		swap_stop,
 | |
| 	.show =		swap_show
 | |
| };
 | |
| 
 | |
| static int swaps_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return seq_open(file, &swaps_op);
 | |
| }
 | |
| 
 | |
| static const struct file_operations proc_swaps_operations = {
 | |
| 	.open		= swaps_open,
 | |
| 	.read		= seq_read,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= seq_release,
 | |
| };
 | |
| 
 | |
| static int __init procswaps_init(void)
 | |
| {
 | |
| 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(procswaps_init);
 | |
| #endif /* CONFIG_PROC_FS */
 | |
| 
 | |
| #ifdef MAX_SWAPFILES_CHECK
 | |
| static int __init max_swapfiles_check(void)
 | |
| {
 | |
| 	MAX_SWAPFILES_CHECK();
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(max_swapfiles_check);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
 | |
|  *
 | |
|  * The swapon system call
 | |
|  */
 | |
| SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
 | |
| {
 | |
| 	struct swap_info_struct * p;
 | |
| 	char *name = NULL;
 | |
| 	struct block_device *bdev = NULL;
 | |
| 	struct file *swap_file = NULL;
 | |
| 	struct address_space *mapping;
 | |
| 	unsigned int type;
 | |
| 	int i, prev;
 | |
| 	int error;
 | |
| 	union swap_header *swap_header = NULL;
 | |
| 	unsigned int nr_good_pages = 0;
 | |
| 	int nr_extents = 0;
 | |
| 	sector_t span;
 | |
| 	unsigned long maxpages = 1;
 | |
| 	unsigned long swapfilepages;
 | |
| 	unsigned short *swap_map = NULL;
 | |
| 	struct page *page = NULL;
 | |
| 	struct inode *inode = NULL;
 | |
| 	int did_down = 0;
 | |
| 
 | |
| 	if (!capable(CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 	spin_lock(&swap_lock);
 | |
| 	p = swap_info;
 | |
| 	for (type = 0 ; type < nr_swapfiles ; type++,p++)
 | |
| 		if (!(p->flags & SWP_USED))
 | |
| 			break;
 | |
| 	error = -EPERM;
 | |
| 	if (type >= MAX_SWAPFILES) {
 | |
| 		spin_unlock(&swap_lock);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (type >= nr_swapfiles)
 | |
| 		nr_swapfiles = type+1;
 | |
| 	memset(p, 0, sizeof(*p));
 | |
| 	INIT_LIST_HEAD(&p->extent_list);
 | |
| 	p->flags = SWP_USED;
 | |
| 	p->next = -1;
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	name = getname(specialfile);
 | |
| 	error = PTR_ERR(name);
 | |
| 	if (IS_ERR(name)) {
 | |
| 		name = NULL;
 | |
| 		goto bad_swap_2;
 | |
| 	}
 | |
| 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
 | |
| 	error = PTR_ERR(swap_file);
 | |
| 	if (IS_ERR(swap_file)) {
 | |
| 		swap_file = NULL;
 | |
| 		goto bad_swap_2;
 | |
| 	}
 | |
| 
 | |
| 	p->swap_file = swap_file;
 | |
| 	mapping = swap_file->f_mapping;
 | |
| 	inode = mapping->host;
 | |
| 
 | |
| 	error = -EBUSY;
 | |
| 	for (i = 0; i < nr_swapfiles; i++) {
 | |
| 		struct swap_info_struct *q = &swap_info[i];
 | |
| 
 | |
| 		if (i == type || !q->swap_file)
 | |
| 			continue;
 | |
| 		if (mapping == q->swap_file->f_mapping)
 | |
| 			goto bad_swap;
 | |
| 	}
 | |
| 
 | |
| 	error = -EINVAL;
 | |
| 	if (S_ISBLK(inode->i_mode)) {
 | |
| 		bdev = I_BDEV(inode);
 | |
| 		error = bd_claim(bdev, sys_swapon);
 | |
| 		if (error < 0) {
 | |
| 			bdev = NULL;
 | |
| 			error = -EINVAL;
 | |
| 			goto bad_swap;
 | |
| 		}
 | |
| 		p->old_block_size = block_size(bdev);
 | |
| 		error = set_blocksize(bdev, PAGE_SIZE);
 | |
| 		if (error < 0)
 | |
| 			goto bad_swap;
 | |
| 		p->bdev = bdev;
 | |
| 	} else if (S_ISREG(inode->i_mode)) {
 | |
| 		p->bdev = inode->i_sb->s_bdev;
 | |
| 		mutex_lock(&inode->i_mutex);
 | |
| 		did_down = 1;
 | |
| 		if (IS_SWAPFILE(inode)) {
 | |
| 			error = -EBUSY;
 | |
| 			goto bad_swap;
 | |
| 		}
 | |
| 	} else {
 | |
| 		goto bad_swap;
 | |
| 	}
 | |
| 
 | |
| 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the swap header.
 | |
| 	 */
 | |
| 	if (!mapping->a_ops->readpage) {
 | |
| 		error = -EINVAL;
 | |
| 		goto bad_swap;
 | |
| 	}
 | |
| 	page = read_mapping_page(mapping, 0, swap_file);
 | |
| 	if (IS_ERR(page)) {
 | |
| 		error = PTR_ERR(page);
 | |
| 		goto bad_swap;
 | |
| 	}
 | |
| 	swap_header = kmap(page);
 | |
| 
 | |
| 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
 | |
| 		printk(KERN_ERR "Unable to find swap-space signature\n");
 | |
| 		error = -EINVAL;
 | |
| 		goto bad_swap;
 | |
| 	}
 | |
| 
 | |
| 	/* swap partition endianess hack... */
 | |
| 	if (swab32(swap_header->info.version) == 1) {
 | |
| 		swab32s(&swap_header->info.version);
 | |
| 		swab32s(&swap_header->info.last_page);
 | |
| 		swab32s(&swap_header->info.nr_badpages);
 | |
| 		for (i = 0; i < swap_header->info.nr_badpages; i++)
 | |
| 			swab32s(&swap_header->info.badpages[i]);
 | |
| 	}
 | |
| 	/* Check the swap header's sub-version */
 | |
| 	if (swap_header->info.version != 1) {
 | |
| 		printk(KERN_WARNING
 | |
| 		       "Unable to handle swap header version %d\n",
 | |
| 		       swap_header->info.version);
 | |
| 		error = -EINVAL;
 | |
| 		goto bad_swap;
 | |
| 	}
 | |
| 
 | |
| 	p->lowest_bit  = 1;
 | |
| 	p->cluster_next = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find out how many pages are allowed for a single swap
 | |
| 	 * device. There are two limiting factors: 1) the number of
 | |
| 	 * bits for the swap offset in the swp_entry_t type and
 | |
| 	 * 2) the number of bits in the a swap pte as defined by
 | |
| 	 * the different architectures. In order to find the
 | |
| 	 * largest possible bit mask a swap entry with swap type 0
 | |
| 	 * and swap offset ~0UL is created, encoded to a swap pte,
 | |
| 	 * decoded to a swp_entry_t again and finally the swap
 | |
| 	 * offset is extracted. This will mask all the bits from
 | |
| 	 * the initial ~0UL mask that can't be encoded in either
 | |
| 	 * the swp_entry_t or the architecture definition of a
 | |
| 	 * swap pte.
 | |
| 	 */
 | |
| 	maxpages = swp_offset(pte_to_swp_entry(
 | |
| 			swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
 | |
| 	if (maxpages > swap_header->info.last_page)
 | |
| 		maxpages = swap_header->info.last_page;
 | |
| 	p->highest_bit = maxpages - 1;
 | |
| 
 | |
| 	error = -EINVAL;
 | |
| 	if (!maxpages)
 | |
| 		goto bad_swap;
 | |
| 	if (swapfilepages && maxpages > swapfilepages) {
 | |
| 		printk(KERN_WARNING
 | |
| 		       "Swap area shorter than signature indicates\n");
 | |
| 		goto bad_swap;
 | |
| 	}
 | |
| 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
 | |
| 		goto bad_swap;
 | |
| 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
 | |
| 		goto bad_swap;
 | |
| 
 | |
| 	/* OK, set up the swap map and apply the bad block list */
 | |
| 	swap_map = vmalloc(maxpages * sizeof(short));
 | |
| 	if (!swap_map) {
 | |
| 		error = -ENOMEM;
 | |
| 		goto bad_swap;
 | |
| 	}
 | |
| 
 | |
| 	memset(swap_map, 0, maxpages * sizeof(short));
 | |
| 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
 | |
| 		int page_nr = swap_header->info.badpages[i];
 | |
| 		if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
 | |
| 			error = -EINVAL;
 | |
| 			goto bad_swap;
 | |
| 		}
 | |
| 		swap_map[page_nr] = SWAP_MAP_BAD;
 | |
| 	}
 | |
| 
 | |
| 	error = swap_cgroup_swapon(type, maxpages);
 | |
| 	if (error)
 | |
| 		goto bad_swap;
 | |
| 
 | |
| 	nr_good_pages = swap_header->info.last_page -
 | |
| 			swap_header->info.nr_badpages -
 | |
| 			1 /* header page */;
 | |
| 
 | |
| 	if (nr_good_pages) {
 | |
| 		swap_map[0] = SWAP_MAP_BAD;
 | |
| 		p->max = maxpages;
 | |
| 		p->pages = nr_good_pages;
 | |
| 		nr_extents = setup_swap_extents(p, &span);
 | |
| 		if (nr_extents < 0) {
 | |
| 			error = nr_extents;
 | |
| 			goto bad_swap;
 | |
| 		}
 | |
| 		nr_good_pages = p->pages;
 | |
| 	}
 | |
| 	if (!nr_good_pages) {
 | |
| 		printk(KERN_WARNING "Empty swap-file\n");
 | |
| 		error = -EINVAL;
 | |
| 		goto bad_swap;
 | |
| 	}
 | |
| 
 | |
| 	if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
 | |
| 		p->flags |= SWP_SOLIDSTATE;
 | |
| 		p->cluster_next = 1 + (random32() % p->highest_bit);
 | |
| 	}
 | |
| 	if (discard_swap(p) == 0)
 | |
| 		p->flags |= SWP_DISCARDABLE;
 | |
| 
 | |
| 	mutex_lock(&swapon_mutex);
 | |
| 	spin_lock(&swap_lock);
 | |
| 	if (swap_flags & SWAP_FLAG_PREFER)
 | |
| 		p->prio =
 | |
| 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
 | |
| 	else
 | |
| 		p->prio = --least_priority;
 | |
| 	p->swap_map = swap_map;
 | |
| 	p->flags |= SWP_WRITEOK;
 | |
| 	nr_swap_pages += nr_good_pages;
 | |
| 	total_swap_pages += nr_good_pages;
 | |
| 
 | |
| 	printk(KERN_INFO "Adding %uk swap on %s.  "
 | |
| 			"Priority:%d extents:%d across:%lluk %s%s\n",
 | |
| 		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
 | |
| 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
 | |
| 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
 | |
| 		(p->flags & SWP_DISCARDABLE) ? "D" : "");
 | |
| 
 | |
| 	/* insert swap space into swap_list: */
 | |
| 	prev = -1;
 | |
| 	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
 | |
| 		if (p->prio >= swap_info[i].prio) {
 | |
| 			break;
 | |
| 		}
 | |
| 		prev = i;
 | |
| 	}
 | |
| 	p->next = i;
 | |
| 	if (prev < 0) {
 | |
| 		swap_list.head = swap_list.next = p - swap_info;
 | |
| 	} else {
 | |
| 		swap_info[prev].next = p - swap_info;
 | |
| 	}
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	mutex_unlock(&swapon_mutex);
 | |
| 	error = 0;
 | |
| 	goto out;
 | |
| bad_swap:
 | |
| 	if (bdev) {
 | |
| 		set_blocksize(bdev, p->old_block_size);
 | |
| 		bd_release(bdev);
 | |
| 	}
 | |
| 	destroy_swap_extents(p);
 | |
| 	swap_cgroup_swapoff(type);
 | |
| bad_swap_2:
 | |
| 	spin_lock(&swap_lock);
 | |
| 	p->swap_file = NULL;
 | |
| 	p->flags = 0;
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	vfree(swap_map);
 | |
| 	if (swap_file)
 | |
| 		filp_close(swap_file, NULL);
 | |
| out:
 | |
| 	if (page && !IS_ERR(page)) {
 | |
| 		kunmap(page);
 | |
| 		page_cache_release(page);
 | |
| 	}
 | |
| 	if (name)
 | |
| 		putname(name);
 | |
| 	if (did_down) {
 | |
| 		if (!error)
 | |
| 			inode->i_flags |= S_SWAPFILE;
 | |
| 		mutex_unlock(&inode->i_mutex);
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| void si_swapinfo(struct sysinfo *val)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	unsigned long nr_to_be_unused = 0;
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	for (i = 0; i < nr_swapfiles; i++) {
 | |
| 		if (!(swap_info[i].flags & SWP_USED) ||
 | |
| 		     (swap_info[i].flags & SWP_WRITEOK))
 | |
| 			continue;
 | |
| 		nr_to_be_unused += swap_info[i].inuse_pages;
 | |
| 	}
 | |
| 	val->freeswap = nr_swap_pages + nr_to_be_unused;
 | |
| 	val->totalswap = total_swap_pages + nr_to_be_unused;
 | |
| 	spin_unlock(&swap_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Verify that a swap entry is valid and increment its swap map count.
 | |
|  *
 | |
|  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
 | |
|  * "permanent", but will be reclaimed by the next swapoff.
 | |
|  */
 | |
| int swap_duplicate(swp_entry_t entry)
 | |
| {
 | |
| 	struct swap_info_struct * p;
 | |
| 	unsigned long offset, type;
 | |
| 	int result = 0;
 | |
| 
 | |
| 	if (is_migration_entry(entry))
 | |
| 		return 1;
 | |
| 
 | |
| 	type = swp_type(entry);
 | |
| 	if (type >= nr_swapfiles)
 | |
| 		goto bad_file;
 | |
| 	p = type + swap_info;
 | |
| 	offset = swp_offset(entry);
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	if (offset < p->max && p->swap_map[offset]) {
 | |
| 		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
 | |
| 			p->swap_map[offset]++;
 | |
| 			result = 1;
 | |
| 		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
 | |
| 			if (swap_overflow++ < 5)
 | |
| 				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
 | |
| 			p->swap_map[offset] = SWAP_MAP_MAX;
 | |
| 			result = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&swap_lock);
 | |
| out:
 | |
| 	return result;
 | |
| 
 | |
| bad_file:
 | |
| 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| struct swap_info_struct *
 | |
| get_swap_info_struct(unsigned type)
 | |
| {
 | |
| 	return &swap_info[type];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * swap_lock prevents swap_map being freed. Don't grab an extra
 | |
|  * reference on the swaphandle, it doesn't matter if it becomes unused.
 | |
|  */
 | |
| int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 	int our_page_cluster = page_cluster;
 | |
| 	pgoff_t target, toff;
 | |
| 	pgoff_t base, end;
 | |
| 	int nr_pages = 0;
 | |
| 
 | |
| 	if (!our_page_cluster)	/* no readahead */
 | |
| 		return 0;
 | |
| 
 | |
| 	si = &swap_info[swp_type(entry)];
 | |
| 	target = swp_offset(entry);
 | |
| 	base = (target >> our_page_cluster) << our_page_cluster;
 | |
| 	end = base + (1 << our_page_cluster);
 | |
| 	if (!base)		/* first page is swap header */
 | |
| 		base++;
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	if (end > si->max)	/* don't go beyond end of map */
 | |
| 		end = si->max;
 | |
| 
 | |
| 	/* Count contiguous allocated slots above our target */
 | |
| 	for (toff = target; ++toff < end; nr_pages++) {
 | |
| 		/* Don't read in free or bad pages */
 | |
| 		if (!si->swap_map[toff])
 | |
| 			break;
 | |
| 		if (si->swap_map[toff] == SWAP_MAP_BAD)
 | |
| 			break;
 | |
| 	}
 | |
| 	/* Count contiguous allocated slots below our target */
 | |
| 	for (toff = target; --toff >= base; nr_pages++) {
 | |
| 		/* Don't read in free or bad pages */
 | |
| 		if (!si->swap_map[toff])
 | |
| 			break;
 | |
| 		if (si->swap_map[toff] == SWAP_MAP_BAD)
 | |
| 			break;
 | |
| 	}
 | |
| 	spin_unlock(&swap_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Indicate starting offset, and return number of pages to get:
 | |
| 	 * if only 1, say 0, since there's then no readahead to be done.
 | |
| 	 */
 | |
| 	*offset = ++toff;
 | |
| 	return nr_pages? ++nr_pages: 0;
 | |
| }
 |