* git://git.kernel.org/pub/scm/linux/kernel/git/kyle/parisc-2.6: (23 commits) parisc: move dereference_function_descriptor to process.c parisc: Move kernel Elf_Fdesc define to <asm/elf.h> parisc: fix build when ARCH_HAS_KMAP parisc: fix "make tar-pkg" parisc: drivers: fix warnings parisc: select BUG always parisc: asm/pdc.h should include asm/page.h parisc: led: remove proc_dir_entry::owner parisc: fix macro expansion in atomic.h parisc: iosapic: fix build breakage parisc: oops_enter()/oops_exit() in die() parisc: document light weight syscall ABI parisc: blink all or loadavg LEDs on oops parisc: add ftrace (function and graph tracer) functionality parisc: simplify sys_clone() parisc: add LATENCYTOP_SUPPORT and CONFIG_STACKTRACE_SUPPORT parisc: allow to build with 16k default kernel page size parisc: expose 32/64-bit capabilities in cpuinfo parisc: use constants instead of numbers in assembly parisc: fix usage of 32bit PTE page table entries on 32bit kernels ...
		
			
				
	
	
		
			264 lines
		
	
	
	
		
			7.2 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			264 lines
		
	
	
	
		
			7.2 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  linux/arch/parisc/kernel/time.c
 | 
						|
 *
 | 
						|
 *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
 | 
						|
 *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
 | 
						|
 *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
 | 
						|
 *
 | 
						|
 * 1994-07-02  Alan Modra
 | 
						|
 *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
 | 
						|
 * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
 | 
						|
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 | 
						|
 */
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/param.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/time.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/smp.h>
 | 
						|
#include <linux/profile.h>
 | 
						|
#include <linux/clocksource.h>
 | 
						|
#include <linux/platform_device.h>
 | 
						|
#include <linux/ftrace.h>
 | 
						|
 | 
						|
#include <asm/uaccess.h>
 | 
						|
#include <asm/io.h>
 | 
						|
#include <asm/irq.h>
 | 
						|
#include <asm/param.h>
 | 
						|
#include <asm/pdc.h>
 | 
						|
#include <asm/led.h>
 | 
						|
 | 
						|
#include <linux/timex.h>
 | 
						|
 | 
						|
static unsigned long clocktick __read_mostly;	/* timer cycles per tick */
 | 
						|
 | 
						|
/*
 | 
						|
 * We keep time on PA-RISC Linux by using the Interval Timer which is
 | 
						|
 * a pair of registers; one is read-only and one is write-only; both
 | 
						|
 * accessed through CR16.  The read-only register is 32 or 64 bits wide,
 | 
						|
 * and increments by 1 every CPU clock tick.  The architecture only
 | 
						|
 * guarantees us a rate between 0.5 and 2, but all implementations use a
 | 
						|
 * rate of 1.  The write-only register is 32-bits wide.  When the lowest
 | 
						|
 * 32 bits of the read-only register compare equal to the write-only
 | 
						|
 * register, it raises a maskable external interrupt.  Each processor has
 | 
						|
 * an Interval Timer of its own and they are not synchronised.  
 | 
						|
 *
 | 
						|
 * We want to generate an interrupt every 1/HZ seconds.  So we program
 | 
						|
 * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
 | 
						|
 * is programmed with the intended time of the next tick.  We can be
 | 
						|
 * held off for an arbitrarily long period of time by interrupts being
 | 
						|
 * disabled, so we may miss one or more ticks.
 | 
						|
 */
 | 
						|
irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
 | 
						|
{
 | 
						|
	unsigned long now;
 | 
						|
	unsigned long next_tick;
 | 
						|
	unsigned long cycles_elapsed, ticks_elapsed;
 | 
						|
	unsigned long cycles_remainder;
 | 
						|
	unsigned int cpu = smp_processor_id();
 | 
						|
	struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
 | 
						|
 | 
						|
	/* gcc can optimize for "read-only" case with a local clocktick */
 | 
						|
	unsigned long cpt = clocktick;
 | 
						|
 | 
						|
	profile_tick(CPU_PROFILING);
 | 
						|
 | 
						|
	/* Initialize next_tick to the expected tick time. */
 | 
						|
	next_tick = cpuinfo->it_value;
 | 
						|
 | 
						|
	/* Get current interval timer.
 | 
						|
	 * CR16 reads as 64 bits in CPU wide mode.
 | 
						|
	 * CR16 reads as 32 bits in CPU narrow mode.
 | 
						|
	 */
 | 
						|
	now = mfctl(16);
 | 
						|
 | 
						|
	cycles_elapsed = now - next_tick;
 | 
						|
 | 
						|
	if ((cycles_elapsed >> 5) < cpt) {
 | 
						|
		/* use "cheap" math (add/subtract) instead
 | 
						|
		 * of the more expensive div/mul method
 | 
						|
		 */
 | 
						|
		cycles_remainder = cycles_elapsed;
 | 
						|
		ticks_elapsed = 1;
 | 
						|
		while (cycles_remainder > cpt) {
 | 
						|
			cycles_remainder -= cpt;
 | 
						|
			ticks_elapsed++;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		cycles_remainder = cycles_elapsed % cpt;
 | 
						|
		ticks_elapsed = 1 + cycles_elapsed / cpt;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Can we differentiate between "early CR16" (aka Scenario 1) and
 | 
						|
	 * "long delay" (aka Scenario 3)? I don't think so.
 | 
						|
	 *
 | 
						|
	 * We expected timer_interrupt to be delivered at least a few hundred
 | 
						|
	 * cycles after the IT fires. But it's arbitrary how much time passes
 | 
						|
	 * before we call it "late". I've picked one second.
 | 
						|
	 */
 | 
						|
	if (unlikely(ticks_elapsed > HZ)) {
 | 
						|
		/* Scenario 3: very long delay?  bad in any case */
 | 
						|
		printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
 | 
						|
			" cycles %lX rem %lX "
 | 
						|
			" next/now %lX/%lX\n",
 | 
						|
			cpu,
 | 
						|
			cycles_elapsed, cycles_remainder,
 | 
						|
			next_tick, now );
 | 
						|
	}
 | 
						|
 | 
						|
	/* convert from "division remainder" to "remainder of clock tick" */
 | 
						|
	cycles_remainder = cpt - cycles_remainder;
 | 
						|
 | 
						|
	/* Determine when (in CR16 cycles) next IT interrupt will fire.
 | 
						|
	 * We want IT to fire modulo clocktick even if we miss/skip some.
 | 
						|
	 * But those interrupts don't in fact get delivered that regularly.
 | 
						|
	 */
 | 
						|
	next_tick = now + cycles_remainder;
 | 
						|
 | 
						|
	cpuinfo->it_value = next_tick;
 | 
						|
 | 
						|
	/* Skip one clocktick on purpose if we are likely to miss next_tick.
 | 
						|
	 * We want to avoid the new next_tick being less than CR16.
 | 
						|
	 * If that happened, itimer wouldn't fire until CR16 wrapped.
 | 
						|
	 * We'll catch the tick we missed on the tick after that.
 | 
						|
	 */
 | 
						|
	if (!(cycles_remainder >> 13))
 | 
						|
		next_tick += cpt;
 | 
						|
 | 
						|
	/* Program the IT when to deliver the next interrupt. */
 | 
						|
	/* Only bottom 32-bits of next_tick are written to cr16.  */
 | 
						|
	mtctl(next_tick, 16);
 | 
						|
 | 
						|
 | 
						|
	/* Done mucking with unreliable delivery of interrupts.
 | 
						|
	 * Go do system house keeping.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (!--cpuinfo->prof_counter) {
 | 
						|
		cpuinfo->prof_counter = cpuinfo->prof_multiplier;
 | 
						|
		update_process_times(user_mode(get_irq_regs()));
 | 
						|
	}
 | 
						|
 | 
						|
	if (cpu == 0) {
 | 
						|
		write_seqlock(&xtime_lock);
 | 
						|
		do_timer(ticks_elapsed);
 | 
						|
		write_sequnlock(&xtime_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	return IRQ_HANDLED;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
unsigned long profile_pc(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	unsigned long pc = instruction_pointer(regs);
 | 
						|
 | 
						|
	if (regs->gr[0] & PSW_N)
 | 
						|
		pc -= 4;
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	if (in_lock_functions(pc))
 | 
						|
		pc = regs->gr[2];
 | 
						|
#endif
 | 
						|
 | 
						|
	return pc;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(profile_pc);
 | 
						|
 | 
						|
 | 
						|
/* clock source code */
 | 
						|
 | 
						|
static cycle_t read_cr16(void)
 | 
						|
{
 | 
						|
	return get_cycles();
 | 
						|
}
 | 
						|
 | 
						|
static struct clocksource clocksource_cr16 = {
 | 
						|
	.name			= "cr16",
 | 
						|
	.rating			= 300,
 | 
						|
	.read			= read_cr16,
 | 
						|
	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
 | 
						|
	.mult			= 0, /* to be set */
 | 
						|
	.shift			= 22,
 | 
						|
	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
int update_cr16_clocksource(void)
 | 
						|
{
 | 
						|
	/* since the cr16 cycle counters are not synchronized across CPUs,
 | 
						|
	   we'll check if we should switch to a safe clocksource: */
 | 
						|
	if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
 | 
						|
		clocksource_change_rating(&clocksource_cr16, 0);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#else
 | 
						|
int update_cr16_clocksource(void)
 | 
						|
{
 | 
						|
	return 0; /* no change */
 | 
						|
}
 | 
						|
#endif /*CONFIG_SMP*/
 | 
						|
 | 
						|
void __init start_cpu_itimer(void)
 | 
						|
{
 | 
						|
	unsigned int cpu = smp_processor_id();
 | 
						|
	unsigned long next_tick = mfctl(16) + clocktick;
 | 
						|
 | 
						|
	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
 | 
						|
 | 
						|
	per_cpu(cpu_data, cpu).it_value = next_tick;
 | 
						|
}
 | 
						|
 | 
						|
static struct platform_device rtc_generic_dev = {
 | 
						|
	.name = "rtc-generic",
 | 
						|
	.id = -1,
 | 
						|
};
 | 
						|
 | 
						|
static int __init rtc_init(void)
 | 
						|
{
 | 
						|
	if (platform_device_register(&rtc_generic_dev) < 0)
 | 
						|
		printk(KERN_ERR "unable to register rtc device...\n");
 | 
						|
 | 
						|
	/* not necessarily an error */
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
module_init(rtc_init);
 | 
						|
 | 
						|
void __init time_init(void)
 | 
						|
{
 | 
						|
	static struct pdc_tod tod_data;
 | 
						|
	unsigned long current_cr16_khz;
 | 
						|
 | 
						|
	clocktick = (100 * PAGE0->mem_10msec) / HZ;
 | 
						|
 | 
						|
	start_cpu_itimer();	/* get CPU 0 started */
 | 
						|
 | 
						|
	/* register at clocksource framework */
 | 
						|
	current_cr16_khz = PAGE0->mem_10msec/10;  /* kHz */
 | 
						|
	clocksource_cr16.mult = clocksource_khz2mult(current_cr16_khz,
 | 
						|
						clocksource_cr16.shift);
 | 
						|
	clocksource_register(&clocksource_cr16);
 | 
						|
 | 
						|
	if (pdc_tod_read(&tod_data) == 0) {
 | 
						|
		unsigned long flags;
 | 
						|
 | 
						|
		write_seqlock_irqsave(&xtime_lock, flags);
 | 
						|
		xtime.tv_sec = tod_data.tod_sec;
 | 
						|
		xtime.tv_nsec = tod_data.tod_usec * 1000;
 | 
						|
		set_normalized_timespec(&wall_to_monotonic,
 | 
						|
		                        -xtime.tv_sec, -xtime.tv_nsec);
 | 
						|
		write_sequnlock_irqrestore(&xtime_lock, flags);
 | 
						|
	} else {
 | 
						|
		printk(KERN_ERR "Error reading tod clock\n");
 | 
						|
	        xtime.tv_sec = 0;
 | 
						|
		xtime.tv_nsec = 0;
 | 
						|
	}
 | 
						|
}
 |