 22ef37eed6
			
		
	
	
	22ef37eed6
	
	
	
		
			
			wb_kupdate() function has a bug on linux-2.6.30-rc5.  This bug causes
generic_sync_sb_inodes() to start to write inodes back much earlier than
our expectations because it miscalculates oldest_jif in wb_kupdate().
This bug was introduced in 704503d836
('mm: fix proc_dointvec_userhz_jiffies "breakage"').
Signed-off-by: Toshiyuki Okajima <toshi.okajima@jp.fujitsu.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			1462 lines
		
	
	
	
		
			40 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1462 lines
		
	
	
	
		
			40 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * mm/page-writeback.c
 | |
|  *
 | |
|  * Copyright (C) 2002, Linus Torvalds.
 | |
|  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 | |
|  *
 | |
|  * Contains functions related to writing back dirty pages at the
 | |
|  * address_space level.
 | |
|  *
 | |
|  * 10Apr2002	Andrew Morton
 | |
|  *		Initial version
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/task_io_accounting_ops.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/mpage.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/buffer_head.h>
 | |
| #include <linux/pagevec.h>
 | |
| 
 | |
| /*
 | |
|  * The maximum number of pages to writeout in a single bdflush/kupdate
 | |
|  * operation.  We do this so we don't hold I_SYNC against an inode for
 | |
|  * enormous amounts of time, which would block a userspace task which has
 | |
|  * been forced to throttle against that inode.  Also, the code reevaluates
 | |
|  * the dirty each time it has written this many pages.
 | |
|  */
 | |
| #define MAX_WRITEBACK_PAGES	1024
 | |
| 
 | |
| /*
 | |
|  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
 | |
|  * will look to see if it needs to force writeback or throttling.
 | |
|  */
 | |
| static long ratelimit_pages = 32;
 | |
| 
 | |
| /*
 | |
|  * When balance_dirty_pages decides that the caller needs to perform some
 | |
|  * non-background writeback, this is how many pages it will attempt to write.
 | |
|  * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
 | |
|  * large amounts of I/O are submitted.
 | |
|  */
 | |
| static inline long sync_writeback_pages(void)
 | |
| {
 | |
| 	return ratelimit_pages + ratelimit_pages / 2;
 | |
| }
 | |
| 
 | |
| /* The following parameters are exported via /proc/sys/vm */
 | |
| 
 | |
| /*
 | |
|  * Start background writeback (via pdflush) at this percentage
 | |
|  */
 | |
| int dirty_background_ratio = 10;
 | |
| 
 | |
| /*
 | |
|  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
 | |
|  * dirty_background_ratio * the amount of dirtyable memory
 | |
|  */
 | |
| unsigned long dirty_background_bytes;
 | |
| 
 | |
| /*
 | |
|  * free highmem will not be subtracted from the total free memory
 | |
|  * for calculating free ratios if vm_highmem_is_dirtyable is true
 | |
|  */
 | |
| int vm_highmem_is_dirtyable;
 | |
| 
 | |
| /*
 | |
|  * The generator of dirty data starts writeback at this percentage
 | |
|  */
 | |
| int vm_dirty_ratio = 20;
 | |
| 
 | |
| /*
 | |
|  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
 | |
|  * vm_dirty_ratio * the amount of dirtyable memory
 | |
|  */
 | |
| unsigned long vm_dirty_bytes;
 | |
| 
 | |
| /*
 | |
|  * The interval between `kupdate'-style writebacks
 | |
|  */
 | |
| unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 | |
| 
 | |
| /*
 | |
|  * The longest time for which data is allowed to remain dirty
 | |
|  */
 | |
| unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 | |
| 
 | |
| /*
 | |
|  * Flag that makes the machine dump writes/reads and block dirtyings.
 | |
|  */
 | |
| int block_dump;
 | |
| 
 | |
| /*
 | |
|  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 | |
|  * a full sync is triggered after this time elapses without any disk activity.
 | |
|  */
 | |
| int laptop_mode;
 | |
| 
 | |
| EXPORT_SYMBOL(laptop_mode);
 | |
| 
 | |
| /* End of sysctl-exported parameters */
 | |
| 
 | |
| 
 | |
| static void background_writeout(unsigned long _min_pages);
 | |
| 
 | |
| /*
 | |
|  * Scale the writeback cache size proportional to the relative writeout speeds.
 | |
|  *
 | |
|  * We do this by keeping a floating proportion between BDIs, based on page
 | |
|  * writeback completions [end_page_writeback()]. Those devices that write out
 | |
|  * pages fastest will get the larger share, while the slower will get a smaller
 | |
|  * share.
 | |
|  *
 | |
|  * We use page writeout completions because we are interested in getting rid of
 | |
|  * dirty pages. Having them written out is the primary goal.
 | |
|  *
 | |
|  * We introduce a concept of time, a period over which we measure these events,
 | |
|  * because demand can/will vary over time. The length of this period itself is
 | |
|  * measured in page writeback completions.
 | |
|  *
 | |
|  */
 | |
| static struct prop_descriptor vm_completions;
 | |
| static struct prop_descriptor vm_dirties;
 | |
| 
 | |
| /*
 | |
|  * couple the period to the dirty_ratio:
 | |
|  *
 | |
|  *   period/2 ~ roundup_pow_of_two(dirty limit)
 | |
|  */
 | |
| static int calc_period_shift(void)
 | |
| {
 | |
| 	unsigned long dirty_total;
 | |
| 
 | |
| 	if (vm_dirty_bytes)
 | |
| 		dirty_total = vm_dirty_bytes / PAGE_SIZE;
 | |
| 	else
 | |
| 		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
 | |
| 				100;
 | |
| 	return 2 + ilog2(dirty_total - 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * update the period when the dirty threshold changes.
 | |
|  */
 | |
| static void update_completion_period(void)
 | |
| {
 | |
| 	int shift = calc_period_shift();
 | |
| 	prop_change_shift(&vm_completions, shift);
 | |
| 	prop_change_shift(&vm_dirties, shift);
 | |
| }
 | |
| 
 | |
| int dirty_background_ratio_handler(struct ctl_table *table, int write,
 | |
| 		struct file *filp, void __user *buffer, size_t *lenp,
 | |
| 		loff_t *ppos)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
 | |
| 	if (ret == 0 && write)
 | |
| 		dirty_background_bytes = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int dirty_background_bytes_handler(struct ctl_table *table, int write,
 | |
| 		struct file *filp, void __user *buffer, size_t *lenp,
 | |
| 		loff_t *ppos)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
 | |
| 	if (ret == 0 && write)
 | |
| 		dirty_background_ratio = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int dirty_ratio_handler(struct ctl_table *table, int write,
 | |
| 		struct file *filp, void __user *buffer, size_t *lenp,
 | |
| 		loff_t *ppos)
 | |
| {
 | |
| 	int old_ratio = vm_dirty_ratio;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
 | |
| 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 | |
| 		update_completion_period();
 | |
| 		vm_dirty_bytes = 0;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| int dirty_bytes_handler(struct ctl_table *table, int write,
 | |
| 		struct file *filp, void __user *buffer, size_t *lenp,
 | |
| 		loff_t *ppos)
 | |
| {
 | |
| 	unsigned long old_bytes = vm_dirty_bytes;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
 | |
| 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 | |
| 		update_completion_period();
 | |
| 		vm_dirty_ratio = 0;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Increment the BDI's writeout completion count and the global writeout
 | |
|  * completion count. Called from test_clear_page_writeback().
 | |
|  */
 | |
| static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
 | |
| {
 | |
| 	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
 | |
| 			      bdi->max_prop_frac);
 | |
| }
 | |
| 
 | |
| void bdi_writeout_inc(struct backing_dev_info *bdi)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	__bdi_writeout_inc(bdi);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(bdi_writeout_inc);
 | |
| 
 | |
| void task_dirty_inc(struct task_struct *tsk)
 | |
| {
 | |
| 	prop_inc_single(&vm_dirties, &tsk->dirties);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Obtain an accurate fraction of the BDI's portion.
 | |
|  */
 | |
| static void bdi_writeout_fraction(struct backing_dev_info *bdi,
 | |
| 		long *numerator, long *denominator)
 | |
| {
 | |
| 	if (bdi_cap_writeback_dirty(bdi)) {
 | |
| 		prop_fraction_percpu(&vm_completions, &bdi->completions,
 | |
| 				numerator, denominator);
 | |
| 	} else {
 | |
| 		*numerator = 0;
 | |
| 		*denominator = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clip the earned share of dirty pages to that which is actually available.
 | |
|  * This avoids exceeding the total dirty_limit when the floating averages
 | |
|  * fluctuate too quickly.
 | |
|  */
 | |
| static void
 | |
| clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
 | |
| {
 | |
| 	long avail_dirty;
 | |
| 
 | |
| 	avail_dirty = dirty -
 | |
| 		(global_page_state(NR_FILE_DIRTY) +
 | |
| 		 global_page_state(NR_WRITEBACK) +
 | |
| 		 global_page_state(NR_UNSTABLE_NFS) +
 | |
| 		 global_page_state(NR_WRITEBACK_TEMP));
 | |
| 
 | |
| 	if (avail_dirty < 0)
 | |
| 		avail_dirty = 0;
 | |
| 
 | |
| 	avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
 | |
| 		bdi_stat(bdi, BDI_WRITEBACK);
 | |
| 
 | |
| 	*pbdi_dirty = min(*pbdi_dirty, avail_dirty);
 | |
| }
 | |
| 
 | |
| static inline void task_dirties_fraction(struct task_struct *tsk,
 | |
| 		long *numerator, long *denominator)
 | |
| {
 | |
| 	prop_fraction_single(&vm_dirties, &tsk->dirties,
 | |
| 				numerator, denominator);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * scale the dirty limit
 | |
|  *
 | |
|  * task specific dirty limit:
 | |
|  *
 | |
|  *   dirty -= (dirty/8) * p_{t}
 | |
|  */
 | |
| static void task_dirty_limit(struct task_struct *tsk, long *pdirty)
 | |
| {
 | |
| 	long numerator, denominator;
 | |
| 	long dirty = *pdirty;
 | |
| 	u64 inv = dirty >> 3;
 | |
| 
 | |
| 	task_dirties_fraction(tsk, &numerator, &denominator);
 | |
| 	inv *= numerator;
 | |
| 	do_div(inv, denominator);
 | |
| 
 | |
| 	dirty -= inv;
 | |
| 	if (dirty < *pdirty/2)
 | |
| 		dirty = *pdirty/2;
 | |
| 
 | |
| 	*pdirty = dirty;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *
 | |
|  */
 | |
| static DEFINE_SPINLOCK(bdi_lock);
 | |
| static unsigned int bdi_min_ratio;
 | |
| 
 | |
| int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&bdi_lock, flags);
 | |
| 	if (min_ratio > bdi->max_ratio) {
 | |
| 		ret = -EINVAL;
 | |
| 	} else {
 | |
| 		min_ratio -= bdi->min_ratio;
 | |
| 		if (bdi_min_ratio + min_ratio < 100) {
 | |
| 			bdi_min_ratio += min_ratio;
 | |
| 			bdi->min_ratio += min_ratio;
 | |
| 		} else {
 | |
| 			ret = -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&bdi_lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (max_ratio > 100)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	spin_lock_irqsave(&bdi_lock, flags);
 | |
| 	if (bdi->min_ratio > max_ratio) {
 | |
| 		ret = -EINVAL;
 | |
| 	} else {
 | |
| 		bdi->max_ratio = max_ratio;
 | |
| 		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&bdi_lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(bdi_set_max_ratio);
 | |
| 
 | |
| /*
 | |
|  * Work out the current dirty-memory clamping and background writeout
 | |
|  * thresholds.
 | |
|  *
 | |
|  * The main aim here is to lower them aggressively if there is a lot of mapped
 | |
|  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
 | |
|  * pages.  It is better to clamp down on writers than to start swapping, and
 | |
|  * performing lots of scanning.
 | |
|  *
 | |
|  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
 | |
|  *
 | |
|  * We don't permit the clamping level to fall below 5% - that is getting rather
 | |
|  * excessive.
 | |
|  *
 | |
|  * We make sure that the background writeout level is below the adjusted
 | |
|  * clamping level.
 | |
|  */
 | |
| 
 | |
| static unsigned long highmem_dirtyable_memory(unsigned long total)
 | |
| {
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	int node;
 | |
| 	unsigned long x = 0;
 | |
| 
 | |
| 	for_each_node_state(node, N_HIGH_MEMORY) {
 | |
| 		struct zone *z =
 | |
| 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
 | |
| 
 | |
| 		x += zone_page_state(z, NR_FREE_PAGES) + zone_lru_pages(z);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Make sure that the number of highmem pages is never larger
 | |
| 	 * than the number of the total dirtyable memory. This can only
 | |
| 	 * occur in very strange VM situations but we want to make sure
 | |
| 	 * that this does not occur.
 | |
| 	 */
 | |
| 	return min(x, total);
 | |
| #else
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * determine_dirtyable_memory - amount of memory that may be used
 | |
|  *
 | |
|  * Returns the numebr of pages that can currently be freed and used
 | |
|  * by the kernel for direct mappings.
 | |
|  */
 | |
| unsigned long determine_dirtyable_memory(void)
 | |
| {
 | |
| 	unsigned long x;
 | |
| 
 | |
| 	x = global_page_state(NR_FREE_PAGES) + global_lru_pages();
 | |
| 
 | |
| 	if (!vm_highmem_is_dirtyable)
 | |
| 		x -= highmem_dirtyable_memory(x);
 | |
| 
 | |
| 	return x + 1;	/* Ensure that we never return 0 */
 | |
| }
 | |
| 
 | |
| void
 | |
| get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty,
 | |
| 		 unsigned long *pbdi_dirty, struct backing_dev_info *bdi)
 | |
| {
 | |
| 	unsigned long background;
 | |
| 	unsigned long dirty;
 | |
| 	unsigned long available_memory = determine_dirtyable_memory();
 | |
| 	struct task_struct *tsk;
 | |
| 
 | |
| 	if (vm_dirty_bytes)
 | |
| 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
 | |
| 	else {
 | |
| 		int dirty_ratio;
 | |
| 
 | |
| 		dirty_ratio = vm_dirty_ratio;
 | |
| 		if (dirty_ratio < 5)
 | |
| 			dirty_ratio = 5;
 | |
| 		dirty = (dirty_ratio * available_memory) / 100;
 | |
| 	}
 | |
| 
 | |
| 	if (dirty_background_bytes)
 | |
| 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
 | |
| 	else
 | |
| 		background = (dirty_background_ratio * available_memory) / 100;
 | |
| 
 | |
| 	if (background >= dirty)
 | |
| 		background = dirty / 2;
 | |
| 	tsk = current;
 | |
| 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 | |
| 		background += background / 4;
 | |
| 		dirty += dirty / 4;
 | |
| 	}
 | |
| 	*pbackground = background;
 | |
| 	*pdirty = dirty;
 | |
| 
 | |
| 	if (bdi) {
 | |
| 		u64 bdi_dirty;
 | |
| 		long numerator, denominator;
 | |
| 
 | |
| 		/*
 | |
| 		 * Calculate this BDI's share of the dirty ratio.
 | |
| 		 */
 | |
| 		bdi_writeout_fraction(bdi, &numerator, &denominator);
 | |
| 
 | |
| 		bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
 | |
| 		bdi_dirty *= numerator;
 | |
| 		do_div(bdi_dirty, denominator);
 | |
| 		bdi_dirty += (dirty * bdi->min_ratio) / 100;
 | |
| 		if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
 | |
| 			bdi_dirty = dirty * bdi->max_ratio / 100;
 | |
| 
 | |
| 		*pbdi_dirty = bdi_dirty;
 | |
| 		clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
 | |
| 		task_dirty_limit(current, pbdi_dirty);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * balance_dirty_pages() must be called by processes which are generating dirty
 | |
|  * data.  It looks at the number of dirty pages in the machine and will force
 | |
|  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
 | |
|  * If we're over `background_thresh' then pdflush is woken to perform some
 | |
|  * writeout.
 | |
|  */
 | |
| static void balance_dirty_pages(struct address_space *mapping)
 | |
| {
 | |
| 	long nr_reclaimable, bdi_nr_reclaimable;
 | |
| 	long nr_writeback, bdi_nr_writeback;
 | |
| 	unsigned long background_thresh;
 | |
| 	unsigned long dirty_thresh;
 | |
| 	unsigned long bdi_thresh;
 | |
| 	unsigned long pages_written = 0;
 | |
| 	unsigned long write_chunk = sync_writeback_pages();
 | |
| 
 | |
| 	struct backing_dev_info *bdi = mapping->backing_dev_info;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		struct writeback_control wbc = {
 | |
| 			.bdi		= bdi,
 | |
| 			.sync_mode	= WB_SYNC_NONE,
 | |
| 			.older_than_this = NULL,
 | |
| 			.nr_to_write	= write_chunk,
 | |
| 			.range_cyclic	= 1,
 | |
| 		};
 | |
| 
 | |
| 		get_dirty_limits(&background_thresh, &dirty_thresh,
 | |
| 				&bdi_thresh, bdi);
 | |
| 
 | |
| 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
 | |
| 					global_page_state(NR_UNSTABLE_NFS);
 | |
| 		nr_writeback = global_page_state(NR_WRITEBACK);
 | |
| 
 | |
| 		bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
 | |
| 		bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
 | |
| 
 | |
| 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Throttle it only when the background writeback cannot
 | |
| 		 * catch-up. This avoids (excessively) small writeouts
 | |
| 		 * when the bdi limits are ramping up.
 | |
| 		 */
 | |
| 		if (nr_reclaimable + nr_writeback <
 | |
| 				(background_thresh + dirty_thresh) / 2)
 | |
| 			break;
 | |
| 
 | |
| 		if (!bdi->dirty_exceeded)
 | |
| 			bdi->dirty_exceeded = 1;
 | |
| 
 | |
| 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
 | |
| 		 * Unstable writes are a feature of certain networked
 | |
| 		 * filesystems (i.e. NFS) in which data may have been
 | |
| 		 * written to the server's write cache, but has not yet
 | |
| 		 * been flushed to permanent storage.
 | |
| 		 */
 | |
| 		if (bdi_nr_reclaimable) {
 | |
| 			writeback_inodes(&wbc);
 | |
| 			pages_written += write_chunk - wbc.nr_to_write;
 | |
| 			get_dirty_limits(&background_thresh, &dirty_thresh,
 | |
| 				       &bdi_thresh, bdi);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * In order to avoid the stacked BDI deadlock we need
 | |
| 		 * to ensure we accurately count the 'dirty' pages when
 | |
| 		 * the threshold is low.
 | |
| 		 *
 | |
| 		 * Otherwise it would be possible to get thresh+n pages
 | |
| 		 * reported dirty, even though there are thresh-m pages
 | |
| 		 * actually dirty; with m+n sitting in the percpu
 | |
| 		 * deltas.
 | |
| 		 */
 | |
| 		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
 | |
| 			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
 | |
| 			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
 | |
| 		} else if (bdi_nr_reclaimable) {
 | |
| 			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
 | |
| 			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
 | |
| 		}
 | |
| 
 | |
| 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
 | |
| 			break;
 | |
| 		if (pages_written >= write_chunk)
 | |
| 			break;		/* We've done our duty */
 | |
| 
 | |
| 		congestion_wait(WRITE, HZ/10);
 | |
| 	}
 | |
| 
 | |
| 	if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
 | |
| 			bdi->dirty_exceeded)
 | |
| 		bdi->dirty_exceeded = 0;
 | |
| 
 | |
| 	if (writeback_in_progress(bdi))
 | |
| 		return;		/* pdflush is already working this queue */
 | |
| 
 | |
| 	/*
 | |
| 	 * In laptop mode, we wait until hitting the higher threshold before
 | |
| 	 * starting background writeout, and then write out all the way down
 | |
| 	 * to the lower threshold.  So slow writers cause minimal disk activity.
 | |
| 	 *
 | |
| 	 * In normal mode, we start background writeout at the lower
 | |
| 	 * background_thresh, to keep the amount of dirty memory low.
 | |
| 	 */
 | |
| 	if ((laptop_mode && pages_written) ||
 | |
| 			(!laptop_mode && (global_page_state(NR_FILE_DIRTY)
 | |
| 					  + global_page_state(NR_UNSTABLE_NFS)
 | |
| 					  > background_thresh)))
 | |
| 		pdflush_operation(background_writeout, 0);
 | |
| }
 | |
| 
 | |
| void set_page_dirty_balance(struct page *page, int page_mkwrite)
 | |
| {
 | |
| 	if (set_page_dirty(page) || page_mkwrite) {
 | |
| 		struct address_space *mapping = page_mapping(page);
 | |
| 
 | |
| 		if (mapping)
 | |
| 			balance_dirty_pages_ratelimited(mapping);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
 | |
|  * @mapping: address_space which was dirtied
 | |
|  * @nr_pages_dirtied: number of pages which the caller has just dirtied
 | |
|  *
 | |
|  * Processes which are dirtying memory should call in here once for each page
 | |
|  * which was newly dirtied.  The function will periodically check the system's
 | |
|  * dirty state and will initiate writeback if needed.
 | |
|  *
 | |
|  * On really big machines, get_writeback_state is expensive, so try to avoid
 | |
|  * calling it too often (ratelimiting).  But once we're over the dirty memory
 | |
|  * limit we decrease the ratelimiting by a lot, to prevent individual processes
 | |
|  * from overshooting the limit by (ratelimit_pages) each.
 | |
|  */
 | |
| void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
 | |
| 					unsigned long nr_pages_dirtied)
 | |
| {
 | |
| 	static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
 | |
| 	unsigned long ratelimit;
 | |
| 	unsigned long *p;
 | |
| 
 | |
| 	ratelimit = ratelimit_pages;
 | |
| 	if (mapping->backing_dev_info->dirty_exceeded)
 | |
| 		ratelimit = 8;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check the rate limiting. Also, we do not want to throttle real-time
 | |
| 	 * tasks in balance_dirty_pages(). Period.
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 	p =  &__get_cpu_var(ratelimits);
 | |
| 	*p += nr_pages_dirtied;
 | |
| 	if (unlikely(*p >= ratelimit)) {
 | |
| 		*p = 0;
 | |
| 		preempt_enable();
 | |
| 		balance_dirty_pages(mapping);
 | |
| 		return;
 | |
| 	}
 | |
| 	preempt_enable();
 | |
| }
 | |
| EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
 | |
| 
 | |
| void throttle_vm_writeout(gfp_t gfp_mask)
 | |
| {
 | |
| 	unsigned long background_thresh;
 | |
| 	unsigned long dirty_thresh;
 | |
| 
 | |
|         for ( ; ; ) {
 | |
| 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
 | |
| 
 | |
|                 /*
 | |
|                  * Boost the allowable dirty threshold a bit for page
 | |
|                  * allocators so they don't get DoS'ed by heavy writers
 | |
|                  */
 | |
|                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
 | |
| 
 | |
|                 if (global_page_state(NR_UNSTABLE_NFS) +
 | |
| 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
 | |
|                         	break;
 | |
|                 congestion_wait(WRITE, HZ/10);
 | |
| 
 | |
| 		/*
 | |
| 		 * The caller might hold locks which can prevent IO completion
 | |
| 		 * or progress in the filesystem.  So we cannot just sit here
 | |
| 		 * waiting for IO to complete.
 | |
| 		 */
 | |
| 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
 | |
| 			break;
 | |
|         }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * writeback at least _min_pages, and keep writing until the amount of dirty
 | |
|  * memory is less than the background threshold, or until we're all clean.
 | |
|  */
 | |
| static void background_writeout(unsigned long _min_pages)
 | |
| {
 | |
| 	long min_pages = _min_pages;
 | |
| 	struct writeback_control wbc = {
 | |
| 		.bdi		= NULL,
 | |
| 		.sync_mode	= WB_SYNC_NONE,
 | |
| 		.older_than_this = NULL,
 | |
| 		.nr_to_write	= 0,
 | |
| 		.nonblocking	= 1,
 | |
| 		.range_cyclic	= 1,
 | |
| 	};
 | |
| 
 | |
| 	for ( ; ; ) {
 | |
| 		unsigned long background_thresh;
 | |
| 		unsigned long dirty_thresh;
 | |
| 
 | |
| 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
 | |
| 		if (global_page_state(NR_FILE_DIRTY) +
 | |
| 			global_page_state(NR_UNSTABLE_NFS) < background_thresh
 | |
| 				&& min_pages <= 0)
 | |
| 			break;
 | |
| 		wbc.more_io = 0;
 | |
| 		wbc.encountered_congestion = 0;
 | |
| 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
 | |
| 		wbc.pages_skipped = 0;
 | |
| 		writeback_inodes(&wbc);
 | |
| 		min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
 | |
| 		if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
 | |
| 			/* Wrote less than expected */
 | |
| 			if (wbc.encountered_congestion || wbc.more_io)
 | |
| 				congestion_wait(WRITE, HZ/10);
 | |
| 			else
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
 | |
|  * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
 | |
|  * -1 if all pdflush threads were busy.
 | |
|  */
 | |
| int wakeup_pdflush(long nr_pages)
 | |
| {
 | |
| 	if (nr_pages == 0)
 | |
| 		nr_pages = global_page_state(NR_FILE_DIRTY) +
 | |
| 				global_page_state(NR_UNSTABLE_NFS);
 | |
| 	return pdflush_operation(background_writeout, nr_pages);
 | |
| }
 | |
| 
 | |
| static void wb_timer_fn(unsigned long unused);
 | |
| static void laptop_timer_fn(unsigned long unused);
 | |
| 
 | |
| static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
 | |
| static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
 | |
| 
 | |
| /*
 | |
|  * Periodic writeback of "old" data.
 | |
|  *
 | |
|  * Define "old": the first time one of an inode's pages is dirtied, we mark the
 | |
|  * dirtying-time in the inode's address_space.  So this periodic writeback code
 | |
|  * just walks the superblock inode list, writing back any inodes which are
 | |
|  * older than a specific point in time.
 | |
|  *
 | |
|  * Try to run once per dirty_writeback_interval.  But if a writeback event
 | |
|  * takes longer than a dirty_writeback_interval interval, then leave a
 | |
|  * one-second gap.
 | |
|  *
 | |
|  * older_than_this takes precedence over nr_to_write.  So we'll only write back
 | |
|  * all dirty pages if they are all attached to "old" mappings.
 | |
|  */
 | |
| static void wb_kupdate(unsigned long arg)
 | |
| {
 | |
| 	unsigned long oldest_jif;
 | |
| 	unsigned long start_jif;
 | |
| 	unsigned long next_jif;
 | |
| 	long nr_to_write;
 | |
| 	struct writeback_control wbc = {
 | |
| 		.bdi		= NULL,
 | |
| 		.sync_mode	= WB_SYNC_NONE,
 | |
| 		.older_than_this = &oldest_jif,
 | |
| 		.nr_to_write	= 0,
 | |
| 		.nonblocking	= 1,
 | |
| 		.for_kupdate	= 1,
 | |
| 		.range_cyclic	= 1,
 | |
| 	};
 | |
| 
 | |
| 	sync_supers();
 | |
| 
 | |
| 	oldest_jif = jiffies - msecs_to_jiffies(dirty_expire_interval * 10);
 | |
| 	start_jif = jiffies;
 | |
| 	next_jif = start_jif + msecs_to_jiffies(dirty_writeback_interval * 10);
 | |
| 	nr_to_write = global_page_state(NR_FILE_DIRTY) +
 | |
| 			global_page_state(NR_UNSTABLE_NFS) +
 | |
| 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
 | |
| 	while (nr_to_write > 0) {
 | |
| 		wbc.more_io = 0;
 | |
| 		wbc.encountered_congestion = 0;
 | |
| 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
 | |
| 		writeback_inodes(&wbc);
 | |
| 		if (wbc.nr_to_write > 0) {
 | |
| 			if (wbc.encountered_congestion || wbc.more_io)
 | |
| 				congestion_wait(WRITE, HZ/10);
 | |
| 			else
 | |
| 				break;	/* All the old data is written */
 | |
| 		}
 | |
| 		nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
 | |
| 	}
 | |
| 	if (time_before(next_jif, jiffies + HZ))
 | |
| 		next_jif = jiffies + HZ;
 | |
| 	if (dirty_writeback_interval)
 | |
| 		mod_timer(&wb_timer, next_jif);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 | |
|  */
 | |
| int dirty_writeback_centisecs_handler(ctl_table *table, int write,
 | |
| 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	proc_dointvec(table, write, file, buffer, length, ppos);
 | |
| 	if (dirty_writeback_interval)
 | |
| 		mod_timer(&wb_timer, jiffies +
 | |
| 			msecs_to_jiffies(dirty_writeback_interval * 10));
 | |
| 	else
 | |
| 		del_timer(&wb_timer);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void wb_timer_fn(unsigned long unused)
 | |
| {
 | |
| 	if (pdflush_operation(wb_kupdate, 0) < 0)
 | |
| 		mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
 | |
| }
 | |
| 
 | |
| static void laptop_flush(unsigned long unused)
 | |
| {
 | |
| 	sys_sync();
 | |
| }
 | |
| 
 | |
| static void laptop_timer_fn(unsigned long unused)
 | |
| {
 | |
| 	pdflush_operation(laptop_flush, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We've spun up the disk and we're in laptop mode: schedule writeback
 | |
|  * of all dirty data a few seconds from now.  If the flush is already scheduled
 | |
|  * then push it back - the user is still using the disk.
 | |
|  */
 | |
| void laptop_io_completion(void)
 | |
| {
 | |
| 	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We're in laptop mode and we've just synced. The sync's writes will have
 | |
|  * caused another writeback to be scheduled by laptop_io_completion.
 | |
|  * Nothing needs to be written back anymore, so we unschedule the writeback.
 | |
|  */
 | |
| void laptop_sync_completion(void)
 | |
| {
 | |
| 	del_timer(&laptop_mode_wb_timer);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If ratelimit_pages is too high then we can get into dirty-data overload
 | |
|  * if a large number of processes all perform writes at the same time.
 | |
|  * If it is too low then SMP machines will call the (expensive)
 | |
|  * get_writeback_state too often.
 | |
|  *
 | |
|  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 | |
|  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
 | |
|  * thresholds before writeback cuts in.
 | |
|  *
 | |
|  * But the limit should not be set too high.  Because it also controls the
 | |
|  * amount of memory which the balance_dirty_pages() caller has to write back.
 | |
|  * If this is too large then the caller will block on the IO queue all the
 | |
|  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
 | |
|  * will write six megabyte chunks, max.
 | |
|  */
 | |
| 
 | |
| void writeback_set_ratelimit(void)
 | |
| {
 | |
| 	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
 | |
| 	if (ratelimit_pages < 16)
 | |
| 		ratelimit_pages = 16;
 | |
| 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
 | |
| 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
 | |
| }
 | |
| 
 | |
| static int __cpuinit
 | |
| ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
 | |
| {
 | |
| 	writeback_set_ratelimit();
 | |
| 	return NOTIFY_DONE;
 | |
| }
 | |
| 
 | |
| static struct notifier_block __cpuinitdata ratelimit_nb = {
 | |
| 	.notifier_call	= ratelimit_handler,
 | |
| 	.next		= NULL,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Called early on to tune the page writeback dirty limits.
 | |
|  *
 | |
|  * We used to scale dirty pages according to how total memory
 | |
|  * related to pages that could be allocated for buffers (by
 | |
|  * comparing nr_free_buffer_pages() to vm_total_pages.
 | |
|  *
 | |
|  * However, that was when we used "dirty_ratio" to scale with
 | |
|  * all memory, and we don't do that any more. "dirty_ratio"
 | |
|  * is now applied to total non-HIGHPAGE memory (by subtracting
 | |
|  * totalhigh_pages from vm_total_pages), and as such we can't
 | |
|  * get into the old insane situation any more where we had
 | |
|  * large amounts of dirty pages compared to a small amount of
 | |
|  * non-HIGHMEM memory.
 | |
|  *
 | |
|  * But we might still want to scale the dirty_ratio by how
 | |
|  * much memory the box has..
 | |
|  */
 | |
| void __init page_writeback_init(void)
 | |
| {
 | |
| 	int shift;
 | |
| 
 | |
| 	mod_timer(&wb_timer,
 | |
| 		  jiffies + msecs_to_jiffies(dirty_writeback_interval * 10));
 | |
| 	writeback_set_ratelimit();
 | |
| 	register_cpu_notifier(&ratelimit_nb);
 | |
| 
 | |
| 	shift = calc_period_shift();
 | |
| 	prop_descriptor_init(&vm_completions, shift);
 | |
| 	prop_descriptor_init(&vm_dirties, shift);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
 | |
|  * @mapping: address space structure to write
 | |
|  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 | |
|  * @writepage: function called for each page
 | |
|  * @data: data passed to writepage function
 | |
|  *
 | |
|  * If a page is already under I/O, write_cache_pages() skips it, even
 | |
|  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 | |
|  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 | |
|  * and msync() need to guarantee that all the data which was dirty at the time
 | |
|  * the call was made get new I/O started against them.  If wbc->sync_mode is
 | |
|  * WB_SYNC_ALL then we were called for data integrity and we must wait for
 | |
|  * existing IO to complete.
 | |
|  */
 | |
| int write_cache_pages(struct address_space *mapping,
 | |
| 		      struct writeback_control *wbc, writepage_t writepage,
 | |
| 		      void *data)
 | |
| {
 | |
| 	struct backing_dev_info *bdi = mapping->backing_dev_info;
 | |
| 	int ret = 0;
 | |
| 	int done = 0;
 | |
| 	struct pagevec pvec;
 | |
| 	int nr_pages;
 | |
| 	pgoff_t uninitialized_var(writeback_index);
 | |
| 	pgoff_t index;
 | |
| 	pgoff_t end;		/* Inclusive */
 | |
| 	pgoff_t done_index;
 | |
| 	int cycled;
 | |
| 	int range_whole = 0;
 | |
| 	long nr_to_write = wbc->nr_to_write;
 | |
| 
 | |
| 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
 | |
| 		wbc->encountered_congestion = 1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	pagevec_init(&pvec, 0);
 | |
| 	if (wbc->range_cyclic) {
 | |
| 		writeback_index = mapping->writeback_index; /* prev offset */
 | |
| 		index = writeback_index;
 | |
| 		if (index == 0)
 | |
| 			cycled = 1;
 | |
| 		else
 | |
| 			cycled = 0;
 | |
| 		end = -1;
 | |
| 	} else {
 | |
| 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
 | |
| 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
 | |
| 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
 | |
| 			range_whole = 1;
 | |
| 		cycled = 1; /* ignore range_cyclic tests */
 | |
| 	}
 | |
| retry:
 | |
| 	done_index = index;
 | |
| 	while (!done && (index <= end)) {
 | |
| 		int i;
 | |
| 
 | |
| 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 | |
| 			      PAGECACHE_TAG_DIRTY,
 | |
| 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
 | |
| 		if (nr_pages == 0)
 | |
| 			break;
 | |
| 
 | |
| 		for (i = 0; i < nr_pages; i++) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 
 | |
| 			/*
 | |
| 			 * At this point, the page may be truncated or
 | |
| 			 * invalidated (changing page->mapping to NULL), or
 | |
| 			 * even swizzled back from swapper_space to tmpfs file
 | |
| 			 * mapping. However, page->index will not change
 | |
| 			 * because we have a reference on the page.
 | |
| 			 */
 | |
| 			if (page->index > end) {
 | |
| 				/*
 | |
| 				 * can't be range_cyclic (1st pass) because
 | |
| 				 * end == -1 in that case.
 | |
| 				 */
 | |
| 				done = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			done_index = page->index + 1;
 | |
| 
 | |
| 			lock_page(page);
 | |
| 
 | |
| 			/*
 | |
| 			 * Page truncated or invalidated. We can freely skip it
 | |
| 			 * then, even for data integrity operations: the page
 | |
| 			 * has disappeared concurrently, so there could be no
 | |
| 			 * real expectation of this data interity operation
 | |
| 			 * even if there is now a new, dirty page at the same
 | |
| 			 * pagecache address.
 | |
| 			 */
 | |
| 			if (unlikely(page->mapping != mapping)) {
 | |
| continue_unlock:
 | |
| 				unlock_page(page);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (!PageDirty(page)) {
 | |
| 				/* someone wrote it for us */
 | |
| 				goto continue_unlock;
 | |
| 			}
 | |
| 
 | |
| 			if (PageWriteback(page)) {
 | |
| 				if (wbc->sync_mode != WB_SYNC_NONE)
 | |
| 					wait_on_page_writeback(page);
 | |
| 				else
 | |
| 					goto continue_unlock;
 | |
| 			}
 | |
| 
 | |
| 			BUG_ON(PageWriteback(page));
 | |
| 			if (!clear_page_dirty_for_io(page))
 | |
| 				goto continue_unlock;
 | |
| 
 | |
| 			ret = (*writepage)(page, wbc, data);
 | |
| 			if (unlikely(ret)) {
 | |
| 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
 | |
| 					unlock_page(page);
 | |
| 					ret = 0;
 | |
| 				} else {
 | |
| 					/*
 | |
| 					 * done_index is set past this page,
 | |
| 					 * so media errors will not choke
 | |
| 					 * background writeout for the entire
 | |
| 					 * file. This has consequences for
 | |
| 					 * range_cyclic semantics (ie. it may
 | |
| 					 * not be suitable for data integrity
 | |
| 					 * writeout).
 | |
| 					 */
 | |
| 					done = 1;
 | |
| 					break;
 | |
| 				}
 | |
|  			}
 | |
| 
 | |
| 			if (nr_to_write > 0) {
 | |
| 				nr_to_write--;
 | |
| 				if (nr_to_write == 0 &&
 | |
| 				    wbc->sync_mode == WB_SYNC_NONE) {
 | |
| 					/*
 | |
| 					 * We stop writing back only if we are
 | |
| 					 * not doing integrity sync. In case of
 | |
| 					 * integrity sync we have to keep going
 | |
| 					 * because someone may be concurrently
 | |
| 					 * dirtying pages, and we might have
 | |
| 					 * synced a lot of newly appeared dirty
 | |
| 					 * pages, but have not synced all of the
 | |
| 					 * old dirty pages.
 | |
| 					 */
 | |
| 					done = 1;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (wbc->nonblocking && bdi_write_congested(bdi)) {
 | |
| 				wbc->encountered_congestion = 1;
 | |
| 				done = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		pagevec_release(&pvec);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	if (!cycled && !done) {
 | |
| 		/*
 | |
| 		 * range_cyclic:
 | |
| 		 * We hit the last page and there is more work to be done: wrap
 | |
| 		 * back to the start of the file
 | |
| 		 */
 | |
| 		cycled = 1;
 | |
| 		index = 0;
 | |
| 		end = writeback_index - 1;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	if (!wbc->no_nrwrite_index_update) {
 | |
| 		if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
 | |
| 			mapping->writeback_index = done_index;
 | |
| 		wbc->nr_to_write = nr_to_write;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(write_cache_pages);
 | |
| 
 | |
| /*
 | |
|  * Function used by generic_writepages to call the real writepage
 | |
|  * function and set the mapping flags on error
 | |
|  */
 | |
| static int __writepage(struct page *page, struct writeback_control *wbc,
 | |
| 		       void *data)
 | |
| {
 | |
| 	struct address_space *mapping = data;
 | |
| 	int ret = mapping->a_ops->writepage(page, wbc);
 | |
| 	mapping_set_error(mapping, ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 | |
|  * @mapping: address space structure to write
 | |
|  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 | |
|  *
 | |
|  * This is a library function, which implements the writepages()
 | |
|  * address_space_operation.
 | |
|  */
 | |
| int generic_writepages(struct address_space *mapping,
 | |
| 		       struct writeback_control *wbc)
 | |
| {
 | |
| 	/* deal with chardevs and other special file */
 | |
| 	if (!mapping->a_ops->writepage)
 | |
| 		return 0;
 | |
| 
 | |
| 	return write_cache_pages(mapping, wbc, __writepage, mapping);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(generic_writepages);
 | |
| 
 | |
| int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (wbc->nr_to_write <= 0)
 | |
| 		return 0;
 | |
| 	wbc->for_writepages = 1;
 | |
| 	if (mapping->a_ops->writepages)
 | |
| 		ret = mapping->a_ops->writepages(mapping, wbc);
 | |
| 	else
 | |
| 		ret = generic_writepages(mapping, wbc);
 | |
| 	wbc->for_writepages = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * write_one_page - write out a single page and optionally wait on I/O
 | |
|  * @page: the page to write
 | |
|  * @wait: if true, wait on writeout
 | |
|  *
 | |
|  * The page must be locked by the caller and will be unlocked upon return.
 | |
|  *
 | |
|  * write_one_page() returns a negative error code if I/O failed.
 | |
|  */
 | |
| int write_one_page(struct page *page, int wait)
 | |
| {
 | |
| 	struct address_space *mapping = page->mapping;
 | |
| 	int ret = 0;
 | |
| 	struct writeback_control wbc = {
 | |
| 		.sync_mode = WB_SYNC_ALL,
 | |
| 		.nr_to_write = 1,
 | |
| 	};
 | |
| 
 | |
| 	BUG_ON(!PageLocked(page));
 | |
| 
 | |
| 	if (wait)
 | |
| 		wait_on_page_writeback(page);
 | |
| 
 | |
| 	if (clear_page_dirty_for_io(page)) {
 | |
| 		page_cache_get(page);
 | |
| 		ret = mapping->a_ops->writepage(page, &wbc);
 | |
| 		if (ret == 0 && wait) {
 | |
| 			wait_on_page_writeback(page);
 | |
| 			if (PageError(page))
 | |
| 				ret = -EIO;
 | |
| 		}
 | |
| 		page_cache_release(page);
 | |
| 	} else {
 | |
| 		unlock_page(page);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(write_one_page);
 | |
| 
 | |
| /*
 | |
|  * For address_spaces which do not use buffers nor write back.
 | |
|  */
 | |
| int __set_page_dirty_no_writeback(struct page *page)
 | |
| {
 | |
| 	if (!PageDirty(page))
 | |
| 		SetPageDirty(page);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function for set_page_dirty family.
 | |
|  * NOTE: This relies on being atomic wrt interrupts.
 | |
|  */
 | |
| void account_page_dirtied(struct page *page, struct address_space *mapping)
 | |
| {
 | |
| 	if (mapping_cap_account_dirty(mapping)) {
 | |
| 		__inc_zone_page_state(page, NR_FILE_DIRTY);
 | |
| 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
 | |
| 		task_dirty_inc(current);
 | |
| 		task_io_account_write(PAGE_CACHE_SIZE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For address_spaces which do not use buffers.  Just tag the page as dirty in
 | |
|  * its radix tree.
 | |
|  *
 | |
|  * This is also used when a single buffer is being dirtied: we want to set the
 | |
|  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 | |
|  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 | |
|  *
 | |
|  * Most callers have locked the page, which pins the address_space in memory.
 | |
|  * But zap_pte_range() does not lock the page, however in that case the
 | |
|  * mapping is pinned by the vma's ->vm_file reference.
 | |
|  *
 | |
|  * We take care to handle the case where the page was truncated from the
 | |
|  * mapping by re-checking page_mapping() inside tree_lock.
 | |
|  */
 | |
| int __set_page_dirty_nobuffers(struct page *page)
 | |
| {
 | |
| 	if (!TestSetPageDirty(page)) {
 | |
| 		struct address_space *mapping = page_mapping(page);
 | |
| 		struct address_space *mapping2;
 | |
| 
 | |
| 		if (!mapping)
 | |
| 			return 1;
 | |
| 
 | |
| 		spin_lock_irq(&mapping->tree_lock);
 | |
| 		mapping2 = page_mapping(page);
 | |
| 		if (mapping2) { /* Race with truncate? */
 | |
| 			BUG_ON(mapping2 != mapping);
 | |
| 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
 | |
| 			account_page_dirtied(page, mapping);
 | |
| 			radix_tree_tag_set(&mapping->page_tree,
 | |
| 				page_index(page), PAGECACHE_TAG_DIRTY);
 | |
| 		}
 | |
| 		spin_unlock_irq(&mapping->tree_lock);
 | |
| 		if (mapping->host) {
 | |
| 			/* !PageAnon && !swapper_space */
 | |
| 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 | |
| 		}
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(__set_page_dirty_nobuffers);
 | |
| 
 | |
| /*
 | |
|  * When a writepage implementation decides that it doesn't want to write this
 | |
|  * page for some reason, it should redirty the locked page via
 | |
|  * redirty_page_for_writepage() and it should then unlock the page and return 0
 | |
|  */
 | |
| int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
 | |
| {
 | |
| 	wbc->pages_skipped++;
 | |
| 	return __set_page_dirty_nobuffers(page);
 | |
| }
 | |
| EXPORT_SYMBOL(redirty_page_for_writepage);
 | |
| 
 | |
| /*
 | |
|  * If the mapping doesn't provide a set_page_dirty a_op, then
 | |
|  * just fall through and assume that it wants buffer_heads.
 | |
|  */
 | |
| int set_page_dirty(struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping = page_mapping(page);
 | |
| 
 | |
| 	if (likely(mapping)) {
 | |
| 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
 | |
| #ifdef CONFIG_BLOCK
 | |
| 		if (!spd)
 | |
| 			spd = __set_page_dirty_buffers;
 | |
| #endif
 | |
| 		return (*spd)(page);
 | |
| 	}
 | |
| 	if (!PageDirty(page)) {
 | |
| 		if (!TestSetPageDirty(page))
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(set_page_dirty);
 | |
| 
 | |
| /*
 | |
|  * set_page_dirty() is racy if the caller has no reference against
 | |
|  * page->mapping->host, and if the page is unlocked.  This is because another
 | |
|  * CPU could truncate the page off the mapping and then free the mapping.
 | |
|  *
 | |
|  * Usually, the page _is_ locked, or the caller is a user-space process which
 | |
|  * holds a reference on the inode by having an open file.
 | |
|  *
 | |
|  * In other cases, the page should be locked before running set_page_dirty().
 | |
|  */
 | |
| int set_page_dirty_lock(struct page *page)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	lock_page_nosync(page);
 | |
| 	ret = set_page_dirty(page);
 | |
| 	unlock_page(page);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(set_page_dirty_lock);
 | |
| 
 | |
| /*
 | |
|  * Clear a page's dirty flag, while caring for dirty memory accounting.
 | |
|  * Returns true if the page was previously dirty.
 | |
|  *
 | |
|  * This is for preparing to put the page under writeout.  We leave the page
 | |
|  * tagged as dirty in the radix tree so that a concurrent write-for-sync
 | |
|  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
 | |
|  * implementation will run either set_page_writeback() or set_page_dirty(),
 | |
|  * at which stage we bring the page's dirty flag and radix-tree dirty tag
 | |
|  * back into sync.
 | |
|  *
 | |
|  * This incoherency between the page's dirty flag and radix-tree tag is
 | |
|  * unfortunate, but it only exists while the page is locked.
 | |
|  */
 | |
| int clear_page_dirty_for_io(struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping = page_mapping(page);
 | |
| 
 | |
| 	BUG_ON(!PageLocked(page));
 | |
| 
 | |
| 	ClearPageReclaim(page);
 | |
| 	if (mapping && mapping_cap_account_dirty(mapping)) {
 | |
| 		/*
 | |
| 		 * Yes, Virginia, this is indeed insane.
 | |
| 		 *
 | |
| 		 * We use this sequence to make sure that
 | |
| 		 *  (a) we account for dirty stats properly
 | |
| 		 *  (b) we tell the low-level filesystem to
 | |
| 		 *      mark the whole page dirty if it was
 | |
| 		 *      dirty in a pagetable. Only to then
 | |
| 		 *  (c) clean the page again and return 1 to
 | |
| 		 *      cause the writeback.
 | |
| 		 *
 | |
| 		 * This way we avoid all nasty races with the
 | |
| 		 * dirty bit in multiple places and clearing
 | |
| 		 * them concurrently from different threads.
 | |
| 		 *
 | |
| 		 * Note! Normally the "set_page_dirty(page)"
 | |
| 		 * has no effect on the actual dirty bit - since
 | |
| 		 * that will already usually be set. But we
 | |
| 		 * need the side effects, and it can help us
 | |
| 		 * avoid races.
 | |
| 		 *
 | |
| 		 * We basically use the page "master dirty bit"
 | |
| 		 * as a serialization point for all the different
 | |
| 		 * threads doing their things.
 | |
| 		 */
 | |
| 		if (page_mkclean(page))
 | |
| 			set_page_dirty(page);
 | |
| 		/*
 | |
| 		 * We carefully synchronise fault handlers against
 | |
| 		 * installing a dirty pte and marking the page dirty
 | |
| 		 * at this point. We do this by having them hold the
 | |
| 		 * page lock at some point after installing their
 | |
| 		 * pte, but before marking the page dirty.
 | |
| 		 * Pages are always locked coming in here, so we get
 | |
| 		 * the desired exclusion. See mm/memory.c:do_wp_page()
 | |
| 		 * for more comments.
 | |
| 		 */
 | |
| 		if (TestClearPageDirty(page)) {
 | |
| 			dec_zone_page_state(page, NR_FILE_DIRTY);
 | |
| 			dec_bdi_stat(mapping->backing_dev_info,
 | |
| 					BDI_RECLAIMABLE);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return TestClearPageDirty(page);
 | |
| }
 | |
| EXPORT_SYMBOL(clear_page_dirty_for_io);
 | |
| 
 | |
| int test_clear_page_writeback(struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping = page_mapping(page);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (mapping) {
 | |
| 		struct backing_dev_info *bdi = mapping->backing_dev_info;
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		spin_lock_irqsave(&mapping->tree_lock, flags);
 | |
| 		ret = TestClearPageWriteback(page);
 | |
| 		if (ret) {
 | |
| 			radix_tree_tag_clear(&mapping->page_tree,
 | |
| 						page_index(page),
 | |
| 						PAGECACHE_TAG_WRITEBACK);
 | |
| 			if (bdi_cap_account_writeback(bdi)) {
 | |
| 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
 | |
| 				__bdi_writeout_inc(bdi);
 | |
| 			}
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
 | |
| 	} else {
 | |
| 		ret = TestClearPageWriteback(page);
 | |
| 	}
 | |
| 	if (ret)
 | |
| 		dec_zone_page_state(page, NR_WRITEBACK);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int test_set_page_writeback(struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping = page_mapping(page);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (mapping) {
 | |
| 		struct backing_dev_info *bdi = mapping->backing_dev_info;
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		spin_lock_irqsave(&mapping->tree_lock, flags);
 | |
| 		ret = TestSetPageWriteback(page);
 | |
| 		if (!ret) {
 | |
| 			radix_tree_tag_set(&mapping->page_tree,
 | |
| 						page_index(page),
 | |
| 						PAGECACHE_TAG_WRITEBACK);
 | |
| 			if (bdi_cap_account_writeback(bdi))
 | |
| 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
 | |
| 		}
 | |
| 		if (!PageDirty(page))
 | |
| 			radix_tree_tag_clear(&mapping->page_tree,
 | |
| 						page_index(page),
 | |
| 						PAGECACHE_TAG_DIRTY);
 | |
| 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
 | |
| 	} else {
 | |
| 		ret = TestSetPageWriteback(page);
 | |
| 	}
 | |
| 	if (!ret)
 | |
| 		inc_zone_page_state(page, NR_WRITEBACK);
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL(test_set_page_writeback);
 | |
| 
 | |
| /*
 | |
|  * Return true if any of the pages in the mapping are marked with the
 | |
|  * passed tag.
 | |
|  */
 | |
| int mapping_tagged(struct address_space *mapping, int tag)
 | |
| {
 | |
| 	int ret;
 | |
| 	rcu_read_lock();
 | |
| 	ret = radix_tree_tagged(&mapping->page_tree, tag);
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(mapping_tagged);
 |