Premit use of another algorithm than the default first-fit one.  For
example a custom algorithm could be used to manage alignment requirements.
As I can't predict all the possible requirements/needs for all allocation
uses cases, I add a "free" field 'void *data' to pass any needed
information to the allocation function.  For example 'data' could be used
to handle a structure where you store the alignment, the expected memory
bank, the requester device, or any information that could influence the
allocation algorithm.
An usage example may look like this:
struct my_pool_constraints {
	int align;
	int bank;
	...
};
unsigned long my_custom_algo(unsigned long *map, unsigned long size,
		unsigned long start, unsigned int nr, void *data)
{
	struct my_pool_constraints *constraints = data;
	...
	deal with allocation contraints
	...
	return the index in bitmap where perform the allocation
}
void create_my_pool()
{
	struct my_pool_constraints c;
	struct gen_pool *pool = gen_pool_create(...);
	gen_pool_add(pool, ...);
	gen_pool_set_algo(pool, my_custom_algo, &c);
}
Add of best-fit algorithm function:
most of the time best-fit is slower then first-fit but memory fragmentation
is lower. The random buffer allocation/free tests don't show any arithmetic
relation between the allocation time and fragmentation but the
best-fit algorithm
is sometime able to perform the allocation when the first-fit can't.
This new algorithm help to remove static allocations on ESRAM, a small but
fast on-chip RAM of few KB, used for high-performance uses cases like DMA
linked lists, graphic accelerators, encoders/decoders. On the Ux500
(in the ARM tree) we have define 5 ESRAM banks of 128 KB each and use of
static allocations becomes unmaintainable:
cd arch/arm/mach-ux500 && grep -r ESRAM .
./include/mach/db8500-regs.h:/* Base address and bank offsets for ESRAM */
./include/mach/db8500-regs.h:#define U8500_ESRAM_BASE   0x40000000
./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK_SIZE      0x00020000
./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK0  U8500_ESRAM_BASE
./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK1       (U8500_ESRAM_BASE + U8500_ESRAM_BANK_SIZE)
./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK2       (U8500_ESRAM_BANK1 + U8500_ESRAM_BANK_SIZE)
./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK3       (U8500_ESRAM_BANK2 + U8500_ESRAM_BANK_SIZE)
./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK4       (U8500_ESRAM_BANK3 + U8500_ESRAM_BANK_SIZE)
./include/mach/db8500-regs.h:#define U8500_ESRAM_DMA_LCPA_OFFSET     0x10000
./include/mach/db8500-regs.h:#define U8500_DMA_LCPA_BASE
(U8500_ESRAM_BANK0 + U8500_ESRAM_DMA_LCPA_OFFSET)
./include/mach/db8500-regs.h:#define U8500_DMA_LCLA_BASE U8500_ESRAM_BANK4
I want to use genalloc to do dynamic allocations but I need to be able to
fine tune the allocation algorithm. I my case best-fit algorithm give
better results than first-fit, but it will not be true for every use case.
Signed-off-by: Benjamin Gaignard <benjamin.gaignard@stericsson.com>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			482 lines
		
	
	
	
		
			13 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			482 lines
		
	
	
	
		
			13 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Basic general purpose allocator for managing special purpose
 | 
						|
 * memory, for example, memory that is not managed by the regular
 | 
						|
 * kmalloc/kfree interface.  Uses for this includes on-device special
 | 
						|
 * memory, uncached memory etc.
 | 
						|
 *
 | 
						|
 * It is safe to use the allocator in NMI handlers and other special
 | 
						|
 * unblockable contexts that could otherwise deadlock on locks.  This
 | 
						|
 * is implemented by using atomic operations and retries on any
 | 
						|
 * conflicts.  The disadvantage is that there may be livelocks in
 | 
						|
 * extreme cases.  For better scalability, one allocator can be used
 | 
						|
 * for each CPU.
 | 
						|
 *
 | 
						|
 * The lockless operation only works if there is enough memory
 | 
						|
 * available.  If new memory is added to the pool a lock has to be
 | 
						|
 * still taken.  So any user relying on locklessness has to ensure
 | 
						|
 * that sufficient memory is preallocated.
 | 
						|
 *
 | 
						|
 * The basic atomic operation of this allocator is cmpxchg on long.
 | 
						|
 * On architectures that don't have NMI-safe cmpxchg implementation,
 | 
						|
 * the allocator can NOT be used in NMI handler.  So code uses the
 | 
						|
 * allocator in NMI handler should depend on
 | 
						|
 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
 | 
						|
 *
 | 
						|
 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
 | 
						|
 *
 | 
						|
 * This source code is licensed under the GNU General Public License,
 | 
						|
 * Version 2.  See the file COPYING for more details.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/bitmap.h>
 | 
						|
#include <linux/rculist.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/genalloc.h>
 | 
						|
 | 
						|
static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
 | 
						|
{
 | 
						|
	unsigned long val, nval;
 | 
						|
 | 
						|
	nval = *addr;
 | 
						|
	do {
 | 
						|
		val = nval;
 | 
						|
		if (val & mask_to_set)
 | 
						|
			return -EBUSY;
 | 
						|
		cpu_relax();
 | 
						|
	} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
 | 
						|
{
 | 
						|
	unsigned long val, nval;
 | 
						|
 | 
						|
	nval = *addr;
 | 
						|
	do {
 | 
						|
		val = nval;
 | 
						|
		if ((val & mask_to_clear) != mask_to_clear)
 | 
						|
			return -EBUSY;
 | 
						|
		cpu_relax();
 | 
						|
	} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * bitmap_set_ll - set the specified number of bits at the specified position
 | 
						|
 * @map: pointer to a bitmap
 | 
						|
 * @start: a bit position in @map
 | 
						|
 * @nr: number of bits to set
 | 
						|
 *
 | 
						|
 * Set @nr bits start from @start in @map lock-lessly. Several users
 | 
						|
 * can set/clear the same bitmap simultaneously without lock. If two
 | 
						|
 * users set the same bit, one user will return remain bits, otherwise
 | 
						|
 * return 0.
 | 
						|
 */
 | 
						|
static int bitmap_set_ll(unsigned long *map, int start, int nr)
 | 
						|
{
 | 
						|
	unsigned long *p = map + BIT_WORD(start);
 | 
						|
	const int size = start + nr;
 | 
						|
	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
 | 
						|
	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
 | 
						|
 | 
						|
	while (nr - bits_to_set >= 0) {
 | 
						|
		if (set_bits_ll(p, mask_to_set))
 | 
						|
			return nr;
 | 
						|
		nr -= bits_to_set;
 | 
						|
		bits_to_set = BITS_PER_LONG;
 | 
						|
		mask_to_set = ~0UL;
 | 
						|
		p++;
 | 
						|
	}
 | 
						|
	if (nr) {
 | 
						|
		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
 | 
						|
		if (set_bits_ll(p, mask_to_set))
 | 
						|
			return nr;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * bitmap_clear_ll - clear the specified number of bits at the specified position
 | 
						|
 * @map: pointer to a bitmap
 | 
						|
 * @start: a bit position in @map
 | 
						|
 * @nr: number of bits to set
 | 
						|
 *
 | 
						|
 * Clear @nr bits start from @start in @map lock-lessly. Several users
 | 
						|
 * can set/clear the same bitmap simultaneously without lock. If two
 | 
						|
 * users clear the same bit, one user will return remain bits,
 | 
						|
 * otherwise return 0.
 | 
						|
 */
 | 
						|
static int bitmap_clear_ll(unsigned long *map, int start, int nr)
 | 
						|
{
 | 
						|
	unsigned long *p = map + BIT_WORD(start);
 | 
						|
	const int size = start + nr;
 | 
						|
	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
 | 
						|
	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
 | 
						|
 | 
						|
	while (nr - bits_to_clear >= 0) {
 | 
						|
		if (clear_bits_ll(p, mask_to_clear))
 | 
						|
			return nr;
 | 
						|
		nr -= bits_to_clear;
 | 
						|
		bits_to_clear = BITS_PER_LONG;
 | 
						|
		mask_to_clear = ~0UL;
 | 
						|
		p++;
 | 
						|
	}
 | 
						|
	if (nr) {
 | 
						|
		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
 | 
						|
		if (clear_bits_ll(p, mask_to_clear))
 | 
						|
			return nr;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * gen_pool_create - create a new special memory pool
 | 
						|
 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
 | 
						|
 * @nid: node id of the node the pool structure should be allocated on, or -1
 | 
						|
 *
 | 
						|
 * Create a new special memory pool that can be used to manage special purpose
 | 
						|
 * memory not managed by the regular kmalloc/kfree interface.
 | 
						|
 */
 | 
						|
struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
 | 
						|
{
 | 
						|
	struct gen_pool *pool;
 | 
						|
 | 
						|
	pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
 | 
						|
	if (pool != NULL) {
 | 
						|
		spin_lock_init(&pool->lock);
 | 
						|
		INIT_LIST_HEAD(&pool->chunks);
 | 
						|
		pool->min_alloc_order = min_alloc_order;
 | 
						|
		pool->algo = gen_pool_first_fit;
 | 
						|
		pool->data = NULL;
 | 
						|
	}
 | 
						|
	return pool;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(gen_pool_create);
 | 
						|
 | 
						|
/**
 | 
						|
 * gen_pool_add_virt - add a new chunk of special memory to the pool
 | 
						|
 * @pool: pool to add new memory chunk to
 | 
						|
 * @virt: virtual starting address of memory chunk to add to pool
 | 
						|
 * @phys: physical starting address of memory chunk to add to pool
 | 
						|
 * @size: size in bytes of the memory chunk to add to pool
 | 
						|
 * @nid: node id of the node the chunk structure and bitmap should be
 | 
						|
 *       allocated on, or -1
 | 
						|
 *
 | 
						|
 * Add a new chunk of special memory to the specified pool.
 | 
						|
 *
 | 
						|
 * Returns 0 on success or a -ve errno on failure.
 | 
						|
 */
 | 
						|
int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
 | 
						|
		 size_t size, int nid)
 | 
						|
{
 | 
						|
	struct gen_pool_chunk *chunk;
 | 
						|
	int nbits = size >> pool->min_alloc_order;
 | 
						|
	int nbytes = sizeof(struct gen_pool_chunk) +
 | 
						|
				(nbits + BITS_PER_BYTE - 1) / BITS_PER_BYTE;
 | 
						|
 | 
						|
	chunk = kmalloc_node(nbytes, GFP_KERNEL | __GFP_ZERO, nid);
 | 
						|
	if (unlikely(chunk == NULL))
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	chunk->phys_addr = phys;
 | 
						|
	chunk->start_addr = virt;
 | 
						|
	chunk->end_addr = virt + size;
 | 
						|
	atomic_set(&chunk->avail, size);
 | 
						|
 | 
						|
	spin_lock(&pool->lock);
 | 
						|
	list_add_rcu(&chunk->next_chunk, &pool->chunks);
 | 
						|
	spin_unlock(&pool->lock);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(gen_pool_add_virt);
 | 
						|
 | 
						|
/**
 | 
						|
 * gen_pool_virt_to_phys - return the physical address of memory
 | 
						|
 * @pool: pool to allocate from
 | 
						|
 * @addr: starting address of memory
 | 
						|
 *
 | 
						|
 * Returns the physical address on success, or -1 on error.
 | 
						|
 */
 | 
						|
phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
 | 
						|
{
 | 
						|
	struct gen_pool_chunk *chunk;
 | 
						|
	phys_addr_t paddr = -1;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
 | 
						|
		if (addr >= chunk->start_addr && addr < chunk->end_addr) {
 | 
						|
			paddr = chunk->phys_addr + (addr - chunk->start_addr);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return paddr;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(gen_pool_virt_to_phys);
 | 
						|
 | 
						|
/**
 | 
						|
 * gen_pool_destroy - destroy a special memory pool
 | 
						|
 * @pool: pool to destroy
 | 
						|
 *
 | 
						|
 * Destroy the specified special memory pool. Verifies that there are no
 | 
						|
 * outstanding allocations.
 | 
						|
 */
 | 
						|
void gen_pool_destroy(struct gen_pool *pool)
 | 
						|
{
 | 
						|
	struct list_head *_chunk, *_next_chunk;
 | 
						|
	struct gen_pool_chunk *chunk;
 | 
						|
	int order = pool->min_alloc_order;
 | 
						|
	int bit, end_bit;
 | 
						|
 | 
						|
	list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
 | 
						|
		chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
 | 
						|
		list_del(&chunk->next_chunk);
 | 
						|
 | 
						|
		end_bit = (chunk->end_addr - chunk->start_addr) >> order;
 | 
						|
		bit = find_next_bit(chunk->bits, end_bit, 0);
 | 
						|
		BUG_ON(bit < end_bit);
 | 
						|
 | 
						|
		kfree(chunk);
 | 
						|
	}
 | 
						|
	kfree(pool);
 | 
						|
	return;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(gen_pool_destroy);
 | 
						|
 | 
						|
/**
 | 
						|
 * gen_pool_alloc - allocate special memory from the pool
 | 
						|
 * @pool: pool to allocate from
 | 
						|
 * @size: number of bytes to allocate from the pool
 | 
						|
 *
 | 
						|
 * Allocate the requested number of bytes from the specified pool.
 | 
						|
 * Uses the pool allocation function (with first-fit algorithm by default).
 | 
						|
 * Can not be used in NMI handler on architectures without
 | 
						|
 * NMI-safe cmpxchg implementation.
 | 
						|
 */
 | 
						|
unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
 | 
						|
{
 | 
						|
	struct gen_pool_chunk *chunk;
 | 
						|
	unsigned long addr = 0;
 | 
						|
	int order = pool->min_alloc_order;
 | 
						|
	int nbits, start_bit = 0, end_bit, remain;
 | 
						|
 | 
						|
#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
 | 
						|
	BUG_ON(in_nmi());
 | 
						|
#endif
 | 
						|
 | 
						|
	if (size == 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	nbits = (size + (1UL << order) - 1) >> order;
 | 
						|
	rcu_read_lock();
 | 
						|
	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
 | 
						|
		if (size > atomic_read(&chunk->avail))
 | 
						|
			continue;
 | 
						|
 | 
						|
		end_bit = (chunk->end_addr - chunk->start_addr) >> order;
 | 
						|
retry:
 | 
						|
		start_bit = pool->algo(chunk->bits, end_bit, start_bit, nbits,
 | 
						|
				pool->data);
 | 
						|
		if (start_bit >= end_bit)
 | 
						|
			continue;
 | 
						|
		remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
 | 
						|
		if (remain) {
 | 
						|
			remain = bitmap_clear_ll(chunk->bits, start_bit,
 | 
						|
						 nbits - remain);
 | 
						|
			BUG_ON(remain);
 | 
						|
			goto retry;
 | 
						|
		}
 | 
						|
 | 
						|
		addr = chunk->start_addr + ((unsigned long)start_bit << order);
 | 
						|
		size = nbits << order;
 | 
						|
		atomic_sub(size, &chunk->avail);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
	return addr;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(gen_pool_alloc);
 | 
						|
 | 
						|
/**
 | 
						|
 * gen_pool_free - free allocated special memory back to the pool
 | 
						|
 * @pool: pool to free to
 | 
						|
 * @addr: starting address of memory to free back to pool
 | 
						|
 * @size: size in bytes of memory to free
 | 
						|
 *
 | 
						|
 * Free previously allocated special memory back to the specified
 | 
						|
 * pool.  Can not be used in NMI handler on architectures without
 | 
						|
 * NMI-safe cmpxchg implementation.
 | 
						|
 */
 | 
						|
void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
 | 
						|
{
 | 
						|
	struct gen_pool_chunk *chunk;
 | 
						|
	int order = pool->min_alloc_order;
 | 
						|
	int start_bit, nbits, remain;
 | 
						|
 | 
						|
#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
 | 
						|
	BUG_ON(in_nmi());
 | 
						|
#endif
 | 
						|
 | 
						|
	nbits = (size + (1UL << order) - 1) >> order;
 | 
						|
	rcu_read_lock();
 | 
						|
	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
 | 
						|
		if (addr >= chunk->start_addr && addr < chunk->end_addr) {
 | 
						|
			BUG_ON(addr + size > chunk->end_addr);
 | 
						|
			start_bit = (addr - chunk->start_addr) >> order;
 | 
						|
			remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
 | 
						|
			BUG_ON(remain);
 | 
						|
			size = nbits << order;
 | 
						|
			atomic_add(size, &chunk->avail);
 | 
						|
			rcu_read_unlock();
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
	BUG();
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(gen_pool_free);
 | 
						|
 | 
						|
/**
 | 
						|
 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
 | 
						|
 * @pool:	the generic memory pool
 | 
						|
 * @func:	func to call
 | 
						|
 * @data:	additional data used by @func
 | 
						|
 *
 | 
						|
 * Call @func for every chunk of generic memory pool.  The @func is
 | 
						|
 * called with rcu_read_lock held.
 | 
						|
 */
 | 
						|
void gen_pool_for_each_chunk(struct gen_pool *pool,
 | 
						|
	void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
 | 
						|
	void *data)
 | 
						|
{
 | 
						|
	struct gen_pool_chunk *chunk;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
 | 
						|
		func(pool, chunk, data);
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(gen_pool_for_each_chunk);
 | 
						|
 | 
						|
/**
 | 
						|
 * gen_pool_avail - get available free space of the pool
 | 
						|
 * @pool: pool to get available free space
 | 
						|
 *
 | 
						|
 * Return available free space of the specified pool.
 | 
						|
 */
 | 
						|
size_t gen_pool_avail(struct gen_pool *pool)
 | 
						|
{
 | 
						|
	struct gen_pool_chunk *chunk;
 | 
						|
	size_t avail = 0;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
 | 
						|
		avail += atomic_read(&chunk->avail);
 | 
						|
	rcu_read_unlock();
 | 
						|
	return avail;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(gen_pool_avail);
 | 
						|
 | 
						|
/**
 | 
						|
 * gen_pool_size - get size in bytes of memory managed by the pool
 | 
						|
 * @pool: pool to get size
 | 
						|
 *
 | 
						|
 * Return size in bytes of memory managed by the pool.
 | 
						|
 */
 | 
						|
size_t gen_pool_size(struct gen_pool *pool)
 | 
						|
{
 | 
						|
	struct gen_pool_chunk *chunk;
 | 
						|
	size_t size = 0;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
 | 
						|
		size += chunk->end_addr - chunk->start_addr;
 | 
						|
	rcu_read_unlock();
 | 
						|
	return size;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(gen_pool_size);
 | 
						|
 | 
						|
/**
 | 
						|
 * gen_pool_set_algo - set the allocation algorithm
 | 
						|
 * @pool: pool to change allocation algorithm
 | 
						|
 * @algo: custom algorithm function
 | 
						|
 * @data: additional data used by @algo
 | 
						|
 *
 | 
						|
 * Call @algo for each memory allocation in the pool.
 | 
						|
 * If @algo is NULL use gen_pool_first_fit as default
 | 
						|
 * memory allocation function.
 | 
						|
 */
 | 
						|
void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
 | 
						|
{
 | 
						|
	rcu_read_lock();
 | 
						|
 | 
						|
	pool->algo = algo;
 | 
						|
	if (!pool->algo)
 | 
						|
		pool->algo = gen_pool_first_fit;
 | 
						|
 | 
						|
	pool->data = data;
 | 
						|
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(gen_pool_set_algo);
 | 
						|
 | 
						|
/**
 | 
						|
 * gen_pool_first_fit - find the first available region
 | 
						|
 * of memory matching the size requirement (no alignment constraint)
 | 
						|
 * @map: The address to base the search on
 | 
						|
 * @size: The bitmap size in bits
 | 
						|
 * @start: The bitnumber to start searching at
 | 
						|
 * @nr: The number of zeroed bits we're looking for
 | 
						|
 * @data: additional data - unused
 | 
						|
 */
 | 
						|
unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
 | 
						|
		unsigned long start, unsigned int nr, void *data)
 | 
						|
{
 | 
						|
	return bitmap_find_next_zero_area(map, size, start, nr, 0);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(gen_pool_first_fit);
 | 
						|
 | 
						|
/**
 | 
						|
 * gen_pool_best_fit - find the best fitting region of memory
 | 
						|
 * macthing the size requirement (no alignment constraint)
 | 
						|
 * @map: The address to base the search on
 | 
						|
 * @size: The bitmap size in bits
 | 
						|
 * @start: The bitnumber to start searching at
 | 
						|
 * @nr: The number of zeroed bits we're looking for
 | 
						|
 * @data: additional data - unused
 | 
						|
 *
 | 
						|
 * Iterate over the bitmap to find the smallest free region
 | 
						|
 * which we can allocate the memory.
 | 
						|
 */
 | 
						|
unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
 | 
						|
		unsigned long start, unsigned int nr, void *data)
 | 
						|
{
 | 
						|
	unsigned long start_bit = size;
 | 
						|
	unsigned long len = size + 1;
 | 
						|
	unsigned long index;
 | 
						|
 | 
						|
	index = bitmap_find_next_zero_area(map, size, start, nr, 0);
 | 
						|
 | 
						|
	while (index < size) {
 | 
						|
		int next_bit = find_next_bit(map, size, index + nr);
 | 
						|
		if ((next_bit - index) < len) {
 | 
						|
			len = next_bit - index;
 | 
						|
			start_bit = index;
 | 
						|
			if (len == nr)
 | 
						|
				return start_bit;
 | 
						|
		}
 | 
						|
		index = bitmap_find_next_zero_area(map, size,
 | 
						|
						   next_bit + 1, nr, 0);
 | 
						|
	}
 | 
						|
 | 
						|
	return start_bit;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(gen_pool_best_fit);
 |