 66c3a75772
			
		
	
	
	66c3a75772
	
	
	
		
			
			Impact: code reorganization Separate out embedding first chunk setup helper from x86 embedding first chunk allocator and put it in mm/percpu.c. This will be used by the default percpu first chunk allocator and possibly by other archs. Signed-off-by: Tejun Heo <tj@kernel.org>
		
			
				
	
	
		
			1326 lines
		
	
	
	
		
			37 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1326 lines
		
	
	
	
		
			37 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * linux/mm/percpu.c - percpu memory allocator
 | |
|  *
 | |
|  * Copyright (C) 2009		SUSE Linux Products GmbH
 | |
|  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
 | |
|  *
 | |
|  * This file is released under the GPLv2.
 | |
|  *
 | |
|  * This is percpu allocator which can handle both static and dynamic
 | |
|  * areas.  Percpu areas are allocated in chunks in vmalloc area.  Each
 | |
|  * chunk is consisted of num_possible_cpus() units and the first chunk
 | |
|  * is used for static percpu variables in the kernel image (special
 | |
|  * boot time alloc/init handling necessary as these areas need to be
 | |
|  * brought up before allocation services are running).  Unit grows as
 | |
|  * necessary and all units grow or shrink in unison.  When a chunk is
 | |
|  * filled up, another chunk is allocated.  ie. in vmalloc area
 | |
|  *
 | |
|  *  c0                           c1                         c2
 | |
|  *  -------------------          -------------------        ------------
 | |
|  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
 | |
|  *  -------------------  ......  -------------------  ....  ------------
 | |
|  *
 | |
|  * Allocation is done in offset-size areas of single unit space.  Ie,
 | |
|  * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
 | |
|  * c1:u1, c1:u2 and c1:u3.  Percpu access can be done by configuring
 | |
|  * percpu base registers UNIT_SIZE apart.
 | |
|  *
 | |
|  * There are usually many small percpu allocations many of them as
 | |
|  * small as 4 bytes.  The allocator organizes chunks into lists
 | |
|  * according to free size and tries to allocate from the fullest one.
 | |
|  * Each chunk keeps the maximum contiguous area size hint which is
 | |
|  * guaranteed to be eqaul to or larger than the maximum contiguous
 | |
|  * area in the chunk.  This helps the allocator not to iterate the
 | |
|  * chunk maps unnecessarily.
 | |
|  *
 | |
|  * Allocation state in each chunk is kept using an array of integers
 | |
|  * on chunk->map.  A positive value in the map represents a free
 | |
|  * region and negative allocated.  Allocation inside a chunk is done
 | |
|  * by scanning this map sequentially and serving the first matching
 | |
|  * entry.  This is mostly copied from the percpu_modalloc() allocator.
 | |
|  * Chunks are also linked into a rb tree to ease address to chunk
 | |
|  * mapping during free.
 | |
|  *
 | |
|  * To use this allocator, arch code should do the followings.
 | |
|  *
 | |
|  * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA
 | |
|  *
 | |
|  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
 | |
|  *   regular address to percpu pointer and back if they need to be
 | |
|  *   different from the default
 | |
|  *
 | |
|  * - use pcpu_setup_first_chunk() during percpu area initialization to
 | |
|  *   setup the first chunk containing the kernel static percpu area
 | |
|  */
 | |
| 
 | |
| #include <linux/bitmap.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/rbtree.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/workqueue.h>
 | |
| 
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/tlbflush.h>
 | |
| 
 | |
| #define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
 | |
| #define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
 | |
| 
 | |
| /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
 | |
| #ifndef __addr_to_pcpu_ptr
 | |
| #define __addr_to_pcpu_ptr(addr)					\
 | |
| 	(void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr	\
 | |
| 		 + (unsigned long)__per_cpu_start)
 | |
| #endif
 | |
| #ifndef __pcpu_ptr_to_addr
 | |
| #define __pcpu_ptr_to_addr(ptr)						\
 | |
| 	(void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr	\
 | |
| 		 - (unsigned long)__per_cpu_start)
 | |
| #endif
 | |
| 
 | |
| struct pcpu_chunk {
 | |
| 	struct list_head	list;		/* linked to pcpu_slot lists */
 | |
| 	struct rb_node		rb_node;	/* key is chunk->vm->addr */
 | |
| 	int			free_size;	/* free bytes in the chunk */
 | |
| 	int			contig_hint;	/* max contiguous size hint */
 | |
| 	struct vm_struct	*vm;		/* mapped vmalloc region */
 | |
| 	int			map_used;	/* # of map entries used */
 | |
| 	int			map_alloc;	/* # of map entries allocated */
 | |
| 	int			*map;		/* allocation map */
 | |
| 	bool			immutable;	/* no [de]population allowed */
 | |
| 	struct page		**page;		/* points to page array */
 | |
| 	struct page		*page_ar[];	/* #cpus * UNIT_PAGES */
 | |
| };
 | |
| 
 | |
| static int pcpu_unit_pages __read_mostly;
 | |
| static int pcpu_unit_size __read_mostly;
 | |
| static int pcpu_chunk_size __read_mostly;
 | |
| static int pcpu_nr_slots __read_mostly;
 | |
| static size_t pcpu_chunk_struct_size __read_mostly;
 | |
| 
 | |
| /* the address of the first chunk which starts with the kernel static area */
 | |
| void *pcpu_base_addr __read_mostly;
 | |
| EXPORT_SYMBOL_GPL(pcpu_base_addr);
 | |
| 
 | |
| /* optional reserved chunk, only accessible for reserved allocations */
 | |
| static struct pcpu_chunk *pcpu_reserved_chunk;
 | |
| /* offset limit of the reserved chunk */
 | |
| static int pcpu_reserved_chunk_limit;
 | |
| 
 | |
| /*
 | |
|  * Synchronization rules.
 | |
|  *
 | |
|  * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
 | |
|  * protects allocation/reclaim paths, chunks and chunk->page arrays.
 | |
|  * The latter is a spinlock and protects the index data structures -
 | |
|  * chunk slots, rbtree, chunks and area maps in chunks.
 | |
|  *
 | |
|  * During allocation, pcpu_alloc_mutex is kept locked all the time and
 | |
|  * pcpu_lock is grabbed and released as necessary.  All actual memory
 | |
|  * allocations are done using GFP_KERNEL with pcpu_lock released.
 | |
|  *
 | |
|  * Free path accesses and alters only the index data structures, so it
 | |
|  * can be safely called from atomic context.  When memory needs to be
 | |
|  * returned to the system, free path schedules reclaim_work which
 | |
|  * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
 | |
|  * reclaimed, release both locks and frees the chunks.  Note that it's
 | |
|  * necessary to grab both locks to remove a chunk from circulation as
 | |
|  * allocation path might be referencing the chunk with only
 | |
|  * pcpu_alloc_mutex locked.
 | |
|  */
 | |
| static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
 | |
| static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
 | |
| 
 | |
| static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
 | |
| static struct rb_root pcpu_addr_root = RB_ROOT;	/* chunks by address */
 | |
| 
 | |
| /* reclaim work to release fully free chunks, scheduled from free path */
 | |
| static void pcpu_reclaim(struct work_struct *work);
 | |
| static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
 | |
| 
 | |
| static int __pcpu_size_to_slot(int size)
 | |
| {
 | |
| 	int highbit = fls(size);	/* size is in bytes */
 | |
| 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
 | |
| }
 | |
| 
 | |
| static int pcpu_size_to_slot(int size)
 | |
| {
 | |
| 	if (size == pcpu_unit_size)
 | |
| 		return pcpu_nr_slots - 1;
 | |
| 	return __pcpu_size_to_slot(size);
 | |
| }
 | |
| 
 | |
| static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
 | |
| {
 | |
| 	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
 | |
| 		return 0;
 | |
| 
 | |
| 	return pcpu_size_to_slot(chunk->free_size);
 | |
| }
 | |
| 
 | |
| static int pcpu_page_idx(unsigned int cpu, int page_idx)
 | |
| {
 | |
| 	return cpu * pcpu_unit_pages + page_idx;
 | |
| }
 | |
| 
 | |
| static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk,
 | |
| 				      unsigned int cpu, int page_idx)
 | |
| {
 | |
| 	return &chunk->page[pcpu_page_idx(cpu, page_idx)];
 | |
| }
 | |
| 
 | |
| static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
 | |
| 				     unsigned int cpu, int page_idx)
 | |
| {
 | |
| 	return (unsigned long)chunk->vm->addr +
 | |
| 		(pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk,
 | |
| 				     int page_idx)
 | |
| {
 | |
| 	return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_mem_alloc - allocate memory
 | |
|  * @size: bytes to allocate
 | |
|  *
 | |
|  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 | |
|  * kzalloc() is used; otherwise, vmalloc() is used.  The returned
 | |
|  * memory is always zeroed.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * Does GFP_KERNEL allocation.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Pointer to the allocated area on success, NULL on failure.
 | |
|  */
 | |
| static void *pcpu_mem_alloc(size_t size)
 | |
| {
 | |
| 	if (size <= PAGE_SIZE)
 | |
| 		return kzalloc(size, GFP_KERNEL);
 | |
| 	else {
 | |
| 		void *ptr = vmalloc(size);
 | |
| 		if (ptr)
 | |
| 			memset(ptr, 0, size);
 | |
| 		return ptr;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_mem_free - free memory
 | |
|  * @ptr: memory to free
 | |
|  * @size: size of the area
 | |
|  *
 | |
|  * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
 | |
|  */
 | |
| static void pcpu_mem_free(void *ptr, size_t size)
 | |
| {
 | |
| 	if (size <= PAGE_SIZE)
 | |
| 		kfree(ptr);
 | |
| 	else
 | |
| 		vfree(ptr);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 | |
|  * @chunk: chunk of interest
 | |
|  * @oslot: the previous slot it was on
 | |
|  *
 | |
|  * This function is called after an allocation or free changed @chunk.
 | |
|  * New slot according to the changed state is determined and @chunk is
 | |
|  * moved to the slot.  Note that the reserved chunk is never put on
 | |
|  * chunk slots.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * pcpu_lock.
 | |
|  */
 | |
| static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
 | |
| {
 | |
| 	int nslot = pcpu_chunk_slot(chunk);
 | |
| 
 | |
| 	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
 | |
| 		if (oslot < nslot)
 | |
| 			list_move(&chunk->list, &pcpu_slot[nslot]);
 | |
| 		else
 | |
| 			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct rb_node **pcpu_chunk_rb_search(void *addr,
 | |
| 					     struct rb_node **parentp)
 | |
| {
 | |
| 	struct rb_node **p = &pcpu_addr_root.rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct pcpu_chunk *chunk;
 | |
| 
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		chunk = rb_entry(parent, struct pcpu_chunk, rb_node);
 | |
| 
 | |
| 		if (addr < chunk->vm->addr)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else if (addr > chunk->vm->addr)
 | |
| 			p = &(*p)->rb_right;
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (parentp)
 | |
| 		*parentp = parent;
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_chunk_addr_search - search for chunk containing specified address
 | |
|  * @addr: address to search for
 | |
|  *
 | |
|  * Look for chunk which might contain @addr.  More specifically, it
 | |
|  * searchs for the chunk with the highest start address which isn't
 | |
|  * beyond @addr.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * pcpu_lock.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * The address of the found chunk.
 | |
|  */
 | |
| static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
 | |
| {
 | |
| 	struct rb_node *n, *parent;
 | |
| 	struct pcpu_chunk *chunk;
 | |
| 
 | |
| 	/* is it in the reserved chunk? */
 | |
| 	if (pcpu_reserved_chunk) {
 | |
| 		void *start = pcpu_reserved_chunk->vm->addr;
 | |
| 
 | |
| 		if (addr >= start && addr < start + pcpu_reserved_chunk_limit)
 | |
| 			return pcpu_reserved_chunk;
 | |
| 	}
 | |
| 
 | |
| 	/* nah... search the regular ones */
 | |
| 	n = *pcpu_chunk_rb_search(addr, &parent);
 | |
| 	if (!n) {
 | |
| 		/* no exactly matching chunk, the parent is the closest */
 | |
| 		n = parent;
 | |
| 		BUG_ON(!n);
 | |
| 	}
 | |
| 	chunk = rb_entry(n, struct pcpu_chunk, rb_node);
 | |
| 
 | |
| 	if (addr < chunk->vm->addr) {
 | |
| 		/* the parent was the next one, look for the previous one */
 | |
| 		n = rb_prev(n);
 | |
| 		BUG_ON(!n);
 | |
| 		chunk = rb_entry(n, struct pcpu_chunk, rb_node);
 | |
| 	}
 | |
| 
 | |
| 	return chunk;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_chunk_addr_insert - insert chunk into address rb tree
 | |
|  * @new: chunk to insert
 | |
|  *
 | |
|  * Insert @new into address rb tree.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * pcpu_lock.
 | |
|  */
 | |
| static void pcpu_chunk_addr_insert(struct pcpu_chunk *new)
 | |
| {
 | |
| 	struct rb_node **p, *parent;
 | |
| 
 | |
| 	p = pcpu_chunk_rb_search(new->vm->addr, &parent);
 | |
| 	BUG_ON(*p);
 | |
| 	rb_link_node(&new->rb_node, parent, p);
 | |
| 	rb_insert_color(&new->rb_node, &pcpu_addr_root);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_extend_area_map - extend area map for allocation
 | |
|  * @chunk: target chunk
 | |
|  *
 | |
|  * Extend area map of @chunk so that it can accomodate an allocation.
 | |
|  * A single allocation can split an area into three areas, so this
 | |
|  * function makes sure that @chunk->map has at least two extra slots.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * pcpu_alloc_mutex, pcpu_lock.  pcpu_lock is released and reacquired
 | |
|  * if area map is extended.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * 0 if noop, 1 if successfully extended, -errno on failure.
 | |
|  */
 | |
| static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
 | |
| {
 | |
| 	int new_alloc;
 | |
| 	int *new;
 | |
| 	size_t size;
 | |
| 
 | |
| 	/* has enough? */
 | |
| 	if (chunk->map_alloc >= chunk->map_used + 2)
 | |
| 		return 0;
 | |
| 
 | |
| 	spin_unlock_irq(&pcpu_lock);
 | |
| 
 | |
| 	new_alloc = PCPU_DFL_MAP_ALLOC;
 | |
| 	while (new_alloc < chunk->map_used + 2)
 | |
| 		new_alloc *= 2;
 | |
| 
 | |
| 	new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
 | |
| 	if (!new) {
 | |
| 		spin_lock_irq(&pcpu_lock);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Acquire pcpu_lock and switch to new area map.  Only free
 | |
| 	 * could have happened inbetween, so map_used couldn't have
 | |
| 	 * grown.
 | |
| 	 */
 | |
| 	spin_lock_irq(&pcpu_lock);
 | |
| 	BUG_ON(new_alloc < chunk->map_used + 2);
 | |
| 
 | |
| 	size = chunk->map_alloc * sizeof(chunk->map[0]);
 | |
| 	memcpy(new, chunk->map, size);
 | |
| 
 | |
| 	/*
 | |
| 	 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
 | |
| 	 * one of the first chunks and still using static map.
 | |
| 	 */
 | |
| 	if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
 | |
| 		pcpu_mem_free(chunk->map, size);
 | |
| 
 | |
| 	chunk->map_alloc = new_alloc;
 | |
| 	chunk->map = new;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_split_block - split a map block
 | |
|  * @chunk: chunk of interest
 | |
|  * @i: index of map block to split
 | |
|  * @head: head size in bytes (can be 0)
 | |
|  * @tail: tail size in bytes (can be 0)
 | |
|  *
 | |
|  * Split the @i'th map block into two or three blocks.  If @head is
 | |
|  * non-zero, @head bytes block is inserted before block @i moving it
 | |
|  * to @i+1 and reducing its size by @head bytes.
 | |
|  *
 | |
|  * If @tail is non-zero, the target block, which can be @i or @i+1
 | |
|  * depending on @head, is reduced by @tail bytes and @tail byte block
 | |
|  * is inserted after the target block.
 | |
|  *
 | |
|  * @chunk->map must have enough free slots to accomodate the split.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * pcpu_lock.
 | |
|  */
 | |
| static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
 | |
| 			     int head, int tail)
 | |
| {
 | |
| 	int nr_extra = !!head + !!tail;
 | |
| 
 | |
| 	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
 | |
| 
 | |
| 	/* insert new subblocks */
 | |
| 	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
 | |
| 		sizeof(chunk->map[0]) * (chunk->map_used - i));
 | |
| 	chunk->map_used += nr_extra;
 | |
| 
 | |
| 	if (head) {
 | |
| 		chunk->map[i + 1] = chunk->map[i] - head;
 | |
| 		chunk->map[i++] = head;
 | |
| 	}
 | |
| 	if (tail) {
 | |
| 		chunk->map[i++] -= tail;
 | |
| 		chunk->map[i] = tail;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_alloc_area - allocate area from a pcpu_chunk
 | |
|  * @chunk: chunk of interest
 | |
|  * @size: wanted size in bytes
 | |
|  * @align: wanted align
 | |
|  *
 | |
|  * Try to allocate @size bytes area aligned at @align from @chunk.
 | |
|  * Note that this function only allocates the offset.  It doesn't
 | |
|  * populate or map the area.
 | |
|  *
 | |
|  * @chunk->map must have at least two free slots.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * pcpu_lock.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Allocated offset in @chunk on success, -1 if no matching area is
 | |
|  * found.
 | |
|  */
 | |
| static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
 | |
| {
 | |
| 	int oslot = pcpu_chunk_slot(chunk);
 | |
| 	int max_contig = 0;
 | |
| 	int i, off;
 | |
| 
 | |
| 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
 | |
| 		bool is_last = i + 1 == chunk->map_used;
 | |
| 		int head, tail;
 | |
| 
 | |
| 		/* extra for alignment requirement */
 | |
| 		head = ALIGN(off, align) - off;
 | |
| 		BUG_ON(i == 0 && head != 0);
 | |
| 
 | |
| 		if (chunk->map[i] < 0)
 | |
| 			continue;
 | |
| 		if (chunk->map[i] < head + size) {
 | |
| 			max_contig = max(chunk->map[i], max_contig);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If head is small or the previous block is free,
 | |
| 		 * merge'em.  Note that 'small' is defined as smaller
 | |
| 		 * than sizeof(int), which is very small but isn't too
 | |
| 		 * uncommon for percpu allocations.
 | |
| 		 */
 | |
| 		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
 | |
| 			if (chunk->map[i - 1] > 0)
 | |
| 				chunk->map[i - 1] += head;
 | |
| 			else {
 | |
| 				chunk->map[i - 1] -= head;
 | |
| 				chunk->free_size -= head;
 | |
| 			}
 | |
| 			chunk->map[i] -= head;
 | |
| 			off += head;
 | |
| 			head = 0;
 | |
| 		}
 | |
| 
 | |
| 		/* if tail is small, just keep it around */
 | |
| 		tail = chunk->map[i] - head - size;
 | |
| 		if (tail < sizeof(int))
 | |
| 			tail = 0;
 | |
| 
 | |
| 		/* split if warranted */
 | |
| 		if (head || tail) {
 | |
| 			pcpu_split_block(chunk, i, head, tail);
 | |
| 			if (head) {
 | |
| 				i++;
 | |
| 				off += head;
 | |
| 				max_contig = max(chunk->map[i - 1], max_contig);
 | |
| 			}
 | |
| 			if (tail)
 | |
| 				max_contig = max(chunk->map[i + 1], max_contig);
 | |
| 		}
 | |
| 
 | |
| 		/* update hint and mark allocated */
 | |
| 		if (is_last)
 | |
| 			chunk->contig_hint = max_contig; /* fully scanned */
 | |
| 		else
 | |
| 			chunk->contig_hint = max(chunk->contig_hint,
 | |
| 						 max_contig);
 | |
| 
 | |
| 		chunk->free_size -= chunk->map[i];
 | |
| 		chunk->map[i] = -chunk->map[i];
 | |
| 
 | |
| 		pcpu_chunk_relocate(chunk, oslot);
 | |
| 		return off;
 | |
| 	}
 | |
| 
 | |
| 	chunk->contig_hint = max_contig;	/* fully scanned */
 | |
| 	pcpu_chunk_relocate(chunk, oslot);
 | |
| 
 | |
| 	/* tell the upper layer that this chunk has no matching area */
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_free_area - free area to a pcpu_chunk
 | |
|  * @chunk: chunk of interest
 | |
|  * @freeme: offset of area to free
 | |
|  *
 | |
|  * Free area starting from @freeme to @chunk.  Note that this function
 | |
|  * only modifies the allocation map.  It doesn't depopulate or unmap
 | |
|  * the area.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * pcpu_lock.
 | |
|  */
 | |
| static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
 | |
| {
 | |
| 	int oslot = pcpu_chunk_slot(chunk);
 | |
| 	int i, off;
 | |
| 
 | |
| 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
 | |
| 		if (off == freeme)
 | |
| 			break;
 | |
| 	BUG_ON(off != freeme);
 | |
| 	BUG_ON(chunk->map[i] > 0);
 | |
| 
 | |
| 	chunk->map[i] = -chunk->map[i];
 | |
| 	chunk->free_size += chunk->map[i];
 | |
| 
 | |
| 	/* merge with previous? */
 | |
| 	if (i > 0 && chunk->map[i - 1] >= 0) {
 | |
| 		chunk->map[i - 1] += chunk->map[i];
 | |
| 		chunk->map_used--;
 | |
| 		memmove(&chunk->map[i], &chunk->map[i + 1],
 | |
| 			(chunk->map_used - i) * sizeof(chunk->map[0]));
 | |
| 		i--;
 | |
| 	}
 | |
| 	/* merge with next? */
 | |
| 	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
 | |
| 		chunk->map[i] += chunk->map[i + 1];
 | |
| 		chunk->map_used--;
 | |
| 		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
 | |
| 			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
 | |
| 	}
 | |
| 
 | |
| 	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
 | |
| 	pcpu_chunk_relocate(chunk, oslot);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_unmap - unmap pages out of a pcpu_chunk
 | |
|  * @chunk: chunk of interest
 | |
|  * @page_start: page index of the first page to unmap
 | |
|  * @page_end: page index of the last page to unmap + 1
 | |
|  * @flush: whether to flush cache and tlb or not
 | |
|  *
 | |
|  * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
 | |
|  * If @flush is true, vcache is flushed before unmapping and tlb
 | |
|  * after.
 | |
|  */
 | |
| static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end,
 | |
| 		       bool flush)
 | |
| {
 | |
| 	unsigned int last = num_possible_cpus() - 1;
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	/* unmap must not be done on immutable chunk */
 | |
| 	WARN_ON(chunk->immutable);
 | |
| 
 | |
| 	/*
 | |
| 	 * Each flushing trial can be very expensive, issue flush on
 | |
| 	 * the whole region at once rather than doing it for each cpu.
 | |
| 	 * This could be an overkill but is more scalable.
 | |
| 	 */
 | |
| 	if (flush)
 | |
| 		flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start),
 | |
| 				   pcpu_chunk_addr(chunk, last, page_end));
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		unmap_kernel_range_noflush(
 | |
| 				pcpu_chunk_addr(chunk, cpu, page_start),
 | |
| 				(page_end - page_start) << PAGE_SHIFT);
 | |
| 
 | |
| 	/* ditto as flush_cache_vunmap() */
 | |
| 	if (flush)
 | |
| 		flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start),
 | |
| 				       pcpu_chunk_addr(chunk, last, page_end));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
 | |
|  * @chunk: chunk to depopulate
 | |
|  * @off: offset to the area to depopulate
 | |
|  * @size: size of the area to depopulate in bytes
 | |
|  * @flush: whether to flush cache and tlb or not
 | |
|  *
 | |
|  * For each cpu, depopulate and unmap pages [@page_start,@page_end)
 | |
|  * from @chunk.  If @flush is true, vcache is flushed before unmapping
 | |
|  * and tlb after.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * pcpu_alloc_mutex.
 | |
|  */
 | |
| static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size,
 | |
| 				  bool flush)
 | |
| {
 | |
| 	int page_start = PFN_DOWN(off);
 | |
| 	int page_end = PFN_UP(off + size);
 | |
| 	int unmap_start = -1;
 | |
| 	int uninitialized_var(unmap_end);
 | |
| 	unsigned int cpu;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = page_start; i < page_end; i++) {
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
 | |
| 
 | |
| 			if (!*pagep)
 | |
| 				continue;
 | |
| 
 | |
| 			__free_page(*pagep);
 | |
| 
 | |
| 			/*
 | |
| 			 * If it's partial depopulation, it might get
 | |
| 			 * populated or depopulated again.  Mark the
 | |
| 			 * page gone.
 | |
| 			 */
 | |
| 			*pagep = NULL;
 | |
| 
 | |
| 			unmap_start = unmap_start < 0 ? i : unmap_start;
 | |
| 			unmap_end = i + 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (unmap_start >= 0)
 | |
| 		pcpu_unmap(chunk, unmap_start, unmap_end, flush);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_map - map pages into a pcpu_chunk
 | |
|  * @chunk: chunk of interest
 | |
|  * @page_start: page index of the first page to map
 | |
|  * @page_end: page index of the last page to map + 1
 | |
|  *
 | |
|  * For each cpu, map pages [@page_start,@page_end) into @chunk.
 | |
|  * vcache is flushed afterwards.
 | |
|  */
 | |
| static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end)
 | |
| {
 | |
| 	unsigned int last = num_possible_cpus() - 1;
 | |
| 	unsigned int cpu;
 | |
| 	int err;
 | |
| 
 | |
| 	/* map must not be done on immutable chunk */
 | |
| 	WARN_ON(chunk->immutable);
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		err = map_kernel_range_noflush(
 | |
| 				pcpu_chunk_addr(chunk, cpu, page_start),
 | |
| 				(page_end - page_start) << PAGE_SHIFT,
 | |
| 				PAGE_KERNEL,
 | |
| 				pcpu_chunk_pagep(chunk, cpu, page_start));
 | |
| 		if (err < 0)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	/* flush at once, please read comments in pcpu_unmap() */
 | |
| 	flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start),
 | |
| 			 pcpu_chunk_addr(chunk, last, page_end));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
 | |
|  * @chunk: chunk of interest
 | |
|  * @off: offset to the area to populate
 | |
|  * @size: size of the area to populate in bytes
 | |
|  *
 | |
|  * For each cpu, populate and map pages [@page_start,@page_end) into
 | |
|  * @chunk.  The area is cleared on return.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * pcpu_alloc_mutex, does GFP_KERNEL allocation.
 | |
|  */
 | |
| static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
 | |
| {
 | |
| 	const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
 | |
| 	int page_start = PFN_DOWN(off);
 | |
| 	int page_end = PFN_UP(off + size);
 | |
| 	int map_start = -1;
 | |
| 	int uninitialized_var(map_end);
 | |
| 	unsigned int cpu;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = page_start; i < page_end; i++) {
 | |
| 		if (pcpu_chunk_page_occupied(chunk, i)) {
 | |
| 			if (map_start >= 0) {
 | |
| 				if (pcpu_map(chunk, map_start, map_end))
 | |
| 					goto err;
 | |
| 				map_start = -1;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		map_start = map_start < 0 ? i : map_start;
 | |
| 		map_end = i + 1;
 | |
| 
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
 | |
| 
 | |
| 			*pagep = alloc_pages_node(cpu_to_node(cpu),
 | |
| 						  alloc_mask, 0);
 | |
| 			if (!*pagep)
 | |
| 				goto err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (map_start >= 0 && pcpu_map(chunk, map_start, map_end))
 | |
| 		goto err;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0,
 | |
| 		       size);
 | |
| 
 | |
| 	return 0;
 | |
| err:
 | |
| 	/* likely under heavy memory pressure, give memory back */
 | |
| 	pcpu_depopulate_chunk(chunk, off, size, true);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void free_pcpu_chunk(struct pcpu_chunk *chunk)
 | |
| {
 | |
| 	if (!chunk)
 | |
| 		return;
 | |
| 	if (chunk->vm)
 | |
| 		free_vm_area(chunk->vm);
 | |
| 	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
 | |
| 	kfree(chunk);
 | |
| }
 | |
| 
 | |
| static struct pcpu_chunk *alloc_pcpu_chunk(void)
 | |
| {
 | |
| 	struct pcpu_chunk *chunk;
 | |
| 
 | |
| 	chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
 | |
| 	if (!chunk)
 | |
| 		return NULL;
 | |
| 
 | |
| 	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
 | |
| 	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
 | |
| 	chunk->map[chunk->map_used++] = pcpu_unit_size;
 | |
| 	chunk->page = chunk->page_ar;
 | |
| 
 | |
| 	chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL);
 | |
| 	if (!chunk->vm) {
 | |
| 		free_pcpu_chunk(chunk);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	INIT_LIST_HEAD(&chunk->list);
 | |
| 	chunk->free_size = pcpu_unit_size;
 | |
| 	chunk->contig_hint = pcpu_unit_size;
 | |
| 
 | |
| 	return chunk;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_alloc - the percpu allocator
 | |
|  * @size: size of area to allocate in bytes
 | |
|  * @align: alignment of area (max PAGE_SIZE)
 | |
|  * @reserved: allocate from the reserved chunk if available
 | |
|  *
 | |
|  * Allocate percpu area of @size bytes aligned at @align.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * Does GFP_KERNEL allocation.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Percpu pointer to the allocated area on success, NULL on failure.
 | |
|  */
 | |
| static void *pcpu_alloc(size_t size, size_t align, bool reserved)
 | |
| {
 | |
| 	struct pcpu_chunk *chunk;
 | |
| 	int slot, off;
 | |
| 
 | |
| 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
 | |
| 		WARN(true, "illegal size (%zu) or align (%zu) for "
 | |
| 		     "percpu allocation\n", size, align);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&pcpu_alloc_mutex);
 | |
| 	spin_lock_irq(&pcpu_lock);
 | |
| 
 | |
| 	/* serve reserved allocations from the reserved chunk if available */
 | |
| 	if (reserved && pcpu_reserved_chunk) {
 | |
| 		chunk = pcpu_reserved_chunk;
 | |
| 		if (size > chunk->contig_hint ||
 | |
| 		    pcpu_extend_area_map(chunk) < 0)
 | |
| 			goto fail_unlock;
 | |
| 		off = pcpu_alloc_area(chunk, size, align);
 | |
| 		if (off >= 0)
 | |
| 			goto area_found;
 | |
| 		goto fail_unlock;
 | |
| 	}
 | |
| 
 | |
| restart:
 | |
| 	/* search through normal chunks */
 | |
| 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
 | |
| 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
 | |
| 			if (size > chunk->contig_hint)
 | |
| 				continue;
 | |
| 
 | |
| 			switch (pcpu_extend_area_map(chunk)) {
 | |
| 			case 0:
 | |
| 				break;
 | |
| 			case 1:
 | |
| 				goto restart;	/* pcpu_lock dropped, restart */
 | |
| 			default:
 | |
| 				goto fail_unlock;
 | |
| 			}
 | |
| 
 | |
| 			off = pcpu_alloc_area(chunk, size, align);
 | |
| 			if (off >= 0)
 | |
| 				goto area_found;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* hmmm... no space left, create a new chunk */
 | |
| 	spin_unlock_irq(&pcpu_lock);
 | |
| 
 | |
| 	chunk = alloc_pcpu_chunk();
 | |
| 	if (!chunk)
 | |
| 		goto fail_unlock_mutex;
 | |
| 
 | |
| 	spin_lock_irq(&pcpu_lock);
 | |
| 	pcpu_chunk_relocate(chunk, -1);
 | |
| 	pcpu_chunk_addr_insert(chunk);
 | |
| 	goto restart;
 | |
| 
 | |
| area_found:
 | |
| 	spin_unlock_irq(&pcpu_lock);
 | |
| 
 | |
| 	/* populate, map and clear the area */
 | |
| 	if (pcpu_populate_chunk(chunk, off, size)) {
 | |
| 		spin_lock_irq(&pcpu_lock);
 | |
| 		pcpu_free_area(chunk, off);
 | |
| 		goto fail_unlock;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&pcpu_alloc_mutex);
 | |
| 
 | |
| 	return __addr_to_pcpu_ptr(chunk->vm->addr + off);
 | |
| 
 | |
| fail_unlock:
 | |
| 	spin_unlock_irq(&pcpu_lock);
 | |
| fail_unlock_mutex:
 | |
| 	mutex_unlock(&pcpu_alloc_mutex);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __alloc_percpu - allocate dynamic percpu area
 | |
|  * @size: size of area to allocate in bytes
 | |
|  * @align: alignment of area (max PAGE_SIZE)
 | |
|  *
 | |
|  * Allocate percpu area of @size bytes aligned at @align.  Might
 | |
|  * sleep.  Might trigger writeouts.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * Does GFP_KERNEL allocation.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Percpu pointer to the allocated area on success, NULL on failure.
 | |
|  */
 | |
| void *__alloc_percpu(size_t size, size_t align)
 | |
| {
 | |
| 	return pcpu_alloc(size, align, false);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__alloc_percpu);
 | |
| 
 | |
| /**
 | |
|  * __alloc_reserved_percpu - allocate reserved percpu area
 | |
|  * @size: size of area to allocate in bytes
 | |
|  * @align: alignment of area (max PAGE_SIZE)
 | |
|  *
 | |
|  * Allocate percpu area of @size bytes aligned at @align from reserved
 | |
|  * percpu area if arch has set it up; otherwise, allocation is served
 | |
|  * from the same dynamic area.  Might sleep.  Might trigger writeouts.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * Does GFP_KERNEL allocation.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Percpu pointer to the allocated area on success, NULL on failure.
 | |
|  */
 | |
| void *__alloc_reserved_percpu(size_t size, size_t align)
 | |
| {
 | |
| 	return pcpu_alloc(size, align, true);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_reclaim - reclaim fully free chunks, workqueue function
 | |
|  * @work: unused
 | |
|  *
 | |
|  * Reclaim all fully free chunks except for the first one.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * workqueue context.
 | |
|  */
 | |
| static void pcpu_reclaim(struct work_struct *work)
 | |
| {
 | |
| 	LIST_HEAD(todo);
 | |
| 	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
 | |
| 	struct pcpu_chunk *chunk, *next;
 | |
| 
 | |
| 	mutex_lock(&pcpu_alloc_mutex);
 | |
| 	spin_lock_irq(&pcpu_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(chunk, next, head, list) {
 | |
| 		WARN_ON(chunk->immutable);
 | |
| 
 | |
| 		/* spare the first one */
 | |
| 		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
 | |
| 			continue;
 | |
| 
 | |
| 		rb_erase(&chunk->rb_node, &pcpu_addr_root);
 | |
| 		list_move(&chunk->list, &todo);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(&pcpu_lock);
 | |
| 	mutex_unlock(&pcpu_alloc_mutex);
 | |
| 
 | |
| 	list_for_each_entry_safe(chunk, next, &todo, list) {
 | |
| 		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false);
 | |
| 		free_pcpu_chunk(chunk);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * free_percpu - free percpu area
 | |
|  * @ptr: pointer to area to free
 | |
|  *
 | |
|  * Free percpu area @ptr.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * Can be called from atomic context.
 | |
|  */
 | |
| void free_percpu(void *ptr)
 | |
| {
 | |
| 	void *addr = __pcpu_ptr_to_addr(ptr);
 | |
| 	struct pcpu_chunk *chunk;
 | |
| 	unsigned long flags;
 | |
| 	int off;
 | |
| 
 | |
| 	if (!ptr)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irqsave(&pcpu_lock, flags);
 | |
| 
 | |
| 	chunk = pcpu_chunk_addr_search(addr);
 | |
| 	off = addr - chunk->vm->addr;
 | |
| 
 | |
| 	pcpu_free_area(chunk, off);
 | |
| 
 | |
| 	/* if there are more than one fully free chunks, wake up grim reaper */
 | |
| 	if (chunk->free_size == pcpu_unit_size) {
 | |
| 		struct pcpu_chunk *pos;
 | |
| 
 | |
| 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
 | |
| 			if (pos != chunk) {
 | |
| 				schedule_work(&pcpu_reclaim_work);
 | |
| 				break;
 | |
| 			}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&pcpu_lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(free_percpu);
 | |
| 
 | |
| /**
 | |
|  * pcpu_setup_first_chunk - initialize the first percpu chunk
 | |
|  * @get_page_fn: callback to fetch page pointer
 | |
|  * @static_size: the size of static percpu area in bytes
 | |
|  * @reserved_size: the size of reserved percpu area in bytes
 | |
|  * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
 | |
|  * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
 | |
|  * @base_addr: mapped address, NULL for auto
 | |
|  * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary
 | |
|  *
 | |
|  * Initialize the first percpu chunk which contains the kernel static
 | |
|  * perpcu area.  This function is to be called from arch percpu area
 | |
|  * setup path.  The first two parameters are mandatory.  The rest are
 | |
|  * optional.
 | |
|  *
 | |
|  * @get_page_fn() should return pointer to percpu page given cpu
 | |
|  * number and page number.  It should at least return enough pages to
 | |
|  * cover the static area.  The returned pages for static area should
 | |
|  * have been initialized with valid data.  If @unit_size is specified,
 | |
|  * it can also return pages after the static area.  NULL return
 | |
|  * indicates end of pages for the cpu.  Note that @get_page_fn() must
 | |
|  * return the same number of pages for all cpus.
 | |
|  *
 | |
|  * @reserved_size, if non-zero, specifies the amount of bytes to
 | |
|  * reserve after the static area in the first chunk.  This reserves
 | |
|  * the first chunk such that it's available only through reserved
 | |
|  * percpu allocation.  This is primarily used to serve module percpu
 | |
|  * static areas on architectures where the addressing model has
 | |
|  * limited offset range for symbol relocations to guarantee module
 | |
|  * percpu symbols fall inside the relocatable range.
 | |
|  *
 | |
|  * @dyn_size, if non-negative, determines the number of bytes
 | |
|  * available for dynamic allocation in the first chunk.  Specifying
 | |
|  * non-negative value makes percpu leave alone the area beyond
 | |
|  * @static_size + @reserved_size + @dyn_size.
 | |
|  *
 | |
|  * @unit_size, if non-negative, specifies unit size and must be
 | |
|  * aligned to PAGE_SIZE and equal to or larger than @static_size +
 | |
|  * @reserved_size + if non-negative, @dyn_size.
 | |
|  *
 | |
|  * Non-null @base_addr means that the caller already allocated virtual
 | |
|  * region for the first chunk and mapped it.  percpu must not mess
 | |
|  * with the chunk.  Note that @base_addr with 0 @unit_size or non-NULL
 | |
|  * @populate_pte_fn doesn't make any sense.
 | |
|  *
 | |
|  * @populate_pte_fn is used to populate the pagetable.  NULL means the
 | |
|  * caller already populated the pagetable.
 | |
|  *
 | |
|  * If the first chunk ends up with both reserved and dynamic areas, it
 | |
|  * is served by two chunks - one to serve the core static and reserved
 | |
|  * areas and the other for the dynamic area.  They share the same vm
 | |
|  * and page map but uses different area allocation map to stay away
 | |
|  * from each other.  The latter chunk is circulated in the chunk slots
 | |
|  * and available for dynamic allocation like any other chunks.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * The determined pcpu_unit_size which can be used to initialize
 | |
|  * percpu access.
 | |
|  */
 | |
| size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
 | |
| 				     size_t static_size, size_t reserved_size,
 | |
| 				     ssize_t dyn_size, ssize_t unit_size,
 | |
| 				     void *base_addr,
 | |
| 				     pcpu_populate_pte_fn_t populate_pte_fn)
 | |
| {
 | |
| 	static struct vm_struct first_vm;
 | |
| 	static int smap[2], dmap[2];
 | |
| 	size_t size_sum = static_size + reserved_size +
 | |
| 			  (dyn_size >= 0 ? dyn_size : 0);
 | |
| 	struct pcpu_chunk *schunk, *dchunk = NULL;
 | |
| 	unsigned int cpu;
 | |
| 	int nr_pages;
 | |
| 	int err, i;
 | |
| 
 | |
| 	/* santiy checks */
 | |
| 	BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
 | |
| 		     ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
 | |
| 	BUG_ON(!static_size);
 | |
| 	if (unit_size >= 0) {
 | |
| 		BUG_ON(unit_size < size_sum);
 | |
| 		BUG_ON(unit_size & ~PAGE_MASK);
 | |
| 		BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE);
 | |
| 	} else
 | |
| 		BUG_ON(base_addr);
 | |
| 	BUG_ON(base_addr && populate_pte_fn);
 | |
| 
 | |
| 	if (unit_size >= 0)
 | |
| 		pcpu_unit_pages = unit_size >> PAGE_SHIFT;
 | |
| 	else
 | |
| 		pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT,
 | |
| 					PFN_UP(size_sum));
 | |
| 
 | |
| 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
 | |
| 	pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size;
 | |
| 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk)
 | |
| 		+ num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *);
 | |
| 
 | |
| 	if (dyn_size < 0)
 | |
| 		dyn_size = pcpu_unit_size - static_size - reserved_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate chunk slots.  The additional last slot is for
 | |
| 	 * empty chunks.
 | |
| 	 */
 | |
| 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
 | |
| 	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
 | |
| 	for (i = 0; i < pcpu_nr_slots; i++)
 | |
| 		INIT_LIST_HEAD(&pcpu_slot[i]);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize static chunk.  If reserved_size is zero, the
 | |
| 	 * static chunk covers static area + dynamic allocation area
 | |
| 	 * in the first chunk.  If reserved_size is not zero, it
 | |
| 	 * covers static area + reserved area (mostly used for module
 | |
| 	 * static percpu allocation).
 | |
| 	 */
 | |
| 	schunk = alloc_bootmem(pcpu_chunk_struct_size);
 | |
| 	INIT_LIST_HEAD(&schunk->list);
 | |
| 	schunk->vm = &first_vm;
 | |
| 	schunk->map = smap;
 | |
| 	schunk->map_alloc = ARRAY_SIZE(smap);
 | |
| 	schunk->page = schunk->page_ar;
 | |
| 
 | |
| 	if (reserved_size) {
 | |
| 		schunk->free_size = reserved_size;
 | |
| 		pcpu_reserved_chunk = schunk;	/* not for dynamic alloc */
 | |
| 	} else {
 | |
| 		schunk->free_size = dyn_size;
 | |
| 		dyn_size = 0;			/* dynamic area covered */
 | |
| 	}
 | |
| 	schunk->contig_hint = schunk->free_size;
 | |
| 
 | |
| 	schunk->map[schunk->map_used++] = -static_size;
 | |
| 	if (schunk->free_size)
 | |
| 		schunk->map[schunk->map_used++] = schunk->free_size;
 | |
| 
 | |
| 	pcpu_reserved_chunk_limit = static_size + schunk->free_size;
 | |
| 
 | |
| 	/* init dynamic chunk if necessary */
 | |
| 	if (dyn_size) {
 | |
| 		dchunk = alloc_bootmem(sizeof(struct pcpu_chunk));
 | |
| 		INIT_LIST_HEAD(&dchunk->list);
 | |
| 		dchunk->vm = &first_vm;
 | |
| 		dchunk->map = dmap;
 | |
| 		dchunk->map_alloc = ARRAY_SIZE(dmap);
 | |
| 		dchunk->page = schunk->page_ar;	/* share page map with schunk */
 | |
| 
 | |
| 		dchunk->contig_hint = dchunk->free_size = dyn_size;
 | |
| 		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
 | |
| 		dchunk->map[dchunk->map_used++] = dchunk->free_size;
 | |
| 	}
 | |
| 
 | |
| 	/* allocate vm address */
 | |
| 	first_vm.flags = VM_ALLOC;
 | |
| 	first_vm.size = pcpu_chunk_size;
 | |
| 
 | |
| 	if (!base_addr)
 | |
| 		vm_area_register_early(&first_vm, PAGE_SIZE);
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * Pages already mapped.  No need to remap into
 | |
| 		 * vmalloc area.  In this case the first chunks can't
 | |
| 		 * be mapped or unmapped by percpu and are marked
 | |
| 		 * immutable.
 | |
| 		 */
 | |
| 		first_vm.addr = base_addr;
 | |
| 		schunk->immutable = true;
 | |
| 		if (dchunk)
 | |
| 			dchunk->immutable = true;
 | |
| 	}
 | |
| 
 | |
| 	/* assign pages */
 | |
| 	nr_pages = -1;
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		for (i = 0; i < pcpu_unit_pages; i++) {
 | |
| 			struct page *page = get_page_fn(cpu, i);
 | |
| 
 | |
| 			if (!page)
 | |
| 				break;
 | |
| 			*pcpu_chunk_pagep(schunk, cpu, i) = page;
 | |
| 		}
 | |
| 
 | |
| 		BUG_ON(i < PFN_UP(static_size));
 | |
| 
 | |
| 		if (nr_pages < 0)
 | |
| 			nr_pages = i;
 | |
| 		else
 | |
| 			BUG_ON(nr_pages != i);
 | |
| 	}
 | |
| 
 | |
| 	/* map them */
 | |
| 	if (populate_pte_fn) {
 | |
| 		for_each_possible_cpu(cpu)
 | |
| 			for (i = 0; i < nr_pages; i++)
 | |
| 				populate_pte_fn(pcpu_chunk_addr(schunk,
 | |
| 								cpu, i));
 | |
| 
 | |
| 		err = pcpu_map(schunk, 0, nr_pages);
 | |
| 		if (err)
 | |
| 			panic("failed to setup static percpu area, err=%d\n",
 | |
| 			      err);
 | |
| 	}
 | |
| 
 | |
| 	/* link the first chunk in */
 | |
| 	if (!dchunk) {
 | |
| 		pcpu_chunk_relocate(schunk, -1);
 | |
| 		pcpu_chunk_addr_insert(schunk);
 | |
| 	} else {
 | |
| 		pcpu_chunk_relocate(dchunk, -1);
 | |
| 		pcpu_chunk_addr_insert(dchunk);
 | |
| 	}
 | |
| 
 | |
| 	/* we're done */
 | |
| 	pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0);
 | |
| 	return pcpu_unit_size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Embedding first chunk setup helper.
 | |
|  */
 | |
| static void *pcpue_ptr __initdata;
 | |
| static size_t pcpue_size __initdata;
 | |
| static size_t pcpue_unit_size __initdata;
 | |
| 
 | |
| static struct page * __init pcpue_get_page(unsigned int cpu, int pageno)
 | |
| {
 | |
| 	size_t off = (size_t)pageno << PAGE_SHIFT;
 | |
| 
 | |
| 	if (off >= pcpue_size)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size + off);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
 | |
|  * @static_size: the size of static percpu area in bytes
 | |
|  * @reserved_size: the size of reserved percpu area in bytes
 | |
|  * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
 | |
|  * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
 | |
|  *
 | |
|  * This is a helper to ease setting up embedded first percpu chunk and
 | |
|  * can be called where pcpu_setup_first_chunk() is expected.
 | |
|  *
 | |
|  * If this function is used to setup the first chunk, it is allocated
 | |
|  * as a contiguous area using bootmem allocator and used as-is without
 | |
|  * being mapped into vmalloc area.  This enables the first chunk to
 | |
|  * piggy back on the linear physical mapping which often uses larger
 | |
|  * page size.
 | |
|  *
 | |
|  * When @dyn_size is positive, dynamic area might be larger than
 | |
|  * specified to fill page alignment.  Also, when @dyn_size is auto,
 | |
|  * @dyn_size does not fill the whole first chunk but only what's
 | |
|  * necessary for page alignment after static and reserved areas.
 | |
|  *
 | |
|  * If the needed size is smaller than the minimum or specified unit
 | |
|  * size, the leftover is returned to the bootmem allocator.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * The determined pcpu_unit_size which can be used to initialize
 | |
|  * percpu access on success, -errno on failure.
 | |
|  */
 | |
| ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size,
 | |
| 				      ssize_t dyn_size, ssize_t unit_size)
 | |
| {
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	/* determine parameters and allocate */
 | |
| 	pcpue_size = PFN_ALIGN(static_size + reserved_size +
 | |
| 			       (dyn_size >= 0 ? dyn_size : 0));
 | |
| 	if (dyn_size != 0)
 | |
| 		dyn_size = pcpue_size - static_size - reserved_size;
 | |
| 
 | |
| 	if (unit_size >= 0) {
 | |
| 		BUG_ON(unit_size < pcpue_size);
 | |
| 		pcpue_unit_size = unit_size;
 | |
| 	} else
 | |
| 		pcpue_unit_size = max_t(size_t, pcpue_size, PCPU_MIN_UNIT_SIZE);
 | |
| 
 | |
| 	pcpue_ptr = __alloc_bootmem_nopanic(
 | |
| 					num_possible_cpus() * pcpue_unit_size,
 | |
| 					PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
 | |
| 	if (!pcpue_ptr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* return the leftover and copy */
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		void *ptr = pcpue_ptr + cpu * pcpue_unit_size;
 | |
| 
 | |
| 		free_bootmem(__pa(ptr + pcpue_size),
 | |
| 			     pcpue_unit_size - pcpue_size);
 | |
| 		memcpy(ptr, __per_cpu_load, static_size);
 | |
| 	}
 | |
| 
 | |
| 	/* we're ready, commit */
 | |
| 	pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n",
 | |
| 		pcpue_size >> PAGE_SHIFT, pcpue_ptr, static_size);
 | |
| 
 | |
| 	return pcpu_setup_first_chunk(pcpue_get_page, static_size,
 | |
| 				      reserved_size, dyn_size,
 | |
| 				      pcpue_unit_size, pcpue_ptr, NULL);
 | |
| }
 |