229 lines
		
	
	
	
		
			5.7 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			229 lines
		
	
	
	
		
			5.7 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *	linux/mm/mincore.c
 | |
|  *
 | |
|  * Copyright (C) 1994-2006  Linus Torvalds
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The mincore() system call.
 | |
|  */
 | |
| #include <linux/slab.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/swapops.h>
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/pgtable.h>
 | |
| 
 | |
| /*
 | |
|  * Later we can get more picky about what "in core" means precisely.
 | |
|  * For now, simply check to see if the page is in the page cache,
 | |
|  * and is up to date; i.e. that no page-in operation would be required
 | |
|  * at this time if an application were to map and access this page.
 | |
|  */
 | |
| static unsigned char mincore_page(struct address_space *mapping, pgoff_t pgoff)
 | |
| {
 | |
| 	unsigned char present = 0;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	/*
 | |
| 	 * When tmpfs swaps out a page from a file, any process mapping that
 | |
| 	 * file will not get a swp_entry_t in its pte, but rather it is like
 | |
| 	 * any other file mapping (ie. marked !present and faulted in with
 | |
| 	 * tmpfs's .fault). So swapped out tmpfs mappings are tested here.
 | |
| 	 *
 | |
| 	 * However when tmpfs moves the page from pagecache and into swapcache,
 | |
| 	 * it is still in core, but the find_get_page below won't find it.
 | |
| 	 * No big deal, but make a note of it.
 | |
| 	 */
 | |
| 	page = find_get_page(mapping, pgoff);
 | |
| 	if (page) {
 | |
| 		present = PageUptodate(page);
 | |
| 		page_cache_release(page);
 | |
| 	}
 | |
| 
 | |
| 	return present;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do a chunk of "sys_mincore()". We've already checked
 | |
|  * all the arguments, we hold the mmap semaphore: we should
 | |
|  * just return the amount of info we're asked for.
 | |
|  */
 | |
| static long do_mincore(unsigned long addr, unsigned char *vec, unsigned long pages)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *ptep;
 | |
| 	spinlock_t *ptl;
 | |
| 	unsigned long nr;
 | |
| 	int i;
 | |
| 	pgoff_t pgoff;
 | |
| 	struct vm_area_struct *vma = find_vma(current->mm, addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * find_vma() didn't find anything above us, or we're
 | |
| 	 * in an unmapped hole in the address space: ENOMEM.
 | |
| 	 */
 | |
| 	if (!vma || addr < vma->vm_start)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate how many pages there are left in the last level of the
 | |
| 	 * PTE array for our address.
 | |
| 	 */
 | |
| 	nr = PTRS_PER_PTE - ((addr >> PAGE_SHIFT) & (PTRS_PER_PTE-1));
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't overrun this vma
 | |
| 	 */
 | |
| 	nr = min(nr, (vma->vm_end - addr) >> PAGE_SHIFT);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't return more than the caller asked for
 | |
| 	 */
 | |
| 	nr = min(nr, pages);
 | |
| 
 | |
| 	pgd = pgd_offset(vma->vm_mm, addr);
 | |
| 	if (pgd_none_or_clear_bad(pgd))
 | |
| 		goto none_mapped;
 | |
| 	pud = pud_offset(pgd, addr);
 | |
| 	if (pud_none_or_clear_bad(pud))
 | |
| 		goto none_mapped;
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	if (pmd_none_or_clear_bad(pmd))
 | |
| 		goto none_mapped;
 | |
| 
 | |
| 	ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 | |
| 	for (i = 0; i < nr; i++, ptep++, addr += PAGE_SIZE) {
 | |
| 		unsigned char present;
 | |
| 		pte_t pte = *ptep;
 | |
| 
 | |
| 		if (pte_present(pte)) {
 | |
| 			present = 1;
 | |
| 
 | |
| 		} else if (pte_none(pte)) {
 | |
| 			if (vma->vm_file) {
 | |
| 				pgoff = linear_page_index(vma, addr);
 | |
| 				present = mincore_page(vma->vm_file->f_mapping,
 | |
| 							pgoff);
 | |
| 			} else
 | |
| 				present = 0;
 | |
| 
 | |
| 		} else if (pte_file(pte)) {
 | |
| 			pgoff = pte_to_pgoff(pte);
 | |
| 			present = mincore_page(vma->vm_file->f_mapping, pgoff);
 | |
| 
 | |
| 		} else { /* pte is a swap entry */
 | |
| 			swp_entry_t entry = pte_to_swp_entry(pte);
 | |
| 			if (is_migration_entry(entry)) {
 | |
| 				/* migration entries are always uptodate */
 | |
| 				present = 1;
 | |
| 			} else {
 | |
| #ifdef CONFIG_SWAP
 | |
| 				pgoff = entry.val;
 | |
| 				present = mincore_page(&swapper_space, pgoff);
 | |
| #else
 | |
| 				WARN_ON(1);
 | |
| 				present = 1;
 | |
| #endif
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		vec[i] = present;
 | |
| 	}
 | |
| 	pte_unmap_unlock(ptep-1, ptl);
 | |
| 
 | |
| 	return nr;
 | |
| 
 | |
| none_mapped:
 | |
| 	if (vma->vm_file) {
 | |
| 		pgoff = linear_page_index(vma, addr);
 | |
| 		for (i = 0; i < nr; i++, pgoff++)
 | |
| 			vec[i] = mincore_page(vma->vm_file->f_mapping, pgoff);
 | |
| 	} else {
 | |
| 		for (i = 0; i < nr; i++)
 | |
| 			vec[i] = 0;
 | |
| 	}
 | |
| 
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The mincore(2) system call.
 | |
|  *
 | |
|  * mincore() returns the memory residency status of the pages in the
 | |
|  * current process's address space specified by [addr, addr + len).
 | |
|  * The status is returned in a vector of bytes.  The least significant
 | |
|  * bit of each byte is 1 if the referenced page is in memory, otherwise
 | |
|  * it is zero.
 | |
|  *
 | |
|  * Because the status of a page can change after mincore() checks it
 | |
|  * but before it returns to the application, the returned vector may
 | |
|  * contain stale information.  Only locked pages are guaranteed to
 | |
|  * remain in memory.
 | |
|  *
 | |
|  * return values:
 | |
|  *  zero    - success
 | |
|  *  -EFAULT - vec points to an illegal address
 | |
|  *  -EINVAL - addr is not a multiple of PAGE_CACHE_SIZE
 | |
|  *  -ENOMEM - Addresses in the range [addr, addr + len] are
 | |
|  *		invalid for the address space of this process, or
 | |
|  *		specify one or more pages which are not currently
 | |
|  *		mapped
 | |
|  *  -EAGAIN - A kernel resource was temporarily unavailable.
 | |
|  */
 | |
| SYSCALL_DEFINE3(mincore, unsigned long, start, size_t, len,
 | |
| 		unsigned char __user *, vec)
 | |
| {
 | |
| 	long retval;
 | |
| 	unsigned long pages;
 | |
| 	unsigned char *tmp;
 | |
| 
 | |
| 	/* Check the start address: needs to be page-aligned.. */
 | |
|  	if (start & ~PAGE_CACHE_MASK)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* ..and we need to be passed a valid user-space range */
 | |
| 	if (!access_ok(VERIFY_READ, (void __user *) start, len))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* This also avoids any overflows on PAGE_CACHE_ALIGN */
 | |
| 	pages = len >> PAGE_SHIFT;
 | |
| 	pages += (len & ~PAGE_MASK) != 0;
 | |
| 
 | |
| 	if (!access_ok(VERIFY_WRITE, vec, pages))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	tmp = (void *) __get_free_page(GFP_USER);
 | |
| 	if (!tmp)
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	retval = 0;
 | |
| 	while (pages) {
 | |
| 		/*
 | |
| 		 * Do at most PAGE_SIZE entries per iteration, due to
 | |
| 		 * the temporary buffer size.
 | |
| 		 */
 | |
| 		down_read(¤t->mm->mmap_sem);
 | |
| 		retval = do_mincore(start, tmp, min(pages, PAGE_SIZE));
 | |
| 		up_read(¤t->mm->mmap_sem);
 | |
| 
 | |
| 		if (retval <= 0)
 | |
| 			break;
 | |
| 		if (copy_to_user(vec, tmp, retval)) {
 | |
| 			retval = -EFAULT;
 | |
| 			break;
 | |
| 		}
 | |
| 		pages -= retval;
 | |
| 		vec += retval;
 | |
| 		start += retval << PAGE_SHIFT;
 | |
| 		retval = 0;
 | |
| 	}
 | |
| 	free_page((unsigned long) tmp);
 | |
| 	return retval;
 | |
| }
 | 
