 95f873f2ff
			
		
	
	
	95f873f2ff
	
	
	
		
			
			Conflicts: arch/arm/boot/dts/imx6sx-sdb.dts net/sched/cls_bpf.c Two simple sets of overlapping changes. Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			8661 lines
		
	
	
	
		
			240 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			8661 lines
		
	
	
	
		
			240 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /************************************************************************
 | |
|  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
 | |
|  * Copyright(c) 2002-2010 Exar Corp.
 | |
|  *
 | |
|  * This software may be used and distributed according to the terms of
 | |
|  * the GNU General Public License (GPL), incorporated herein by reference.
 | |
|  * Drivers based on or derived from this code fall under the GPL and must
 | |
|  * retain the authorship, copyright and license notice.  This file is not
 | |
|  * a complete program and may only be used when the entire operating
 | |
|  * system is licensed under the GPL.
 | |
|  * See the file COPYING in this distribution for more information.
 | |
|  *
 | |
|  * Credits:
 | |
|  * Jeff Garzik		: For pointing out the improper error condition
 | |
|  *			  check in the s2io_xmit routine and also some
 | |
|  *			  issues in the Tx watch dog function. Also for
 | |
|  *			  patiently answering all those innumerable
 | |
|  *			  questions regaring the 2.6 porting issues.
 | |
|  * Stephen Hemminger	: Providing proper 2.6 porting mechanism for some
 | |
|  *			  macros available only in 2.6 Kernel.
 | |
|  * Francois Romieu	: For pointing out all code part that were
 | |
|  *			  deprecated and also styling related comments.
 | |
|  * Grant Grundler	: For helping me get rid of some Architecture
 | |
|  *			  dependent code.
 | |
|  * Christopher Hellwig	: Some more 2.6 specific issues in the driver.
 | |
|  *
 | |
|  * The module loadable parameters that are supported by the driver and a brief
 | |
|  * explanation of all the variables.
 | |
|  *
 | |
|  * rx_ring_num : This can be used to program the number of receive rings used
 | |
|  * in the driver.
 | |
|  * rx_ring_sz: This defines the number of receive blocks each ring can have.
 | |
|  *     This is also an array of size 8.
 | |
|  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
 | |
|  *		values are 1, 2.
 | |
|  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
 | |
|  * tx_fifo_len: This too is an array of 8. Each element defines the number of
 | |
|  * Tx descriptors that can be associated with each corresponding FIFO.
 | |
|  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
 | |
|  *     2(MSI_X). Default value is '2(MSI_X)'
 | |
|  * lro_max_pkts: This parameter defines maximum number of packets can be
 | |
|  *     aggregated as a single large packet
 | |
|  * napi: This parameter used to enable/disable NAPI (polling Rx)
 | |
|  *     Possible values '1' for enable and '0' for disable. Default is '1'
 | |
|  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
 | |
|  *      Possible values '1' for enable and '0' for disable. Default is '0'
 | |
|  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
 | |
|  *                 Possible values '1' for enable , '0' for disable.
 | |
|  *                 Default is '2' - which means disable in promisc mode
 | |
|  *                 and enable in non-promiscuous mode.
 | |
|  * multiq: This parameter used to enable/disable MULTIQUEUE support.
 | |
|  *      Possible values '1' for enable and '0' for disable. Default is '0'
 | |
|  ************************************************************************/
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/mdio.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/stddef.h>
 | |
| #include <linux/ioctl.h>
 | |
| #include <linux/timex.h>
 | |
| #include <linux/ethtool.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/if_vlan.h>
 | |
| #include <linux/ip.h>
 | |
| #include <linux/tcp.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/prefetch.h>
 | |
| #include <net/tcp.h>
 | |
| #include <net/checksum.h>
 | |
| 
 | |
| #include <asm/div64.h>
 | |
| #include <asm/irq.h>
 | |
| 
 | |
| /* local include */
 | |
| #include "s2io.h"
 | |
| #include "s2io-regs.h"
 | |
| 
 | |
| #define DRV_VERSION "2.0.26.28"
 | |
| 
 | |
| /* S2io Driver name & version. */
 | |
| static const char s2io_driver_name[] = "Neterion";
 | |
| static const char s2io_driver_version[] = DRV_VERSION;
 | |
| 
 | |
| static const int rxd_size[2] = {32, 48};
 | |
| static const int rxd_count[2] = {127, 85};
 | |
| 
 | |
| static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
 | |
| 	       (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cards with following subsystem_id have a link state indication
 | |
|  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
 | |
|  * macro below identifies these cards given the subsystem_id.
 | |
|  */
 | |
| #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)		\
 | |
| 	(dev_type == XFRAME_I_DEVICE) ?					\
 | |
| 	((((subid >= 0x600B) && (subid <= 0x600D)) ||			\
 | |
| 	  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
 | |
| 
 | |
| #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
 | |
| 				      ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
 | |
| 
 | |
| static inline int is_s2io_card_up(const struct s2io_nic *sp)
 | |
| {
 | |
| 	return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
 | |
| }
 | |
| 
 | |
| /* Ethtool related variables and Macros. */
 | |
| static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
 | |
| 	"Register test\t(offline)",
 | |
| 	"Eeprom test\t(offline)",
 | |
| 	"Link test\t(online)",
 | |
| 	"RLDRAM test\t(offline)",
 | |
| 	"BIST Test\t(offline)"
 | |
| };
 | |
| 
 | |
| static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
 | |
| 	{"tmac_frms"},
 | |
| 	{"tmac_data_octets"},
 | |
| 	{"tmac_drop_frms"},
 | |
| 	{"tmac_mcst_frms"},
 | |
| 	{"tmac_bcst_frms"},
 | |
| 	{"tmac_pause_ctrl_frms"},
 | |
| 	{"tmac_ttl_octets"},
 | |
| 	{"tmac_ucst_frms"},
 | |
| 	{"tmac_nucst_frms"},
 | |
| 	{"tmac_any_err_frms"},
 | |
| 	{"tmac_ttl_less_fb_octets"},
 | |
| 	{"tmac_vld_ip_octets"},
 | |
| 	{"tmac_vld_ip"},
 | |
| 	{"tmac_drop_ip"},
 | |
| 	{"tmac_icmp"},
 | |
| 	{"tmac_rst_tcp"},
 | |
| 	{"tmac_tcp"},
 | |
| 	{"tmac_udp"},
 | |
| 	{"rmac_vld_frms"},
 | |
| 	{"rmac_data_octets"},
 | |
| 	{"rmac_fcs_err_frms"},
 | |
| 	{"rmac_drop_frms"},
 | |
| 	{"rmac_vld_mcst_frms"},
 | |
| 	{"rmac_vld_bcst_frms"},
 | |
| 	{"rmac_in_rng_len_err_frms"},
 | |
| 	{"rmac_out_rng_len_err_frms"},
 | |
| 	{"rmac_long_frms"},
 | |
| 	{"rmac_pause_ctrl_frms"},
 | |
| 	{"rmac_unsup_ctrl_frms"},
 | |
| 	{"rmac_ttl_octets"},
 | |
| 	{"rmac_accepted_ucst_frms"},
 | |
| 	{"rmac_accepted_nucst_frms"},
 | |
| 	{"rmac_discarded_frms"},
 | |
| 	{"rmac_drop_events"},
 | |
| 	{"rmac_ttl_less_fb_octets"},
 | |
| 	{"rmac_ttl_frms"},
 | |
| 	{"rmac_usized_frms"},
 | |
| 	{"rmac_osized_frms"},
 | |
| 	{"rmac_frag_frms"},
 | |
| 	{"rmac_jabber_frms"},
 | |
| 	{"rmac_ttl_64_frms"},
 | |
| 	{"rmac_ttl_65_127_frms"},
 | |
| 	{"rmac_ttl_128_255_frms"},
 | |
| 	{"rmac_ttl_256_511_frms"},
 | |
| 	{"rmac_ttl_512_1023_frms"},
 | |
| 	{"rmac_ttl_1024_1518_frms"},
 | |
| 	{"rmac_ip"},
 | |
| 	{"rmac_ip_octets"},
 | |
| 	{"rmac_hdr_err_ip"},
 | |
| 	{"rmac_drop_ip"},
 | |
| 	{"rmac_icmp"},
 | |
| 	{"rmac_tcp"},
 | |
| 	{"rmac_udp"},
 | |
| 	{"rmac_err_drp_udp"},
 | |
| 	{"rmac_xgmii_err_sym"},
 | |
| 	{"rmac_frms_q0"},
 | |
| 	{"rmac_frms_q1"},
 | |
| 	{"rmac_frms_q2"},
 | |
| 	{"rmac_frms_q3"},
 | |
| 	{"rmac_frms_q4"},
 | |
| 	{"rmac_frms_q5"},
 | |
| 	{"rmac_frms_q6"},
 | |
| 	{"rmac_frms_q7"},
 | |
| 	{"rmac_full_q0"},
 | |
| 	{"rmac_full_q1"},
 | |
| 	{"rmac_full_q2"},
 | |
| 	{"rmac_full_q3"},
 | |
| 	{"rmac_full_q4"},
 | |
| 	{"rmac_full_q5"},
 | |
| 	{"rmac_full_q6"},
 | |
| 	{"rmac_full_q7"},
 | |
| 	{"rmac_pause_cnt"},
 | |
| 	{"rmac_xgmii_data_err_cnt"},
 | |
| 	{"rmac_xgmii_ctrl_err_cnt"},
 | |
| 	{"rmac_accepted_ip"},
 | |
| 	{"rmac_err_tcp"},
 | |
| 	{"rd_req_cnt"},
 | |
| 	{"new_rd_req_cnt"},
 | |
| 	{"new_rd_req_rtry_cnt"},
 | |
| 	{"rd_rtry_cnt"},
 | |
| 	{"wr_rtry_rd_ack_cnt"},
 | |
| 	{"wr_req_cnt"},
 | |
| 	{"new_wr_req_cnt"},
 | |
| 	{"new_wr_req_rtry_cnt"},
 | |
| 	{"wr_rtry_cnt"},
 | |
| 	{"wr_disc_cnt"},
 | |
| 	{"rd_rtry_wr_ack_cnt"},
 | |
| 	{"txp_wr_cnt"},
 | |
| 	{"txd_rd_cnt"},
 | |
| 	{"txd_wr_cnt"},
 | |
| 	{"rxd_rd_cnt"},
 | |
| 	{"rxd_wr_cnt"},
 | |
| 	{"txf_rd_cnt"},
 | |
| 	{"rxf_wr_cnt"}
 | |
| };
 | |
| 
 | |
| static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
 | |
| 	{"rmac_ttl_1519_4095_frms"},
 | |
| 	{"rmac_ttl_4096_8191_frms"},
 | |
| 	{"rmac_ttl_8192_max_frms"},
 | |
| 	{"rmac_ttl_gt_max_frms"},
 | |
| 	{"rmac_osized_alt_frms"},
 | |
| 	{"rmac_jabber_alt_frms"},
 | |
| 	{"rmac_gt_max_alt_frms"},
 | |
| 	{"rmac_vlan_frms"},
 | |
| 	{"rmac_len_discard"},
 | |
| 	{"rmac_fcs_discard"},
 | |
| 	{"rmac_pf_discard"},
 | |
| 	{"rmac_da_discard"},
 | |
| 	{"rmac_red_discard"},
 | |
| 	{"rmac_rts_discard"},
 | |
| 	{"rmac_ingm_full_discard"},
 | |
| 	{"link_fault_cnt"}
 | |
| };
 | |
| 
 | |
| static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
 | |
| 	{"\n DRIVER STATISTICS"},
 | |
| 	{"single_bit_ecc_errs"},
 | |
| 	{"double_bit_ecc_errs"},
 | |
| 	{"parity_err_cnt"},
 | |
| 	{"serious_err_cnt"},
 | |
| 	{"soft_reset_cnt"},
 | |
| 	{"fifo_full_cnt"},
 | |
| 	{"ring_0_full_cnt"},
 | |
| 	{"ring_1_full_cnt"},
 | |
| 	{"ring_2_full_cnt"},
 | |
| 	{"ring_3_full_cnt"},
 | |
| 	{"ring_4_full_cnt"},
 | |
| 	{"ring_5_full_cnt"},
 | |
| 	{"ring_6_full_cnt"},
 | |
| 	{"ring_7_full_cnt"},
 | |
| 	{"alarm_transceiver_temp_high"},
 | |
| 	{"alarm_transceiver_temp_low"},
 | |
| 	{"alarm_laser_bias_current_high"},
 | |
| 	{"alarm_laser_bias_current_low"},
 | |
| 	{"alarm_laser_output_power_high"},
 | |
| 	{"alarm_laser_output_power_low"},
 | |
| 	{"warn_transceiver_temp_high"},
 | |
| 	{"warn_transceiver_temp_low"},
 | |
| 	{"warn_laser_bias_current_high"},
 | |
| 	{"warn_laser_bias_current_low"},
 | |
| 	{"warn_laser_output_power_high"},
 | |
| 	{"warn_laser_output_power_low"},
 | |
| 	{"lro_aggregated_pkts"},
 | |
| 	{"lro_flush_both_count"},
 | |
| 	{"lro_out_of_sequence_pkts"},
 | |
| 	{"lro_flush_due_to_max_pkts"},
 | |
| 	{"lro_avg_aggr_pkts"},
 | |
| 	{"mem_alloc_fail_cnt"},
 | |
| 	{"pci_map_fail_cnt"},
 | |
| 	{"watchdog_timer_cnt"},
 | |
| 	{"mem_allocated"},
 | |
| 	{"mem_freed"},
 | |
| 	{"link_up_cnt"},
 | |
| 	{"link_down_cnt"},
 | |
| 	{"link_up_time"},
 | |
| 	{"link_down_time"},
 | |
| 	{"tx_tcode_buf_abort_cnt"},
 | |
| 	{"tx_tcode_desc_abort_cnt"},
 | |
| 	{"tx_tcode_parity_err_cnt"},
 | |
| 	{"tx_tcode_link_loss_cnt"},
 | |
| 	{"tx_tcode_list_proc_err_cnt"},
 | |
| 	{"rx_tcode_parity_err_cnt"},
 | |
| 	{"rx_tcode_abort_cnt"},
 | |
| 	{"rx_tcode_parity_abort_cnt"},
 | |
| 	{"rx_tcode_rda_fail_cnt"},
 | |
| 	{"rx_tcode_unkn_prot_cnt"},
 | |
| 	{"rx_tcode_fcs_err_cnt"},
 | |
| 	{"rx_tcode_buf_size_err_cnt"},
 | |
| 	{"rx_tcode_rxd_corrupt_cnt"},
 | |
| 	{"rx_tcode_unkn_err_cnt"},
 | |
| 	{"tda_err_cnt"},
 | |
| 	{"pfc_err_cnt"},
 | |
| 	{"pcc_err_cnt"},
 | |
| 	{"tti_err_cnt"},
 | |
| 	{"tpa_err_cnt"},
 | |
| 	{"sm_err_cnt"},
 | |
| 	{"lso_err_cnt"},
 | |
| 	{"mac_tmac_err_cnt"},
 | |
| 	{"mac_rmac_err_cnt"},
 | |
| 	{"xgxs_txgxs_err_cnt"},
 | |
| 	{"xgxs_rxgxs_err_cnt"},
 | |
| 	{"rc_err_cnt"},
 | |
| 	{"prc_pcix_err_cnt"},
 | |
| 	{"rpa_err_cnt"},
 | |
| 	{"rda_err_cnt"},
 | |
| 	{"rti_err_cnt"},
 | |
| 	{"mc_err_cnt"}
 | |
| };
 | |
| 
 | |
| #define S2IO_XENA_STAT_LEN	ARRAY_SIZE(ethtool_xena_stats_keys)
 | |
| #define S2IO_ENHANCED_STAT_LEN	ARRAY_SIZE(ethtool_enhanced_stats_keys)
 | |
| #define S2IO_DRIVER_STAT_LEN	ARRAY_SIZE(ethtool_driver_stats_keys)
 | |
| 
 | |
| #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
 | |
| #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
 | |
| 
 | |
| #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
 | |
| #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
 | |
| 
 | |
| #define S2IO_TEST_LEN	ARRAY_SIZE(s2io_gstrings)
 | |
| #define S2IO_STRINGS_LEN	(S2IO_TEST_LEN * ETH_GSTRING_LEN)
 | |
| 
 | |
| #define S2IO_TIMER_CONF(timer, handle, arg, exp)	\
 | |
| 	init_timer(&timer);				\
 | |
| 	timer.function = handle;			\
 | |
| 	timer.data = (unsigned long)arg;		\
 | |
| 	mod_timer(&timer, (jiffies + exp))		\
 | |
| 
 | |
| /* copy mac addr to def_mac_addr array */
 | |
| static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
 | |
| {
 | |
| 	sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
 | |
| 	sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
 | |
| 	sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
 | |
| 	sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
 | |
| 	sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
 | |
| 	sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Constants to be programmed into the Xena's registers, to configure
 | |
|  * the XAUI.
 | |
|  */
 | |
| 
 | |
| #define	END_SIGN	0x0
 | |
| static const u64 herc_act_dtx_cfg[] = {
 | |
| 	/* Set address */
 | |
| 	0x8000051536750000ULL, 0x80000515367500E0ULL,
 | |
| 	/* Write data */
 | |
| 	0x8000051536750004ULL, 0x80000515367500E4ULL,
 | |
| 	/* Set address */
 | |
| 	0x80010515003F0000ULL, 0x80010515003F00E0ULL,
 | |
| 	/* Write data */
 | |
| 	0x80010515003F0004ULL, 0x80010515003F00E4ULL,
 | |
| 	/* Set address */
 | |
| 	0x801205150D440000ULL, 0x801205150D4400E0ULL,
 | |
| 	/* Write data */
 | |
| 	0x801205150D440004ULL, 0x801205150D4400E4ULL,
 | |
| 	/* Set address */
 | |
| 	0x80020515F2100000ULL, 0x80020515F21000E0ULL,
 | |
| 	/* Write data */
 | |
| 	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
 | |
| 	/* Done */
 | |
| 	END_SIGN
 | |
| };
 | |
| 
 | |
| static const u64 xena_dtx_cfg[] = {
 | |
| 	/* Set address */
 | |
| 	0x8000051500000000ULL, 0x80000515000000E0ULL,
 | |
| 	/* Write data */
 | |
| 	0x80000515D9350004ULL, 0x80000515D93500E4ULL,
 | |
| 	/* Set address */
 | |
| 	0x8001051500000000ULL, 0x80010515000000E0ULL,
 | |
| 	/* Write data */
 | |
| 	0x80010515001E0004ULL, 0x80010515001E00E4ULL,
 | |
| 	/* Set address */
 | |
| 	0x8002051500000000ULL, 0x80020515000000E0ULL,
 | |
| 	/* Write data */
 | |
| 	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
 | |
| 	END_SIGN
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Constants for Fixing the MacAddress problem seen mostly on
 | |
|  * Alpha machines.
 | |
|  */
 | |
| static const u64 fix_mac[] = {
 | |
| 	0x0060000000000000ULL, 0x0060600000000000ULL,
 | |
| 	0x0040600000000000ULL, 0x0000600000000000ULL,
 | |
| 	0x0020600000000000ULL, 0x0060600000000000ULL,
 | |
| 	0x0020600000000000ULL, 0x0060600000000000ULL,
 | |
| 	0x0020600000000000ULL, 0x0060600000000000ULL,
 | |
| 	0x0020600000000000ULL, 0x0060600000000000ULL,
 | |
| 	0x0020600000000000ULL, 0x0060600000000000ULL,
 | |
| 	0x0020600000000000ULL, 0x0060600000000000ULL,
 | |
| 	0x0020600000000000ULL, 0x0060600000000000ULL,
 | |
| 	0x0020600000000000ULL, 0x0060600000000000ULL,
 | |
| 	0x0020600000000000ULL, 0x0060600000000000ULL,
 | |
| 	0x0020600000000000ULL, 0x0060600000000000ULL,
 | |
| 	0x0020600000000000ULL, 0x0000600000000000ULL,
 | |
| 	0x0040600000000000ULL, 0x0060600000000000ULL,
 | |
| 	END_SIGN
 | |
| };
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_VERSION(DRV_VERSION);
 | |
| 
 | |
| 
 | |
| /* Module Loadable parameters. */
 | |
| S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
 | |
| S2IO_PARM_INT(rx_ring_num, 1);
 | |
| S2IO_PARM_INT(multiq, 0);
 | |
| S2IO_PARM_INT(rx_ring_mode, 1);
 | |
| S2IO_PARM_INT(use_continuous_tx_intrs, 1);
 | |
| S2IO_PARM_INT(rmac_pause_time, 0x100);
 | |
| S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
 | |
| S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
 | |
| S2IO_PARM_INT(shared_splits, 0);
 | |
| S2IO_PARM_INT(tmac_util_period, 5);
 | |
| S2IO_PARM_INT(rmac_util_period, 5);
 | |
| S2IO_PARM_INT(l3l4hdr_size, 128);
 | |
| /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
 | |
| S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
 | |
| /* Frequency of Rx desc syncs expressed as power of 2 */
 | |
| S2IO_PARM_INT(rxsync_frequency, 3);
 | |
| /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
 | |
| S2IO_PARM_INT(intr_type, 2);
 | |
| /* Large receive offload feature */
 | |
| 
 | |
| /* Max pkts to be aggregated by LRO at one time. If not specified,
 | |
|  * aggregation happens until we hit max IP pkt size(64K)
 | |
|  */
 | |
| S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
 | |
| S2IO_PARM_INT(indicate_max_pkts, 0);
 | |
| 
 | |
| S2IO_PARM_INT(napi, 1);
 | |
| S2IO_PARM_INT(ufo, 0);
 | |
| S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
 | |
| 
 | |
| static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
 | |
| {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
 | |
| static unsigned int rx_ring_sz[MAX_RX_RINGS] =
 | |
| {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
 | |
| static unsigned int rts_frm_len[MAX_RX_RINGS] =
 | |
| {[0 ...(MAX_RX_RINGS - 1)] = 0 };
 | |
| 
 | |
| module_param_array(tx_fifo_len, uint, NULL, 0);
 | |
| module_param_array(rx_ring_sz, uint, NULL, 0);
 | |
| module_param_array(rts_frm_len, uint, NULL, 0);
 | |
| 
 | |
| /*
 | |
|  * S2IO device table.
 | |
|  * This table lists all the devices that this driver supports.
 | |
|  */
 | |
| static const struct pci_device_id s2io_tbl[] = {
 | |
| 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
 | |
| 	 PCI_ANY_ID, PCI_ANY_ID},
 | |
| 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
 | |
| 	 PCI_ANY_ID, PCI_ANY_ID},
 | |
| 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
 | |
| 	 PCI_ANY_ID, PCI_ANY_ID},
 | |
| 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
 | |
| 	 PCI_ANY_ID, PCI_ANY_ID},
 | |
| 	{0,}
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(pci, s2io_tbl);
 | |
| 
 | |
| static const struct pci_error_handlers s2io_err_handler = {
 | |
| 	.error_detected = s2io_io_error_detected,
 | |
| 	.slot_reset = s2io_io_slot_reset,
 | |
| 	.resume = s2io_io_resume,
 | |
| };
 | |
| 
 | |
| static struct pci_driver s2io_driver = {
 | |
| 	.name = "S2IO",
 | |
| 	.id_table = s2io_tbl,
 | |
| 	.probe = s2io_init_nic,
 | |
| 	.remove = s2io_rem_nic,
 | |
| 	.err_handler = &s2io_err_handler,
 | |
| };
 | |
| 
 | |
| /* A simplifier macro used both by init and free shared_mem Fns(). */
 | |
| #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
 | |
| 
 | |
| /* netqueue manipulation helper functions */
 | |
| static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
 | |
| {
 | |
| 	if (!sp->config.multiq) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < sp->config.tx_fifo_num; i++)
 | |
| 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
 | |
| 	}
 | |
| 	netif_tx_stop_all_queues(sp->dev);
 | |
| }
 | |
| 
 | |
| static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
 | |
| {
 | |
| 	if (!sp->config.multiq)
 | |
| 		sp->mac_control.fifos[fifo_no].queue_state =
 | |
| 			FIFO_QUEUE_STOP;
 | |
| 
 | |
| 	netif_tx_stop_all_queues(sp->dev);
 | |
| }
 | |
| 
 | |
| static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
 | |
| {
 | |
| 	if (!sp->config.multiq) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < sp->config.tx_fifo_num; i++)
 | |
| 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
 | |
| 	}
 | |
| 	netif_tx_start_all_queues(sp->dev);
 | |
| }
 | |
| 
 | |
| static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
 | |
| {
 | |
| 	if (!sp->config.multiq) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < sp->config.tx_fifo_num; i++)
 | |
| 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
 | |
| 	}
 | |
| 	netif_tx_wake_all_queues(sp->dev);
 | |
| }
 | |
| 
 | |
| static inline void s2io_wake_tx_queue(
 | |
| 	struct fifo_info *fifo, int cnt, u8 multiq)
 | |
| {
 | |
| 
 | |
| 	if (multiq) {
 | |
| 		if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
 | |
| 			netif_wake_subqueue(fifo->dev, fifo->fifo_no);
 | |
| 	} else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
 | |
| 		if (netif_queue_stopped(fifo->dev)) {
 | |
| 			fifo->queue_state = FIFO_QUEUE_START;
 | |
| 			netif_wake_queue(fifo->dev);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * init_shared_mem - Allocation and Initialization of Memory
 | |
|  * @nic: Device private variable.
 | |
|  * Description: The function allocates all the memory areas shared
 | |
|  * between the NIC and the driver. This includes Tx descriptors,
 | |
|  * Rx descriptors and the statistics block.
 | |
|  */
 | |
| 
 | |
| static int init_shared_mem(struct s2io_nic *nic)
 | |
| {
 | |
| 	u32 size;
 | |
| 	void *tmp_v_addr, *tmp_v_addr_next;
 | |
| 	dma_addr_t tmp_p_addr, tmp_p_addr_next;
 | |
| 	struct RxD_block *pre_rxd_blk = NULL;
 | |
| 	int i, j, blk_cnt;
 | |
| 	int lst_size, lst_per_page;
 | |
| 	struct net_device *dev = nic->dev;
 | |
| 	unsigned long tmp;
 | |
| 	struct buffAdd *ba;
 | |
| 	struct config_param *config = &nic->config;
 | |
| 	struct mac_info *mac_control = &nic->mac_control;
 | |
| 	unsigned long long mem_allocated = 0;
 | |
| 
 | |
| 	/* Allocation and initialization of TXDLs in FIFOs */
 | |
| 	size = 0;
 | |
| 	for (i = 0; i < config->tx_fifo_num; i++) {
 | |
| 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 | |
| 
 | |
| 		size += tx_cfg->fifo_len;
 | |
| 	}
 | |
| 	if (size > MAX_AVAILABLE_TXDS) {
 | |
| 		DBG_PRINT(ERR_DBG,
 | |
| 			  "Too many TxDs requested: %d, max supported: %d\n",
 | |
| 			  size, MAX_AVAILABLE_TXDS);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	size = 0;
 | |
| 	for (i = 0; i < config->tx_fifo_num; i++) {
 | |
| 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 | |
| 
 | |
| 		size = tx_cfg->fifo_len;
 | |
| 		/*
 | |
| 		 * Legal values are from 2 to 8192
 | |
| 		 */
 | |
| 		if (size < 2) {
 | |
| 			DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
 | |
| 				  "Valid lengths are 2 through 8192\n",
 | |
| 				  i, size);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	lst_size = (sizeof(struct TxD) * config->max_txds);
 | |
| 	lst_per_page = PAGE_SIZE / lst_size;
 | |
| 
 | |
| 	for (i = 0; i < config->tx_fifo_num; i++) {
 | |
| 		struct fifo_info *fifo = &mac_control->fifos[i];
 | |
| 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 | |
| 		int fifo_len = tx_cfg->fifo_len;
 | |
| 		int list_holder_size = fifo_len * sizeof(struct list_info_hold);
 | |
| 
 | |
| 		fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
 | |
| 		if (!fifo->list_info) {
 | |
| 			DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		mem_allocated += list_holder_size;
 | |
| 	}
 | |
| 	for (i = 0; i < config->tx_fifo_num; i++) {
 | |
| 		int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
 | |
| 						lst_per_page);
 | |
| 		struct fifo_info *fifo = &mac_control->fifos[i];
 | |
| 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 | |
| 
 | |
| 		fifo->tx_curr_put_info.offset = 0;
 | |
| 		fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
 | |
| 		fifo->tx_curr_get_info.offset = 0;
 | |
| 		fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
 | |
| 		fifo->fifo_no = i;
 | |
| 		fifo->nic = nic;
 | |
| 		fifo->max_txds = MAX_SKB_FRAGS + 2;
 | |
| 		fifo->dev = dev;
 | |
| 
 | |
| 		for (j = 0; j < page_num; j++) {
 | |
| 			int k = 0;
 | |
| 			dma_addr_t tmp_p;
 | |
| 			void *tmp_v;
 | |
| 			tmp_v = pci_alloc_consistent(nic->pdev,
 | |
| 						     PAGE_SIZE, &tmp_p);
 | |
| 			if (!tmp_v) {
 | |
| 				DBG_PRINT(INFO_DBG,
 | |
| 					  "pci_alloc_consistent failed for TxDL\n");
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 			/* If we got a zero DMA address(can happen on
 | |
| 			 * certain platforms like PPC), reallocate.
 | |
| 			 * Store virtual address of page we don't want,
 | |
| 			 * to be freed later.
 | |
| 			 */
 | |
| 			if (!tmp_p) {
 | |
| 				mac_control->zerodma_virt_addr = tmp_v;
 | |
| 				DBG_PRINT(INIT_DBG,
 | |
| 					  "%s: Zero DMA address for TxDL. "
 | |
| 					  "Virtual address %p\n",
 | |
| 					  dev->name, tmp_v);
 | |
| 				tmp_v = pci_alloc_consistent(nic->pdev,
 | |
| 							     PAGE_SIZE, &tmp_p);
 | |
| 				if (!tmp_v) {
 | |
| 					DBG_PRINT(INFO_DBG,
 | |
| 						  "pci_alloc_consistent failed for TxDL\n");
 | |
| 					return -ENOMEM;
 | |
| 				}
 | |
| 				mem_allocated += PAGE_SIZE;
 | |
| 			}
 | |
| 			while (k < lst_per_page) {
 | |
| 				int l = (j * lst_per_page) + k;
 | |
| 				if (l == tx_cfg->fifo_len)
 | |
| 					break;
 | |
| 				fifo->list_info[l].list_virt_addr =
 | |
| 					tmp_v + (k * lst_size);
 | |
| 				fifo->list_info[l].list_phy_addr =
 | |
| 					tmp_p + (k * lst_size);
 | |
| 				k++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < config->tx_fifo_num; i++) {
 | |
| 		struct fifo_info *fifo = &mac_control->fifos[i];
 | |
| 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 | |
| 
 | |
| 		size = tx_cfg->fifo_len;
 | |
| 		fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
 | |
| 		if (!fifo->ufo_in_band_v)
 | |
| 			return -ENOMEM;
 | |
| 		mem_allocated += (size * sizeof(u64));
 | |
| 	}
 | |
| 
 | |
| 	/* Allocation and initialization of RXDs in Rings */
 | |
| 	size = 0;
 | |
| 	for (i = 0; i < config->rx_ring_num; i++) {
 | |
| 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
 | |
| 		struct ring_info *ring = &mac_control->rings[i];
 | |
| 
 | |
| 		if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
 | |
| 			DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
 | |
| 				  "multiple of RxDs per Block\n",
 | |
| 				  dev->name, i);
 | |
| 			return FAILURE;
 | |
| 		}
 | |
| 		size += rx_cfg->num_rxd;
 | |
| 		ring->block_count = rx_cfg->num_rxd /
 | |
| 			(rxd_count[nic->rxd_mode] + 1);
 | |
| 		ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
 | |
| 	}
 | |
| 	if (nic->rxd_mode == RXD_MODE_1)
 | |
| 		size = (size * (sizeof(struct RxD1)));
 | |
| 	else
 | |
| 		size = (size * (sizeof(struct RxD3)));
 | |
| 
 | |
| 	for (i = 0; i < config->rx_ring_num; i++) {
 | |
| 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
 | |
| 		struct ring_info *ring = &mac_control->rings[i];
 | |
| 
 | |
| 		ring->rx_curr_get_info.block_index = 0;
 | |
| 		ring->rx_curr_get_info.offset = 0;
 | |
| 		ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
 | |
| 		ring->rx_curr_put_info.block_index = 0;
 | |
| 		ring->rx_curr_put_info.offset = 0;
 | |
| 		ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
 | |
| 		ring->nic = nic;
 | |
| 		ring->ring_no = i;
 | |
| 
 | |
| 		blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
 | |
| 		/*  Allocating all the Rx blocks */
 | |
| 		for (j = 0; j < blk_cnt; j++) {
 | |
| 			struct rx_block_info *rx_blocks;
 | |
| 			int l;
 | |
| 
 | |
| 			rx_blocks = &ring->rx_blocks[j];
 | |
| 			size = SIZE_OF_BLOCK;	/* size is always page size */
 | |
| 			tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
 | |
| 							  &tmp_p_addr);
 | |
| 			if (tmp_v_addr == NULL) {
 | |
| 				/*
 | |
| 				 * In case of failure, free_shared_mem()
 | |
| 				 * is called, which should free any
 | |
| 				 * memory that was alloced till the
 | |
| 				 * failure happened.
 | |
| 				 */
 | |
| 				rx_blocks->block_virt_addr = tmp_v_addr;
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 			mem_allocated += size;
 | |
| 			memset(tmp_v_addr, 0, size);
 | |
| 
 | |
| 			size = sizeof(struct rxd_info) *
 | |
| 				rxd_count[nic->rxd_mode];
 | |
| 			rx_blocks->block_virt_addr = tmp_v_addr;
 | |
| 			rx_blocks->block_dma_addr = tmp_p_addr;
 | |
| 			rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
 | |
| 			if (!rx_blocks->rxds)
 | |
| 				return -ENOMEM;
 | |
| 			mem_allocated += size;
 | |
| 			for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
 | |
| 				rx_blocks->rxds[l].virt_addr =
 | |
| 					rx_blocks->block_virt_addr +
 | |
| 					(rxd_size[nic->rxd_mode] * l);
 | |
| 				rx_blocks->rxds[l].dma_addr =
 | |
| 					rx_blocks->block_dma_addr +
 | |
| 					(rxd_size[nic->rxd_mode] * l);
 | |
| 			}
 | |
| 		}
 | |
| 		/* Interlinking all Rx Blocks */
 | |
| 		for (j = 0; j < blk_cnt; j++) {
 | |
| 			int next = (j + 1) % blk_cnt;
 | |
| 			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
 | |
| 			tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
 | |
| 			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
 | |
| 			tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
 | |
| 
 | |
| 			pre_rxd_blk = tmp_v_addr;
 | |
| 			pre_rxd_blk->reserved_2_pNext_RxD_block =
 | |
| 				(unsigned long)tmp_v_addr_next;
 | |
| 			pre_rxd_blk->pNext_RxD_Blk_physical =
 | |
| 				(u64)tmp_p_addr_next;
 | |
| 		}
 | |
| 	}
 | |
| 	if (nic->rxd_mode == RXD_MODE_3B) {
 | |
| 		/*
 | |
| 		 * Allocation of Storages for buffer addresses in 2BUFF mode
 | |
| 		 * and the buffers as well.
 | |
| 		 */
 | |
| 		for (i = 0; i < config->rx_ring_num; i++) {
 | |
| 			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
 | |
| 			struct ring_info *ring = &mac_control->rings[i];
 | |
| 
 | |
| 			blk_cnt = rx_cfg->num_rxd /
 | |
| 				(rxd_count[nic->rxd_mode] + 1);
 | |
| 			size = sizeof(struct buffAdd *) * blk_cnt;
 | |
| 			ring->ba = kmalloc(size, GFP_KERNEL);
 | |
| 			if (!ring->ba)
 | |
| 				return -ENOMEM;
 | |
| 			mem_allocated += size;
 | |
| 			for (j = 0; j < blk_cnt; j++) {
 | |
| 				int k = 0;
 | |
| 
 | |
| 				size = sizeof(struct buffAdd) *
 | |
| 					(rxd_count[nic->rxd_mode] + 1);
 | |
| 				ring->ba[j] = kmalloc(size, GFP_KERNEL);
 | |
| 				if (!ring->ba[j])
 | |
| 					return -ENOMEM;
 | |
| 				mem_allocated += size;
 | |
| 				while (k != rxd_count[nic->rxd_mode]) {
 | |
| 					ba = &ring->ba[j][k];
 | |
| 					size = BUF0_LEN + ALIGN_SIZE;
 | |
| 					ba->ba_0_org = kmalloc(size, GFP_KERNEL);
 | |
| 					if (!ba->ba_0_org)
 | |
| 						return -ENOMEM;
 | |
| 					mem_allocated += size;
 | |
| 					tmp = (unsigned long)ba->ba_0_org;
 | |
| 					tmp += ALIGN_SIZE;
 | |
| 					tmp &= ~((unsigned long)ALIGN_SIZE);
 | |
| 					ba->ba_0 = (void *)tmp;
 | |
| 
 | |
| 					size = BUF1_LEN + ALIGN_SIZE;
 | |
| 					ba->ba_1_org = kmalloc(size, GFP_KERNEL);
 | |
| 					if (!ba->ba_1_org)
 | |
| 						return -ENOMEM;
 | |
| 					mem_allocated += size;
 | |
| 					tmp = (unsigned long)ba->ba_1_org;
 | |
| 					tmp += ALIGN_SIZE;
 | |
| 					tmp &= ~((unsigned long)ALIGN_SIZE);
 | |
| 					ba->ba_1 = (void *)tmp;
 | |
| 					k++;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Allocation and initialization of Statistics block */
 | |
| 	size = sizeof(struct stat_block);
 | |
| 	mac_control->stats_mem =
 | |
| 		pci_alloc_consistent(nic->pdev, size,
 | |
| 				     &mac_control->stats_mem_phy);
 | |
| 
 | |
| 	if (!mac_control->stats_mem) {
 | |
| 		/*
 | |
| 		 * In case of failure, free_shared_mem() is called, which
 | |
| 		 * should free any memory that was alloced till the
 | |
| 		 * failure happened.
 | |
| 		 */
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	mem_allocated += size;
 | |
| 	mac_control->stats_mem_sz = size;
 | |
| 
 | |
| 	tmp_v_addr = mac_control->stats_mem;
 | |
| 	mac_control->stats_info = tmp_v_addr;
 | |
| 	memset(tmp_v_addr, 0, size);
 | |
| 	DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
 | |
| 		dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
 | |
| 	mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
 | |
| 	return SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * free_shared_mem - Free the allocated Memory
 | |
|  * @nic:  Device private variable.
 | |
|  * Description: This function is to free all memory locations allocated by
 | |
|  * the init_shared_mem() function and return it to the kernel.
 | |
|  */
 | |
| 
 | |
| static void free_shared_mem(struct s2io_nic *nic)
 | |
| {
 | |
| 	int i, j, blk_cnt, size;
 | |
| 	void *tmp_v_addr;
 | |
| 	dma_addr_t tmp_p_addr;
 | |
| 	int lst_size, lst_per_page;
 | |
| 	struct net_device *dev;
 | |
| 	int page_num = 0;
 | |
| 	struct config_param *config;
 | |
| 	struct mac_info *mac_control;
 | |
| 	struct stat_block *stats;
 | |
| 	struct swStat *swstats;
 | |
| 
 | |
| 	if (!nic)
 | |
| 		return;
 | |
| 
 | |
| 	dev = nic->dev;
 | |
| 
 | |
| 	config = &nic->config;
 | |
| 	mac_control = &nic->mac_control;
 | |
| 	stats = mac_control->stats_info;
 | |
| 	swstats = &stats->sw_stat;
 | |
| 
 | |
| 	lst_size = sizeof(struct TxD) * config->max_txds;
 | |
| 	lst_per_page = PAGE_SIZE / lst_size;
 | |
| 
 | |
| 	for (i = 0; i < config->tx_fifo_num; i++) {
 | |
| 		struct fifo_info *fifo = &mac_control->fifos[i];
 | |
| 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 | |
| 
 | |
| 		page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
 | |
| 		for (j = 0; j < page_num; j++) {
 | |
| 			int mem_blks = (j * lst_per_page);
 | |
| 			struct list_info_hold *fli;
 | |
| 
 | |
| 			if (!fifo->list_info)
 | |
| 				return;
 | |
| 
 | |
| 			fli = &fifo->list_info[mem_blks];
 | |
| 			if (!fli->list_virt_addr)
 | |
| 				break;
 | |
| 			pci_free_consistent(nic->pdev, PAGE_SIZE,
 | |
| 					    fli->list_virt_addr,
 | |
| 					    fli->list_phy_addr);
 | |
| 			swstats->mem_freed += PAGE_SIZE;
 | |
| 		}
 | |
| 		/* If we got a zero DMA address during allocation,
 | |
| 		 * free the page now
 | |
| 		 */
 | |
| 		if (mac_control->zerodma_virt_addr) {
 | |
| 			pci_free_consistent(nic->pdev, PAGE_SIZE,
 | |
| 					    mac_control->zerodma_virt_addr,
 | |
| 					    (dma_addr_t)0);
 | |
| 			DBG_PRINT(INIT_DBG,
 | |
| 				  "%s: Freeing TxDL with zero DMA address. "
 | |
| 				  "Virtual address %p\n",
 | |
| 				  dev->name, mac_control->zerodma_virt_addr);
 | |
| 			swstats->mem_freed += PAGE_SIZE;
 | |
| 		}
 | |
| 		kfree(fifo->list_info);
 | |
| 		swstats->mem_freed += tx_cfg->fifo_len *
 | |
| 			sizeof(struct list_info_hold);
 | |
| 	}
 | |
| 
 | |
| 	size = SIZE_OF_BLOCK;
 | |
| 	for (i = 0; i < config->rx_ring_num; i++) {
 | |
| 		struct ring_info *ring = &mac_control->rings[i];
 | |
| 
 | |
| 		blk_cnt = ring->block_count;
 | |
| 		for (j = 0; j < blk_cnt; j++) {
 | |
| 			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
 | |
| 			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
 | |
| 			if (tmp_v_addr == NULL)
 | |
| 				break;
 | |
| 			pci_free_consistent(nic->pdev, size,
 | |
| 					    tmp_v_addr, tmp_p_addr);
 | |
| 			swstats->mem_freed += size;
 | |
| 			kfree(ring->rx_blocks[j].rxds);
 | |
| 			swstats->mem_freed += sizeof(struct rxd_info) *
 | |
| 				rxd_count[nic->rxd_mode];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (nic->rxd_mode == RXD_MODE_3B) {
 | |
| 		/* Freeing buffer storage addresses in 2BUFF mode. */
 | |
| 		for (i = 0; i < config->rx_ring_num; i++) {
 | |
| 			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
 | |
| 			struct ring_info *ring = &mac_control->rings[i];
 | |
| 
 | |
| 			blk_cnt = rx_cfg->num_rxd /
 | |
| 				(rxd_count[nic->rxd_mode] + 1);
 | |
| 			for (j = 0; j < blk_cnt; j++) {
 | |
| 				int k = 0;
 | |
| 				if (!ring->ba[j])
 | |
| 					continue;
 | |
| 				while (k != rxd_count[nic->rxd_mode]) {
 | |
| 					struct buffAdd *ba = &ring->ba[j][k];
 | |
| 					kfree(ba->ba_0_org);
 | |
| 					swstats->mem_freed +=
 | |
| 						BUF0_LEN + ALIGN_SIZE;
 | |
| 					kfree(ba->ba_1_org);
 | |
| 					swstats->mem_freed +=
 | |
| 						BUF1_LEN + ALIGN_SIZE;
 | |
| 					k++;
 | |
| 				}
 | |
| 				kfree(ring->ba[j]);
 | |
| 				swstats->mem_freed += sizeof(struct buffAdd) *
 | |
| 					(rxd_count[nic->rxd_mode] + 1);
 | |
| 			}
 | |
| 			kfree(ring->ba);
 | |
| 			swstats->mem_freed += sizeof(struct buffAdd *) *
 | |
| 				blk_cnt;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nic->config.tx_fifo_num; i++) {
 | |
| 		struct fifo_info *fifo = &mac_control->fifos[i];
 | |
| 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 | |
| 
 | |
| 		if (fifo->ufo_in_band_v) {
 | |
| 			swstats->mem_freed += tx_cfg->fifo_len *
 | |
| 				sizeof(u64);
 | |
| 			kfree(fifo->ufo_in_band_v);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (mac_control->stats_mem) {
 | |
| 		swstats->mem_freed += mac_control->stats_mem_sz;
 | |
| 		pci_free_consistent(nic->pdev,
 | |
| 				    mac_control->stats_mem_sz,
 | |
| 				    mac_control->stats_mem,
 | |
| 				    mac_control->stats_mem_phy);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_verify_pci_mode -
 | |
|  */
 | |
| 
 | |
| static int s2io_verify_pci_mode(struct s2io_nic *nic)
 | |
| {
 | |
| 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
 | |
| 	register u64 val64 = 0;
 | |
| 	int     mode;
 | |
| 
 | |
| 	val64 = readq(&bar0->pci_mode);
 | |
| 	mode = (u8)GET_PCI_MODE(val64);
 | |
| 
 | |
| 	if (val64 & PCI_MODE_UNKNOWN_MODE)
 | |
| 		return -1;      /* Unknown PCI mode */
 | |
| 	return mode;
 | |
| }
 | |
| 
 | |
| #define NEC_VENID   0x1033
 | |
| #define NEC_DEVID   0x0125
 | |
| static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
 | |
| {
 | |
| 	struct pci_dev *tdev = NULL;
 | |
| 	for_each_pci_dev(tdev) {
 | |
| 		if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
 | |
| 			if (tdev->bus == s2io_pdev->bus->parent) {
 | |
| 				pci_dev_put(tdev);
 | |
| 				return 1;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
 | |
| /**
 | |
|  * s2io_print_pci_mode -
 | |
|  */
 | |
| static int s2io_print_pci_mode(struct s2io_nic *nic)
 | |
| {
 | |
| 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
 | |
| 	register u64 val64 = 0;
 | |
| 	int	mode;
 | |
| 	struct config_param *config = &nic->config;
 | |
| 	const char *pcimode;
 | |
| 
 | |
| 	val64 = readq(&bar0->pci_mode);
 | |
| 	mode = (u8)GET_PCI_MODE(val64);
 | |
| 
 | |
| 	if (val64 & PCI_MODE_UNKNOWN_MODE)
 | |
| 		return -1;	/* Unknown PCI mode */
 | |
| 
 | |
| 	config->bus_speed = bus_speed[mode];
 | |
| 
 | |
| 	if (s2io_on_nec_bridge(nic->pdev)) {
 | |
| 		DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
 | |
| 			  nic->dev->name);
 | |
| 		return mode;
 | |
| 	}
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case PCI_MODE_PCI_33:
 | |
| 		pcimode = "33MHz PCI bus";
 | |
| 		break;
 | |
| 	case PCI_MODE_PCI_66:
 | |
| 		pcimode = "66MHz PCI bus";
 | |
| 		break;
 | |
| 	case PCI_MODE_PCIX_M1_66:
 | |
| 		pcimode = "66MHz PCIX(M1) bus";
 | |
| 		break;
 | |
| 	case PCI_MODE_PCIX_M1_100:
 | |
| 		pcimode = "100MHz PCIX(M1) bus";
 | |
| 		break;
 | |
| 	case PCI_MODE_PCIX_M1_133:
 | |
| 		pcimode = "133MHz PCIX(M1) bus";
 | |
| 		break;
 | |
| 	case PCI_MODE_PCIX_M2_66:
 | |
| 		pcimode = "133MHz PCIX(M2) bus";
 | |
| 		break;
 | |
| 	case PCI_MODE_PCIX_M2_100:
 | |
| 		pcimode = "200MHz PCIX(M2) bus";
 | |
| 		break;
 | |
| 	case PCI_MODE_PCIX_M2_133:
 | |
| 		pcimode = "266MHz PCIX(M2) bus";
 | |
| 		break;
 | |
| 	default:
 | |
| 		pcimode = "unsupported bus!";
 | |
| 		mode = -1;
 | |
| 	}
 | |
| 
 | |
| 	DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
 | |
| 		  nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
 | |
| 
 | |
| 	return mode;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  init_tti - Initialization transmit traffic interrupt scheme
 | |
|  *  @nic: device private variable
 | |
|  *  @link: link status (UP/DOWN) used to enable/disable continuous
 | |
|  *  transmit interrupts
 | |
|  *  Description: The function configures transmit traffic interrupts
 | |
|  *  Return Value:  SUCCESS on success and
 | |
|  *  '-1' on failure
 | |
|  */
 | |
| 
 | |
| static int init_tti(struct s2io_nic *nic, int link)
 | |
| {
 | |
| 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
 | |
| 	register u64 val64 = 0;
 | |
| 	int i;
 | |
| 	struct config_param *config = &nic->config;
 | |
| 
 | |
| 	for (i = 0; i < config->tx_fifo_num; i++) {
 | |
| 		/*
 | |
| 		 * TTI Initialization. Default Tx timer gets us about
 | |
| 		 * 250 interrupts per sec. Continuous interrupts are enabled
 | |
| 		 * by default.
 | |
| 		 */
 | |
| 		if (nic->device_type == XFRAME_II_DEVICE) {
 | |
| 			int count = (nic->config.bus_speed * 125)/2;
 | |
| 			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
 | |
| 		} else
 | |
| 			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
 | |
| 
 | |
| 		val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
 | |
| 			TTI_DATA1_MEM_TX_URNG_B(0x10) |
 | |
| 			TTI_DATA1_MEM_TX_URNG_C(0x30) |
 | |
| 			TTI_DATA1_MEM_TX_TIMER_AC_EN;
 | |
| 		if (i == 0)
 | |
| 			if (use_continuous_tx_intrs && (link == LINK_UP))
 | |
| 				val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
 | |
| 		writeq(val64, &bar0->tti_data1_mem);
 | |
| 
 | |
| 		if (nic->config.intr_type == MSI_X) {
 | |
| 			val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
 | |
| 				TTI_DATA2_MEM_TX_UFC_B(0x100) |
 | |
| 				TTI_DATA2_MEM_TX_UFC_C(0x200) |
 | |
| 				TTI_DATA2_MEM_TX_UFC_D(0x300);
 | |
| 		} else {
 | |
| 			if ((nic->config.tx_steering_type ==
 | |
| 			     TX_DEFAULT_STEERING) &&
 | |
| 			    (config->tx_fifo_num > 1) &&
 | |
| 			    (i >= nic->udp_fifo_idx) &&
 | |
| 			    (i < (nic->udp_fifo_idx +
 | |
| 				  nic->total_udp_fifos)))
 | |
| 				val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
 | |
| 					TTI_DATA2_MEM_TX_UFC_B(0x80) |
 | |
| 					TTI_DATA2_MEM_TX_UFC_C(0x100) |
 | |
| 					TTI_DATA2_MEM_TX_UFC_D(0x120);
 | |
| 			else
 | |
| 				val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
 | |
| 					TTI_DATA2_MEM_TX_UFC_B(0x20) |
 | |
| 					TTI_DATA2_MEM_TX_UFC_C(0x40) |
 | |
| 					TTI_DATA2_MEM_TX_UFC_D(0x80);
 | |
| 		}
 | |
| 
 | |
| 		writeq(val64, &bar0->tti_data2_mem);
 | |
| 
 | |
| 		val64 = TTI_CMD_MEM_WE |
 | |
| 			TTI_CMD_MEM_STROBE_NEW_CMD |
 | |
| 			TTI_CMD_MEM_OFFSET(i);
 | |
| 		writeq(val64, &bar0->tti_command_mem);
 | |
| 
 | |
| 		if (wait_for_cmd_complete(&bar0->tti_command_mem,
 | |
| 					  TTI_CMD_MEM_STROBE_NEW_CMD,
 | |
| 					  S2IO_BIT_RESET) != SUCCESS)
 | |
| 			return FAILURE;
 | |
| 	}
 | |
| 
 | |
| 	return SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  init_nic - Initialization of hardware
 | |
|  *  @nic: device private variable
 | |
|  *  Description: The function sequentially configures every block
 | |
|  *  of the H/W from their reset values.
 | |
|  *  Return Value:  SUCCESS on success and
 | |
|  *  '-1' on failure (endian settings incorrect).
 | |
|  */
 | |
| 
 | |
| static int init_nic(struct s2io_nic *nic)
 | |
| {
 | |
| 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
 | |
| 	struct net_device *dev = nic->dev;
 | |
| 	register u64 val64 = 0;
 | |
| 	void __iomem *add;
 | |
| 	u32 time;
 | |
| 	int i, j;
 | |
| 	int dtx_cnt = 0;
 | |
| 	unsigned long long mem_share;
 | |
| 	int mem_size;
 | |
| 	struct config_param *config = &nic->config;
 | |
| 	struct mac_info *mac_control = &nic->mac_control;
 | |
| 
 | |
| 	/* to set the swapper controle on the card */
 | |
| 	if (s2io_set_swapper(nic)) {
 | |
| 		DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Herc requires EOI to be removed from reset before XGXS, so..
 | |
| 	 */
 | |
| 	if (nic->device_type & XFRAME_II_DEVICE) {
 | |
| 		val64 = 0xA500000000ULL;
 | |
| 		writeq(val64, &bar0->sw_reset);
 | |
| 		msleep(500);
 | |
| 		val64 = readq(&bar0->sw_reset);
 | |
| 	}
 | |
| 
 | |
| 	/* Remove XGXS from reset state */
 | |
| 	val64 = 0;
 | |
| 	writeq(val64, &bar0->sw_reset);
 | |
| 	msleep(500);
 | |
| 	val64 = readq(&bar0->sw_reset);
 | |
| 
 | |
| 	/* Ensure that it's safe to access registers by checking
 | |
| 	 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
 | |
| 	 */
 | |
| 	if (nic->device_type == XFRAME_II_DEVICE) {
 | |
| 		for (i = 0; i < 50; i++) {
 | |
| 			val64 = readq(&bar0->adapter_status);
 | |
| 			if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
 | |
| 				break;
 | |
| 			msleep(10);
 | |
| 		}
 | |
| 		if (i == 50)
 | |
| 			return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/*  Enable Receiving broadcasts */
 | |
| 	add = &bar0->mac_cfg;
 | |
| 	val64 = readq(&bar0->mac_cfg);
 | |
| 	val64 |= MAC_RMAC_BCAST_ENABLE;
 | |
| 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
 | |
| 	writel((u32)val64, add);
 | |
| 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
 | |
| 	writel((u32) (val64 >> 32), (add + 4));
 | |
| 
 | |
| 	/* Read registers in all blocks */
 | |
| 	val64 = readq(&bar0->mac_int_mask);
 | |
| 	val64 = readq(&bar0->mc_int_mask);
 | |
| 	val64 = readq(&bar0->xgxs_int_mask);
 | |
| 
 | |
| 	/*  Set MTU */
 | |
| 	val64 = dev->mtu;
 | |
| 	writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
 | |
| 
 | |
| 	if (nic->device_type & XFRAME_II_DEVICE) {
 | |
| 		while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
 | |
| 			SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
 | |
| 					  &bar0->dtx_control, UF);
 | |
| 			if (dtx_cnt & 0x1)
 | |
| 				msleep(1); /* Necessary!! */
 | |
| 			dtx_cnt++;
 | |
| 		}
 | |
| 	} else {
 | |
| 		while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
 | |
| 			SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
 | |
| 					  &bar0->dtx_control, UF);
 | |
| 			val64 = readq(&bar0->dtx_control);
 | |
| 			dtx_cnt++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*  Tx DMA Initialization */
 | |
| 	val64 = 0;
 | |
| 	writeq(val64, &bar0->tx_fifo_partition_0);
 | |
| 	writeq(val64, &bar0->tx_fifo_partition_1);
 | |
| 	writeq(val64, &bar0->tx_fifo_partition_2);
 | |
| 	writeq(val64, &bar0->tx_fifo_partition_3);
 | |
| 
 | |
| 	for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
 | |
| 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 | |
| 
 | |
| 		val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
 | |
| 			vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
 | |
| 
 | |
| 		if (i == (config->tx_fifo_num - 1)) {
 | |
| 			if (i % 2 == 0)
 | |
| 				i++;
 | |
| 		}
 | |
| 
 | |
| 		switch (i) {
 | |
| 		case 1:
 | |
| 			writeq(val64, &bar0->tx_fifo_partition_0);
 | |
| 			val64 = 0;
 | |
| 			j = 0;
 | |
| 			break;
 | |
| 		case 3:
 | |
| 			writeq(val64, &bar0->tx_fifo_partition_1);
 | |
| 			val64 = 0;
 | |
| 			j = 0;
 | |
| 			break;
 | |
| 		case 5:
 | |
| 			writeq(val64, &bar0->tx_fifo_partition_2);
 | |
| 			val64 = 0;
 | |
| 			j = 0;
 | |
| 			break;
 | |
| 		case 7:
 | |
| 			writeq(val64, &bar0->tx_fifo_partition_3);
 | |
| 			val64 = 0;
 | |
| 			j = 0;
 | |
| 			break;
 | |
| 		default:
 | |
| 			j++;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
 | |
| 	 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
 | |
| 	 */
 | |
| 	if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
 | |
| 		writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
 | |
| 
 | |
| 	val64 = readq(&bar0->tx_fifo_partition_0);
 | |
| 	DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
 | |
| 		  &bar0->tx_fifo_partition_0, (unsigned long long)val64);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialization of Tx_PA_CONFIG register to ignore packet
 | |
| 	 * integrity checking.
 | |
| 	 */
 | |
| 	val64 = readq(&bar0->tx_pa_cfg);
 | |
| 	val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
 | |
| 		TX_PA_CFG_IGNORE_SNAP_OUI |
 | |
| 		TX_PA_CFG_IGNORE_LLC_CTRL |
 | |
| 		TX_PA_CFG_IGNORE_L2_ERR;
 | |
| 	writeq(val64, &bar0->tx_pa_cfg);
 | |
| 
 | |
| 	/* Rx DMA intialization. */
 | |
| 	val64 = 0;
 | |
| 	for (i = 0; i < config->rx_ring_num; i++) {
 | |
| 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
 | |
| 
 | |
| 		val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
 | |
| 	}
 | |
| 	writeq(val64, &bar0->rx_queue_priority);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocating equal share of memory to all the
 | |
| 	 * configured Rings.
 | |
| 	 */
 | |
| 	val64 = 0;
 | |
| 	if (nic->device_type & XFRAME_II_DEVICE)
 | |
| 		mem_size = 32;
 | |
| 	else
 | |
| 		mem_size = 64;
 | |
| 
 | |
| 	for (i = 0; i < config->rx_ring_num; i++) {
 | |
| 		switch (i) {
 | |
| 		case 0:
 | |
| 			mem_share = (mem_size / config->rx_ring_num +
 | |
| 				     mem_size % config->rx_ring_num);
 | |
| 			val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
 | |
| 			continue;
 | |
| 		case 1:
 | |
| 			mem_share = (mem_size / config->rx_ring_num);
 | |
| 			val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
 | |
| 			continue;
 | |
| 		case 2:
 | |
| 			mem_share = (mem_size / config->rx_ring_num);
 | |
| 			val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
 | |
| 			continue;
 | |
| 		case 3:
 | |
| 			mem_share = (mem_size / config->rx_ring_num);
 | |
| 			val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
 | |
| 			continue;
 | |
| 		case 4:
 | |
| 			mem_share = (mem_size / config->rx_ring_num);
 | |
| 			val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
 | |
| 			continue;
 | |
| 		case 5:
 | |
| 			mem_share = (mem_size / config->rx_ring_num);
 | |
| 			val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
 | |
| 			continue;
 | |
| 		case 6:
 | |
| 			mem_share = (mem_size / config->rx_ring_num);
 | |
| 			val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
 | |
| 			continue;
 | |
| 		case 7:
 | |
| 			mem_share = (mem_size / config->rx_ring_num);
 | |
| 			val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
 | |
| 			continue;
 | |
| 		}
 | |
| 	}
 | |
| 	writeq(val64, &bar0->rx_queue_cfg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Filling Tx round robin registers
 | |
| 	 * as per the number of FIFOs for equal scheduling priority
 | |
| 	 */
 | |
| 	switch (config->tx_fifo_num) {
 | |
| 	case 1:
 | |
| 		val64 = 0x0;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_0);
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_1);
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_2);
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_3);
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_4);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		val64 = 0x0001000100010001ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_0);
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_1);
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_2);
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_3);
 | |
| 		val64 = 0x0001000100000000ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_4);
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		val64 = 0x0001020001020001ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_0);
 | |
| 		val64 = 0x0200010200010200ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_1);
 | |
| 		val64 = 0x0102000102000102ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_2);
 | |
| 		val64 = 0x0001020001020001ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_3);
 | |
| 		val64 = 0x0200010200000000ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_4);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		val64 = 0x0001020300010203ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_0);
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_1);
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_2);
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_3);
 | |
| 		val64 = 0x0001020300000000ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_4);
 | |
| 		break;
 | |
| 	case 5:
 | |
| 		val64 = 0x0001020304000102ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_0);
 | |
| 		val64 = 0x0304000102030400ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_1);
 | |
| 		val64 = 0x0102030400010203ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_2);
 | |
| 		val64 = 0x0400010203040001ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_3);
 | |
| 		val64 = 0x0203040000000000ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_4);
 | |
| 		break;
 | |
| 	case 6:
 | |
| 		val64 = 0x0001020304050001ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_0);
 | |
| 		val64 = 0x0203040500010203ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_1);
 | |
| 		val64 = 0x0405000102030405ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_2);
 | |
| 		val64 = 0x0001020304050001ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_3);
 | |
| 		val64 = 0x0203040500000000ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_4);
 | |
| 		break;
 | |
| 	case 7:
 | |
| 		val64 = 0x0001020304050600ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_0);
 | |
| 		val64 = 0x0102030405060001ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_1);
 | |
| 		val64 = 0x0203040506000102ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_2);
 | |
| 		val64 = 0x0304050600010203ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_3);
 | |
| 		val64 = 0x0405060000000000ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_4);
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		val64 = 0x0001020304050607ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_0);
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_1);
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_2);
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_3);
 | |
| 		val64 = 0x0001020300000000ULL;
 | |
| 		writeq(val64, &bar0->tx_w_round_robin_4);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Enable all configured Tx FIFO partitions */
 | |
| 	val64 = readq(&bar0->tx_fifo_partition_0);
 | |
| 	val64 |= (TX_FIFO_PARTITION_EN);
 | |
| 	writeq(val64, &bar0->tx_fifo_partition_0);
 | |
| 
 | |
| 	/* Filling the Rx round robin registers as per the
 | |
| 	 * number of Rings and steering based on QoS with
 | |
| 	 * equal priority.
 | |
| 	 */
 | |
| 	switch (config->rx_ring_num) {
 | |
| 	case 1:
 | |
| 		val64 = 0x0;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_0);
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_1);
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_2);
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_3);
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_4);
 | |
| 
 | |
| 		val64 = 0x8080808080808080ULL;
 | |
| 		writeq(val64, &bar0->rts_qos_steering);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		val64 = 0x0001000100010001ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_0);
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_1);
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_2);
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_3);
 | |
| 		val64 = 0x0001000100000000ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_4);
 | |
| 
 | |
| 		val64 = 0x8080808040404040ULL;
 | |
| 		writeq(val64, &bar0->rts_qos_steering);
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		val64 = 0x0001020001020001ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_0);
 | |
| 		val64 = 0x0200010200010200ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_1);
 | |
| 		val64 = 0x0102000102000102ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_2);
 | |
| 		val64 = 0x0001020001020001ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_3);
 | |
| 		val64 = 0x0200010200000000ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_4);
 | |
| 
 | |
| 		val64 = 0x8080804040402020ULL;
 | |
| 		writeq(val64, &bar0->rts_qos_steering);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		val64 = 0x0001020300010203ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_0);
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_1);
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_2);
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_3);
 | |
| 		val64 = 0x0001020300000000ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_4);
 | |
| 
 | |
| 		val64 = 0x8080404020201010ULL;
 | |
| 		writeq(val64, &bar0->rts_qos_steering);
 | |
| 		break;
 | |
| 	case 5:
 | |
| 		val64 = 0x0001020304000102ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_0);
 | |
| 		val64 = 0x0304000102030400ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_1);
 | |
| 		val64 = 0x0102030400010203ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_2);
 | |
| 		val64 = 0x0400010203040001ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_3);
 | |
| 		val64 = 0x0203040000000000ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_4);
 | |
| 
 | |
| 		val64 = 0x8080404020201008ULL;
 | |
| 		writeq(val64, &bar0->rts_qos_steering);
 | |
| 		break;
 | |
| 	case 6:
 | |
| 		val64 = 0x0001020304050001ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_0);
 | |
| 		val64 = 0x0203040500010203ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_1);
 | |
| 		val64 = 0x0405000102030405ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_2);
 | |
| 		val64 = 0x0001020304050001ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_3);
 | |
| 		val64 = 0x0203040500000000ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_4);
 | |
| 
 | |
| 		val64 = 0x8080404020100804ULL;
 | |
| 		writeq(val64, &bar0->rts_qos_steering);
 | |
| 		break;
 | |
| 	case 7:
 | |
| 		val64 = 0x0001020304050600ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_0);
 | |
| 		val64 = 0x0102030405060001ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_1);
 | |
| 		val64 = 0x0203040506000102ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_2);
 | |
| 		val64 = 0x0304050600010203ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_3);
 | |
| 		val64 = 0x0405060000000000ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_4);
 | |
| 
 | |
| 		val64 = 0x8080402010080402ULL;
 | |
| 		writeq(val64, &bar0->rts_qos_steering);
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		val64 = 0x0001020304050607ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_0);
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_1);
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_2);
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_3);
 | |
| 		val64 = 0x0001020300000000ULL;
 | |
| 		writeq(val64, &bar0->rx_w_round_robin_4);
 | |
| 
 | |
| 		val64 = 0x8040201008040201ULL;
 | |
| 		writeq(val64, &bar0->rts_qos_steering);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* UDP Fix */
 | |
| 	val64 = 0;
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 		writeq(val64, &bar0->rts_frm_len_n[i]);
 | |
| 
 | |
| 	/* Set the default rts frame length for the rings configured */
 | |
| 	val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
 | |
| 	for (i = 0 ; i < config->rx_ring_num ; i++)
 | |
| 		writeq(val64, &bar0->rts_frm_len_n[i]);
 | |
| 
 | |
| 	/* Set the frame length for the configured rings
 | |
| 	 * desired by the user
 | |
| 	 */
 | |
| 	for (i = 0; i < config->rx_ring_num; i++) {
 | |
| 		/* If rts_frm_len[i] == 0 then it is assumed that user not
 | |
| 		 * specified frame length steering.
 | |
| 		 * If the user provides the frame length then program
 | |
| 		 * the rts_frm_len register for those values or else
 | |
| 		 * leave it as it is.
 | |
| 		 */
 | |
| 		if (rts_frm_len[i] != 0) {
 | |
| 			writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
 | |
| 			       &bar0->rts_frm_len_n[i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Disable differentiated services steering logic */
 | |
| 	for (i = 0; i < 64; i++) {
 | |
| 		if (rts_ds_steer(nic, i, 0) == FAILURE) {
 | |
| 			DBG_PRINT(ERR_DBG,
 | |
| 				  "%s: rts_ds_steer failed on codepoint %d\n",
 | |
| 				  dev->name, i);
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Program statistics memory */
 | |
| 	writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
 | |
| 
 | |
| 	if (nic->device_type == XFRAME_II_DEVICE) {
 | |
| 		val64 = STAT_BC(0x320);
 | |
| 		writeq(val64, &bar0->stat_byte_cnt);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initializing the sampling rate for the device to calculate the
 | |
| 	 * bandwidth utilization.
 | |
| 	 */
 | |
| 	val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
 | |
| 		MAC_RX_LINK_UTIL_VAL(rmac_util_period);
 | |
| 	writeq(val64, &bar0->mac_link_util);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initializing the Transmit and Receive Traffic Interrupt
 | |
| 	 * Scheme.
 | |
| 	 */
 | |
| 
 | |
| 	/* Initialize TTI */
 | |
| 	if (SUCCESS != init_tti(nic, nic->last_link_state))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/* RTI Initialization */
 | |
| 	if (nic->device_type == XFRAME_II_DEVICE) {
 | |
| 		/*
 | |
| 		 * Programmed to generate Apprx 500 Intrs per
 | |
| 		 * second
 | |
| 		 */
 | |
| 		int count = (nic->config.bus_speed * 125)/4;
 | |
| 		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
 | |
| 	} else
 | |
| 		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
 | |
| 	val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
 | |
| 		RTI_DATA1_MEM_RX_URNG_B(0x10) |
 | |
| 		RTI_DATA1_MEM_RX_URNG_C(0x30) |
 | |
| 		RTI_DATA1_MEM_RX_TIMER_AC_EN;
 | |
| 
 | |
| 	writeq(val64, &bar0->rti_data1_mem);
 | |
| 
 | |
| 	val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
 | |
| 		RTI_DATA2_MEM_RX_UFC_B(0x2) ;
 | |
| 	if (nic->config.intr_type == MSI_X)
 | |
| 		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
 | |
| 			  RTI_DATA2_MEM_RX_UFC_D(0x40));
 | |
| 	else
 | |
| 		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
 | |
| 			  RTI_DATA2_MEM_RX_UFC_D(0x80));
 | |
| 	writeq(val64, &bar0->rti_data2_mem);
 | |
| 
 | |
| 	for (i = 0; i < config->rx_ring_num; i++) {
 | |
| 		val64 = RTI_CMD_MEM_WE |
 | |
| 			RTI_CMD_MEM_STROBE_NEW_CMD |
 | |
| 			RTI_CMD_MEM_OFFSET(i);
 | |
| 		writeq(val64, &bar0->rti_command_mem);
 | |
| 
 | |
| 		/*
 | |
| 		 * Once the operation completes, the Strobe bit of the
 | |
| 		 * command register will be reset. We poll for this
 | |
| 		 * particular condition. We wait for a maximum of 500ms
 | |
| 		 * for the operation to complete, if it's not complete
 | |
| 		 * by then we return error.
 | |
| 		 */
 | |
| 		time = 0;
 | |
| 		while (true) {
 | |
| 			val64 = readq(&bar0->rti_command_mem);
 | |
| 			if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
 | |
| 				break;
 | |
| 
 | |
| 			if (time > 10) {
 | |
| 				DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
 | |
| 					  dev->name);
 | |
| 				return -ENODEV;
 | |
| 			}
 | |
| 			time++;
 | |
| 			msleep(50);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initializing proper values as Pause threshold into all
 | |
| 	 * the 8 Queues on Rx side.
 | |
| 	 */
 | |
| 	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
 | |
| 	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
 | |
| 
 | |
| 	/* Disable RMAC PAD STRIPPING */
 | |
| 	add = &bar0->mac_cfg;
 | |
| 	val64 = readq(&bar0->mac_cfg);
 | |
| 	val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
 | |
| 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
 | |
| 	writel((u32) (val64), add);
 | |
| 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
 | |
| 	writel((u32) (val64 >> 32), (add + 4));
 | |
| 	val64 = readq(&bar0->mac_cfg);
 | |
| 
 | |
| 	/* Enable FCS stripping by adapter */
 | |
| 	add = &bar0->mac_cfg;
 | |
| 	val64 = readq(&bar0->mac_cfg);
 | |
| 	val64 |= MAC_CFG_RMAC_STRIP_FCS;
 | |
| 	if (nic->device_type == XFRAME_II_DEVICE)
 | |
| 		writeq(val64, &bar0->mac_cfg);
 | |
| 	else {
 | |
| 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
 | |
| 		writel((u32) (val64), add);
 | |
| 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
 | |
| 		writel((u32) (val64 >> 32), (add + 4));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the time value to be inserted in the pause frame
 | |
| 	 * generated by xena.
 | |
| 	 */
 | |
| 	val64 = readq(&bar0->rmac_pause_cfg);
 | |
| 	val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
 | |
| 	val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
 | |
| 	writeq(val64, &bar0->rmac_pause_cfg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the Threshold Limit for Generating the pause frame
 | |
| 	 * If the amount of data in any Queue exceeds ratio of
 | |
| 	 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
 | |
| 	 * pause frame is generated
 | |
| 	 */
 | |
| 	val64 = 0;
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		val64 |= (((u64)0xFF00 |
 | |
| 			   nic->mac_control.mc_pause_threshold_q0q3)
 | |
| 			  << (i * 2 * 8));
 | |
| 	}
 | |
| 	writeq(val64, &bar0->mc_pause_thresh_q0q3);
 | |
| 
 | |
| 	val64 = 0;
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		val64 |= (((u64)0xFF00 |
 | |
| 			   nic->mac_control.mc_pause_threshold_q4q7)
 | |
| 			  << (i * 2 * 8));
 | |
| 	}
 | |
| 	writeq(val64, &bar0->mc_pause_thresh_q4q7);
 | |
| 
 | |
| 	/*
 | |
| 	 * TxDMA will stop Read request if the number of read split has
 | |
| 	 * exceeded the limit pointed by shared_splits
 | |
| 	 */
 | |
| 	val64 = readq(&bar0->pic_control);
 | |
| 	val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
 | |
| 	writeq(val64, &bar0->pic_control);
 | |
| 
 | |
| 	if (nic->config.bus_speed == 266) {
 | |
| 		writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
 | |
| 		writeq(0x0, &bar0->read_retry_delay);
 | |
| 		writeq(0x0, &bar0->write_retry_delay);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Programming the Herc to split every write transaction
 | |
| 	 * that does not start on an ADB to reduce disconnects.
 | |
| 	 */
 | |
| 	if (nic->device_type == XFRAME_II_DEVICE) {
 | |
| 		val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
 | |
| 			MISC_LINK_STABILITY_PRD(3);
 | |
| 		writeq(val64, &bar0->misc_control);
 | |
| 		val64 = readq(&bar0->pic_control2);
 | |
| 		val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
 | |
| 		writeq(val64, &bar0->pic_control2);
 | |
| 	}
 | |
| 	if (strstr(nic->product_name, "CX4")) {
 | |
| 		val64 = TMAC_AVG_IPG(0x17);
 | |
| 		writeq(val64, &bar0->tmac_avg_ipg);
 | |
| 	}
 | |
| 
 | |
| 	return SUCCESS;
 | |
| }
 | |
| #define LINK_UP_DOWN_INTERRUPT		1
 | |
| #define MAC_RMAC_ERR_TIMER		2
 | |
| 
 | |
| static int s2io_link_fault_indication(struct s2io_nic *nic)
 | |
| {
 | |
| 	if (nic->device_type == XFRAME_II_DEVICE)
 | |
| 		return LINK_UP_DOWN_INTERRUPT;
 | |
| 	else
 | |
| 		return MAC_RMAC_ERR_TIMER;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  do_s2io_write_bits -  update alarm bits in alarm register
 | |
|  *  @value: alarm bits
 | |
|  *  @flag: interrupt status
 | |
|  *  @addr: address value
 | |
|  *  Description: update alarm bits in alarm register
 | |
|  *  Return Value:
 | |
|  *  NONE.
 | |
|  */
 | |
| static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
 | |
| {
 | |
| 	u64 temp64;
 | |
| 
 | |
| 	temp64 = readq(addr);
 | |
| 
 | |
| 	if (flag == ENABLE_INTRS)
 | |
| 		temp64 &= ~((u64)value);
 | |
| 	else
 | |
| 		temp64 |= ((u64)value);
 | |
| 	writeq(temp64, addr);
 | |
| }
 | |
| 
 | |
| static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
 | |
| {
 | |
| 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
 | |
| 	register u64 gen_int_mask = 0;
 | |
| 	u64 interruptible;
 | |
| 
 | |
| 	writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
 | |
| 	if (mask & TX_DMA_INTR) {
 | |
| 		gen_int_mask |= TXDMA_INT_M;
 | |
| 
 | |
| 		do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
 | |
| 				   TXDMA_PCC_INT | TXDMA_TTI_INT |
 | |
| 				   TXDMA_LSO_INT | TXDMA_TPA_INT |
 | |
| 				   TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
 | |
| 
 | |
| 		do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
 | |
| 				   PFC_MISC_0_ERR | PFC_MISC_1_ERR |
 | |
| 				   PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
 | |
| 				   &bar0->pfc_err_mask);
 | |
| 
 | |
| 		do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
 | |
| 				   TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
 | |
| 				   TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
 | |
| 
 | |
| 		do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
 | |
| 				   PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
 | |
| 				   PCC_N_SERR | PCC_6_COF_OV_ERR |
 | |
| 				   PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
 | |
| 				   PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
 | |
| 				   PCC_TXB_ECC_SG_ERR,
 | |
| 				   flag, &bar0->pcc_err_mask);
 | |
| 
 | |
| 		do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
 | |
| 				   TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
 | |
| 
 | |
| 		do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
 | |
| 				   LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
 | |
| 				   LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
 | |
| 				   flag, &bar0->lso_err_mask);
 | |
| 
 | |
| 		do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
 | |
| 				   flag, &bar0->tpa_err_mask);
 | |
| 
 | |
| 		do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
 | |
| 	}
 | |
| 
 | |
| 	if (mask & TX_MAC_INTR) {
 | |
| 		gen_int_mask |= TXMAC_INT_M;
 | |
| 		do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
 | |
| 				   &bar0->mac_int_mask);
 | |
| 		do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
 | |
| 				   TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
 | |
| 				   TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
 | |
| 				   flag, &bar0->mac_tmac_err_mask);
 | |
| 	}
 | |
| 
 | |
| 	if (mask & TX_XGXS_INTR) {
 | |
| 		gen_int_mask |= TXXGXS_INT_M;
 | |
| 		do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
 | |
| 				   &bar0->xgxs_int_mask);
 | |
| 		do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
 | |
| 				   TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
 | |
| 				   flag, &bar0->xgxs_txgxs_err_mask);
 | |
| 	}
 | |
| 
 | |
| 	if (mask & RX_DMA_INTR) {
 | |
| 		gen_int_mask |= RXDMA_INT_M;
 | |
| 		do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
 | |
| 				   RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
 | |
| 				   flag, &bar0->rxdma_int_mask);
 | |
| 		do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
 | |
| 				   RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
 | |
| 				   RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
 | |
| 				   RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
 | |
| 		do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
 | |
| 				   PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
 | |
| 				   PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
 | |
| 				   &bar0->prc_pcix_err_mask);
 | |
| 		do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
 | |
| 				   RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
 | |
| 				   &bar0->rpa_err_mask);
 | |
| 		do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
 | |
| 				   RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
 | |
| 				   RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
 | |
| 				   RDA_FRM_ECC_SG_ERR |
 | |
| 				   RDA_MISC_ERR|RDA_PCIX_ERR,
 | |
| 				   flag, &bar0->rda_err_mask);
 | |
| 		do_s2io_write_bits(RTI_SM_ERR_ALARM |
 | |
| 				   RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
 | |
| 				   flag, &bar0->rti_err_mask);
 | |
| 	}
 | |
| 
 | |
| 	if (mask & RX_MAC_INTR) {
 | |
| 		gen_int_mask |= RXMAC_INT_M;
 | |
| 		do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
 | |
| 				   &bar0->mac_int_mask);
 | |
| 		interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
 | |
| 				 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
 | |
| 				 RMAC_DOUBLE_ECC_ERR);
 | |
| 		if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
 | |
| 			interruptible |= RMAC_LINK_STATE_CHANGE_INT;
 | |
| 		do_s2io_write_bits(interruptible,
 | |
| 				   flag, &bar0->mac_rmac_err_mask);
 | |
| 	}
 | |
| 
 | |
| 	if (mask & RX_XGXS_INTR) {
 | |
| 		gen_int_mask |= RXXGXS_INT_M;
 | |
| 		do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
 | |
| 				   &bar0->xgxs_int_mask);
 | |
| 		do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
 | |
| 				   &bar0->xgxs_rxgxs_err_mask);
 | |
| 	}
 | |
| 
 | |
| 	if (mask & MC_INTR) {
 | |
| 		gen_int_mask |= MC_INT_M;
 | |
| 		do_s2io_write_bits(MC_INT_MASK_MC_INT,
 | |
| 				   flag, &bar0->mc_int_mask);
 | |
| 		do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
 | |
| 				   MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
 | |
| 				   &bar0->mc_err_mask);
 | |
| 	}
 | |
| 	nic->general_int_mask = gen_int_mask;
 | |
| 
 | |
| 	/* Remove this line when alarm interrupts are enabled */
 | |
| 	nic->general_int_mask = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
 | |
|  *  @nic: device private variable,
 | |
|  *  @mask: A mask indicating which Intr block must be modified and,
 | |
|  *  @flag: A flag indicating whether to enable or disable the Intrs.
 | |
|  *  Description: This function will either disable or enable the interrupts
 | |
|  *  depending on the flag argument. The mask argument can be used to
 | |
|  *  enable/disable any Intr block.
 | |
|  *  Return Value: NONE.
 | |
|  */
 | |
| 
 | |
| static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
 | |
| {
 | |
| 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
 | |
| 	register u64 temp64 = 0, intr_mask = 0;
 | |
| 
 | |
| 	intr_mask = nic->general_int_mask;
 | |
| 
 | |
| 	/*  Top level interrupt classification */
 | |
| 	/*  PIC Interrupts */
 | |
| 	if (mask & TX_PIC_INTR) {
 | |
| 		/*  Enable PIC Intrs in the general intr mask register */
 | |
| 		intr_mask |= TXPIC_INT_M;
 | |
| 		if (flag == ENABLE_INTRS) {
 | |
| 			/*
 | |
| 			 * If Hercules adapter enable GPIO otherwise
 | |
| 			 * disable all PCIX, Flash, MDIO, IIC and GPIO
 | |
| 			 * interrupts for now.
 | |
| 			 * TODO
 | |
| 			 */
 | |
| 			if (s2io_link_fault_indication(nic) ==
 | |
| 			    LINK_UP_DOWN_INTERRUPT) {
 | |
| 				do_s2io_write_bits(PIC_INT_GPIO, flag,
 | |
| 						   &bar0->pic_int_mask);
 | |
| 				do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
 | |
| 						   &bar0->gpio_int_mask);
 | |
| 			} else
 | |
| 				writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
 | |
| 		} else if (flag == DISABLE_INTRS) {
 | |
| 			/*
 | |
| 			 * Disable PIC Intrs in the general
 | |
| 			 * intr mask register
 | |
| 			 */
 | |
| 			writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*  Tx traffic interrupts */
 | |
| 	if (mask & TX_TRAFFIC_INTR) {
 | |
| 		intr_mask |= TXTRAFFIC_INT_M;
 | |
| 		if (flag == ENABLE_INTRS) {
 | |
| 			/*
 | |
| 			 * Enable all the Tx side interrupts
 | |
| 			 * writing 0 Enables all 64 TX interrupt levels
 | |
| 			 */
 | |
| 			writeq(0x0, &bar0->tx_traffic_mask);
 | |
| 		} else if (flag == DISABLE_INTRS) {
 | |
| 			/*
 | |
| 			 * Disable Tx Traffic Intrs in the general intr mask
 | |
| 			 * register.
 | |
| 			 */
 | |
| 			writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*  Rx traffic interrupts */
 | |
| 	if (mask & RX_TRAFFIC_INTR) {
 | |
| 		intr_mask |= RXTRAFFIC_INT_M;
 | |
| 		if (flag == ENABLE_INTRS) {
 | |
| 			/* writing 0 Enables all 8 RX interrupt levels */
 | |
| 			writeq(0x0, &bar0->rx_traffic_mask);
 | |
| 		} else if (flag == DISABLE_INTRS) {
 | |
| 			/*
 | |
| 			 * Disable Rx Traffic Intrs in the general intr mask
 | |
| 			 * register.
 | |
| 			 */
 | |
| 			writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	temp64 = readq(&bar0->general_int_mask);
 | |
| 	if (flag == ENABLE_INTRS)
 | |
| 		temp64 &= ~((u64)intr_mask);
 | |
| 	else
 | |
| 		temp64 = DISABLE_ALL_INTRS;
 | |
| 	writeq(temp64, &bar0->general_int_mask);
 | |
| 
 | |
| 	nic->general_int_mask = readq(&bar0->general_int_mask);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  verify_pcc_quiescent- Checks for PCC quiescent state
 | |
|  *  Return: 1 If PCC is quiescence
 | |
|  *          0 If PCC is not quiescence
 | |
|  */
 | |
| static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
 | |
| {
 | |
| 	int ret = 0, herc;
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 	u64 val64 = readq(&bar0->adapter_status);
 | |
| 
 | |
| 	herc = (sp->device_type == XFRAME_II_DEVICE);
 | |
| 
 | |
| 	if (flag == false) {
 | |
| 		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
 | |
| 			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
 | |
| 				ret = 1;
 | |
| 		} else {
 | |
| 			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
 | |
| 				ret = 1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
 | |
| 			if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
 | |
| 			     ADAPTER_STATUS_RMAC_PCC_IDLE))
 | |
| 				ret = 1;
 | |
| 		} else {
 | |
| 			if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
 | |
| 			     ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
 | |
| 				ret = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| /**
 | |
|  *  verify_xena_quiescence - Checks whether the H/W is ready
 | |
|  *  Description: Returns whether the H/W is ready to go or not. Depending
 | |
|  *  on whether adapter enable bit was written or not the comparison
 | |
|  *  differs and the calling function passes the input argument flag to
 | |
|  *  indicate this.
 | |
|  *  Return: 1 If xena is quiescence
 | |
|  *          0 If Xena is not quiescence
 | |
|  */
 | |
| 
 | |
| static int verify_xena_quiescence(struct s2io_nic *sp)
 | |
| {
 | |
| 	int  mode;
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 	u64 val64 = readq(&bar0->adapter_status);
 | |
| 	mode = s2io_verify_pci_mode(sp);
 | |
| 
 | |
| 	if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
 | |
| 		DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
 | |
| 		DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
 | |
| 		DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
 | |
| 		DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
 | |
| 		DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
 | |
| 		DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
 | |
| 		DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
 | |
| 		DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * In PCI 33 mode, the P_PLL is not used, and therefore,
 | |
| 	 * the the P_PLL_LOCK bit in the adapter_status register will
 | |
| 	 * not be asserted.
 | |
| 	 */
 | |
| 	if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
 | |
| 	    sp->device_type == XFRAME_II_DEVICE &&
 | |
| 	    mode != PCI_MODE_PCI_33) {
 | |
| 		DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
 | |
| 	      ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
 | |
| 		DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
 | |
|  * @sp: Pointer to device specifc structure
 | |
|  * Description :
 | |
|  * New procedure to clear mac address reading  problems on Alpha platforms
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static void fix_mac_address(struct s2io_nic *sp)
 | |
| {
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	while (fix_mac[i] != END_SIGN) {
 | |
| 		writeq(fix_mac[i++], &bar0->gpio_control);
 | |
| 		udelay(10);
 | |
| 		(void) readq(&bar0->gpio_control);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  start_nic - Turns the device on
 | |
|  *  @nic : device private variable.
 | |
|  *  Description:
 | |
|  *  This function actually turns the device on. Before this  function is
 | |
|  *  called,all Registers are configured from their reset states
 | |
|  *  and shared memory is allocated but the NIC is still quiescent. On
 | |
|  *  calling this function, the device interrupts are cleared and the NIC is
 | |
|  *  literally switched on by writing into the adapter control register.
 | |
|  *  Return Value:
 | |
|  *  SUCCESS on success and -1 on failure.
 | |
|  */
 | |
| 
 | |
| static int start_nic(struct s2io_nic *nic)
 | |
| {
 | |
| 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
 | |
| 	struct net_device *dev = nic->dev;
 | |
| 	register u64 val64 = 0;
 | |
| 	u16 subid, i;
 | |
| 	struct config_param *config = &nic->config;
 | |
| 	struct mac_info *mac_control = &nic->mac_control;
 | |
| 
 | |
| 	/*  PRC Initialization and configuration */
 | |
| 	for (i = 0; i < config->rx_ring_num; i++) {
 | |
| 		struct ring_info *ring = &mac_control->rings[i];
 | |
| 
 | |
| 		writeq((u64)ring->rx_blocks[0].block_dma_addr,
 | |
| 		       &bar0->prc_rxd0_n[i]);
 | |
| 
 | |
| 		val64 = readq(&bar0->prc_ctrl_n[i]);
 | |
| 		if (nic->rxd_mode == RXD_MODE_1)
 | |
| 			val64 |= PRC_CTRL_RC_ENABLED;
 | |
| 		else
 | |
| 			val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
 | |
| 		if (nic->device_type == XFRAME_II_DEVICE)
 | |
| 			val64 |= PRC_CTRL_GROUP_READS;
 | |
| 		val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
 | |
| 		val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
 | |
| 		writeq(val64, &bar0->prc_ctrl_n[i]);
 | |
| 	}
 | |
| 
 | |
| 	if (nic->rxd_mode == RXD_MODE_3B) {
 | |
| 		/* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
 | |
| 		val64 = readq(&bar0->rx_pa_cfg);
 | |
| 		val64 |= RX_PA_CFG_IGNORE_L2_ERR;
 | |
| 		writeq(val64, &bar0->rx_pa_cfg);
 | |
| 	}
 | |
| 
 | |
| 	if (vlan_tag_strip == 0) {
 | |
| 		val64 = readq(&bar0->rx_pa_cfg);
 | |
| 		val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
 | |
| 		writeq(val64, &bar0->rx_pa_cfg);
 | |
| 		nic->vlan_strip_flag = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Enabling MC-RLDRAM. After enabling the device, we timeout
 | |
| 	 * for around 100ms, which is approximately the time required
 | |
| 	 * for the device to be ready for operation.
 | |
| 	 */
 | |
| 	val64 = readq(&bar0->mc_rldram_mrs);
 | |
| 	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
 | |
| 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
 | |
| 	val64 = readq(&bar0->mc_rldram_mrs);
 | |
| 
 | |
| 	msleep(100);	/* Delay by around 100 ms. */
 | |
| 
 | |
| 	/* Enabling ECC Protection. */
 | |
| 	val64 = readq(&bar0->adapter_control);
 | |
| 	val64 &= ~ADAPTER_ECC_EN;
 | |
| 	writeq(val64, &bar0->adapter_control);
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify if the device is ready to be enabled, if so enable
 | |
| 	 * it.
 | |
| 	 */
 | |
| 	val64 = readq(&bar0->adapter_status);
 | |
| 	if (!verify_xena_quiescence(nic)) {
 | |
| 		DBG_PRINT(ERR_DBG, "%s: device is not ready, "
 | |
| 			  "Adapter status reads: 0x%llx\n",
 | |
| 			  dev->name, (unsigned long long)val64);
 | |
| 		return FAILURE;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * With some switches, link might be already up at this point.
 | |
| 	 * Because of this weird behavior, when we enable laser,
 | |
| 	 * we may not get link. We need to handle this. We cannot
 | |
| 	 * figure out which switch is misbehaving. So we are forced to
 | |
| 	 * make a global change.
 | |
| 	 */
 | |
| 
 | |
| 	/* Enabling Laser. */
 | |
| 	val64 = readq(&bar0->adapter_control);
 | |
| 	val64 |= ADAPTER_EOI_TX_ON;
 | |
| 	writeq(val64, &bar0->adapter_control);
 | |
| 
 | |
| 	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
 | |
| 		/*
 | |
| 		 * Dont see link state interrupts initially on some switches,
 | |
| 		 * so directly scheduling the link state task here.
 | |
| 		 */
 | |
| 		schedule_work(&nic->set_link_task);
 | |
| 	}
 | |
| 	/* SXE-002: Initialize link and activity LED */
 | |
| 	subid = nic->pdev->subsystem_device;
 | |
| 	if (((subid & 0xFF) >= 0x07) &&
 | |
| 	    (nic->device_type == XFRAME_I_DEVICE)) {
 | |
| 		val64 = readq(&bar0->gpio_control);
 | |
| 		val64 |= 0x0000800000000000ULL;
 | |
| 		writeq(val64, &bar0->gpio_control);
 | |
| 		val64 = 0x0411040400000000ULL;
 | |
| 		writeq(val64, (void __iomem *)bar0 + 0x2700);
 | |
| 	}
 | |
| 
 | |
| 	return SUCCESS;
 | |
| }
 | |
| /**
 | |
|  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
 | |
|  */
 | |
| static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
 | |
| 					struct TxD *txdlp, int get_off)
 | |
| {
 | |
| 	struct s2io_nic *nic = fifo_data->nic;
 | |
| 	struct sk_buff *skb;
 | |
| 	struct TxD *txds;
 | |
| 	u16 j, frg_cnt;
 | |
| 
 | |
| 	txds = txdlp;
 | |
| 	if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
 | |
| 		pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
 | |
| 				 sizeof(u64), PCI_DMA_TODEVICE);
 | |
| 		txds++;
 | |
| 	}
 | |
| 
 | |
| 	skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
 | |
| 	if (!skb) {
 | |
| 		memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
 | |
| 			 skb_headlen(skb), PCI_DMA_TODEVICE);
 | |
| 	frg_cnt = skb_shinfo(skb)->nr_frags;
 | |
| 	if (frg_cnt) {
 | |
| 		txds++;
 | |
| 		for (j = 0; j < frg_cnt; j++, txds++) {
 | |
| 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
 | |
| 			if (!txds->Buffer_Pointer)
 | |
| 				break;
 | |
| 			pci_unmap_page(nic->pdev,
 | |
| 				       (dma_addr_t)txds->Buffer_Pointer,
 | |
| 				       skb_frag_size(frag), PCI_DMA_TODEVICE);
 | |
| 		}
 | |
| 	}
 | |
| 	memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  free_tx_buffers - Free all queued Tx buffers
 | |
|  *  @nic : device private variable.
 | |
|  *  Description:
 | |
|  *  Free all queued Tx buffers.
 | |
|  *  Return Value: void
 | |
|  */
 | |
| 
 | |
| static void free_tx_buffers(struct s2io_nic *nic)
 | |
| {
 | |
| 	struct net_device *dev = nic->dev;
 | |
| 	struct sk_buff *skb;
 | |
| 	struct TxD *txdp;
 | |
| 	int i, j;
 | |
| 	int cnt = 0;
 | |
| 	struct config_param *config = &nic->config;
 | |
| 	struct mac_info *mac_control = &nic->mac_control;
 | |
| 	struct stat_block *stats = mac_control->stats_info;
 | |
| 	struct swStat *swstats = &stats->sw_stat;
 | |
| 
 | |
| 	for (i = 0; i < config->tx_fifo_num; i++) {
 | |
| 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 | |
| 		struct fifo_info *fifo = &mac_control->fifos[i];
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		spin_lock_irqsave(&fifo->tx_lock, flags);
 | |
| 		for (j = 0; j < tx_cfg->fifo_len; j++) {
 | |
| 			txdp = fifo->list_info[j].list_virt_addr;
 | |
| 			skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
 | |
| 			if (skb) {
 | |
| 				swstats->mem_freed += skb->truesize;
 | |
| 				dev_kfree_skb(skb);
 | |
| 				cnt++;
 | |
| 			}
 | |
| 		}
 | |
| 		DBG_PRINT(INTR_DBG,
 | |
| 			  "%s: forcibly freeing %d skbs on FIFO%d\n",
 | |
| 			  dev->name, cnt, i);
 | |
| 		fifo->tx_curr_get_info.offset = 0;
 | |
| 		fifo->tx_curr_put_info.offset = 0;
 | |
| 		spin_unlock_irqrestore(&fifo->tx_lock, flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *   stop_nic -  To stop the nic
 | |
|  *   @nic ; device private variable.
 | |
|  *   Description:
 | |
|  *   This function does exactly the opposite of what the start_nic()
 | |
|  *   function does. This function is called to stop the device.
 | |
|  *   Return Value:
 | |
|  *   void.
 | |
|  */
 | |
| 
 | |
| static void stop_nic(struct s2io_nic *nic)
 | |
| {
 | |
| 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
 | |
| 	register u64 val64 = 0;
 | |
| 	u16 interruptible;
 | |
| 
 | |
| 	/*  Disable all interrupts */
 | |
| 	en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
 | |
| 	interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
 | |
| 	interruptible |= TX_PIC_INTR;
 | |
| 	en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
 | |
| 
 | |
| 	/* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
 | |
| 	val64 = readq(&bar0->adapter_control);
 | |
| 	val64 &= ~(ADAPTER_CNTL_EN);
 | |
| 	writeq(val64, &bar0->adapter_control);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  fill_rx_buffers - Allocates the Rx side skbs
 | |
|  *  @ring_info: per ring structure
 | |
|  *  @from_card_up: If this is true, we will map the buffer to get
 | |
|  *     the dma address for buf0 and buf1 to give it to the card.
 | |
|  *     Else we will sync the already mapped buffer to give it to the card.
 | |
|  *  Description:
 | |
|  *  The function allocates Rx side skbs and puts the physical
 | |
|  *  address of these buffers into the RxD buffer pointers, so that the NIC
 | |
|  *  can DMA the received frame into these locations.
 | |
|  *  The NIC supports 3 receive modes, viz
 | |
|  *  1. single buffer,
 | |
|  *  2. three buffer and
 | |
|  *  3. Five buffer modes.
 | |
|  *  Each mode defines how many fragments the received frame will be split
 | |
|  *  up into by the NIC. The frame is split into L3 header, L4 Header,
 | |
|  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
 | |
|  *  is split into 3 fragments. As of now only single buffer mode is
 | |
|  *  supported.
 | |
|  *   Return Value:
 | |
|  *  SUCCESS on success or an appropriate -ve value on failure.
 | |
|  */
 | |
| static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
 | |
| 			   int from_card_up)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 	struct RxD_t *rxdp;
 | |
| 	int off, size, block_no, block_no1;
 | |
| 	u32 alloc_tab = 0;
 | |
| 	u32 alloc_cnt;
 | |
| 	u64 tmp;
 | |
| 	struct buffAdd *ba;
 | |
| 	struct RxD_t *first_rxdp = NULL;
 | |
| 	u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
 | |
| 	int rxd_index = 0;
 | |
| 	struct RxD1 *rxdp1;
 | |
| 	struct RxD3 *rxdp3;
 | |
| 	struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
 | |
| 
 | |
| 	alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
 | |
| 
 | |
| 	block_no1 = ring->rx_curr_get_info.block_index;
 | |
| 	while (alloc_tab < alloc_cnt) {
 | |
| 		block_no = ring->rx_curr_put_info.block_index;
 | |
| 
 | |
| 		off = ring->rx_curr_put_info.offset;
 | |
| 
 | |
| 		rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
 | |
| 
 | |
| 		rxd_index = off + 1;
 | |
| 		if (block_no)
 | |
| 			rxd_index += (block_no * ring->rxd_count);
 | |
| 
 | |
| 		if ((block_no == block_no1) &&
 | |
| 		    (off == ring->rx_curr_get_info.offset) &&
 | |
| 		    (rxdp->Host_Control)) {
 | |
| 			DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
 | |
| 				  ring->dev->name);
 | |
| 			goto end;
 | |
| 		}
 | |
| 		if (off && (off == ring->rxd_count)) {
 | |
| 			ring->rx_curr_put_info.block_index++;
 | |
| 			if (ring->rx_curr_put_info.block_index ==
 | |
| 			    ring->block_count)
 | |
| 				ring->rx_curr_put_info.block_index = 0;
 | |
| 			block_no = ring->rx_curr_put_info.block_index;
 | |
| 			off = 0;
 | |
| 			ring->rx_curr_put_info.offset = off;
 | |
| 			rxdp = ring->rx_blocks[block_no].block_virt_addr;
 | |
| 			DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
 | |
| 				  ring->dev->name, rxdp);
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		if ((rxdp->Control_1 & RXD_OWN_XENA) &&
 | |
| 		    ((ring->rxd_mode == RXD_MODE_3B) &&
 | |
| 		     (rxdp->Control_2 & s2BIT(0)))) {
 | |
| 			ring->rx_curr_put_info.offset = off;
 | |
| 			goto end;
 | |
| 		}
 | |
| 		/* calculate size of skb based on ring mode */
 | |
| 		size = ring->mtu +
 | |
| 			HEADER_ETHERNET_II_802_3_SIZE +
 | |
| 			HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
 | |
| 		if (ring->rxd_mode == RXD_MODE_1)
 | |
| 			size += NET_IP_ALIGN;
 | |
| 		else
 | |
| 			size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
 | |
| 
 | |
| 		/* allocate skb */
 | |
| 		skb = netdev_alloc_skb(nic->dev, size);
 | |
| 		if (!skb) {
 | |
| 			DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
 | |
| 				  ring->dev->name);
 | |
| 			if (first_rxdp) {
 | |
| 				wmb();
 | |
| 				first_rxdp->Control_1 |= RXD_OWN_XENA;
 | |
| 			}
 | |
| 			swstats->mem_alloc_fail_cnt++;
 | |
| 
 | |
| 			return -ENOMEM ;
 | |
| 		}
 | |
| 		swstats->mem_allocated += skb->truesize;
 | |
| 
 | |
| 		if (ring->rxd_mode == RXD_MODE_1) {
 | |
| 			/* 1 buffer mode - normal operation mode */
 | |
| 			rxdp1 = (struct RxD1 *)rxdp;
 | |
| 			memset(rxdp, 0, sizeof(struct RxD1));
 | |
| 			skb_reserve(skb, NET_IP_ALIGN);
 | |
| 			rxdp1->Buffer0_ptr =
 | |
| 				pci_map_single(ring->pdev, skb->data,
 | |
| 					       size - NET_IP_ALIGN,
 | |
| 					       PCI_DMA_FROMDEVICE);
 | |
| 			if (pci_dma_mapping_error(nic->pdev,
 | |
| 						  rxdp1->Buffer0_ptr))
 | |
| 				goto pci_map_failed;
 | |
| 
 | |
| 			rxdp->Control_2 =
 | |
| 				SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
 | |
| 			rxdp->Host_Control = (unsigned long)skb;
 | |
| 		} else if (ring->rxd_mode == RXD_MODE_3B) {
 | |
| 			/*
 | |
| 			 * 2 buffer mode -
 | |
| 			 * 2 buffer mode provides 128
 | |
| 			 * byte aligned receive buffers.
 | |
| 			 */
 | |
| 
 | |
| 			rxdp3 = (struct RxD3 *)rxdp;
 | |
| 			/* save buffer pointers to avoid frequent dma mapping */
 | |
| 			Buffer0_ptr = rxdp3->Buffer0_ptr;
 | |
| 			Buffer1_ptr = rxdp3->Buffer1_ptr;
 | |
| 			memset(rxdp, 0, sizeof(struct RxD3));
 | |
| 			/* restore the buffer pointers for dma sync*/
 | |
| 			rxdp3->Buffer0_ptr = Buffer0_ptr;
 | |
| 			rxdp3->Buffer1_ptr = Buffer1_ptr;
 | |
| 
 | |
| 			ba = &ring->ba[block_no][off];
 | |
| 			skb_reserve(skb, BUF0_LEN);
 | |
| 			tmp = (u64)(unsigned long)skb->data;
 | |
| 			tmp += ALIGN_SIZE;
 | |
| 			tmp &= ~ALIGN_SIZE;
 | |
| 			skb->data = (void *) (unsigned long)tmp;
 | |
| 			skb_reset_tail_pointer(skb);
 | |
| 
 | |
| 			if (from_card_up) {
 | |
| 				rxdp3->Buffer0_ptr =
 | |
| 					pci_map_single(ring->pdev, ba->ba_0,
 | |
| 						       BUF0_LEN,
 | |
| 						       PCI_DMA_FROMDEVICE);
 | |
| 				if (pci_dma_mapping_error(nic->pdev,
 | |
| 							  rxdp3->Buffer0_ptr))
 | |
| 					goto pci_map_failed;
 | |
| 			} else
 | |
| 				pci_dma_sync_single_for_device(ring->pdev,
 | |
| 							       (dma_addr_t)rxdp3->Buffer0_ptr,
 | |
| 							       BUF0_LEN,
 | |
| 							       PCI_DMA_FROMDEVICE);
 | |
| 
 | |
| 			rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
 | |
| 			if (ring->rxd_mode == RXD_MODE_3B) {
 | |
| 				/* Two buffer mode */
 | |
| 
 | |
| 				/*
 | |
| 				 * Buffer2 will have L3/L4 header plus
 | |
| 				 * L4 payload
 | |
| 				 */
 | |
| 				rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
 | |
| 								    skb->data,
 | |
| 								    ring->mtu + 4,
 | |
| 								    PCI_DMA_FROMDEVICE);
 | |
| 
 | |
| 				if (pci_dma_mapping_error(nic->pdev,
 | |
| 							  rxdp3->Buffer2_ptr))
 | |
| 					goto pci_map_failed;
 | |
| 
 | |
| 				if (from_card_up) {
 | |
| 					rxdp3->Buffer1_ptr =
 | |
| 						pci_map_single(ring->pdev,
 | |
| 							       ba->ba_1,
 | |
| 							       BUF1_LEN,
 | |
| 							       PCI_DMA_FROMDEVICE);
 | |
| 
 | |
| 					if (pci_dma_mapping_error(nic->pdev,
 | |
| 								  rxdp3->Buffer1_ptr)) {
 | |
| 						pci_unmap_single(ring->pdev,
 | |
| 								 (dma_addr_t)(unsigned long)
 | |
| 								 skb->data,
 | |
| 								 ring->mtu + 4,
 | |
| 								 PCI_DMA_FROMDEVICE);
 | |
| 						goto pci_map_failed;
 | |
| 					}
 | |
| 				}
 | |
| 				rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
 | |
| 				rxdp->Control_2 |= SET_BUFFER2_SIZE_3
 | |
| 					(ring->mtu + 4);
 | |
| 			}
 | |
| 			rxdp->Control_2 |= s2BIT(0);
 | |
| 			rxdp->Host_Control = (unsigned long) (skb);
 | |
| 		}
 | |
| 		if (alloc_tab & ((1 << rxsync_frequency) - 1))
 | |
| 			rxdp->Control_1 |= RXD_OWN_XENA;
 | |
| 		off++;
 | |
| 		if (off == (ring->rxd_count + 1))
 | |
| 			off = 0;
 | |
| 		ring->rx_curr_put_info.offset = off;
 | |
| 
 | |
| 		rxdp->Control_2 |= SET_RXD_MARKER;
 | |
| 		if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
 | |
| 			if (first_rxdp) {
 | |
| 				wmb();
 | |
| 				first_rxdp->Control_1 |= RXD_OWN_XENA;
 | |
| 			}
 | |
| 			first_rxdp = rxdp;
 | |
| 		}
 | |
| 		ring->rx_bufs_left += 1;
 | |
| 		alloc_tab++;
 | |
| 	}
 | |
| 
 | |
| end:
 | |
| 	/* Transfer ownership of first descriptor to adapter just before
 | |
| 	 * exiting. Before that, use memory barrier so that ownership
 | |
| 	 * and other fields are seen by adapter correctly.
 | |
| 	 */
 | |
| 	if (first_rxdp) {
 | |
| 		wmb();
 | |
| 		first_rxdp->Control_1 |= RXD_OWN_XENA;
 | |
| 	}
 | |
| 
 | |
| 	return SUCCESS;
 | |
| 
 | |
| pci_map_failed:
 | |
| 	swstats->pci_map_fail_cnt++;
 | |
| 	swstats->mem_freed += skb->truesize;
 | |
| 	dev_kfree_skb_irq(skb);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
 | |
| {
 | |
| 	struct net_device *dev = sp->dev;
 | |
| 	int j;
 | |
| 	struct sk_buff *skb;
 | |
| 	struct RxD_t *rxdp;
 | |
| 	struct RxD1 *rxdp1;
 | |
| 	struct RxD3 *rxdp3;
 | |
| 	struct mac_info *mac_control = &sp->mac_control;
 | |
| 	struct stat_block *stats = mac_control->stats_info;
 | |
| 	struct swStat *swstats = &stats->sw_stat;
 | |
| 
 | |
| 	for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
 | |
| 		rxdp = mac_control->rings[ring_no].
 | |
| 			rx_blocks[blk].rxds[j].virt_addr;
 | |
| 		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
 | |
| 		if (!skb)
 | |
| 			continue;
 | |
| 		if (sp->rxd_mode == RXD_MODE_1) {
 | |
| 			rxdp1 = (struct RxD1 *)rxdp;
 | |
| 			pci_unmap_single(sp->pdev,
 | |
| 					 (dma_addr_t)rxdp1->Buffer0_ptr,
 | |
| 					 dev->mtu +
 | |
| 					 HEADER_ETHERNET_II_802_3_SIZE +
 | |
| 					 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
 | |
| 					 PCI_DMA_FROMDEVICE);
 | |
| 			memset(rxdp, 0, sizeof(struct RxD1));
 | |
| 		} else if (sp->rxd_mode == RXD_MODE_3B) {
 | |
| 			rxdp3 = (struct RxD3 *)rxdp;
 | |
| 			pci_unmap_single(sp->pdev,
 | |
| 					 (dma_addr_t)rxdp3->Buffer0_ptr,
 | |
| 					 BUF0_LEN,
 | |
| 					 PCI_DMA_FROMDEVICE);
 | |
| 			pci_unmap_single(sp->pdev,
 | |
| 					 (dma_addr_t)rxdp3->Buffer1_ptr,
 | |
| 					 BUF1_LEN,
 | |
| 					 PCI_DMA_FROMDEVICE);
 | |
| 			pci_unmap_single(sp->pdev,
 | |
| 					 (dma_addr_t)rxdp3->Buffer2_ptr,
 | |
| 					 dev->mtu + 4,
 | |
| 					 PCI_DMA_FROMDEVICE);
 | |
| 			memset(rxdp, 0, sizeof(struct RxD3));
 | |
| 		}
 | |
| 		swstats->mem_freed += skb->truesize;
 | |
| 		dev_kfree_skb(skb);
 | |
| 		mac_control->rings[ring_no].rx_bufs_left -= 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  free_rx_buffers - Frees all Rx buffers
 | |
|  *  @sp: device private variable.
 | |
|  *  Description:
 | |
|  *  This function will free all Rx buffers allocated by host.
 | |
|  *  Return Value:
 | |
|  *  NONE.
 | |
|  */
 | |
| 
 | |
| static void free_rx_buffers(struct s2io_nic *sp)
 | |
| {
 | |
| 	struct net_device *dev = sp->dev;
 | |
| 	int i, blk = 0, buf_cnt = 0;
 | |
| 	struct config_param *config = &sp->config;
 | |
| 	struct mac_info *mac_control = &sp->mac_control;
 | |
| 
 | |
| 	for (i = 0; i < config->rx_ring_num; i++) {
 | |
| 		struct ring_info *ring = &mac_control->rings[i];
 | |
| 
 | |
| 		for (blk = 0; blk < rx_ring_sz[i]; blk++)
 | |
| 			free_rxd_blk(sp, i, blk);
 | |
| 
 | |
| 		ring->rx_curr_put_info.block_index = 0;
 | |
| 		ring->rx_curr_get_info.block_index = 0;
 | |
| 		ring->rx_curr_put_info.offset = 0;
 | |
| 		ring->rx_curr_get_info.offset = 0;
 | |
| 		ring->rx_bufs_left = 0;
 | |
| 		DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
 | |
| 			  dev->name, buf_cnt, i);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
 | |
| {
 | |
| 	if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
 | |
| 		DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
 | |
| 			  ring->dev->name);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_poll - Rx interrupt handler for NAPI support
 | |
|  * @napi : pointer to the napi structure.
 | |
|  * @budget : The number of packets that were budgeted to be processed
 | |
|  * during  one pass through the 'Poll" function.
 | |
|  * Description:
 | |
|  * Comes into picture only if NAPI support has been incorporated. It does
 | |
|  * the same thing that rx_intr_handler does, but not in a interrupt context
 | |
|  * also It will process only a given number of packets.
 | |
|  * Return value:
 | |
|  * 0 on success and 1 if there are No Rx packets to be processed.
 | |
|  */
 | |
| 
 | |
| static int s2io_poll_msix(struct napi_struct *napi, int budget)
 | |
| {
 | |
| 	struct ring_info *ring = container_of(napi, struct ring_info, napi);
 | |
| 	struct net_device *dev = ring->dev;
 | |
| 	int pkts_processed = 0;
 | |
| 	u8 __iomem *addr = NULL;
 | |
| 	u8 val8 = 0;
 | |
| 	struct s2io_nic *nic = netdev_priv(dev);
 | |
| 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
 | |
| 	int budget_org = budget;
 | |
| 
 | |
| 	if (unlikely(!is_s2io_card_up(nic)))
 | |
| 		return 0;
 | |
| 
 | |
| 	pkts_processed = rx_intr_handler(ring, budget);
 | |
| 	s2io_chk_rx_buffers(nic, ring);
 | |
| 
 | |
| 	if (pkts_processed < budget_org) {
 | |
| 		napi_complete(napi);
 | |
| 		/*Re Enable MSI-Rx Vector*/
 | |
| 		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
 | |
| 		addr += 7 - ring->ring_no;
 | |
| 		val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
 | |
| 		writeb(val8, addr);
 | |
| 		val8 = readb(addr);
 | |
| 	}
 | |
| 	return pkts_processed;
 | |
| }
 | |
| 
 | |
| static int s2io_poll_inta(struct napi_struct *napi, int budget)
 | |
| {
 | |
| 	struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
 | |
| 	int pkts_processed = 0;
 | |
| 	int ring_pkts_processed, i;
 | |
| 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
 | |
| 	int budget_org = budget;
 | |
| 	struct config_param *config = &nic->config;
 | |
| 	struct mac_info *mac_control = &nic->mac_control;
 | |
| 
 | |
| 	if (unlikely(!is_s2io_card_up(nic)))
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0; i < config->rx_ring_num; i++) {
 | |
| 		struct ring_info *ring = &mac_control->rings[i];
 | |
| 		ring_pkts_processed = rx_intr_handler(ring, budget);
 | |
| 		s2io_chk_rx_buffers(nic, ring);
 | |
| 		pkts_processed += ring_pkts_processed;
 | |
| 		budget -= ring_pkts_processed;
 | |
| 		if (budget <= 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (pkts_processed < budget_org) {
 | |
| 		napi_complete(napi);
 | |
| 		/* Re enable the Rx interrupts for the ring */
 | |
| 		writeq(0, &bar0->rx_traffic_mask);
 | |
| 		readl(&bar0->rx_traffic_mask);
 | |
| 	}
 | |
| 	return pkts_processed;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| /**
 | |
|  * s2io_netpoll - netpoll event handler entry point
 | |
|  * @dev : pointer to the device structure.
 | |
|  * Description:
 | |
|  * 	This function will be called by upper layer to check for events on the
 | |
|  * interface in situations where interrupts are disabled. It is used for
 | |
|  * specific in-kernel networking tasks, such as remote consoles and kernel
 | |
|  * debugging over the network (example netdump in RedHat).
 | |
|  */
 | |
| static void s2io_netpoll(struct net_device *dev)
 | |
| {
 | |
| 	struct s2io_nic *nic = netdev_priv(dev);
 | |
| 	const int irq = nic->pdev->irq;
 | |
| 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
 | |
| 	u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
 | |
| 	int i;
 | |
| 	struct config_param *config = &nic->config;
 | |
| 	struct mac_info *mac_control = &nic->mac_control;
 | |
| 
 | |
| 	if (pci_channel_offline(nic->pdev))
 | |
| 		return;
 | |
| 
 | |
| 	disable_irq(irq);
 | |
| 
 | |
| 	writeq(val64, &bar0->rx_traffic_int);
 | |
| 	writeq(val64, &bar0->tx_traffic_int);
 | |
| 
 | |
| 	/* we need to free up the transmitted skbufs or else netpoll will
 | |
| 	 * run out of skbs and will fail and eventually netpoll application such
 | |
| 	 * as netdump will fail.
 | |
| 	 */
 | |
| 	for (i = 0; i < config->tx_fifo_num; i++)
 | |
| 		tx_intr_handler(&mac_control->fifos[i]);
 | |
| 
 | |
| 	/* check for received packet and indicate up to network */
 | |
| 	for (i = 0; i < config->rx_ring_num; i++) {
 | |
| 		struct ring_info *ring = &mac_control->rings[i];
 | |
| 
 | |
| 		rx_intr_handler(ring, 0);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < config->rx_ring_num; i++) {
 | |
| 		struct ring_info *ring = &mac_control->rings[i];
 | |
| 
 | |
| 		if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
 | |
| 			DBG_PRINT(INFO_DBG,
 | |
| 				  "%s: Out of memory in Rx Netpoll!!\n",
 | |
| 				  dev->name);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	enable_irq(irq);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  *  rx_intr_handler - Rx interrupt handler
 | |
|  *  @ring_info: per ring structure.
 | |
|  *  @budget: budget for napi processing.
 | |
|  *  Description:
 | |
|  *  If the interrupt is because of a received frame or if the
 | |
|  *  receive ring contains fresh as yet un-processed frames,this function is
 | |
|  *  called. It picks out the RxD at which place the last Rx processing had
 | |
|  *  stopped and sends the skb to the OSM's Rx handler and then increments
 | |
|  *  the offset.
 | |
|  *  Return Value:
 | |
|  *  No. of napi packets processed.
 | |
|  */
 | |
| static int rx_intr_handler(struct ring_info *ring_data, int budget)
 | |
| {
 | |
| 	int get_block, put_block;
 | |
| 	struct rx_curr_get_info get_info, put_info;
 | |
| 	struct RxD_t *rxdp;
 | |
| 	struct sk_buff *skb;
 | |
| 	int pkt_cnt = 0, napi_pkts = 0;
 | |
| 	int i;
 | |
| 	struct RxD1 *rxdp1;
 | |
| 	struct RxD3 *rxdp3;
 | |
| 
 | |
| 	if (budget <= 0)
 | |
| 		return napi_pkts;
 | |
| 
 | |
| 	get_info = ring_data->rx_curr_get_info;
 | |
| 	get_block = get_info.block_index;
 | |
| 	memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
 | |
| 	put_block = put_info.block_index;
 | |
| 	rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
 | |
| 
 | |
| 	while (RXD_IS_UP2DT(rxdp)) {
 | |
| 		/*
 | |
| 		 * If your are next to put index then it's
 | |
| 		 * FIFO full condition
 | |
| 		 */
 | |
| 		if ((get_block == put_block) &&
 | |
| 		    (get_info.offset + 1) == put_info.offset) {
 | |
| 			DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
 | |
| 				  ring_data->dev->name);
 | |
| 			break;
 | |
| 		}
 | |
| 		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
 | |
| 		if (skb == NULL) {
 | |
| 			DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
 | |
| 				  ring_data->dev->name);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		if (ring_data->rxd_mode == RXD_MODE_1) {
 | |
| 			rxdp1 = (struct RxD1 *)rxdp;
 | |
| 			pci_unmap_single(ring_data->pdev, (dma_addr_t)
 | |
| 					 rxdp1->Buffer0_ptr,
 | |
| 					 ring_data->mtu +
 | |
| 					 HEADER_ETHERNET_II_802_3_SIZE +
 | |
| 					 HEADER_802_2_SIZE +
 | |
| 					 HEADER_SNAP_SIZE,
 | |
| 					 PCI_DMA_FROMDEVICE);
 | |
| 		} else if (ring_data->rxd_mode == RXD_MODE_3B) {
 | |
| 			rxdp3 = (struct RxD3 *)rxdp;
 | |
| 			pci_dma_sync_single_for_cpu(ring_data->pdev,
 | |
| 						    (dma_addr_t)rxdp3->Buffer0_ptr,
 | |
| 						    BUF0_LEN,
 | |
| 						    PCI_DMA_FROMDEVICE);
 | |
| 			pci_unmap_single(ring_data->pdev,
 | |
| 					 (dma_addr_t)rxdp3->Buffer2_ptr,
 | |
| 					 ring_data->mtu + 4,
 | |
| 					 PCI_DMA_FROMDEVICE);
 | |
| 		}
 | |
| 		prefetch(skb->data);
 | |
| 		rx_osm_handler(ring_data, rxdp);
 | |
| 		get_info.offset++;
 | |
| 		ring_data->rx_curr_get_info.offset = get_info.offset;
 | |
| 		rxdp = ring_data->rx_blocks[get_block].
 | |
| 			rxds[get_info.offset].virt_addr;
 | |
| 		if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
 | |
| 			get_info.offset = 0;
 | |
| 			ring_data->rx_curr_get_info.offset = get_info.offset;
 | |
| 			get_block++;
 | |
| 			if (get_block == ring_data->block_count)
 | |
| 				get_block = 0;
 | |
| 			ring_data->rx_curr_get_info.block_index = get_block;
 | |
| 			rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
 | |
| 		}
 | |
| 
 | |
| 		if (ring_data->nic->config.napi) {
 | |
| 			budget--;
 | |
| 			napi_pkts++;
 | |
| 			if (!budget)
 | |
| 				break;
 | |
| 		}
 | |
| 		pkt_cnt++;
 | |
| 		if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
 | |
| 			break;
 | |
| 	}
 | |
| 	if (ring_data->lro) {
 | |
| 		/* Clear all LRO sessions before exiting */
 | |
| 		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
 | |
| 			struct lro *lro = &ring_data->lro0_n[i];
 | |
| 			if (lro->in_use) {
 | |
| 				update_L3L4_header(ring_data->nic, lro);
 | |
| 				queue_rx_frame(lro->parent, lro->vlan_tag);
 | |
| 				clear_lro_session(lro);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return napi_pkts;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  tx_intr_handler - Transmit interrupt handler
 | |
|  *  @nic : device private variable
 | |
|  *  Description:
 | |
|  *  If an interrupt was raised to indicate DMA complete of the
 | |
|  *  Tx packet, this function is called. It identifies the last TxD
 | |
|  *  whose buffer was freed and frees all skbs whose data have already
 | |
|  *  DMA'ed into the NICs internal memory.
 | |
|  *  Return Value:
 | |
|  *  NONE
 | |
|  */
 | |
| 
 | |
| static void tx_intr_handler(struct fifo_info *fifo_data)
 | |
| {
 | |
| 	struct s2io_nic *nic = fifo_data->nic;
 | |
| 	struct tx_curr_get_info get_info, put_info;
 | |
| 	struct sk_buff *skb = NULL;
 | |
| 	struct TxD *txdlp;
 | |
| 	int pkt_cnt = 0;
 | |
| 	unsigned long flags = 0;
 | |
| 	u8 err_mask;
 | |
| 	struct stat_block *stats = nic->mac_control.stats_info;
 | |
| 	struct swStat *swstats = &stats->sw_stat;
 | |
| 
 | |
| 	if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
 | |
| 		return;
 | |
| 
 | |
| 	get_info = fifo_data->tx_curr_get_info;
 | |
| 	memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
 | |
| 	txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
 | |
| 	while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
 | |
| 	       (get_info.offset != put_info.offset) &&
 | |
| 	       (txdlp->Host_Control)) {
 | |
| 		/* Check for TxD errors */
 | |
| 		if (txdlp->Control_1 & TXD_T_CODE) {
 | |
| 			unsigned long long err;
 | |
| 			err = txdlp->Control_1 & TXD_T_CODE;
 | |
| 			if (err & 0x1) {
 | |
| 				swstats->parity_err_cnt++;
 | |
| 			}
 | |
| 
 | |
| 			/* update t_code statistics */
 | |
| 			err_mask = err >> 48;
 | |
| 			switch (err_mask) {
 | |
| 			case 2:
 | |
| 				swstats->tx_buf_abort_cnt++;
 | |
| 				break;
 | |
| 
 | |
| 			case 3:
 | |
| 				swstats->tx_desc_abort_cnt++;
 | |
| 				break;
 | |
| 
 | |
| 			case 7:
 | |
| 				swstats->tx_parity_err_cnt++;
 | |
| 				break;
 | |
| 
 | |
| 			case 10:
 | |
| 				swstats->tx_link_loss_cnt++;
 | |
| 				break;
 | |
| 
 | |
| 			case 15:
 | |
| 				swstats->tx_list_proc_err_cnt++;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
 | |
| 		if (skb == NULL) {
 | |
| 			spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
 | |
| 			DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
 | |
| 				  __func__);
 | |
| 			return;
 | |
| 		}
 | |
| 		pkt_cnt++;
 | |
| 
 | |
| 		/* Updating the statistics block */
 | |
| 		swstats->mem_freed += skb->truesize;
 | |
| 		dev_kfree_skb_irq(skb);
 | |
| 
 | |
| 		get_info.offset++;
 | |
| 		if (get_info.offset == get_info.fifo_len + 1)
 | |
| 			get_info.offset = 0;
 | |
| 		txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
 | |
| 		fifo_data->tx_curr_get_info.offset = get_info.offset;
 | |
| 	}
 | |
| 
 | |
| 	s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  s2io_mdio_write - Function to write in to MDIO registers
 | |
|  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
 | |
|  *  @addr     : address value
 | |
|  *  @value    : data value
 | |
|  *  @dev      : pointer to net_device structure
 | |
|  *  Description:
 | |
|  *  This function is used to write values to the MDIO registers
 | |
|  *  NONE
 | |
|  */
 | |
| static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
 | |
| 			    struct net_device *dev)
 | |
| {
 | |
| 	u64 val64;
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 
 | |
| 	/* address transaction */
 | |
| 	val64 = MDIO_MMD_INDX_ADDR(addr) |
 | |
| 		MDIO_MMD_DEV_ADDR(mmd_type) |
 | |
| 		MDIO_MMS_PRT_ADDR(0x0);
 | |
| 	writeq(val64, &bar0->mdio_control);
 | |
| 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
 | |
| 	writeq(val64, &bar0->mdio_control);
 | |
| 	udelay(100);
 | |
| 
 | |
| 	/* Data transaction */
 | |
| 	val64 = MDIO_MMD_INDX_ADDR(addr) |
 | |
| 		MDIO_MMD_DEV_ADDR(mmd_type) |
 | |
| 		MDIO_MMS_PRT_ADDR(0x0) |
 | |
| 		MDIO_MDIO_DATA(value) |
 | |
| 		MDIO_OP(MDIO_OP_WRITE_TRANS);
 | |
| 	writeq(val64, &bar0->mdio_control);
 | |
| 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
 | |
| 	writeq(val64, &bar0->mdio_control);
 | |
| 	udelay(100);
 | |
| 
 | |
| 	val64 = MDIO_MMD_INDX_ADDR(addr) |
 | |
| 		MDIO_MMD_DEV_ADDR(mmd_type) |
 | |
| 		MDIO_MMS_PRT_ADDR(0x0) |
 | |
| 		MDIO_OP(MDIO_OP_READ_TRANS);
 | |
| 	writeq(val64, &bar0->mdio_control);
 | |
| 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
 | |
| 	writeq(val64, &bar0->mdio_control);
 | |
| 	udelay(100);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  s2io_mdio_read - Function to write in to MDIO registers
 | |
|  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
 | |
|  *  @addr     : address value
 | |
|  *  @dev      : pointer to net_device structure
 | |
|  *  Description:
 | |
|  *  This function is used to read values to the MDIO registers
 | |
|  *  NONE
 | |
|  */
 | |
| static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
 | |
| {
 | |
| 	u64 val64 = 0x0;
 | |
| 	u64 rval64 = 0x0;
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 
 | |
| 	/* address transaction */
 | |
| 	val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
 | |
| 			 | MDIO_MMD_DEV_ADDR(mmd_type)
 | |
| 			 | MDIO_MMS_PRT_ADDR(0x0));
 | |
| 	writeq(val64, &bar0->mdio_control);
 | |
| 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
 | |
| 	writeq(val64, &bar0->mdio_control);
 | |
| 	udelay(100);
 | |
| 
 | |
| 	/* Data transaction */
 | |
| 	val64 = MDIO_MMD_INDX_ADDR(addr) |
 | |
| 		MDIO_MMD_DEV_ADDR(mmd_type) |
 | |
| 		MDIO_MMS_PRT_ADDR(0x0) |
 | |
| 		MDIO_OP(MDIO_OP_READ_TRANS);
 | |
| 	writeq(val64, &bar0->mdio_control);
 | |
| 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
 | |
| 	writeq(val64, &bar0->mdio_control);
 | |
| 	udelay(100);
 | |
| 
 | |
| 	/* Read the value from regs */
 | |
| 	rval64 = readq(&bar0->mdio_control);
 | |
| 	rval64 = rval64 & 0xFFFF0000;
 | |
| 	rval64 = rval64 >> 16;
 | |
| 	return rval64;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
 | |
|  *  @counter      : counter value to be updated
 | |
|  *  @flag         : flag to indicate the status
 | |
|  *  @type         : counter type
 | |
|  *  Description:
 | |
|  *  This function is to check the status of the xpak counters value
 | |
|  *  NONE
 | |
|  */
 | |
| 
 | |
| static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
 | |
| 				  u16 flag, u16 type)
 | |
| {
 | |
| 	u64 mask = 0x3;
 | |
| 	u64 val64;
 | |
| 	int i;
 | |
| 	for (i = 0; i < index; i++)
 | |
| 		mask = mask << 0x2;
 | |
| 
 | |
| 	if (flag > 0) {
 | |
| 		*counter = *counter + 1;
 | |
| 		val64 = *regs_stat & mask;
 | |
| 		val64 = val64 >> (index * 0x2);
 | |
| 		val64 = val64 + 1;
 | |
| 		if (val64 == 3) {
 | |
| 			switch (type) {
 | |
| 			case 1:
 | |
| 				DBG_PRINT(ERR_DBG,
 | |
| 					  "Take Xframe NIC out of service.\n");
 | |
| 				DBG_PRINT(ERR_DBG,
 | |
| "Excessive temperatures may result in premature transceiver failure.\n");
 | |
| 				break;
 | |
| 			case 2:
 | |
| 				DBG_PRINT(ERR_DBG,
 | |
| 					  "Take Xframe NIC out of service.\n");
 | |
| 				DBG_PRINT(ERR_DBG,
 | |
| "Excessive bias currents may indicate imminent laser diode failure.\n");
 | |
| 				break;
 | |
| 			case 3:
 | |
| 				DBG_PRINT(ERR_DBG,
 | |
| 					  "Take Xframe NIC out of service.\n");
 | |
| 				DBG_PRINT(ERR_DBG,
 | |
| "Excessive laser output power may saturate far-end receiver.\n");
 | |
| 				break;
 | |
| 			default:
 | |
| 				DBG_PRINT(ERR_DBG,
 | |
| 					  "Incorrect XPAK Alarm type\n");
 | |
| 			}
 | |
| 			val64 = 0x0;
 | |
| 		}
 | |
| 		val64 = val64 << (index * 0x2);
 | |
| 		*regs_stat = (*regs_stat & (~mask)) | (val64);
 | |
| 
 | |
| 	} else {
 | |
| 		*regs_stat = *regs_stat & (~mask);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  s2io_updt_xpak_counter - Function to update the xpak counters
 | |
|  *  @dev         : pointer to net_device struct
 | |
|  *  Description:
 | |
|  *  This function is to upate the status of the xpak counters value
 | |
|  *  NONE
 | |
|  */
 | |
| static void s2io_updt_xpak_counter(struct net_device *dev)
 | |
| {
 | |
| 	u16 flag  = 0x0;
 | |
| 	u16 type  = 0x0;
 | |
| 	u16 val16 = 0x0;
 | |
| 	u64 val64 = 0x0;
 | |
| 	u64 addr  = 0x0;
 | |
| 
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 	struct stat_block *stats = sp->mac_control.stats_info;
 | |
| 	struct xpakStat *xstats = &stats->xpak_stat;
 | |
| 
 | |
| 	/* Check the communication with the MDIO slave */
 | |
| 	addr = MDIO_CTRL1;
 | |
| 	val64 = 0x0;
 | |
| 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
 | |
| 	if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
 | |
| 		DBG_PRINT(ERR_DBG,
 | |
| 			  "ERR: MDIO slave access failed - Returned %llx\n",
 | |
| 			  (unsigned long long)val64);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Check for the expected value of control reg 1 */
 | |
| 	if (val64 != MDIO_CTRL1_SPEED10G) {
 | |
| 		DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
 | |
| 			  "Returned: %llx- Expected: 0x%x\n",
 | |
| 			  (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Loading the DOM register to MDIO register */
 | |
| 	addr = 0xA100;
 | |
| 	s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
 | |
| 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
 | |
| 
 | |
| 	/* Reading the Alarm flags */
 | |
| 	addr = 0xA070;
 | |
| 	val64 = 0x0;
 | |
| 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
 | |
| 
 | |
| 	flag = CHECKBIT(val64, 0x7);
 | |
| 	type = 1;
 | |
| 	s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
 | |
| 			      &xstats->xpak_regs_stat,
 | |
| 			      0x0, flag, type);
 | |
| 
 | |
| 	if (CHECKBIT(val64, 0x6))
 | |
| 		xstats->alarm_transceiver_temp_low++;
 | |
| 
 | |
| 	flag = CHECKBIT(val64, 0x3);
 | |
| 	type = 2;
 | |
| 	s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
 | |
| 			      &xstats->xpak_regs_stat,
 | |
| 			      0x2, flag, type);
 | |
| 
 | |
| 	if (CHECKBIT(val64, 0x2))
 | |
| 		xstats->alarm_laser_bias_current_low++;
 | |
| 
 | |
| 	flag = CHECKBIT(val64, 0x1);
 | |
| 	type = 3;
 | |
| 	s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
 | |
| 			      &xstats->xpak_regs_stat,
 | |
| 			      0x4, flag, type);
 | |
| 
 | |
| 	if (CHECKBIT(val64, 0x0))
 | |
| 		xstats->alarm_laser_output_power_low++;
 | |
| 
 | |
| 	/* Reading the Warning flags */
 | |
| 	addr = 0xA074;
 | |
| 	val64 = 0x0;
 | |
| 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
 | |
| 
 | |
| 	if (CHECKBIT(val64, 0x7))
 | |
| 		xstats->warn_transceiver_temp_high++;
 | |
| 
 | |
| 	if (CHECKBIT(val64, 0x6))
 | |
| 		xstats->warn_transceiver_temp_low++;
 | |
| 
 | |
| 	if (CHECKBIT(val64, 0x3))
 | |
| 		xstats->warn_laser_bias_current_high++;
 | |
| 
 | |
| 	if (CHECKBIT(val64, 0x2))
 | |
| 		xstats->warn_laser_bias_current_low++;
 | |
| 
 | |
| 	if (CHECKBIT(val64, 0x1))
 | |
| 		xstats->warn_laser_output_power_high++;
 | |
| 
 | |
| 	if (CHECKBIT(val64, 0x0))
 | |
| 		xstats->warn_laser_output_power_low++;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  wait_for_cmd_complete - waits for a command to complete.
 | |
|  *  @sp : private member of the device structure, which is a pointer to the
 | |
|  *  s2io_nic structure.
 | |
|  *  Description: Function that waits for a command to Write into RMAC
 | |
|  *  ADDR DATA registers to be completed and returns either success or
 | |
|  *  error depending on whether the command was complete or not.
 | |
|  *  Return value:
 | |
|  *   SUCCESS on success and FAILURE on failure.
 | |
|  */
 | |
| 
 | |
| static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
 | |
| 				 int bit_state)
 | |
| {
 | |
| 	int ret = FAILURE, cnt = 0, delay = 1;
 | |
| 	u64 val64;
 | |
| 
 | |
| 	if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
 | |
| 		return FAILURE;
 | |
| 
 | |
| 	do {
 | |
| 		val64 = readq(addr);
 | |
| 		if (bit_state == S2IO_BIT_RESET) {
 | |
| 			if (!(val64 & busy_bit)) {
 | |
| 				ret = SUCCESS;
 | |
| 				break;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (val64 & busy_bit) {
 | |
| 				ret = SUCCESS;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (in_interrupt())
 | |
| 			mdelay(delay);
 | |
| 		else
 | |
| 			msleep(delay);
 | |
| 
 | |
| 		if (++cnt >= 10)
 | |
| 			delay = 50;
 | |
| 	} while (cnt < 20);
 | |
| 	return ret;
 | |
| }
 | |
| /**
 | |
|  * check_pci_device_id - Checks if the device id is supported
 | |
|  * @id : device id
 | |
|  * Description: Function to check if the pci device id is supported by driver.
 | |
|  * Return value: Actual device id if supported else PCI_ANY_ID
 | |
|  */
 | |
| static u16 check_pci_device_id(u16 id)
 | |
| {
 | |
| 	switch (id) {
 | |
| 	case PCI_DEVICE_ID_HERC_WIN:
 | |
| 	case PCI_DEVICE_ID_HERC_UNI:
 | |
| 		return XFRAME_II_DEVICE;
 | |
| 	case PCI_DEVICE_ID_S2IO_UNI:
 | |
| 	case PCI_DEVICE_ID_S2IO_WIN:
 | |
| 		return XFRAME_I_DEVICE;
 | |
| 	default:
 | |
| 		return PCI_ANY_ID;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  s2io_reset - Resets the card.
 | |
|  *  @sp : private member of the device structure.
 | |
|  *  Description: Function to Reset the card. This function then also
 | |
|  *  restores the previously saved PCI configuration space registers as
 | |
|  *  the card reset also resets the configuration space.
 | |
|  *  Return value:
 | |
|  *  void.
 | |
|  */
 | |
| 
 | |
| static void s2io_reset(struct s2io_nic *sp)
 | |
| {
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 	u64 val64;
 | |
| 	u16 subid, pci_cmd;
 | |
| 	int i;
 | |
| 	u16 val16;
 | |
| 	unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
 | |
| 	unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
 | |
| 	struct stat_block *stats;
 | |
| 	struct swStat *swstats;
 | |
| 
 | |
| 	DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
 | |
| 		  __func__, pci_name(sp->pdev));
 | |
| 
 | |
| 	/* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
 | |
| 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
 | |
| 
 | |
| 	val64 = SW_RESET_ALL;
 | |
| 	writeq(val64, &bar0->sw_reset);
 | |
| 	if (strstr(sp->product_name, "CX4"))
 | |
| 		msleep(750);
 | |
| 	msleep(250);
 | |
| 	for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
 | |
| 
 | |
| 		/* Restore the PCI state saved during initialization. */
 | |
| 		pci_restore_state(sp->pdev);
 | |
| 		pci_save_state(sp->pdev);
 | |
| 		pci_read_config_word(sp->pdev, 0x2, &val16);
 | |
| 		if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
 | |
| 			break;
 | |
| 		msleep(200);
 | |
| 	}
 | |
| 
 | |
| 	if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
 | |
| 		DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
 | |
| 
 | |
| 	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
 | |
| 
 | |
| 	s2io_init_pci(sp);
 | |
| 
 | |
| 	/* Set swapper to enable I/O register access */
 | |
| 	s2io_set_swapper(sp);
 | |
| 
 | |
| 	/* restore mac_addr entries */
 | |
| 	do_s2io_restore_unicast_mc(sp);
 | |
| 
 | |
| 	/* Restore the MSIX table entries from local variables */
 | |
| 	restore_xmsi_data(sp);
 | |
| 
 | |
| 	/* Clear certain PCI/PCI-X fields after reset */
 | |
| 	if (sp->device_type == XFRAME_II_DEVICE) {
 | |
| 		/* Clear "detected parity error" bit */
 | |
| 		pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
 | |
| 
 | |
| 		/* Clearing PCIX Ecc status register */
 | |
| 		pci_write_config_dword(sp->pdev, 0x68, 0x7C);
 | |
| 
 | |
| 		/* Clearing PCI_STATUS error reflected here */
 | |
| 		writeq(s2BIT(62), &bar0->txpic_int_reg);
 | |
| 	}
 | |
| 
 | |
| 	/* Reset device statistics maintained by OS */
 | |
| 	memset(&sp->stats, 0, sizeof(struct net_device_stats));
 | |
| 
 | |
| 	stats = sp->mac_control.stats_info;
 | |
| 	swstats = &stats->sw_stat;
 | |
| 
 | |
| 	/* save link up/down time/cnt, reset/memory/watchdog cnt */
 | |
| 	up_cnt = swstats->link_up_cnt;
 | |
| 	down_cnt = swstats->link_down_cnt;
 | |
| 	up_time = swstats->link_up_time;
 | |
| 	down_time = swstats->link_down_time;
 | |
| 	reset_cnt = swstats->soft_reset_cnt;
 | |
| 	mem_alloc_cnt = swstats->mem_allocated;
 | |
| 	mem_free_cnt = swstats->mem_freed;
 | |
| 	watchdog_cnt = swstats->watchdog_timer_cnt;
 | |
| 
 | |
| 	memset(stats, 0, sizeof(struct stat_block));
 | |
| 
 | |
| 	/* restore link up/down time/cnt, reset/memory/watchdog cnt */
 | |
| 	swstats->link_up_cnt = up_cnt;
 | |
| 	swstats->link_down_cnt = down_cnt;
 | |
| 	swstats->link_up_time = up_time;
 | |
| 	swstats->link_down_time = down_time;
 | |
| 	swstats->soft_reset_cnt = reset_cnt;
 | |
| 	swstats->mem_allocated = mem_alloc_cnt;
 | |
| 	swstats->mem_freed = mem_free_cnt;
 | |
| 	swstats->watchdog_timer_cnt = watchdog_cnt;
 | |
| 
 | |
| 	/* SXE-002: Configure link and activity LED to turn it off */
 | |
| 	subid = sp->pdev->subsystem_device;
 | |
| 	if (((subid & 0xFF) >= 0x07) &&
 | |
| 	    (sp->device_type == XFRAME_I_DEVICE)) {
 | |
| 		val64 = readq(&bar0->gpio_control);
 | |
| 		val64 |= 0x0000800000000000ULL;
 | |
| 		writeq(val64, &bar0->gpio_control);
 | |
| 		val64 = 0x0411040400000000ULL;
 | |
| 		writeq(val64, (void __iomem *)bar0 + 0x2700);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear spurious ECC interrupts that would have occurred on
 | |
| 	 * XFRAME II cards after reset.
 | |
| 	 */
 | |
| 	if (sp->device_type == XFRAME_II_DEVICE) {
 | |
| 		val64 = readq(&bar0->pcc_err_reg);
 | |
| 		writeq(val64, &bar0->pcc_err_reg);
 | |
| 	}
 | |
| 
 | |
| 	sp->device_enabled_once = false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  s2io_set_swapper - to set the swapper controle on the card
 | |
|  *  @sp : private member of the device structure,
 | |
|  *  pointer to the s2io_nic structure.
 | |
|  *  Description: Function to set the swapper control on the card
 | |
|  *  correctly depending on the 'endianness' of the system.
 | |
|  *  Return value:
 | |
|  *  SUCCESS on success and FAILURE on failure.
 | |
|  */
 | |
| 
 | |
| static int s2io_set_swapper(struct s2io_nic *sp)
 | |
| {
 | |
| 	struct net_device *dev = sp->dev;
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 	u64 val64, valt, valr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set proper endian settings and verify the same by reading
 | |
| 	 * the PIF Feed-back register.
 | |
| 	 */
 | |
| 
 | |
| 	val64 = readq(&bar0->pif_rd_swapper_fb);
 | |
| 	if (val64 != 0x0123456789ABCDEFULL) {
 | |
| 		int i = 0;
 | |
| 		static const u64 value[] = {
 | |
| 			0xC30000C3C30000C3ULL,	/* FE=1, SE=1 */
 | |
| 			0x8100008181000081ULL,	/* FE=1, SE=0 */
 | |
| 			0x4200004242000042ULL,	/* FE=0, SE=1 */
 | |
| 			0			/* FE=0, SE=0 */
 | |
| 		};
 | |
| 
 | |
| 		while (i < 4) {
 | |
| 			writeq(value[i], &bar0->swapper_ctrl);
 | |
| 			val64 = readq(&bar0->pif_rd_swapper_fb);
 | |
| 			if (val64 == 0x0123456789ABCDEFULL)
 | |
| 				break;
 | |
| 			i++;
 | |
| 		}
 | |
| 		if (i == 4) {
 | |
| 			DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
 | |
| 				  "feedback read %llx\n",
 | |
| 				  dev->name, (unsigned long long)val64);
 | |
| 			return FAILURE;
 | |
| 		}
 | |
| 		valr = value[i];
 | |
| 	} else {
 | |
| 		valr = readq(&bar0->swapper_ctrl);
 | |
| 	}
 | |
| 
 | |
| 	valt = 0x0123456789ABCDEFULL;
 | |
| 	writeq(valt, &bar0->xmsi_address);
 | |
| 	val64 = readq(&bar0->xmsi_address);
 | |
| 
 | |
| 	if (val64 != valt) {
 | |
| 		int i = 0;
 | |
| 		static const u64 value[] = {
 | |
| 			0x00C3C30000C3C300ULL,	/* FE=1, SE=1 */
 | |
| 			0x0081810000818100ULL,	/* FE=1, SE=0 */
 | |
| 			0x0042420000424200ULL,	/* FE=0, SE=1 */
 | |
| 			0			/* FE=0, SE=0 */
 | |
| 		};
 | |
| 
 | |
| 		while (i < 4) {
 | |
| 			writeq((value[i] | valr), &bar0->swapper_ctrl);
 | |
| 			writeq(valt, &bar0->xmsi_address);
 | |
| 			val64 = readq(&bar0->xmsi_address);
 | |
| 			if (val64 == valt)
 | |
| 				break;
 | |
| 			i++;
 | |
| 		}
 | |
| 		if (i == 4) {
 | |
| 			unsigned long long x = val64;
 | |
| 			DBG_PRINT(ERR_DBG,
 | |
| 				  "Write failed, Xmsi_addr reads:0x%llx\n", x);
 | |
| 			return FAILURE;
 | |
| 		}
 | |
| 	}
 | |
| 	val64 = readq(&bar0->swapper_ctrl);
 | |
| 	val64 &= 0xFFFF000000000000ULL;
 | |
| 
 | |
| #ifdef __BIG_ENDIAN
 | |
| 	/*
 | |
| 	 * The device by default set to a big endian format, so a
 | |
| 	 * big endian driver need not set anything.
 | |
| 	 */
 | |
| 	val64 |= (SWAPPER_CTRL_TXP_FE |
 | |
| 		  SWAPPER_CTRL_TXP_SE |
 | |
| 		  SWAPPER_CTRL_TXD_R_FE |
 | |
| 		  SWAPPER_CTRL_TXD_W_FE |
 | |
| 		  SWAPPER_CTRL_TXF_R_FE |
 | |
| 		  SWAPPER_CTRL_RXD_R_FE |
 | |
| 		  SWAPPER_CTRL_RXD_W_FE |
 | |
| 		  SWAPPER_CTRL_RXF_W_FE |
 | |
| 		  SWAPPER_CTRL_XMSI_FE |
 | |
| 		  SWAPPER_CTRL_STATS_FE |
 | |
| 		  SWAPPER_CTRL_STATS_SE);
 | |
| 	if (sp->config.intr_type == INTA)
 | |
| 		val64 |= SWAPPER_CTRL_XMSI_SE;
 | |
| 	writeq(val64, &bar0->swapper_ctrl);
 | |
| #else
 | |
| 	/*
 | |
| 	 * Initially we enable all bits to make it accessible by the
 | |
| 	 * driver, then we selectively enable only those bits that
 | |
| 	 * we want to set.
 | |
| 	 */
 | |
| 	val64 |= (SWAPPER_CTRL_TXP_FE |
 | |
| 		  SWAPPER_CTRL_TXP_SE |
 | |
| 		  SWAPPER_CTRL_TXD_R_FE |
 | |
| 		  SWAPPER_CTRL_TXD_R_SE |
 | |
| 		  SWAPPER_CTRL_TXD_W_FE |
 | |
| 		  SWAPPER_CTRL_TXD_W_SE |
 | |
| 		  SWAPPER_CTRL_TXF_R_FE |
 | |
| 		  SWAPPER_CTRL_RXD_R_FE |
 | |
| 		  SWAPPER_CTRL_RXD_R_SE |
 | |
| 		  SWAPPER_CTRL_RXD_W_FE |
 | |
| 		  SWAPPER_CTRL_RXD_W_SE |
 | |
| 		  SWAPPER_CTRL_RXF_W_FE |
 | |
| 		  SWAPPER_CTRL_XMSI_FE |
 | |
| 		  SWAPPER_CTRL_STATS_FE |
 | |
| 		  SWAPPER_CTRL_STATS_SE);
 | |
| 	if (sp->config.intr_type == INTA)
 | |
| 		val64 |= SWAPPER_CTRL_XMSI_SE;
 | |
| 	writeq(val64, &bar0->swapper_ctrl);
 | |
| #endif
 | |
| 	val64 = readq(&bar0->swapper_ctrl);
 | |
| 
 | |
| 	/*
 | |
| 	 * Verifying if endian settings are accurate by reading a
 | |
| 	 * feedback register.
 | |
| 	 */
 | |
| 	val64 = readq(&bar0->pif_rd_swapper_fb);
 | |
| 	if (val64 != 0x0123456789ABCDEFULL) {
 | |
| 		/* Endian settings are incorrect, calls for another dekko. */
 | |
| 		DBG_PRINT(ERR_DBG,
 | |
| 			  "%s: Endian settings are wrong, feedback read %llx\n",
 | |
| 			  dev->name, (unsigned long long)val64);
 | |
| 		return FAILURE;
 | |
| 	}
 | |
| 
 | |
| 	return SUCCESS;
 | |
| }
 | |
| 
 | |
| static int wait_for_msix_trans(struct s2io_nic *nic, int i)
 | |
| {
 | |
| 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
 | |
| 	u64 val64;
 | |
| 	int ret = 0, cnt = 0;
 | |
| 
 | |
| 	do {
 | |
| 		val64 = readq(&bar0->xmsi_access);
 | |
| 		if (!(val64 & s2BIT(15)))
 | |
| 			break;
 | |
| 		mdelay(1);
 | |
| 		cnt++;
 | |
| 	} while (cnt < 5);
 | |
| 	if (cnt == 5) {
 | |
| 		DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void restore_xmsi_data(struct s2io_nic *nic)
 | |
| {
 | |
| 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
 | |
| 	u64 val64;
 | |
| 	int i, msix_index;
 | |
| 
 | |
| 	if (nic->device_type == XFRAME_I_DEVICE)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
 | |
| 		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
 | |
| 		writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
 | |
| 		writeq(nic->msix_info[i].data, &bar0->xmsi_data);
 | |
| 		val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
 | |
| 		writeq(val64, &bar0->xmsi_access);
 | |
| 		if (wait_for_msix_trans(nic, msix_index)) {
 | |
| 			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
 | |
| 				  __func__, msix_index);
 | |
| 			continue;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void store_xmsi_data(struct s2io_nic *nic)
 | |
| {
 | |
| 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
 | |
| 	u64 val64, addr, data;
 | |
| 	int i, msix_index;
 | |
| 
 | |
| 	if (nic->device_type == XFRAME_I_DEVICE)
 | |
| 		return;
 | |
| 
 | |
| 	/* Store and display */
 | |
| 	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
 | |
| 		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
 | |
| 		val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
 | |
| 		writeq(val64, &bar0->xmsi_access);
 | |
| 		if (wait_for_msix_trans(nic, msix_index)) {
 | |
| 			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
 | |
| 				  __func__, msix_index);
 | |
| 			continue;
 | |
| 		}
 | |
| 		addr = readq(&bar0->xmsi_address);
 | |
| 		data = readq(&bar0->xmsi_data);
 | |
| 		if (addr && data) {
 | |
| 			nic->msix_info[i].addr = addr;
 | |
| 			nic->msix_info[i].data = data;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int s2io_enable_msi_x(struct s2io_nic *nic)
 | |
| {
 | |
| 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
 | |
| 	u64 rx_mat;
 | |
| 	u16 msi_control; /* Temp variable */
 | |
| 	int ret, i, j, msix_indx = 1;
 | |
| 	int size;
 | |
| 	struct stat_block *stats = nic->mac_control.stats_info;
 | |
| 	struct swStat *swstats = &stats->sw_stat;
 | |
| 
 | |
| 	size = nic->num_entries * sizeof(struct msix_entry);
 | |
| 	nic->entries = kzalloc(size, GFP_KERNEL);
 | |
| 	if (!nic->entries) {
 | |
| 		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
 | |
| 			  __func__);
 | |
| 		swstats->mem_alloc_fail_cnt++;
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	swstats->mem_allocated += size;
 | |
| 
 | |
| 	size = nic->num_entries * sizeof(struct s2io_msix_entry);
 | |
| 	nic->s2io_entries = kzalloc(size, GFP_KERNEL);
 | |
| 	if (!nic->s2io_entries) {
 | |
| 		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
 | |
| 			  __func__);
 | |
| 		swstats->mem_alloc_fail_cnt++;
 | |
| 		kfree(nic->entries);
 | |
| 		swstats->mem_freed
 | |
| 			+= (nic->num_entries * sizeof(struct msix_entry));
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	swstats->mem_allocated += size;
 | |
| 
 | |
| 	nic->entries[0].entry = 0;
 | |
| 	nic->s2io_entries[0].entry = 0;
 | |
| 	nic->s2io_entries[0].in_use = MSIX_FLG;
 | |
| 	nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
 | |
| 	nic->s2io_entries[0].arg = &nic->mac_control.fifos;
 | |
| 
 | |
| 	for (i = 1; i < nic->num_entries; i++) {
 | |
| 		nic->entries[i].entry = ((i - 1) * 8) + 1;
 | |
| 		nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
 | |
| 		nic->s2io_entries[i].arg = NULL;
 | |
| 		nic->s2io_entries[i].in_use = 0;
 | |
| 	}
 | |
| 
 | |
| 	rx_mat = readq(&bar0->rx_mat);
 | |
| 	for (j = 0; j < nic->config.rx_ring_num; j++) {
 | |
| 		rx_mat |= RX_MAT_SET(j, msix_indx);
 | |
| 		nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
 | |
| 		nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
 | |
| 		nic->s2io_entries[j+1].in_use = MSIX_FLG;
 | |
| 		msix_indx += 8;
 | |
| 	}
 | |
| 	writeq(rx_mat, &bar0->rx_mat);
 | |
| 	readq(&bar0->rx_mat);
 | |
| 
 | |
| 	ret = pci_enable_msix_range(nic->pdev, nic->entries,
 | |
| 				    nic->num_entries, nic->num_entries);
 | |
| 	/* We fail init if error or we get less vectors than min required */
 | |
| 	if (ret < 0) {
 | |
| 		DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
 | |
| 		kfree(nic->entries);
 | |
| 		swstats->mem_freed += nic->num_entries *
 | |
| 			sizeof(struct msix_entry);
 | |
| 		kfree(nic->s2io_entries);
 | |
| 		swstats->mem_freed += nic->num_entries *
 | |
| 			sizeof(struct s2io_msix_entry);
 | |
| 		nic->entries = NULL;
 | |
| 		nic->s2io_entries = NULL;
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * To enable MSI-X, MSI also needs to be enabled, due to a bug
 | |
| 	 * in the herc NIC. (Temp change, needs to be removed later)
 | |
| 	 */
 | |
| 	pci_read_config_word(nic->pdev, 0x42, &msi_control);
 | |
| 	msi_control |= 0x1; /* Enable MSI */
 | |
| 	pci_write_config_word(nic->pdev, 0x42, msi_control);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Handle software interrupt used during MSI(X) test */
 | |
| static irqreturn_t s2io_test_intr(int irq, void *dev_id)
 | |
| {
 | |
| 	struct s2io_nic *sp = dev_id;
 | |
| 
 | |
| 	sp->msi_detected = 1;
 | |
| 	wake_up(&sp->msi_wait);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /* Test interrupt path by forcing a a software IRQ */
 | |
| static int s2io_test_msi(struct s2io_nic *sp)
 | |
| {
 | |
| 	struct pci_dev *pdev = sp->pdev;
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 	int err;
 | |
| 	u64 val64, saved64;
 | |
| 
 | |
| 	err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
 | |
| 			  sp->name, sp);
 | |
| 	if (err) {
 | |
| 		DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
 | |
| 			  sp->dev->name, pci_name(pdev), pdev->irq);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	init_waitqueue_head(&sp->msi_wait);
 | |
| 	sp->msi_detected = 0;
 | |
| 
 | |
| 	saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
 | |
| 	val64 |= SCHED_INT_CTRL_ONE_SHOT;
 | |
| 	val64 |= SCHED_INT_CTRL_TIMER_EN;
 | |
| 	val64 |= SCHED_INT_CTRL_INT2MSI(1);
 | |
| 	writeq(val64, &bar0->scheduled_int_ctrl);
 | |
| 
 | |
| 	wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
 | |
| 
 | |
| 	if (!sp->msi_detected) {
 | |
| 		/* MSI(X) test failed, go back to INTx mode */
 | |
| 		DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
 | |
| 			  "using MSI(X) during test\n",
 | |
| 			  sp->dev->name, pci_name(pdev));
 | |
| 
 | |
| 		err = -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	free_irq(sp->entries[1].vector, sp);
 | |
| 
 | |
| 	writeq(saved64, &bar0->scheduled_int_ctrl);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void remove_msix_isr(struct s2io_nic *sp)
 | |
| {
 | |
| 	int i;
 | |
| 	u16 msi_control;
 | |
| 
 | |
| 	for (i = 0; i < sp->num_entries; i++) {
 | |
| 		if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
 | |
| 			int vector = sp->entries[i].vector;
 | |
| 			void *arg = sp->s2io_entries[i].arg;
 | |
| 			free_irq(vector, arg);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kfree(sp->entries);
 | |
| 	kfree(sp->s2io_entries);
 | |
| 	sp->entries = NULL;
 | |
| 	sp->s2io_entries = NULL;
 | |
| 
 | |
| 	pci_read_config_word(sp->pdev, 0x42, &msi_control);
 | |
| 	msi_control &= 0xFFFE; /* Disable MSI */
 | |
| 	pci_write_config_word(sp->pdev, 0x42, msi_control);
 | |
| 
 | |
| 	pci_disable_msix(sp->pdev);
 | |
| }
 | |
| 
 | |
| static void remove_inta_isr(struct s2io_nic *sp)
 | |
| {
 | |
| 	free_irq(sp->pdev->irq, sp->dev);
 | |
| }
 | |
| 
 | |
| /* ********************************************************* *
 | |
|  * Functions defined below concern the OS part of the driver *
 | |
|  * ********************************************************* */
 | |
| 
 | |
| /**
 | |
|  *  s2io_open - open entry point of the driver
 | |
|  *  @dev : pointer to the device structure.
 | |
|  *  Description:
 | |
|  *  This function is the open entry point of the driver. It mainly calls a
 | |
|  *  function to allocate Rx buffers and inserts them into the buffer
 | |
|  *  descriptors and then enables the Rx part of the NIC.
 | |
|  *  Return value:
 | |
|  *  0 on success and an appropriate (-)ve integer as defined in errno.h
 | |
|  *   file on failure.
 | |
|  */
 | |
| 
 | |
| static int s2io_open(struct net_device *dev)
 | |
| {
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure you have link off by default every time
 | |
| 	 * Nic is initialized
 | |
| 	 */
 | |
| 	netif_carrier_off(dev);
 | |
| 	sp->last_link_state = 0;
 | |
| 
 | |
| 	/* Initialize H/W and enable interrupts */
 | |
| 	err = s2io_card_up(sp);
 | |
| 	if (err) {
 | |
| 		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
 | |
| 			  dev->name);
 | |
| 		goto hw_init_failed;
 | |
| 	}
 | |
| 
 | |
| 	if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
 | |
| 		DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
 | |
| 		s2io_card_down(sp);
 | |
| 		err = -ENODEV;
 | |
| 		goto hw_init_failed;
 | |
| 	}
 | |
| 	s2io_start_all_tx_queue(sp);
 | |
| 	return 0;
 | |
| 
 | |
| hw_init_failed:
 | |
| 	if (sp->config.intr_type == MSI_X) {
 | |
| 		if (sp->entries) {
 | |
| 			kfree(sp->entries);
 | |
| 			swstats->mem_freed += sp->num_entries *
 | |
| 				sizeof(struct msix_entry);
 | |
| 		}
 | |
| 		if (sp->s2io_entries) {
 | |
| 			kfree(sp->s2io_entries);
 | |
| 			swstats->mem_freed += sp->num_entries *
 | |
| 				sizeof(struct s2io_msix_entry);
 | |
| 		}
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  s2io_close -close entry point of the driver
 | |
|  *  @dev : device pointer.
 | |
|  *  Description:
 | |
|  *  This is the stop entry point of the driver. It needs to undo exactly
 | |
|  *  whatever was done by the open entry point,thus it's usually referred to
 | |
|  *  as the close function.Among other things this function mainly stops the
 | |
|  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
 | |
|  *  Return value:
 | |
|  *  0 on success and an appropriate (-)ve integer as defined in errno.h
 | |
|  *  file on failure.
 | |
|  */
 | |
| 
 | |
| static int s2io_close(struct net_device *dev)
 | |
| {
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 	struct config_param *config = &sp->config;
 | |
| 	u64 tmp64;
 | |
| 	int offset;
 | |
| 
 | |
| 	/* Return if the device is already closed               *
 | |
| 	 *  Can happen when s2io_card_up failed in change_mtu    *
 | |
| 	 */
 | |
| 	if (!is_s2io_card_up(sp))
 | |
| 		return 0;
 | |
| 
 | |
| 	s2io_stop_all_tx_queue(sp);
 | |
| 	/* delete all populated mac entries */
 | |
| 	for (offset = 1; offset < config->max_mc_addr; offset++) {
 | |
| 		tmp64 = do_s2io_read_unicast_mc(sp, offset);
 | |
| 		if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
 | |
| 			do_s2io_delete_unicast_mc(sp, tmp64);
 | |
| 	}
 | |
| 
 | |
| 	s2io_card_down(sp);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  s2io_xmit - Tx entry point of te driver
 | |
|  *  @skb : the socket buffer containing the Tx data.
 | |
|  *  @dev : device pointer.
 | |
|  *  Description :
 | |
|  *  This function is the Tx entry point of the driver. S2IO NIC supports
 | |
|  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
 | |
|  *  NOTE: when device can't queue the pkt,just the trans_start variable will
 | |
|  *  not be upadted.
 | |
|  *  Return value:
 | |
|  *  0 on success & 1 on failure.
 | |
|  */
 | |
| 
 | |
| static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
 | |
| {
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 	u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
 | |
| 	register u64 val64;
 | |
| 	struct TxD *txdp;
 | |
| 	struct TxFIFO_element __iomem *tx_fifo;
 | |
| 	unsigned long flags = 0;
 | |
| 	u16 vlan_tag = 0;
 | |
| 	struct fifo_info *fifo = NULL;
 | |
| 	int do_spin_lock = 1;
 | |
| 	int offload_type;
 | |
| 	int enable_per_list_interrupt = 0;
 | |
| 	struct config_param *config = &sp->config;
 | |
| 	struct mac_info *mac_control = &sp->mac_control;
 | |
| 	struct stat_block *stats = mac_control->stats_info;
 | |
| 	struct swStat *swstats = &stats->sw_stat;
 | |
| 
 | |
| 	DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
 | |
| 
 | |
| 	if (unlikely(skb->len <= 0)) {
 | |
| 		DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 		return NETDEV_TX_OK;
 | |
| 	}
 | |
| 
 | |
| 	if (!is_s2io_card_up(sp)) {
 | |
| 		DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
 | |
| 			  dev->name);
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 		return NETDEV_TX_OK;
 | |
| 	}
 | |
| 
 | |
| 	queue = 0;
 | |
| 	if (skb_vlan_tag_present(skb))
 | |
| 		vlan_tag = skb_vlan_tag_get(skb);
 | |
| 	if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
 | |
| 		if (skb->protocol == htons(ETH_P_IP)) {
 | |
| 			struct iphdr *ip;
 | |
| 			struct tcphdr *th;
 | |
| 			ip = ip_hdr(skb);
 | |
| 
 | |
| 			if (!ip_is_fragment(ip)) {
 | |
| 				th = (struct tcphdr *)(((unsigned char *)ip) +
 | |
| 						       ip->ihl*4);
 | |
| 
 | |
| 				if (ip->protocol == IPPROTO_TCP) {
 | |
| 					queue_len = sp->total_tcp_fifos;
 | |
| 					queue = (ntohs(th->source) +
 | |
| 						 ntohs(th->dest)) &
 | |
| 						sp->fifo_selector[queue_len - 1];
 | |
| 					if (queue >= queue_len)
 | |
| 						queue = queue_len - 1;
 | |
| 				} else if (ip->protocol == IPPROTO_UDP) {
 | |
| 					queue_len = sp->total_udp_fifos;
 | |
| 					queue = (ntohs(th->source) +
 | |
| 						 ntohs(th->dest)) &
 | |
| 						sp->fifo_selector[queue_len - 1];
 | |
| 					if (queue >= queue_len)
 | |
| 						queue = queue_len - 1;
 | |
| 					queue += sp->udp_fifo_idx;
 | |
| 					if (skb->len > 1024)
 | |
| 						enable_per_list_interrupt = 1;
 | |
| 					do_spin_lock = 0;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
 | |
| 		/* get fifo number based on skb->priority value */
 | |
| 		queue = config->fifo_mapping
 | |
| 			[skb->priority & (MAX_TX_FIFOS - 1)];
 | |
| 	fifo = &mac_control->fifos[queue];
 | |
| 
 | |
| 	if (do_spin_lock)
 | |
| 		spin_lock_irqsave(&fifo->tx_lock, flags);
 | |
| 	else {
 | |
| 		if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
 | |
| 			return NETDEV_TX_LOCKED;
 | |
| 	}
 | |
| 
 | |
| 	if (sp->config.multiq) {
 | |
| 		if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
 | |
| 			spin_unlock_irqrestore(&fifo->tx_lock, flags);
 | |
| 			return NETDEV_TX_BUSY;
 | |
| 		}
 | |
| 	} else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
 | |
| 		if (netif_queue_stopped(dev)) {
 | |
| 			spin_unlock_irqrestore(&fifo->tx_lock, flags);
 | |
| 			return NETDEV_TX_BUSY;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	put_off = (u16)fifo->tx_curr_put_info.offset;
 | |
| 	get_off = (u16)fifo->tx_curr_get_info.offset;
 | |
| 	txdp = fifo->list_info[put_off].list_virt_addr;
 | |
| 
 | |
| 	queue_len = fifo->tx_curr_put_info.fifo_len + 1;
 | |
| 	/* Avoid "put" pointer going beyond "get" pointer */
 | |
| 	if (txdp->Host_Control ||
 | |
| 	    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
 | |
| 		DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
 | |
| 		s2io_stop_tx_queue(sp, fifo->fifo_no);
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 		spin_unlock_irqrestore(&fifo->tx_lock, flags);
 | |
| 		return NETDEV_TX_OK;
 | |
| 	}
 | |
| 
 | |
| 	offload_type = s2io_offload_type(skb);
 | |
| 	if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
 | |
| 		txdp->Control_1 |= TXD_TCP_LSO_EN;
 | |
| 		txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
 | |
| 	}
 | |
| 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 | |
| 		txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
 | |
| 				    TXD_TX_CKO_TCP_EN |
 | |
| 				    TXD_TX_CKO_UDP_EN);
 | |
| 	}
 | |
| 	txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
 | |
| 	txdp->Control_1 |= TXD_LIST_OWN_XENA;
 | |
| 	txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
 | |
| 	if (enable_per_list_interrupt)
 | |
| 		if (put_off & (queue_len >> 5))
 | |
| 			txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
 | |
| 	if (vlan_tag) {
 | |
| 		txdp->Control_2 |= TXD_VLAN_ENABLE;
 | |
| 		txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
 | |
| 	}
 | |
| 
 | |
| 	frg_len = skb_headlen(skb);
 | |
| 	if (offload_type == SKB_GSO_UDP) {
 | |
| 		int ufo_size;
 | |
| 
 | |
| 		ufo_size = s2io_udp_mss(skb);
 | |
| 		ufo_size &= ~7;
 | |
| 		txdp->Control_1 |= TXD_UFO_EN;
 | |
| 		txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
 | |
| 		txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
 | |
| #ifdef __BIG_ENDIAN
 | |
| 		/* both variants do cpu_to_be64(be32_to_cpu(...)) */
 | |
| 		fifo->ufo_in_band_v[put_off] =
 | |
| 			(__force u64)skb_shinfo(skb)->ip6_frag_id;
 | |
| #else
 | |
| 		fifo->ufo_in_band_v[put_off] =
 | |
| 			(__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
 | |
| #endif
 | |
| 		txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
 | |
| 		txdp->Buffer_Pointer = pci_map_single(sp->pdev,
 | |
| 						      fifo->ufo_in_band_v,
 | |
| 						      sizeof(u64),
 | |
| 						      PCI_DMA_TODEVICE);
 | |
| 		if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
 | |
| 			goto pci_map_failed;
 | |
| 		txdp++;
 | |
| 	}
 | |
| 
 | |
| 	txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
 | |
| 					      frg_len, PCI_DMA_TODEVICE);
 | |
| 	if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
 | |
| 		goto pci_map_failed;
 | |
| 
 | |
| 	txdp->Host_Control = (unsigned long)skb;
 | |
| 	txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
 | |
| 	if (offload_type == SKB_GSO_UDP)
 | |
| 		txdp->Control_1 |= TXD_UFO_EN;
 | |
| 
 | |
| 	frg_cnt = skb_shinfo(skb)->nr_frags;
 | |
| 	/* For fragmented SKB. */
 | |
| 	for (i = 0; i < frg_cnt; i++) {
 | |
| 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 | |
| 		/* A '0' length fragment will be ignored */
 | |
| 		if (!skb_frag_size(frag))
 | |
| 			continue;
 | |
| 		txdp++;
 | |
| 		txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
 | |
| 							     frag, 0,
 | |
| 							     skb_frag_size(frag),
 | |
| 							     DMA_TO_DEVICE);
 | |
| 		txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
 | |
| 		if (offload_type == SKB_GSO_UDP)
 | |
| 			txdp->Control_1 |= TXD_UFO_EN;
 | |
| 	}
 | |
| 	txdp->Control_1 |= TXD_GATHER_CODE_LAST;
 | |
| 
 | |
| 	if (offload_type == SKB_GSO_UDP)
 | |
| 		frg_cnt++; /* as Txd0 was used for inband header */
 | |
| 
 | |
| 	tx_fifo = mac_control->tx_FIFO_start[queue];
 | |
| 	val64 = fifo->list_info[put_off].list_phy_addr;
 | |
| 	writeq(val64, &tx_fifo->TxDL_Pointer);
 | |
| 
 | |
| 	val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
 | |
| 		 TX_FIFO_LAST_LIST);
 | |
| 	if (offload_type)
 | |
| 		val64 |= TX_FIFO_SPECIAL_FUNC;
 | |
| 
 | |
| 	writeq(val64, &tx_fifo->List_Control);
 | |
| 
 | |
| 	mmiowb();
 | |
| 
 | |
| 	put_off++;
 | |
| 	if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
 | |
| 		put_off = 0;
 | |
| 	fifo->tx_curr_put_info.offset = put_off;
 | |
| 
 | |
| 	/* Avoid "put" pointer going beyond "get" pointer */
 | |
| 	if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
 | |
| 		swstats->fifo_full_cnt++;
 | |
| 		DBG_PRINT(TX_DBG,
 | |
| 			  "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
 | |
| 			  put_off, get_off);
 | |
| 		s2io_stop_tx_queue(sp, fifo->fifo_no);
 | |
| 	}
 | |
| 	swstats->mem_allocated += skb->truesize;
 | |
| 	spin_unlock_irqrestore(&fifo->tx_lock, flags);
 | |
| 
 | |
| 	if (sp->config.intr_type == MSI_X)
 | |
| 		tx_intr_handler(fifo);
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| 
 | |
| pci_map_failed:
 | |
| 	swstats->pci_map_fail_cnt++;
 | |
| 	s2io_stop_tx_queue(sp, fifo->fifo_no);
 | |
| 	swstats->mem_freed += skb->truesize;
 | |
| 	dev_kfree_skb_any(skb);
 | |
| 	spin_unlock_irqrestore(&fifo->tx_lock, flags);
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| static void
 | |
| s2io_alarm_handle(unsigned long data)
 | |
| {
 | |
| 	struct s2io_nic *sp = (struct s2io_nic *)data;
 | |
| 	struct net_device *dev = sp->dev;
 | |
| 
 | |
| 	s2io_handle_errors(dev);
 | |
| 	mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
 | |
| }
 | |
| 
 | |
| static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
 | |
| {
 | |
| 	struct ring_info *ring = (struct ring_info *)dev_id;
 | |
| 	struct s2io_nic *sp = ring->nic;
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 
 | |
| 	if (unlikely(!is_s2io_card_up(sp)))
 | |
| 		return IRQ_HANDLED;
 | |
| 
 | |
| 	if (sp->config.napi) {
 | |
| 		u8 __iomem *addr = NULL;
 | |
| 		u8 val8 = 0;
 | |
| 
 | |
| 		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
 | |
| 		addr += (7 - ring->ring_no);
 | |
| 		val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
 | |
| 		writeb(val8, addr);
 | |
| 		val8 = readb(addr);
 | |
| 		napi_schedule(&ring->napi);
 | |
| 	} else {
 | |
| 		rx_intr_handler(ring, 0);
 | |
| 		s2io_chk_rx_buffers(sp, ring);
 | |
| 	}
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
 | |
| {
 | |
| 	int i;
 | |
| 	struct fifo_info *fifos = (struct fifo_info *)dev_id;
 | |
| 	struct s2io_nic *sp = fifos->nic;
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 	struct config_param *config  = &sp->config;
 | |
| 	u64 reason;
 | |
| 
 | |
| 	if (unlikely(!is_s2io_card_up(sp)))
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	reason = readq(&bar0->general_int_status);
 | |
| 	if (unlikely(reason == S2IO_MINUS_ONE))
 | |
| 		/* Nothing much can be done. Get out */
 | |
| 		return IRQ_HANDLED;
 | |
| 
 | |
| 	if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
 | |
| 		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
 | |
| 
 | |
| 		if (reason & GEN_INTR_TXPIC)
 | |
| 			s2io_txpic_intr_handle(sp);
 | |
| 
 | |
| 		if (reason & GEN_INTR_TXTRAFFIC)
 | |
| 			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
 | |
| 
 | |
| 		for (i = 0; i < config->tx_fifo_num; i++)
 | |
| 			tx_intr_handler(&fifos[i]);
 | |
| 
 | |
| 		writeq(sp->general_int_mask, &bar0->general_int_mask);
 | |
| 		readl(&bar0->general_int_status);
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 	/* The interrupt was not raised by us */
 | |
| 	return IRQ_NONE;
 | |
| }
 | |
| 
 | |
| static void s2io_txpic_intr_handle(struct s2io_nic *sp)
 | |
| {
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 	u64 val64;
 | |
| 
 | |
| 	val64 = readq(&bar0->pic_int_status);
 | |
| 	if (val64 & PIC_INT_GPIO) {
 | |
| 		val64 = readq(&bar0->gpio_int_reg);
 | |
| 		if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
 | |
| 		    (val64 & GPIO_INT_REG_LINK_UP)) {
 | |
| 			/*
 | |
| 			 * This is unstable state so clear both up/down
 | |
| 			 * interrupt and adapter to re-evaluate the link state.
 | |
| 			 */
 | |
| 			val64 |= GPIO_INT_REG_LINK_DOWN;
 | |
| 			val64 |= GPIO_INT_REG_LINK_UP;
 | |
| 			writeq(val64, &bar0->gpio_int_reg);
 | |
| 			val64 = readq(&bar0->gpio_int_mask);
 | |
| 			val64 &= ~(GPIO_INT_MASK_LINK_UP |
 | |
| 				   GPIO_INT_MASK_LINK_DOWN);
 | |
| 			writeq(val64, &bar0->gpio_int_mask);
 | |
| 		} else if (val64 & GPIO_INT_REG_LINK_UP) {
 | |
| 			val64 = readq(&bar0->adapter_status);
 | |
| 			/* Enable Adapter */
 | |
| 			val64 = readq(&bar0->adapter_control);
 | |
| 			val64 |= ADAPTER_CNTL_EN;
 | |
| 			writeq(val64, &bar0->adapter_control);
 | |
| 			val64 |= ADAPTER_LED_ON;
 | |
| 			writeq(val64, &bar0->adapter_control);
 | |
| 			if (!sp->device_enabled_once)
 | |
| 				sp->device_enabled_once = 1;
 | |
| 
 | |
| 			s2io_link(sp, LINK_UP);
 | |
| 			/*
 | |
| 			 * unmask link down interrupt and mask link-up
 | |
| 			 * intr
 | |
| 			 */
 | |
| 			val64 = readq(&bar0->gpio_int_mask);
 | |
| 			val64 &= ~GPIO_INT_MASK_LINK_DOWN;
 | |
| 			val64 |= GPIO_INT_MASK_LINK_UP;
 | |
| 			writeq(val64, &bar0->gpio_int_mask);
 | |
| 
 | |
| 		} else if (val64 & GPIO_INT_REG_LINK_DOWN) {
 | |
| 			val64 = readq(&bar0->adapter_status);
 | |
| 			s2io_link(sp, LINK_DOWN);
 | |
| 			/* Link is down so unmaks link up interrupt */
 | |
| 			val64 = readq(&bar0->gpio_int_mask);
 | |
| 			val64 &= ~GPIO_INT_MASK_LINK_UP;
 | |
| 			val64 |= GPIO_INT_MASK_LINK_DOWN;
 | |
| 			writeq(val64, &bar0->gpio_int_mask);
 | |
| 
 | |
| 			/* turn off LED */
 | |
| 			val64 = readq(&bar0->adapter_control);
 | |
| 			val64 = val64 & (~ADAPTER_LED_ON);
 | |
| 			writeq(val64, &bar0->adapter_control);
 | |
| 		}
 | |
| 	}
 | |
| 	val64 = readq(&bar0->gpio_int_mask);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
 | |
|  *  @value: alarm bits
 | |
|  *  @addr: address value
 | |
|  *  @cnt: counter variable
 | |
|  *  Description: Check for alarm and increment the counter
 | |
|  *  Return Value:
 | |
|  *  1 - if alarm bit set
 | |
|  *  0 - if alarm bit is not set
 | |
|  */
 | |
| static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
 | |
| 				 unsigned long long *cnt)
 | |
| {
 | |
| 	u64 val64;
 | |
| 	val64 = readq(addr);
 | |
| 	if (val64 & value) {
 | |
| 		writeq(val64, addr);
 | |
| 		(*cnt)++;
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  s2io_handle_errors - Xframe error indication handler
 | |
|  *  @nic: device private variable
 | |
|  *  Description: Handle alarms such as loss of link, single or
 | |
|  *  double ECC errors, critical and serious errors.
 | |
|  *  Return Value:
 | |
|  *  NONE
 | |
|  */
 | |
| static void s2io_handle_errors(void *dev_id)
 | |
| {
 | |
| 	struct net_device *dev = (struct net_device *)dev_id;
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 	u64 temp64 = 0, val64 = 0;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
 | |
| 	struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
 | |
| 
 | |
| 	if (!is_s2io_card_up(sp))
 | |
| 		return;
 | |
| 
 | |
| 	if (pci_channel_offline(sp->pdev))
 | |
| 		return;
 | |
| 
 | |
| 	memset(&sw_stat->ring_full_cnt, 0,
 | |
| 	       sizeof(sw_stat->ring_full_cnt));
 | |
| 
 | |
| 	/* Handling the XPAK counters update */
 | |
| 	if (stats->xpak_timer_count < 72000) {
 | |
| 		/* waiting for an hour */
 | |
| 		stats->xpak_timer_count++;
 | |
| 	} else {
 | |
| 		s2io_updt_xpak_counter(dev);
 | |
| 		/* reset the count to zero */
 | |
| 		stats->xpak_timer_count = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Handling link status change error Intr */
 | |
| 	if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
 | |
| 		val64 = readq(&bar0->mac_rmac_err_reg);
 | |
| 		writeq(val64, &bar0->mac_rmac_err_reg);
 | |
| 		if (val64 & RMAC_LINK_STATE_CHANGE_INT)
 | |
| 			schedule_work(&sp->set_link_task);
 | |
| 	}
 | |
| 
 | |
| 	/* In case of a serious error, the device will be Reset. */
 | |
| 	if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
 | |
| 				  &sw_stat->serious_err_cnt))
 | |
| 		goto reset;
 | |
| 
 | |
| 	/* Check for data parity error */
 | |
| 	if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
 | |
| 				  &sw_stat->parity_err_cnt))
 | |
| 		goto reset;
 | |
| 
 | |
| 	/* Check for ring full counter */
 | |
| 	if (sp->device_type == XFRAME_II_DEVICE) {
 | |
| 		val64 = readq(&bar0->ring_bump_counter1);
 | |
| 		for (i = 0; i < 4; i++) {
 | |
| 			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
 | |
| 			temp64 >>= 64 - ((i+1)*16);
 | |
| 			sw_stat->ring_full_cnt[i] += temp64;
 | |
| 		}
 | |
| 
 | |
| 		val64 = readq(&bar0->ring_bump_counter2);
 | |
| 		for (i = 0; i < 4; i++) {
 | |
| 			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
 | |
| 			temp64 >>= 64 - ((i+1)*16);
 | |
| 			sw_stat->ring_full_cnt[i+4] += temp64;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	val64 = readq(&bar0->txdma_int_status);
 | |
| 	/*check for pfc_err*/
 | |
| 	if (val64 & TXDMA_PFC_INT) {
 | |
| 		if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
 | |
| 					  PFC_MISC_0_ERR | PFC_MISC_1_ERR |
 | |
| 					  PFC_PCIX_ERR,
 | |
| 					  &bar0->pfc_err_reg,
 | |
| 					  &sw_stat->pfc_err_cnt))
 | |
| 			goto reset;
 | |
| 		do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
 | |
| 				      &bar0->pfc_err_reg,
 | |
| 				      &sw_stat->pfc_err_cnt);
 | |
| 	}
 | |
| 
 | |
| 	/*check for tda_err*/
 | |
| 	if (val64 & TXDMA_TDA_INT) {
 | |
| 		if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
 | |
| 					  TDA_SM0_ERR_ALARM |
 | |
| 					  TDA_SM1_ERR_ALARM,
 | |
| 					  &bar0->tda_err_reg,
 | |
| 					  &sw_stat->tda_err_cnt))
 | |
| 			goto reset;
 | |
| 		do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
 | |
| 				      &bar0->tda_err_reg,
 | |
| 				      &sw_stat->tda_err_cnt);
 | |
| 	}
 | |
| 	/*check for pcc_err*/
 | |
| 	if (val64 & TXDMA_PCC_INT) {
 | |
| 		if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
 | |
| 					  PCC_N_SERR | PCC_6_COF_OV_ERR |
 | |
| 					  PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
 | |
| 					  PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
 | |
| 					  PCC_TXB_ECC_DB_ERR,
 | |
| 					  &bar0->pcc_err_reg,
 | |
| 					  &sw_stat->pcc_err_cnt))
 | |
| 			goto reset;
 | |
| 		do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
 | |
| 				      &bar0->pcc_err_reg,
 | |
| 				      &sw_stat->pcc_err_cnt);
 | |
| 	}
 | |
| 
 | |
| 	/*check for tti_err*/
 | |
| 	if (val64 & TXDMA_TTI_INT) {
 | |
| 		if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
 | |
| 					  &bar0->tti_err_reg,
 | |
| 					  &sw_stat->tti_err_cnt))
 | |
| 			goto reset;
 | |
| 		do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
 | |
| 				      &bar0->tti_err_reg,
 | |
| 				      &sw_stat->tti_err_cnt);
 | |
| 	}
 | |
| 
 | |
| 	/*check for lso_err*/
 | |
| 	if (val64 & TXDMA_LSO_INT) {
 | |
| 		if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
 | |
| 					  LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
 | |
| 					  &bar0->lso_err_reg,
 | |
| 					  &sw_stat->lso_err_cnt))
 | |
| 			goto reset;
 | |
| 		do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
 | |
| 				      &bar0->lso_err_reg,
 | |
| 				      &sw_stat->lso_err_cnt);
 | |
| 	}
 | |
| 
 | |
| 	/*check for tpa_err*/
 | |
| 	if (val64 & TXDMA_TPA_INT) {
 | |
| 		if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
 | |
| 					  &bar0->tpa_err_reg,
 | |
| 					  &sw_stat->tpa_err_cnt))
 | |
| 			goto reset;
 | |
| 		do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
 | |
| 				      &bar0->tpa_err_reg,
 | |
| 				      &sw_stat->tpa_err_cnt);
 | |
| 	}
 | |
| 
 | |
| 	/*check for sm_err*/
 | |
| 	if (val64 & TXDMA_SM_INT) {
 | |
| 		if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
 | |
| 					  &bar0->sm_err_reg,
 | |
| 					  &sw_stat->sm_err_cnt))
 | |
| 			goto reset;
 | |
| 	}
 | |
| 
 | |
| 	val64 = readq(&bar0->mac_int_status);
 | |
| 	if (val64 & MAC_INT_STATUS_TMAC_INT) {
 | |
| 		if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
 | |
| 					  &bar0->mac_tmac_err_reg,
 | |
| 					  &sw_stat->mac_tmac_err_cnt))
 | |
| 			goto reset;
 | |
| 		do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
 | |
| 				      TMAC_DESC_ECC_SG_ERR |
 | |
| 				      TMAC_DESC_ECC_DB_ERR,
 | |
| 				      &bar0->mac_tmac_err_reg,
 | |
| 				      &sw_stat->mac_tmac_err_cnt);
 | |
| 	}
 | |
| 
 | |
| 	val64 = readq(&bar0->xgxs_int_status);
 | |
| 	if (val64 & XGXS_INT_STATUS_TXGXS) {
 | |
| 		if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
 | |
| 					  &bar0->xgxs_txgxs_err_reg,
 | |
| 					  &sw_stat->xgxs_txgxs_err_cnt))
 | |
| 			goto reset;
 | |
| 		do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
 | |
| 				      &bar0->xgxs_txgxs_err_reg,
 | |
| 				      &sw_stat->xgxs_txgxs_err_cnt);
 | |
| 	}
 | |
| 
 | |
| 	val64 = readq(&bar0->rxdma_int_status);
 | |
| 	if (val64 & RXDMA_INT_RC_INT_M) {
 | |
| 		if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
 | |
| 					  RC_FTC_ECC_DB_ERR |
 | |
| 					  RC_PRCn_SM_ERR_ALARM |
 | |
| 					  RC_FTC_SM_ERR_ALARM,
 | |
| 					  &bar0->rc_err_reg,
 | |
| 					  &sw_stat->rc_err_cnt))
 | |
| 			goto reset;
 | |
| 		do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
 | |
| 				      RC_FTC_ECC_SG_ERR |
 | |
| 				      RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
 | |
| 				      &sw_stat->rc_err_cnt);
 | |
| 		if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
 | |
| 					  PRC_PCI_AB_WR_Rn |
 | |
| 					  PRC_PCI_AB_F_WR_Rn,
 | |
| 					  &bar0->prc_pcix_err_reg,
 | |
| 					  &sw_stat->prc_pcix_err_cnt))
 | |
| 			goto reset;
 | |
| 		do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
 | |
| 				      PRC_PCI_DP_WR_Rn |
 | |
| 				      PRC_PCI_DP_F_WR_Rn,
 | |
| 				      &bar0->prc_pcix_err_reg,
 | |
| 				      &sw_stat->prc_pcix_err_cnt);
 | |
| 	}
 | |
| 
 | |
| 	if (val64 & RXDMA_INT_RPA_INT_M) {
 | |
| 		if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
 | |
| 					  &bar0->rpa_err_reg,
 | |
| 					  &sw_stat->rpa_err_cnt))
 | |
| 			goto reset;
 | |
| 		do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
 | |
| 				      &bar0->rpa_err_reg,
 | |
| 				      &sw_stat->rpa_err_cnt);
 | |
| 	}
 | |
| 
 | |
| 	if (val64 & RXDMA_INT_RDA_INT_M) {
 | |
| 		if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
 | |
| 					  RDA_FRM_ECC_DB_N_AERR |
 | |
| 					  RDA_SM1_ERR_ALARM |
 | |
| 					  RDA_SM0_ERR_ALARM |
 | |
| 					  RDA_RXD_ECC_DB_SERR,
 | |
| 					  &bar0->rda_err_reg,
 | |
| 					  &sw_stat->rda_err_cnt))
 | |
| 			goto reset;
 | |
| 		do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
 | |
| 				      RDA_FRM_ECC_SG_ERR |
 | |
| 				      RDA_MISC_ERR |
 | |
| 				      RDA_PCIX_ERR,
 | |
| 				      &bar0->rda_err_reg,
 | |
| 				      &sw_stat->rda_err_cnt);
 | |
| 	}
 | |
| 
 | |
| 	if (val64 & RXDMA_INT_RTI_INT_M) {
 | |
| 		if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
 | |
| 					  &bar0->rti_err_reg,
 | |
| 					  &sw_stat->rti_err_cnt))
 | |
| 			goto reset;
 | |
| 		do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
 | |
| 				      &bar0->rti_err_reg,
 | |
| 				      &sw_stat->rti_err_cnt);
 | |
| 	}
 | |
| 
 | |
| 	val64 = readq(&bar0->mac_int_status);
 | |
| 	if (val64 & MAC_INT_STATUS_RMAC_INT) {
 | |
| 		if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
 | |
| 					  &bar0->mac_rmac_err_reg,
 | |
| 					  &sw_stat->mac_rmac_err_cnt))
 | |
| 			goto reset;
 | |
| 		do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
 | |
| 				      RMAC_SINGLE_ECC_ERR |
 | |
| 				      RMAC_DOUBLE_ECC_ERR,
 | |
| 				      &bar0->mac_rmac_err_reg,
 | |
| 				      &sw_stat->mac_rmac_err_cnt);
 | |
| 	}
 | |
| 
 | |
| 	val64 = readq(&bar0->xgxs_int_status);
 | |
| 	if (val64 & XGXS_INT_STATUS_RXGXS) {
 | |
| 		if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
 | |
| 					  &bar0->xgxs_rxgxs_err_reg,
 | |
| 					  &sw_stat->xgxs_rxgxs_err_cnt))
 | |
| 			goto reset;
 | |
| 	}
 | |
| 
 | |
| 	val64 = readq(&bar0->mc_int_status);
 | |
| 	if (val64 & MC_INT_STATUS_MC_INT) {
 | |
| 		if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
 | |
| 					  &bar0->mc_err_reg,
 | |
| 					  &sw_stat->mc_err_cnt))
 | |
| 			goto reset;
 | |
| 
 | |
| 		/* Handling Ecc errors */
 | |
| 		if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
 | |
| 			writeq(val64, &bar0->mc_err_reg);
 | |
| 			if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
 | |
| 				sw_stat->double_ecc_errs++;
 | |
| 				if (sp->device_type != XFRAME_II_DEVICE) {
 | |
| 					/*
 | |
| 					 * Reset XframeI only if critical error
 | |
| 					 */
 | |
| 					if (val64 &
 | |
| 					    (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
 | |
| 					     MC_ERR_REG_MIRI_ECC_DB_ERR_1))
 | |
| 						goto reset;
 | |
| 				}
 | |
| 			} else
 | |
| 				sw_stat->single_ecc_errs++;
 | |
| 		}
 | |
| 	}
 | |
| 	return;
 | |
| 
 | |
| reset:
 | |
| 	s2io_stop_all_tx_queue(sp);
 | |
| 	schedule_work(&sp->rst_timer_task);
 | |
| 	sw_stat->soft_reset_cnt++;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  s2io_isr - ISR handler of the device .
 | |
|  *  @irq: the irq of the device.
 | |
|  *  @dev_id: a void pointer to the dev structure of the NIC.
 | |
|  *  Description:  This function is the ISR handler of the device. It
 | |
|  *  identifies the reason for the interrupt and calls the relevant
 | |
|  *  service routines. As a contongency measure, this ISR allocates the
 | |
|  *  recv buffers, if their numbers are below the panic value which is
 | |
|  *  presently set to 25% of the original number of rcv buffers allocated.
 | |
|  *  Return value:
 | |
|  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
 | |
|  *   IRQ_NONE: will be returned if interrupt is not from our device
 | |
|  */
 | |
| static irqreturn_t s2io_isr(int irq, void *dev_id)
 | |
| {
 | |
| 	struct net_device *dev = (struct net_device *)dev_id;
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 	int i;
 | |
| 	u64 reason = 0;
 | |
| 	struct mac_info *mac_control;
 | |
| 	struct config_param *config;
 | |
| 
 | |
| 	/* Pretend we handled any irq's from a disconnected card */
 | |
| 	if (pci_channel_offline(sp->pdev))
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	if (!is_s2io_card_up(sp))
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	config = &sp->config;
 | |
| 	mac_control = &sp->mac_control;
 | |
| 
 | |
| 	/*
 | |
| 	 * Identify the cause for interrupt and call the appropriate
 | |
| 	 * interrupt handler. Causes for the interrupt could be;
 | |
| 	 * 1. Rx of packet.
 | |
| 	 * 2. Tx complete.
 | |
| 	 * 3. Link down.
 | |
| 	 */
 | |
| 	reason = readq(&bar0->general_int_status);
 | |
| 
 | |
| 	if (unlikely(reason == S2IO_MINUS_ONE))
 | |
| 		return IRQ_HANDLED;	/* Nothing much can be done. Get out */
 | |
| 
 | |
| 	if (reason &
 | |
| 	    (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
 | |
| 		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
 | |
| 
 | |
| 		if (config->napi) {
 | |
| 			if (reason & GEN_INTR_RXTRAFFIC) {
 | |
| 				napi_schedule(&sp->napi);
 | |
| 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
 | |
| 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
 | |
| 				readl(&bar0->rx_traffic_int);
 | |
| 			}
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * rx_traffic_int reg is an R1 register, writing all 1's
 | |
| 			 * will ensure that the actual interrupt causing bit
 | |
| 			 * get's cleared and hence a read can be avoided.
 | |
| 			 */
 | |
| 			if (reason & GEN_INTR_RXTRAFFIC)
 | |
| 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
 | |
| 
 | |
| 			for (i = 0; i < config->rx_ring_num; i++) {
 | |
| 				struct ring_info *ring = &mac_control->rings[i];
 | |
| 
 | |
| 				rx_intr_handler(ring, 0);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * tx_traffic_int reg is an R1 register, writing all 1's
 | |
| 		 * will ensure that the actual interrupt causing bit get's
 | |
| 		 * cleared and hence a read can be avoided.
 | |
| 		 */
 | |
| 		if (reason & GEN_INTR_TXTRAFFIC)
 | |
| 			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
 | |
| 
 | |
| 		for (i = 0; i < config->tx_fifo_num; i++)
 | |
| 			tx_intr_handler(&mac_control->fifos[i]);
 | |
| 
 | |
| 		if (reason & GEN_INTR_TXPIC)
 | |
| 			s2io_txpic_intr_handle(sp);
 | |
| 
 | |
| 		/*
 | |
| 		 * Reallocate the buffers from the interrupt handler itself.
 | |
| 		 */
 | |
| 		if (!config->napi) {
 | |
| 			for (i = 0; i < config->rx_ring_num; i++) {
 | |
| 				struct ring_info *ring = &mac_control->rings[i];
 | |
| 
 | |
| 				s2io_chk_rx_buffers(sp, ring);
 | |
| 			}
 | |
| 		}
 | |
| 		writeq(sp->general_int_mask, &bar0->general_int_mask);
 | |
| 		readl(&bar0->general_int_status);
 | |
| 
 | |
| 		return IRQ_HANDLED;
 | |
| 
 | |
| 	} else if (!reason) {
 | |
| 		/* The interrupt was not raised by us */
 | |
| 		return IRQ_NONE;
 | |
| 	}
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_updt_stats -
 | |
|  */
 | |
| static void s2io_updt_stats(struct s2io_nic *sp)
 | |
| {
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 	u64 val64;
 | |
| 	int cnt = 0;
 | |
| 
 | |
| 	if (is_s2io_card_up(sp)) {
 | |
| 		/* Apprx 30us on a 133 MHz bus */
 | |
| 		val64 = SET_UPDT_CLICKS(10) |
 | |
| 			STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
 | |
| 		writeq(val64, &bar0->stat_cfg);
 | |
| 		do {
 | |
| 			udelay(100);
 | |
| 			val64 = readq(&bar0->stat_cfg);
 | |
| 			if (!(val64 & s2BIT(0)))
 | |
| 				break;
 | |
| 			cnt++;
 | |
| 			if (cnt == 5)
 | |
| 				break; /* Updt failed */
 | |
| 		} while (1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  s2io_get_stats - Updates the device statistics structure.
 | |
|  *  @dev : pointer to the device structure.
 | |
|  *  Description:
 | |
|  *  This function updates the device statistics structure in the s2io_nic
 | |
|  *  structure and returns a pointer to the same.
 | |
|  *  Return value:
 | |
|  *  pointer to the updated net_device_stats structure.
 | |
|  */
 | |
| static struct net_device_stats *s2io_get_stats(struct net_device *dev)
 | |
| {
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 	struct mac_info *mac_control = &sp->mac_control;
 | |
| 	struct stat_block *stats = mac_control->stats_info;
 | |
| 	u64 delta;
 | |
| 
 | |
| 	/* Configure Stats for immediate updt */
 | |
| 	s2io_updt_stats(sp);
 | |
| 
 | |
| 	/* A device reset will cause the on-adapter statistics to be zero'ed.
 | |
| 	 * This can be done while running by changing the MTU.  To prevent the
 | |
| 	 * system from having the stats zero'ed, the driver keeps a copy of the
 | |
| 	 * last update to the system (which is also zero'ed on reset).  This
 | |
| 	 * enables the driver to accurately know the delta between the last
 | |
| 	 * update and the current update.
 | |
| 	 */
 | |
| 	delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
 | |
| 	sp->stats.rx_packets += delta;
 | |
| 	dev->stats.rx_packets += delta;
 | |
| 
 | |
| 	delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
 | |
| 	sp->stats.tx_packets += delta;
 | |
| 	dev->stats.tx_packets += delta;
 | |
| 
 | |
| 	delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
 | |
| 	sp->stats.rx_bytes += delta;
 | |
| 	dev->stats.rx_bytes += delta;
 | |
| 
 | |
| 	delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
 | |
| 	sp->stats.tx_bytes += delta;
 | |
| 	dev->stats.tx_bytes += delta;
 | |
| 
 | |
| 	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
 | |
| 	sp->stats.rx_errors += delta;
 | |
| 	dev->stats.rx_errors += delta;
 | |
| 
 | |
| 	delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
 | |
| 	sp->stats.tx_errors += delta;
 | |
| 	dev->stats.tx_errors += delta;
 | |
| 
 | |
| 	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
 | |
| 	sp->stats.rx_dropped += delta;
 | |
| 	dev->stats.rx_dropped += delta;
 | |
| 
 | |
| 	delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
 | |
| 	sp->stats.tx_dropped += delta;
 | |
| 	dev->stats.tx_dropped += delta;
 | |
| 
 | |
| 	/* The adapter MAC interprets pause frames as multicast packets, but
 | |
| 	 * does not pass them up.  This erroneously increases the multicast
 | |
| 	 * packet count and needs to be deducted when the multicast frame count
 | |
| 	 * is queried.
 | |
| 	 */
 | |
| 	delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->rmac_vld_mcst_frms);
 | |
| 	delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
 | |
| 	delta -= sp->stats.multicast;
 | |
| 	sp->stats.multicast += delta;
 | |
| 	dev->stats.multicast += delta;
 | |
| 
 | |
| 	delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->rmac_usized_frms)) +
 | |
| 		le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
 | |
| 	sp->stats.rx_length_errors += delta;
 | |
| 	dev->stats.rx_length_errors += delta;
 | |
| 
 | |
| 	delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
 | |
| 	sp->stats.rx_crc_errors += delta;
 | |
| 	dev->stats.rx_crc_errors += delta;
 | |
| 
 | |
| 	return &dev->stats;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  s2io_set_multicast - entry point for multicast address enable/disable.
 | |
|  *  @dev : pointer to the device structure
 | |
|  *  Description:
 | |
|  *  This function is a driver entry point which gets called by the kernel
 | |
|  *  whenever multicast addresses must be enabled/disabled. This also gets
 | |
|  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
 | |
|  *  determine, if multicast address must be enabled or if promiscuous mode
 | |
|  *  is to be disabled etc.
 | |
|  *  Return value:
 | |
|  *  void.
 | |
|  */
 | |
| 
 | |
| static void s2io_set_multicast(struct net_device *dev)
 | |
| {
 | |
| 	int i, j, prev_cnt;
 | |
| 	struct netdev_hw_addr *ha;
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 	u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
 | |
| 		0xfeffffffffffULL;
 | |
| 	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
 | |
| 	void __iomem *add;
 | |
| 	struct config_param *config = &sp->config;
 | |
| 
 | |
| 	if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
 | |
| 		/*  Enable all Multicast addresses */
 | |
| 		writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
 | |
| 		       &bar0->rmac_addr_data0_mem);
 | |
| 		writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
 | |
| 		       &bar0->rmac_addr_data1_mem);
 | |
| 		val64 = RMAC_ADDR_CMD_MEM_WE |
 | |
| 			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
 | |
| 			RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
 | |
| 		writeq(val64, &bar0->rmac_addr_cmd_mem);
 | |
| 		/* Wait till command completes */
 | |
| 		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
 | |
| 				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
 | |
| 				      S2IO_BIT_RESET);
 | |
| 
 | |
| 		sp->m_cast_flg = 1;
 | |
| 		sp->all_multi_pos = config->max_mc_addr - 1;
 | |
| 	} else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
 | |
| 		/*  Disable all Multicast addresses */
 | |
| 		writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
 | |
| 		       &bar0->rmac_addr_data0_mem);
 | |
| 		writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
 | |
| 		       &bar0->rmac_addr_data1_mem);
 | |
| 		val64 = RMAC_ADDR_CMD_MEM_WE |
 | |
| 			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
 | |
| 			RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
 | |
| 		writeq(val64, &bar0->rmac_addr_cmd_mem);
 | |
| 		/* Wait till command completes */
 | |
| 		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
 | |
| 				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
 | |
| 				      S2IO_BIT_RESET);
 | |
| 
 | |
| 		sp->m_cast_flg = 0;
 | |
| 		sp->all_multi_pos = 0;
 | |
| 	}
 | |
| 
 | |
| 	if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
 | |
| 		/*  Put the NIC into promiscuous mode */
 | |
| 		add = &bar0->mac_cfg;
 | |
| 		val64 = readq(&bar0->mac_cfg);
 | |
| 		val64 |= MAC_CFG_RMAC_PROM_ENABLE;
 | |
| 
 | |
| 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
 | |
| 		writel((u32)val64, add);
 | |
| 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
 | |
| 		writel((u32) (val64 >> 32), (add + 4));
 | |
| 
 | |
| 		if (vlan_tag_strip != 1) {
 | |
| 			val64 = readq(&bar0->rx_pa_cfg);
 | |
| 			val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
 | |
| 			writeq(val64, &bar0->rx_pa_cfg);
 | |
| 			sp->vlan_strip_flag = 0;
 | |
| 		}
 | |
| 
 | |
| 		val64 = readq(&bar0->mac_cfg);
 | |
| 		sp->promisc_flg = 1;
 | |
| 		DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
 | |
| 			  dev->name);
 | |
| 	} else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
 | |
| 		/*  Remove the NIC from promiscuous mode */
 | |
| 		add = &bar0->mac_cfg;
 | |
| 		val64 = readq(&bar0->mac_cfg);
 | |
| 		val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
 | |
| 
 | |
| 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
 | |
| 		writel((u32)val64, add);
 | |
| 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
 | |
| 		writel((u32) (val64 >> 32), (add + 4));
 | |
| 
 | |
| 		if (vlan_tag_strip != 0) {
 | |
| 			val64 = readq(&bar0->rx_pa_cfg);
 | |
| 			val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
 | |
| 			writeq(val64, &bar0->rx_pa_cfg);
 | |
| 			sp->vlan_strip_flag = 1;
 | |
| 		}
 | |
| 
 | |
| 		val64 = readq(&bar0->mac_cfg);
 | |
| 		sp->promisc_flg = 0;
 | |
| 		DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
 | |
| 	}
 | |
| 
 | |
| 	/*  Update individual M_CAST address list */
 | |
| 	if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
 | |
| 		if (netdev_mc_count(dev) >
 | |
| 		    (config->max_mc_addr - config->max_mac_addr)) {
 | |
| 			DBG_PRINT(ERR_DBG,
 | |
| 				  "%s: No more Rx filters can be added - "
 | |
| 				  "please enable ALL_MULTI instead\n",
 | |
| 				  dev->name);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		prev_cnt = sp->mc_addr_count;
 | |
| 		sp->mc_addr_count = netdev_mc_count(dev);
 | |
| 
 | |
| 		/* Clear out the previous list of Mc in the H/W. */
 | |
| 		for (i = 0; i < prev_cnt; i++) {
 | |
| 			writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
 | |
| 			       &bar0->rmac_addr_data0_mem);
 | |
| 			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
 | |
| 			       &bar0->rmac_addr_data1_mem);
 | |
| 			val64 = RMAC_ADDR_CMD_MEM_WE |
 | |
| 				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
 | |
| 				RMAC_ADDR_CMD_MEM_OFFSET
 | |
| 				(config->mc_start_offset + i);
 | |
| 			writeq(val64, &bar0->rmac_addr_cmd_mem);
 | |
| 
 | |
| 			/* Wait for command completes */
 | |
| 			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
 | |
| 						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
 | |
| 						  S2IO_BIT_RESET)) {
 | |
| 				DBG_PRINT(ERR_DBG,
 | |
| 					  "%s: Adding Multicasts failed\n",
 | |
| 					  dev->name);
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Create the new Rx filter list and update the same in H/W. */
 | |
| 		i = 0;
 | |
| 		netdev_for_each_mc_addr(ha, dev) {
 | |
| 			mac_addr = 0;
 | |
| 			for (j = 0; j < ETH_ALEN; j++) {
 | |
| 				mac_addr |= ha->addr[j];
 | |
| 				mac_addr <<= 8;
 | |
| 			}
 | |
| 			mac_addr >>= 8;
 | |
| 			writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
 | |
| 			       &bar0->rmac_addr_data0_mem);
 | |
| 			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
 | |
| 			       &bar0->rmac_addr_data1_mem);
 | |
| 			val64 = RMAC_ADDR_CMD_MEM_WE |
 | |
| 				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
 | |
| 				RMAC_ADDR_CMD_MEM_OFFSET
 | |
| 				(i + config->mc_start_offset);
 | |
| 			writeq(val64, &bar0->rmac_addr_cmd_mem);
 | |
| 
 | |
| 			/* Wait for command completes */
 | |
| 			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
 | |
| 						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
 | |
| 						  S2IO_BIT_RESET)) {
 | |
| 				DBG_PRINT(ERR_DBG,
 | |
| 					  "%s: Adding Multicasts failed\n",
 | |
| 					  dev->name);
 | |
| 				return;
 | |
| 			}
 | |
| 			i++;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* read from CAM unicast & multicast addresses and store it in
 | |
|  * def_mac_addr structure
 | |
|  */
 | |
| static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
 | |
| {
 | |
| 	int offset;
 | |
| 	u64 mac_addr = 0x0;
 | |
| 	struct config_param *config = &sp->config;
 | |
| 
 | |
| 	/* store unicast & multicast mac addresses */
 | |
| 	for (offset = 0; offset < config->max_mc_addr; offset++) {
 | |
| 		mac_addr = do_s2io_read_unicast_mc(sp, offset);
 | |
| 		/* if read fails disable the entry */
 | |
| 		if (mac_addr == FAILURE)
 | |
| 			mac_addr = S2IO_DISABLE_MAC_ENTRY;
 | |
| 		do_s2io_copy_mac_addr(sp, offset, mac_addr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
 | |
| static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
 | |
| {
 | |
| 	int offset;
 | |
| 	struct config_param *config = &sp->config;
 | |
| 	/* restore unicast mac address */
 | |
| 	for (offset = 0; offset < config->max_mac_addr; offset++)
 | |
| 		do_s2io_prog_unicast(sp->dev,
 | |
| 				     sp->def_mac_addr[offset].mac_addr);
 | |
| 
 | |
| 	/* restore multicast mac address */
 | |
| 	for (offset = config->mc_start_offset;
 | |
| 	     offset < config->max_mc_addr; offset++)
 | |
| 		do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
 | |
| }
 | |
| 
 | |
| /* add a multicast MAC address to CAM */
 | |
| static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
 | |
| {
 | |
| 	int i;
 | |
| 	u64 mac_addr = 0;
 | |
| 	struct config_param *config = &sp->config;
 | |
| 
 | |
| 	for (i = 0; i < ETH_ALEN; i++) {
 | |
| 		mac_addr <<= 8;
 | |
| 		mac_addr |= addr[i];
 | |
| 	}
 | |
| 	if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
 | |
| 		return SUCCESS;
 | |
| 
 | |
| 	/* check if the multicast mac already preset in CAM */
 | |
| 	for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
 | |
| 		u64 tmp64;
 | |
| 		tmp64 = do_s2io_read_unicast_mc(sp, i);
 | |
| 		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
 | |
| 			break;
 | |
| 
 | |
| 		if (tmp64 == mac_addr)
 | |
| 			return SUCCESS;
 | |
| 	}
 | |
| 	if (i == config->max_mc_addr) {
 | |
| 		DBG_PRINT(ERR_DBG,
 | |
| 			  "CAM full no space left for multicast MAC\n");
 | |
| 		return FAILURE;
 | |
| 	}
 | |
| 	/* Update the internal structure with this new mac address */
 | |
| 	do_s2io_copy_mac_addr(sp, i, mac_addr);
 | |
| 
 | |
| 	return do_s2io_add_mac(sp, mac_addr, i);
 | |
| }
 | |
| 
 | |
| /* add MAC address to CAM */
 | |
| static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
 | |
| {
 | |
| 	u64 val64;
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 
 | |
| 	writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
 | |
| 	       &bar0->rmac_addr_data0_mem);
 | |
| 
 | |
| 	val64 =	RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
 | |
| 		RMAC_ADDR_CMD_MEM_OFFSET(off);
 | |
| 	writeq(val64, &bar0->rmac_addr_cmd_mem);
 | |
| 
 | |
| 	/* Wait till command completes */
 | |
| 	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
 | |
| 				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
 | |
| 				  S2IO_BIT_RESET)) {
 | |
| 		DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
 | |
| 		return FAILURE;
 | |
| 	}
 | |
| 	return SUCCESS;
 | |
| }
 | |
| /* deletes a specified unicast/multicast mac entry from CAM */
 | |
| static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
 | |
| {
 | |
| 	int offset;
 | |
| 	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
 | |
| 	struct config_param *config = &sp->config;
 | |
| 
 | |
| 	for (offset = 1;
 | |
| 	     offset < config->max_mc_addr; offset++) {
 | |
| 		tmp64 = do_s2io_read_unicast_mc(sp, offset);
 | |
| 		if (tmp64 == addr) {
 | |
| 			/* disable the entry by writing  0xffffffffffffULL */
 | |
| 			if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
 | |
| 				return FAILURE;
 | |
| 			/* store the new mac list from CAM */
 | |
| 			do_s2io_store_unicast_mc(sp);
 | |
| 			return SUCCESS;
 | |
| 		}
 | |
| 	}
 | |
| 	DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
 | |
| 		  (unsigned long long)addr);
 | |
| 	return FAILURE;
 | |
| }
 | |
| 
 | |
| /* read mac entries from CAM */
 | |
| static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
 | |
| {
 | |
| 	u64 tmp64 = 0xffffffffffff0000ULL, val64;
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 
 | |
| 	/* read mac addr */
 | |
| 	val64 =	RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
 | |
| 		RMAC_ADDR_CMD_MEM_OFFSET(offset);
 | |
| 	writeq(val64, &bar0->rmac_addr_cmd_mem);
 | |
| 
 | |
| 	/* Wait till command completes */
 | |
| 	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
 | |
| 				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
 | |
| 				  S2IO_BIT_RESET)) {
 | |
| 		DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
 | |
| 		return FAILURE;
 | |
| 	}
 | |
| 	tmp64 = readq(&bar0->rmac_addr_data0_mem);
 | |
| 
 | |
| 	return tmp64 >> 16;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_set_mac_addr - driver entry point
 | |
|  */
 | |
| 
 | |
| static int s2io_set_mac_addr(struct net_device *dev, void *p)
 | |
| {
 | |
| 	struct sockaddr *addr = p;
 | |
| 
 | |
| 	if (!is_valid_ether_addr(addr->sa_data))
 | |
| 		return -EADDRNOTAVAIL;
 | |
| 
 | |
| 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
 | |
| 
 | |
| 	/* store the MAC address in CAM */
 | |
| 	return do_s2io_prog_unicast(dev, dev->dev_addr);
 | |
| }
 | |
| /**
 | |
|  *  do_s2io_prog_unicast - Programs the Xframe mac address
 | |
|  *  @dev : pointer to the device structure.
 | |
|  *  @addr: a uchar pointer to the new mac address which is to be set.
 | |
|  *  Description : This procedure will program the Xframe to receive
 | |
|  *  frames with new Mac Address
 | |
|  *  Return value: SUCCESS on success and an appropriate (-)ve integer
 | |
|  *  as defined in errno.h file on failure.
 | |
|  */
 | |
| 
 | |
| static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
 | |
| {
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 	register u64 mac_addr = 0, perm_addr = 0;
 | |
| 	int i;
 | |
| 	u64 tmp64;
 | |
| 	struct config_param *config = &sp->config;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the new MAC address as the new unicast filter and reflect this
 | |
| 	 * change on the device address registered with the OS. It will be
 | |
| 	 * at offset 0.
 | |
| 	 */
 | |
| 	for (i = 0; i < ETH_ALEN; i++) {
 | |
| 		mac_addr <<= 8;
 | |
| 		mac_addr |= addr[i];
 | |
| 		perm_addr <<= 8;
 | |
| 		perm_addr |= sp->def_mac_addr[0].mac_addr[i];
 | |
| 	}
 | |
| 
 | |
| 	/* check if the dev_addr is different than perm_addr */
 | |
| 	if (mac_addr == perm_addr)
 | |
| 		return SUCCESS;
 | |
| 
 | |
| 	/* check if the mac already preset in CAM */
 | |
| 	for (i = 1; i < config->max_mac_addr; i++) {
 | |
| 		tmp64 = do_s2io_read_unicast_mc(sp, i);
 | |
| 		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
 | |
| 			break;
 | |
| 
 | |
| 		if (tmp64 == mac_addr) {
 | |
| 			DBG_PRINT(INFO_DBG,
 | |
| 				  "MAC addr:0x%llx already present in CAM\n",
 | |
| 				  (unsigned long long)mac_addr);
 | |
| 			return SUCCESS;
 | |
| 		}
 | |
| 	}
 | |
| 	if (i == config->max_mac_addr) {
 | |
| 		DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
 | |
| 		return FAILURE;
 | |
| 	}
 | |
| 	/* Update the internal structure with this new mac address */
 | |
| 	do_s2io_copy_mac_addr(sp, i, mac_addr);
 | |
| 
 | |
| 	return do_s2io_add_mac(sp, mac_addr, i);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_ethtool_sset - Sets different link parameters.
 | |
|  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
 | |
|  * @info: pointer to the structure with parameters given by ethtool to set
 | |
|  * link information.
 | |
|  * Description:
 | |
|  * The function sets different link parameters provided by the user onto
 | |
|  * the NIC.
 | |
|  * Return value:
 | |
|  * 0 on success.
 | |
|  */
 | |
| 
 | |
| static int s2io_ethtool_sset(struct net_device *dev,
 | |
| 			     struct ethtool_cmd *info)
 | |
| {
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 	if ((info->autoneg == AUTONEG_ENABLE) ||
 | |
| 	    (ethtool_cmd_speed(info) != SPEED_10000) ||
 | |
| 	    (info->duplex != DUPLEX_FULL))
 | |
| 		return -EINVAL;
 | |
| 	else {
 | |
| 		s2io_close(sp->dev);
 | |
| 		s2io_open(sp->dev);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_ethtol_gset - Return link specific information.
 | |
|  * @sp : private member of the device structure, pointer to the
 | |
|  *      s2io_nic structure.
 | |
|  * @info : pointer to the structure with parameters given by ethtool
 | |
|  * to return link information.
 | |
|  * Description:
 | |
|  * Returns link specific information like speed, duplex etc.. to ethtool.
 | |
|  * Return value :
 | |
|  * return 0 on success.
 | |
|  */
 | |
| 
 | |
| static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
 | |
| {
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 	info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
 | |
| 	info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
 | |
| 	info->port = PORT_FIBRE;
 | |
| 
 | |
| 	/* info->transceiver */
 | |
| 	info->transceiver = XCVR_EXTERNAL;
 | |
| 
 | |
| 	if (netif_carrier_ok(sp->dev)) {
 | |
| 		ethtool_cmd_speed_set(info, SPEED_10000);
 | |
| 		info->duplex = DUPLEX_FULL;
 | |
| 	} else {
 | |
| 		ethtool_cmd_speed_set(info, SPEED_UNKNOWN);
 | |
| 		info->duplex = DUPLEX_UNKNOWN;
 | |
| 	}
 | |
| 
 | |
| 	info->autoneg = AUTONEG_DISABLE;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_ethtool_gdrvinfo - Returns driver specific information.
 | |
|  * @sp : private member of the device structure, which is a pointer to the
 | |
|  * s2io_nic structure.
 | |
|  * @info : pointer to the structure with parameters given by ethtool to
 | |
|  * return driver information.
 | |
|  * Description:
 | |
|  * Returns driver specefic information like name, version etc.. to ethtool.
 | |
|  * Return value:
 | |
|  *  void
 | |
|  */
 | |
| 
 | |
| static void s2io_ethtool_gdrvinfo(struct net_device *dev,
 | |
| 				  struct ethtool_drvinfo *info)
 | |
| {
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 
 | |
| 	strlcpy(info->driver, s2io_driver_name, sizeof(info->driver));
 | |
| 	strlcpy(info->version, s2io_driver_version, sizeof(info->version));
 | |
| 	strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
 | |
| 	info->regdump_len = XENA_REG_SPACE;
 | |
| 	info->eedump_len = XENA_EEPROM_SPACE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
 | |
|  *  @sp: private member of the device structure, which is a pointer to the
 | |
|  *  s2io_nic structure.
 | |
|  *  @regs : pointer to the structure with parameters given by ethtool for
 | |
|  *  dumping the registers.
 | |
|  *  @reg_space: The input argumnet into which all the registers are dumped.
 | |
|  *  Description:
 | |
|  *  Dumps the entire register space of xFrame NIC into the user given
 | |
|  *  buffer area.
 | |
|  * Return value :
 | |
|  * void .
 | |
|  */
 | |
| 
 | |
| static void s2io_ethtool_gregs(struct net_device *dev,
 | |
| 			       struct ethtool_regs *regs, void *space)
 | |
| {
 | |
| 	int i;
 | |
| 	u64 reg;
 | |
| 	u8 *reg_space = (u8 *)space;
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 
 | |
| 	regs->len = XENA_REG_SPACE;
 | |
| 	regs->version = sp->pdev->subsystem_device;
 | |
| 
 | |
| 	for (i = 0; i < regs->len; i += 8) {
 | |
| 		reg = readq(sp->bar0 + i);
 | |
| 		memcpy((reg_space + i), ®, 8);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  s2io_set_led - control NIC led
 | |
|  */
 | |
| static void s2io_set_led(struct s2io_nic *sp, bool on)
 | |
| {
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 	u16 subid = sp->pdev->subsystem_device;
 | |
| 	u64 val64;
 | |
| 
 | |
| 	if ((sp->device_type == XFRAME_II_DEVICE) ||
 | |
| 	    ((subid & 0xFF) >= 0x07)) {
 | |
| 		val64 = readq(&bar0->gpio_control);
 | |
| 		if (on)
 | |
| 			val64 |= GPIO_CTRL_GPIO_0;
 | |
| 		else
 | |
| 			val64 &= ~GPIO_CTRL_GPIO_0;
 | |
| 
 | |
| 		writeq(val64, &bar0->gpio_control);
 | |
| 	} else {
 | |
| 		val64 = readq(&bar0->adapter_control);
 | |
| 		if (on)
 | |
| 			val64 |= ADAPTER_LED_ON;
 | |
| 		else
 | |
| 			val64 &= ~ADAPTER_LED_ON;
 | |
| 
 | |
| 		writeq(val64, &bar0->adapter_control);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_ethtool_set_led - To physically identify the nic on the system.
 | |
|  * @dev : network device
 | |
|  * @state: led setting
 | |
|  *
 | |
|  * Description: Used to physically identify the NIC on the system.
 | |
|  * The Link LED will blink for a time specified by the user for
 | |
|  * identification.
 | |
|  * NOTE: The Link has to be Up to be able to blink the LED. Hence
 | |
|  * identification is possible only if it's link is up.
 | |
|  */
 | |
| 
 | |
| static int s2io_ethtool_set_led(struct net_device *dev,
 | |
| 				enum ethtool_phys_id_state state)
 | |
| {
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 	u16 subid = sp->pdev->subsystem_device;
 | |
| 
 | |
| 	if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
 | |
| 		u64 val64 = readq(&bar0->adapter_control);
 | |
| 		if (!(val64 & ADAPTER_CNTL_EN)) {
 | |
| 			pr_err("Adapter Link down, cannot blink LED\n");
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	switch (state) {
 | |
| 	case ETHTOOL_ID_ACTIVE:
 | |
| 		sp->adapt_ctrl_org = readq(&bar0->gpio_control);
 | |
| 		return 1;	/* cycle on/off once per second */
 | |
| 
 | |
| 	case ETHTOOL_ID_ON:
 | |
| 		s2io_set_led(sp, true);
 | |
| 		break;
 | |
| 
 | |
| 	case ETHTOOL_ID_OFF:
 | |
| 		s2io_set_led(sp, false);
 | |
| 		break;
 | |
| 
 | |
| 	case ETHTOOL_ID_INACTIVE:
 | |
| 		if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
 | |
| 			writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void s2io_ethtool_gringparam(struct net_device *dev,
 | |
| 				    struct ethtool_ringparam *ering)
 | |
| {
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 	int i, tx_desc_count = 0, rx_desc_count = 0;
 | |
| 
 | |
| 	if (sp->rxd_mode == RXD_MODE_1) {
 | |
| 		ering->rx_max_pending = MAX_RX_DESC_1;
 | |
| 		ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
 | |
| 	} else {
 | |
| 		ering->rx_max_pending = MAX_RX_DESC_2;
 | |
| 		ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
 | |
| 	}
 | |
| 
 | |
| 	ering->tx_max_pending = MAX_TX_DESC;
 | |
| 
 | |
| 	for (i = 0; i < sp->config.rx_ring_num; i++)
 | |
| 		rx_desc_count += sp->config.rx_cfg[i].num_rxd;
 | |
| 	ering->rx_pending = rx_desc_count;
 | |
| 	ering->rx_jumbo_pending = rx_desc_count;
 | |
| 
 | |
| 	for (i = 0; i < sp->config.tx_fifo_num; i++)
 | |
| 		tx_desc_count += sp->config.tx_cfg[i].fifo_len;
 | |
| 	ering->tx_pending = tx_desc_count;
 | |
| 	DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
 | |
|  * @sp : private member of the device structure, which is a pointer to the
 | |
|  *	s2io_nic structure.
 | |
|  * @ep : pointer to the structure with pause parameters given by ethtool.
 | |
|  * Description:
 | |
|  * Returns the Pause frame generation and reception capability of the NIC.
 | |
|  * Return value:
 | |
|  *  void
 | |
|  */
 | |
| static void s2io_ethtool_getpause_data(struct net_device *dev,
 | |
| 				       struct ethtool_pauseparam *ep)
 | |
| {
 | |
| 	u64 val64;
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 
 | |
| 	val64 = readq(&bar0->rmac_pause_cfg);
 | |
| 	if (val64 & RMAC_PAUSE_GEN_ENABLE)
 | |
| 		ep->tx_pause = true;
 | |
| 	if (val64 & RMAC_PAUSE_RX_ENABLE)
 | |
| 		ep->rx_pause = true;
 | |
| 	ep->autoneg = false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
 | |
|  * @sp : private member of the device structure, which is a pointer to the
 | |
|  *      s2io_nic structure.
 | |
|  * @ep : pointer to the structure with pause parameters given by ethtool.
 | |
|  * Description:
 | |
|  * It can be used to set or reset Pause frame generation or reception
 | |
|  * support of the NIC.
 | |
|  * Return value:
 | |
|  * int, returns 0 on Success
 | |
|  */
 | |
| 
 | |
| static int s2io_ethtool_setpause_data(struct net_device *dev,
 | |
| 				      struct ethtool_pauseparam *ep)
 | |
| {
 | |
| 	u64 val64;
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 
 | |
| 	val64 = readq(&bar0->rmac_pause_cfg);
 | |
| 	if (ep->tx_pause)
 | |
| 		val64 |= RMAC_PAUSE_GEN_ENABLE;
 | |
| 	else
 | |
| 		val64 &= ~RMAC_PAUSE_GEN_ENABLE;
 | |
| 	if (ep->rx_pause)
 | |
| 		val64 |= RMAC_PAUSE_RX_ENABLE;
 | |
| 	else
 | |
| 		val64 &= ~RMAC_PAUSE_RX_ENABLE;
 | |
| 	writeq(val64, &bar0->rmac_pause_cfg);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * read_eeprom - reads 4 bytes of data from user given offset.
 | |
|  * @sp : private member of the device structure, which is a pointer to the
 | |
|  *      s2io_nic structure.
 | |
|  * @off : offset at which the data must be written
 | |
|  * @data : Its an output parameter where the data read at the given
 | |
|  *	offset is stored.
 | |
|  * Description:
 | |
|  * Will read 4 bytes of data from the user given offset and return the
 | |
|  * read data.
 | |
|  * NOTE: Will allow to read only part of the EEPROM visible through the
 | |
|  *   I2C bus.
 | |
|  * Return value:
 | |
|  *  -1 on failure and 0 on success.
 | |
|  */
 | |
| 
 | |
| #define S2IO_DEV_ID		5
 | |
| static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
 | |
| {
 | |
| 	int ret = -1;
 | |
| 	u32 exit_cnt = 0;
 | |
| 	u64 val64;
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 
 | |
| 	if (sp->device_type == XFRAME_I_DEVICE) {
 | |
| 		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
 | |
| 			I2C_CONTROL_ADDR(off) |
 | |
| 			I2C_CONTROL_BYTE_CNT(0x3) |
 | |
| 			I2C_CONTROL_READ |
 | |
| 			I2C_CONTROL_CNTL_START;
 | |
| 		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
 | |
| 
 | |
| 		while (exit_cnt < 5) {
 | |
| 			val64 = readq(&bar0->i2c_control);
 | |
| 			if (I2C_CONTROL_CNTL_END(val64)) {
 | |
| 				*data = I2C_CONTROL_GET_DATA(val64);
 | |
| 				ret = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 			msleep(50);
 | |
| 			exit_cnt++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sp->device_type == XFRAME_II_DEVICE) {
 | |
| 		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
 | |
| 			SPI_CONTROL_BYTECNT(0x3) |
 | |
| 			SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
 | |
| 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
 | |
| 		val64 |= SPI_CONTROL_REQ;
 | |
| 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
 | |
| 		while (exit_cnt < 5) {
 | |
| 			val64 = readq(&bar0->spi_control);
 | |
| 			if (val64 & SPI_CONTROL_NACK) {
 | |
| 				ret = 1;
 | |
| 				break;
 | |
| 			} else if (val64 & SPI_CONTROL_DONE) {
 | |
| 				*data = readq(&bar0->spi_data);
 | |
| 				*data &= 0xffffff;
 | |
| 				ret = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 			msleep(50);
 | |
| 			exit_cnt++;
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  write_eeprom - actually writes the relevant part of the data value.
 | |
|  *  @sp : private member of the device structure, which is a pointer to the
 | |
|  *       s2io_nic structure.
 | |
|  *  @off : offset at which the data must be written
 | |
|  *  @data : The data that is to be written
 | |
|  *  @cnt : Number of bytes of the data that are actually to be written into
 | |
|  *  the Eeprom. (max of 3)
 | |
|  * Description:
 | |
|  *  Actually writes the relevant part of the data value into the Eeprom
 | |
|  *  through the I2C bus.
 | |
|  * Return value:
 | |
|  *  0 on success, -1 on failure.
 | |
|  */
 | |
| 
 | |
| static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
 | |
| {
 | |
| 	int exit_cnt = 0, ret = -1;
 | |
| 	u64 val64;
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 
 | |
| 	if (sp->device_type == XFRAME_I_DEVICE) {
 | |
| 		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
 | |
| 			I2C_CONTROL_ADDR(off) |
 | |
| 			I2C_CONTROL_BYTE_CNT(cnt) |
 | |
| 			I2C_CONTROL_SET_DATA((u32)data) |
 | |
| 			I2C_CONTROL_CNTL_START;
 | |
| 		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
 | |
| 
 | |
| 		while (exit_cnt < 5) {
 | |
| 			val64 = readq(&bar0->i2c_control);
 | |
| 			if (I2C_CONTROL_CNTL_END(val64)) {
 | |
| 				if (!(val64 & I2C_CONTROL_NACK))
 | |
| 					ret = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 			msleep(50);
 | |
| 			exit_cnt++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sp->device_type == XFRAME_II_DEVICE) {
 | |
| 		int write_cnt = (cnt == 8) ? 0 : cnt;
 | |
| 		writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
 | |
| 
 | |
| 		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
 | |
| 			SPI_CONTROL_BYTECNT(write_cnt) |
 | |
| 			SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
 | |
| 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
 | |
| 		val64 |= SPI_CONTROL_REQ;
 | |
| 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
 | |
| 		while (exit_cnt < 5) {
 | |
| 			val64 = readq(&bar0->spi_control);
 | |
| 			if (val64 & SPI_CONTROL_NACK) {
 | |
| 				ret = 1;
 | |
| 				break;
 | |
| 			} else if (val64 & SPI_CONTROL_DONE) {
 | |
| 				ret = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 			msleep(50);
 | |
| 			exit_cnt++;
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| static void s2io_vpd_read(struct s2io_nic *nic)
 | |
| {
 | |
| 	u8 *vpd_data;
 | |
| 	u8 data;
 | |
| 	int i = 0, cnt, len, fail = 0;
 | |
| 	int vpd_addr = 0x80;
 | |
| 	struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
 | |
| 
 | |
| 	if (nic->device_type == XFRAME_II_DEVICE) {
 | |
| 		strcpy(nic->product_name, "Xframe II 10GbE network adapter");
 | |
| 		vpd_addr = 0x80;
 | |
| 	} else {
 | |
| 		strcpy(nic->product_name, "Xframe I 10GbE network adapter");
 | |
| 		vpd_addr = 0x50;
 | |
| 	}
 | |
| 	strcpy(nic->serial_num, "NOT AVAILABLE");
 | |
| 
 | |
| 	vpd_data = kmalloc(256, GFP_KERNEL);
 | |
| 	if (!vpd_data) {
 | |
| 		swstats->mem_alloc_fail_cnt++;
 | |
| 		return;
 | |
| 	}
 | |
| 	swstats->mem_allocated += 256;
 | |
| 
 | |
| 	for (i = 0; i < 256; i += 4) {
 | |
| 		pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
 | |
| 		pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
 | |
| 		pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
 | |
| 		for (cnt = 0; cnt < 5; cnt++) {
 | |
| 			msleep(2);
 | |
| 			pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
 | |
| 			if (data == 0x80)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (cnt >= 5) {
 | |
| 			DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
 | |
| 			fail = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 		pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
 | |
| 				      (u32 *)&vpd_data[i]);
 | |
| 	}
 | |
| 
 | |
| 	if (!fail) {
 | |
| 		/* read serial number of adapter */
 | |
| 		for (cnt = 0; cnt < 252; cnt++) {
 | |
| 			if ((vpd_data[cnt] == 'S') &&
 | |
| 			    (vpd_data[cnt+1] == 'N')) {
 | |
| 				len = vpd_data[cnt+2];
 | |
| 				if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
 | |
| 					memcpy(nic->serial_num,
 | |
| 					       &vpd_data[cnt + 3],
 | |
| 					       len);
 | |
| 					memset(nic->serial_num+len,
 | |
| 					       0,
 | |
| 					       VPD_STRING_LEN-len);
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
 | |
| 		len = vpd_data[1];
 | |
| 		memcpy(nic->product_name, &vpd_data[3], len);
 | |
| 		nic->product_name[len] = 0;
 | |
| 	}
 | |
| 	kfree(vpd_data);
 | |
| 	swstats->mem_freed += 256;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
 | |
|  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
 | |
|  *  @eeprom : pointer to the user level structure provided by ethtool,
 | |
|  *  containing all relevant information.
 | |
|  *  @data_buf : user defined value to be written into Eeprom.
 | |
|  *  Description: Reads the values stored in the Eeprom at given offset
 | |
|  *  for a given length. Stores these values int the input argument data
 | |
|  *  buffer 'data_buf' and returns these to the caller (ethtool.)
 | |
|  *  Return value:
 | |
|  *  int  0 on success
 | |
|  */
 | |
| 
 | |
| static int s2io_ethtool_geeprom(struct net_device *dev,
 | |
| 				struct ethtool_eeprom *eeprom, u8 * data_buf)
 | |
| {
 | |
| 	u32 i, valid;
 | |
| 	u64 data;
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 
 | |
| 	eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
 | |
| 
 | |
| 	if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
 | |
| 		eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
 | |
| 
 | |
| 	for (i = 0; i < eeprom->len; i += 4) {
 | |
| 		if (read_eeprom(sp, (eeprom->offset + i), &data)) {
 | |
| 			DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 		valid = INV(data);
 | |
| 		memcpy((data_buf + i), &valid, 4);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
 | |
|  *  @sp : private member of the device structure, which is a pointer to the
 | |
|  *  s2io_nic structure.
 | |
|  *  @eeprom : pointer to the user level structure provided by ethtool,
 | |
|  *  containing all relevant information.
 | |
|  *  @data_buf ; user defined value to be written into Eeprom.
 | |
|  *  Description:
 | |
|  *  Tries to write the user provided value in the Eeprom, at the offset
 | |
|  *  given by the user.
 | |
|  *  Return value:
 | |
|  *  0 on success, -EFAULT on failure.
 | |
|  */
 | |
| 
 | |
| static int s2io_ethtool_seeprom(struct net_device *dev,
 | |
| 				struct ethtool_eeprom *eeprom,
 | |
| 				u8 *data_buf)
 | |
| {
 | |
| 	int len = eeprom->len, cnt = 0;
 | |
| 	u64 valid = 0, data;
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 
 | |
| 	if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
 | |
| 		DBG_PRINT(ERR_DBG,
 | |
| 			  "ETHTOOL_WRITE_EEPROM Err: "
 | |
| 			  "Magic value is wrong, it is 0x%x should be 0x%x\n",
 | |
| 			  (sp->pdev->vendor | (sp->pdev->device << 16)),
 | |
| 			  eeprom->magic);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	while (len) {
 | |
| 		data = (u32)data_buf[cnt] & 0x000000FF;
 | |
| 		if (data)
 | |
| 			valid = (u32)(data << 24);
 | |
| 		else
 | |
| 			valid = data;
 | |
| 
 | |
| 		if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
 | |
| 			DBG_PRINT(ERR_DBG,
 | |
| 				  "ETHTOOL_WRITE_EEPROM Err: "
 | |
| 				  "Cannot write into the specified offset\n");
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 		cnt++;
 | |
| 		len--;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_register_test - reads and writes into all clock domains.
 | |
|  * @sp : private member of the device structure, which is a pointer to the
 | |
|  * s2io_nic structure.
 | |
|  * @data : variable that returns the result of each of the test conducted b
 | |
|  * by the driver.
 | |
|  * Description:
 | |
|  * Read and write into all clock domains. The NIC has 3 clock domains,
 | |
|  * see that registers in all the three regions are accessible.
 | |
|  * Return value:
 | |
|  * 0 on success.
 | |
|  */
 | |
| 
 | |
| static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
 | |
| {
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 	u64 val64 = 0, exp_val;
 | |
| 	int fail = 0;
 | |
| 
 | |
| 	val64 = readq(&bar0->pif_rd_swapper_fb);
 | |
| 	if (val64 != 0x123456789abcdefULL) {
 | |
| 		fail = 1;
 | |
| 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
 | |
| 	}
 | |
| 
 | |
| 	val64 = readq(&bar0->rmac_pause_cfg);
 | |
| 	if (val64 != 0xc000ffff00000000ULL) {
 | |
| 		fail = 1;
 | |
| 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
 | |
| 	}
 | |
| 
 | |
| 	val64 = readq(&bar0->rx_queue_cfg);
 | |
| 	if (sp->device_type == XFRAME_II_DEVICE)
 | |
| 		exp_val = 0x0404040404040404ULL;
 | |
| 	else
 | |
| 		exp_val = 0x0808080808080808ULL;
 | |
| 	if (val64 != exp_val) {
 | |
| 		fail = 1;
 | |
| 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
 | |
| 	}
 | |
| 
 | |
| 	val64 = readq(&bar0->xgxs_efifo_cfg);
 | |
| 	if (val64 != 0x000000001923141EULL) {
 | |
| 		fail = 1;
 | |
| 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
 | |
| 	}
 | |
| 
 | |
| 	val64 = 0x5A5A5A5A5A5A5A5AULL;
 | |
| 	writeq(val64, &bar0->xmsi_data);
 | |
| 	val64 = readq(&bar0->xmsi_data);
 | |
| 	if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
 | |
| 		fail = 1;
 | |
| 		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
 | |
| 	}
 | |
| 
 | |
| 	val64 = 0xA5A5A5A5A5A5A5A5ULL;
 | |
| 	writeq(val64, &bar0->xmsi_data);
 | |
| 	val64 = readq(&bar0->xmsi_data);
 | |
| 	if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
 | |
| 		fail = 1;
 | |
| 		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
 | |
| 	}
 | |
| 
 | |
| 	*data = fail;
 | |
| 	return fail;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
 | |
|  * @sp : private member of the device structure, which is a pointer to the
 | |
|  * s2io_nic structure.
 | |
|  * @data:variable that returns the result of each of the test conducted by
 | |
|  * the driver.
 | |
|  * Description:
 | |
|  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
 | |
|  * register.
 | |
|  * Return value:
 | |
|  * 0 on success.
 | |
|  */
 | |
| 
 | |
| static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
 | |
| {
 | |
| 	int fail = 0;
 | |
| 	u64 ret_data, org_4F0, org_7F0;
 | |
| 	u8 saved_4F0 = 0, saved_7F0 = 0;
 | |
| 	struct net_device *dev = sp->dev;
 | |
| 
 | |
| 	/* Test Write Error at offset 0 */
 | |
| 	/* Note that SPI interface allows write access to all areas
 | |
| 	 * of EEPROM. Hence doing all negative testing only for Xframe I.
 | |
| 	 */
 | |
| 	if (sp->device_type == XFRAME_I_DEVICE)
 | |
| 		if (!write_eeprom(sp, 0, 0, 3))
 | |
| 			fail = 1;
 | |
| 
 | |
| 	/* Save current values at offsets 0x4F0 and 0x7F0 */
 | |
| 	if (!read_eeprom(sp, 0x4F0, &org_4F0))
 | |
| 		saved_4F0 = 1;
 | |
| 	if (!read_eeprom(sp, 0x7F0, &org_7F0))
 | |
| 		saved_7F0 = 1;
 | |
| 
 | |
| 	/* Test Write at offset 4f0 */
 | |
| 	if (write_eeprom(sp, 0x4F0, 0x012345, 3))
 | |
| 		fail = 1;
 | |
| 	if (read_eeprom(sp, 0x4F0, &ret_data))
 | |
| 		fail = 1;
 | |
| 
 | |
| 	if (ret_data != 0x012345) {
 | |
| 		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
 | |
| 			  "Data written %llx Data read %llx\n",
 | |
| 			  dev->name, (unsigned long long)0x12345,
 | |
| 			  (unsigned long long)ret_data);
 | |
| 		fail = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Reset the EEPROM data go FFFF */
 | |
| 	write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
 | |
| 
 | |
| 	/* Test Write Request Error at offset 0x7c */
 | |
| 	if (sp->device_type == XFRAME_I_DEVICE)
 | |
| 		if (!write_eeprom(sp, 0x07C, 0, 3))
 | |
| 			fail = 1;
 | |
| 
 | |
| 	/* Test Write Request at offset 0x7f0 */
 | |
| 	if (write_eeprom(sp, 0x7F0, 0x012345, 3))
 | |
| 		fail = 1;
 | |
| 	if (read_eeprom(sp, 0x7F0, &ret_data))
 | |
| 		fail = 1;
 | |
| 
 | |
| 	if (ret_data != 0x012345) {
 | |
| 		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
 | |
| 			  "Data written %llx Data read %llx\n",
 | |
| 			  dev->name, (unsigned long long)0x12345,
 | |
| 			  (unsigned long long)ret_data);
 | |
| 		fail = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Reset the EEPROM data go FFFF */
 | |
| 	write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
 | |
| 
 | |
| 	if (sp->device_type == XFRAME_I_DEVICE) {
 | |
| 		/* Test Write Error at offset 0x80 */
 | |
| 		if (!write_eeprom(sp, 0x080, 0, 3))
 | |
| 			fail = 1;
 | |
| 
 | |
| 		/* Test Write Error at offset 0xfc */
 | |
| 		if (!write_eeprom(sp, 0x0FC, 0, 3))
 | |
| 			fail = 1;
 | |
| 
 | |
| 		/* Test Write Error at offset 0x100 */
 | |
| 		if (!write_eeprom(sp, 0x100, 0, 3))
 | |
| 			fail = 1;
 | |
| 
 | |
| 		/* Test Write Error at offset 4ec */
 | |
| 		if (!write_eeprom(sp, 0x4EC, 0, 3))
 | |
| 			fail = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Restore values at offsets 0x4F0 and 0x7F0 */
 | |
| 	if (saved_4F0)
 | |
| 		write_eeprom(sp, 0x4F0, org_4F0, 3);
 | |
| 	if (saved_7F0)
 | |
| 		write_eeprom(sp, 0x7F0, org_7F0, 3);
 | |
| 
 | |
| 	*data = fail;
 | |
| 	return fail;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_bist_test - invokes the MemBist test of the card .
 | |
|  * @sp : private member of the device structure, which is a pointer to the
 | |
|  * s2io_nic structure.
 | |
|  * @data:variable that returns the result of each of the test conducted by
 | |
|  * the driver.
 | |
|  * Description:
 | |
|  * This invokes the MemBist test of the card. We give around
 | |
|  * 2 secs time for the Test to complete. If it's still not complete
 | |
|  * within this peiod, we consider that the test failed.
 | |
|  * Return value:
 | |
|  * 0 on success and -1 on failure.
 | |
|  */
 | |
| 
 | |
| static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
 | |
| {
 | |
| 	u8 bist = 0;
 | |
| 	int cnt = 0, ret = -1;
 | |
| 
 | |
| 	pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
 | |
| 	bist |= PCI_BIST_START;
 | |
| 	pci_write_config_word(sp->pdev, PCI_BIST, bist);
 | |
| 
 | |
| 	while (cnt < 20) {
 | |
| 		pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
 | |
| 		if (!(bist & PCI_BIST_START)) {
 | |
| 			*data = (bist & PCI_BIST_CODE_MASK);
 | |
| 			ret = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		msleep(100);
 | |
| 		cnt++;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_link_test - verifies the link state of the nic
 | |
|  * @sp ; private member of the device structure, which is a pointer to the
 | |
|  * s2io_nic structure.
 | |
|  * @data: variable that returns the result of each of the test conducted by
 | |
|  * the driver.
 | |
|  * Description:
 | |
|  * The function verifies the link state of the NIC and updates the input
 | |
|  * argument 'data' appropriately.
 | |
|  * Return value:
 | |
|  * 0 on success.
 | |
|  */
 | |
| 
 | |
| static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
 | |
| {
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 	u64 val64;
 | |
| 
 | |
| 	val64 = readq(&bar0->adapter_status);
 | |
| 	if (!(LINK_IS_UP(val64)))
 | |
| 		*data = 1;
 | |
| 	else
 | |
| 		*data = 0;
 | |
| 
 | |
| 	return *data;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
 | |
|  * @sp: private member of the device structure, which is a pointer to the
 | |
|  * s2io_nic structure.
 | |
|  * @data: variable that returns the result of each of the test
 | |
|  * conducted by the driver.
 | |
|  * Description:
 | |
|  *  This is one of the offline test that tests the read and write
 | |
|  *  access to the RldRam chip on the NIC.
 | |
|  * Return value:
 | |
|  *  0 on success.
 | |
|  */
 | |
| 
 | |
| static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
 | |
| {
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 	u64 val64;
 | |
| 	int cnt, iteration = 0, test_fail = 0;
 | |
| 
 | |
| 	val64 = readq(&bar0->adapter_control);
 | |
| 	val64 &= ~ADAPTER_ECC_EN;
 | |
| 	writeq(val64, &bar0->adapter_control);
 | |
| 
 | |
| 	val64 = readq(&bar0->mc_rldram_test_ctrl);
 | |
| 	val64 |= MC_RLDRAM_TEST_MODE;
 | |
| 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
 | |
| 
 | |
| 	val64 = readq(&bar0->mc_rldram_mrs);
 | |
| 	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
 | |
| 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
 | |
| 
 | |
| 	val64 |= MC_RLDRAM_MRS_ENABLE;
 | |
| 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
 | |
| 
 | |
| 	while (iteration < 2) {
 | |
| 		val64 = 0x55555555aaaa0000ULL;
 | |
| 		if (iteration == 1)
 | |
| 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
 | |
| 		writeq(val64, &bar0->mc_rldram_test_d0);
 | |
| 
 | |
| 		val64 = 0xaaaa5a5555550000ULL;
 | |
| 		if (iteration == 1)
 | |
| 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
 | |
| 		writeq(val64, &bar0->mc_rldram_test_d1);
 | |
| 
 | |
| 		val64 = 0x55aaaaaaaa5a0000ULL;
 | |
| 		if (iteration == 1)
 | |
| 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
 | |
| 		writeq(val64, &bar0->mc_rldram_test_d2);
 | |
| 
 | |
| 		val64 = (u64) (0x0000003ffffe0100ULL);
 | |
| 		writeq(val64, &bar0->mc_rldram_test_add);
 | |
| 
 | |
| 		val64 = MC_RLDRAM_TEST_MODE |
 | |
| 			MC_RLDRAM_TEST_WRITE |
 | |
| 			MC_RLDRAM_TEST_GO;
 | |
| 		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
 | |
| 
 | |
| 		for (cnt = 0; cnt < 5; cnt++) {
 | |
| 			val64 = readq(&bar0->mc_rldram_test_ctrl);
 | |
| 			if (val64 & MC_RLDRAM_TEST_DONE)
 | |
| 				break;
 | |
| 			msleep(200);
 | |
| 		}
 | |
| 
 | |
| 		if (cnt == 5)
 | |
| 			break;
 | |
| 
 | |
| 		val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
 | |
| 		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
 | |
| 
 | |
| 		for (cnt = 0; cnt < 5; cnt++) {
 | |
| 			val64 = readq(&bar0->mc_rldram_test_ctrl);
 | |
| 			if (val64 & MC_RLDRAM_TEST_DONE)
 | |
| 				break;
 | |
| 			msleep(500);
 | |
| 		}
 | |
| 
 | |
| 		if (cnt == 5)
 | |
| 			break;
 | |
| 
 | |
| 		val64 = readq(&bar0->mc_rldram_test_ctrl);
 | |
| 		if (!(val64 & MC_RLDRAM_TEST_PASS))
 | |
| 			test_fail = 1;
 | |
| 
 | |
| 		iteration++;
 | |
| 	}
 | |
| 
 | |
| 	*data = test_fail;
 | |
| 
 | |
| 	/* Bring the adapter out of test mode */
 | |
| 	SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
 | |
| 
 | |
| 	return test_fail;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
 | |
|  *  @sp : private member of the device structure, which is a pointer to the
 | |
|  *  s2io_nic structure.
 | |
|  *  @ethtest : pointer to a ethtool command specific structure that will be
 | |
|  *  returned to the user.
 | |
|  *  @data : variable that returns the result of each of the test
 | |
|  * conducted by the driver.
 | |
|  * Description:
 | |
|  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
 | |
|  *  the health of the card.
 | |
|  * Return value:
 | |
|  *  void
 | |
|  */
 | |
| 
 | |
| static void s2io_ethtool_test(struct net_device *dev,
 | |
| 			      struct ethtool_test *ethtest,
 | |
| 			      uint64_t *data)
 | |
| {
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 	int orig_state = netif_running(sp->dev);
 | |
| 
 | |
| 	if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
 | |
| 		/* Offline Tests. */
 | |
| 		if (orig_state)
 | |
| 			s2io_close(sp->dev);
 | |
| 
 | |
| 		if (s2io_register_test(sp, &data[0]))
 | |
| 			ethtest->flags |= ETH_TEST_FL_FAILED;
 | |
| 
 | |
| 		s2io_reset(sp);
 | |
| 
 | |
| 		if (s2io_rldram_test(sp, &data[3]))
 | |
| 			ethtest->flags |= ETH_TEST_FL_FAILED;
 | |
| 
 | |
| 		s2io_reset(sp);
 | |
| 
 | |
| 		if (s2io_eeprom_test(sp, &data[1]))
 | |
| 			ethtest->flags |= ETH_TEST_FL_FAILED;
 | |
| 
 | |
| 		if (s2io_bist_test(sp, &data[4]))
 | |
| 			ethtest->flags |= ETH_TEST_FL_FAILED;
 | |
| 
 | |
| 		if (orig_state)
 | |
| 			s2io_open(sp->dev);
 | |
| 
 | |
| 		data[2] = 0;
 | |
| 	} else {
 | |
| 		/* Online Tests. */
 | |
| 		if (!orig_state) {
 | |
| 			DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
 | |
| 				  dev->name);
 | |
| 			data[0] = -1;
 | |
| 			data[1] = -1;
 | |
| 			data[2] = -1;
 | |
| 			data[3] = -1;
 | |
| 			data[4] = -1;
 | |
| 		}
 | |
| 
 | |
| 		if (s2io_link_test(sp, &data[2]))
 | |
| 			ethtest->flags |= ETH_TEST_FL_FAILED;
 | |
| 
 | |
| 		data[0] = 0;
 | |
| 		data[1] = 0;
 | |
| 		data[3] = 0;
 | |
| 		data[4] = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void s2io_get_ethtool_stats(struct net_device *dev,
 | |
| 				   struct ethtool_stats *estats,
 | |
| 				   u64 *tmp_stats)
 | |
| {
 | |
| 	int i = 0, k;
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 	struct stat_block *stats = sp->mac_control.stats_info;
 | |
| 	struct swStat *swstats = &stats->sw_stat;
 | |
| 	struct xpakStat *xstats = &stats->xpak_stat;
 | |
| 
 | |
| 	s2io_updt_stats(sp);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
 | |
| 		le32_to_cpu(stats->tmac_frms);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->tmac_data_octets);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->tmac_mcst_frms);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->tmac_bcst_frms);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->tmac_ttl_octets);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->tmac_ucst_frms);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->tmac_nucst_frms);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->tmac_any_err_frms);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->tmac_vld_ip);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->tmac_drop_ip);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->tmac_icmp);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->tmac_rst_tcp);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
 | |
| 	tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->tmac_udp);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->rmac_vld_frms);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->rmac_data_octets);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->rmac_vld_mcst_frms);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->rmac_vld_bcst_frms);
 | |
| 	tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
 | |
| 	tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->rmac_ttl_octets);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
 | |
| 		| le32_to_cpu(stats->rmac_accepted_ucst_frms);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
 | |
| 		<< 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->rmac_discarded_frms);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->rmac_drop_events_oflow)
 | |
| 		<< 32 | le32_to_cpu(stats->rmac_drop_events);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->rmac_usized_frms);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->rmac_osized_frms);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->rmac_frag_frms);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->rmac_jabber_frms);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->rmac_ip);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
 | |
| 	tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->rmac_drop_ip);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->rmac_icmp);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->rmac_udp);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->rmac_err_drp_udp);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
 | |
| 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
 | |
| 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
 | |
| 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
 | |
| 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
 | |
| 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
 | |
| 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
 | |
| 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
 | |
| 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->rmac_pause_cnt);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
 | |
| 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
 | |
| 	tmp_stats[i++] =
 | |
| 		(u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
 | |
| 		le32_to_cpu(stats->rmac_accepted_ip);
 | |
| 	tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
 | |
| 	tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
 | |
| 	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
 | |
| 	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
 | |
| 	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
 | |
| 	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
 | |
| 	tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
 | |
| 	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
 | |
| 	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
 | |
| 	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
 | |
| 	tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
 | |
| 	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
 | |
| 	tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
 | |
| 	tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
 | |
| 	tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
 | |
| 	tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
 | |
| 	tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
 | |
| 	tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
 | |
| 	tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
 | |
| 
 | |
| 	/* Enhanced statistics exist only for Hercules */
 | |
| 	if (sp->device_type == XFRAME_II_DEVICE) {
 | |
| 		tmp_stats[i++] =
 | |
| 			le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
 | |
| 		tmp_stats[i++] =
 | |
| 			le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
 | |
| 		tmp_stats[i++] =
 | |
| 			le64_to_cpu(stats->rmac_ttl_8192_max_frms);
 | |
| 		tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
 | |
| 		tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
 | |
| 		tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
 | |
| 		tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
 | |
| 		tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
 | |
| 		tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
 | |
| 		tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
 | |
| 		tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
 | |
| 		tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
 | |
| 		tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
 | |
| 		tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
 | |
| 		tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
 | |
| 		tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
 | |
| 	}
 | |
| 
 | |
| 	tmp_stats[i++] = 0;
 | |
| 	tmp_stats[i++] = swstats->single_ecc_errs;
 | |
| 	tmp_stats[i++] = swstats->double_ecc_errs;
 | |
| 	tmp_stats[i++] = swstats->parity_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->serious_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->soft_reset_cnt;
 | |
| 	tmp_stats[i++] = swstats->fifo_full_cnt;
 | |
| 	for (k = 0; k < MAX_RX_RINGS; k++)
 | |
| 		tmp_stats[i++] = swstats->ring_full_cnt[k];
 | |
| 	tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
 | |
| 	tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
 | |
| 	tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
 | |
| 	tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
 | |
| 	tmp_stats[i++] = xstats->alarm_laser_output_power_high;
 | |
| 	tmp_stats[i++] = xstats->alarm_laser_output_power_low;
 | |
| 	tmp_stats[i++] = xstats->warn_transceiver_temp_high;
 | |
| 	tmp_stats[i++] = xstats->warn_transceiver_temp_low;
 | |
| 	tmp_stats[i++] = xstats->warn_laser_bias_current_high;
 | |
| 	tmp_stats[i++] = xstats->warn_laser_bias_current_low;
 | |
| 	tmp_stats[i++] = xstats->warn_laser_output_power_high;
 | |
| 	tmp_stats[i++] = xstats->warn_laser_output_power_low;
 | |
| 	tmp_stats[i++] = swstats->clubbed_frms_cnt;
 | |
| 	tmp_stats[i++] = swstats->sending_both;
 | |
| 	tmp_stats[i++] = swstats->outof_sequence_pkts;
 | |
| 	tmp_stats[i++] = swstats->flush_max_pkts;
 | |
| 	if (swstats->num_aggregations) {
 | |
| 		u64 tmp = swstats->sum_avg_pkts_aggregated;
 | |
| 		int count = 0;
 | |
| 		/*
 | |
| 		 * Since 64-bit divide does not work on all platforms,
 | |
| 		 * do repeated subtraction.
 | |
| 		 */
 | |
| 		while (tmp >= swstats->num_aggregations) {
 | |
| 			tmp -= swstats->num_aggregations;
 | |
| 			count++;
 | |
| 		}
 | |
| 		tmp_stats[i++] = count;
 | |
| 	} else
 | |
| 		tmp_stats[i++] = 0;
 | |
| 	tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
 | |
| 	tmp_stats[i++] = swstats->pci_map_fail_cnt;
 | |
| 	tmp_stats[i++] = swstats->watchdog_timer_cnt;
 | |
| 	tmp_stats[i++] = swstats->mem_allocated;
 | |
| 	tmp_stats[i++] = swstats->mem_freed;
 | |
| 	tmp_stats[i++] = swstats->link_up_cnt;
 | |
| 	tmp_stats[i++] = swstats->link_down_cnt;
 | |
| 	tmp_stats[i++] = swstats->link_up_time;
 | |
| 	tmp_stats[i++] = swstats->link_down_time;
 | |
| 
 | |
| 	tmp_stats[i++] = swstats->tx_buf_abort_cnt;
 | |
| 	tmp_stats[i++] = swstats->tx_desc_abort_cnt;
 | |
| 	tmp_stats[i++] = swstats->tx_parity_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->tx_link_loss_cnt;
 | |
| 	tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
 | |
| 
 | |
| 	tmp_stats[i++] = swstats->rx_parity_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->rx_abort_cnt;
 | |
| 	tmp_stats[i++] = swstats->rx_parity_abort_cnt;
 | |
| 	tmp_stats[i++] = swstats->rx_rda_fail_cnt;
 | |
| 	tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
 | |
| 	tmp_stats[i++] = swstats->rx_fcs_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
 | |
| 	tmp_stats[i++] = swstats->rx_unkn_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->tda_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->pfc_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->pcc_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->tti_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->tpa_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->sm_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->lso_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->mac_tmac_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->mac_rmac_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->rc_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->prc_pcix_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->rpa_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->rda_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->rti_err_cnt;
 | |
| 	tmp_stats[i++] = swstats->mc_err_cnt;
 | |
| }
 | |
| 
 | |
| static int s2io_ethtool_get_regs_len(struct net_device *dev)
 | |
| {
 | |
| 	return XENA_REG_SPACE;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int s2io_get_eeprom_len(struct net_device *dev)
 | |
| {
 | |
| 	return XENA_EEPROM_SPACE;
 | |
| }
 | |
| 
 | |
| static int s2io_get_sset_count(struct net_device *dev, int sset)
 | |
| {
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 
 | |
| 	switch (sset) {
 | |
| 	case ETH_SS_TEST:
 | |
| 		return S2IO_TEST_LEN;
 | |
| 	case ETH_SS_STATS:
 | |
| 		switch (sp->device_type) {
 | |
| 		case XFRAME_I_DEVICE:
 | |
| 			return XFRAME_I_STAT_LEN;
 | |
| 		case XFRAME_II_DEVICE:
 | |
| 			return XFRAME_II_STAT_LEN;
 | |
| 		default:
 | |
| 			return 0;
 | |
| 		}
 | |
| 	default:
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void s2io_ethtool_get_strings(struct net_device *dev,
 | |
| 				     u32 stringset, u8 *data)
 | |
| {
 | |
| 	int stat_size = 0;
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 
 | |
| 	switch (stringset) {
 | |
| 	case ETH_SS_TEST:
 | |
| 		memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
 | |
| 		break;
 | |
| 	case ETH_SS_STATS:
 | |
| 		stat_size = sizeof(ethtool_xena_stats_keys);
 | |
| 		memcpy(data, ðtool_xena_stats_keys, stat_size);
 | |
| 		if (sp->device_type == XFRAME_II_DEVICE) {
 | |
| 			memcpy(data + stat_size,
 | |
| 			       ðtool_enhanced_stats_keys,
 | |
| 			       sizeof(ethtool_enhanced_stats_keys));
 | |
| 			stat_size += sizeof(ethtool_enhanced_stats_keys);
 | |
| 		}
 | |
| 
 | |
| 		memcpy(data + stat_size, ðtool_driver_stats_keys,
 | |
| 		       sizeof(ethtool_driver_stats_keys));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int s2io_set_features(struct net_device *dev, netdev_features_t features)
 | |
| {
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 	netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
 | |
| 
 | |
| 	if (changed && netif_running(dev)) {
 | |
| 		int rc;
 | |
| 
 | |
| 		s2io_stop_all_tx_queue(sp);
 | |
| 		s2io_card_down(sp);
 | |
| 		dev->features = features;
 | |
| 		rc = s2io_card_up(sp);
 | |
| 		if (rc)
 | |
| 			s2io_reset(sp);
 | |
| 		else
 | |
| 			s2io_start_all_tx_queue(sp);
 | |
| 
 | |
| 		return rc ? rc : 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct ethtool_ops netdev_ethtool_ops = {
 | |
| 	.get_settings = s2io_ethtool_gset,
 | |
| 	.set_settings = s2io_ethtool_sset,
 | |
| 	.get_drvinfo = s2io_ethtool_gdrvinfo,
 | |
| 	.get_regs_len = s2io_ethtool_get_regs_len,
 | |
| 	.get_regs = s2io_ethtool_gregs,
 | |
| 	.get_link = ethtool_op_get_link,
 | |
| 	.get_eeprom_len = s2io_get_eeprom_len,
 | |
| 	.get_eeprom = s2io_ethtool_geeprom,
 | |
| 	.set_eeprom = s2io_ethtool_seeprom,
 | |
| 	.get_ringparam = s2io_ethtool_gringparam,
 | |
| 	.get_pauseparam = s2io_ethtool_getpause_data,
 | |
| 	.set_pauseparam = s2io_ethtool_setpause_data,
 | |
| 	.self_test = s2io_ethtool_test,
 | |
| 	.get_strings = s2io_ethtool_get_strings,
 | |
| 	.set_phys_id = s2io_ethtool_set_led,
 | |
| 	.get_ethtool_stats = s2io_get_ethtool_stats,
 | |
| 	.get_sset_count = s2io_get_sset_count,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  *  s2io_ioctl - Entry point for the Ioctl
 | |
|  *  @dev :  Device pointer.
 | |
|  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
 | |
|  *  a proprietary structure used to pass information to the driver.
 | |
|  *  @cmd :  This is used to distinguish between the different commands that
 | |
|  *  can be passed to the IOCTL functions.
 | |
|  *  Description:
 | |
|  *  Currently there are no special functionality supported in IOCTL, hence
 | |
|  *  function always return EOPNOTSUPPORTED
 | |
|  */
 | |
| 
 | |
| static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 | |
| {
 | |
| 	return -EOPNOTSUPP;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  s2io_change_mtu - entry point to change MTU size for the device.
 | |
|  *   @dev : device pointer.
 | |
|  *   @new_mtu : the new MTU size for the device.
 | |
|  *   Description: A driver entry point to change MTU size for the device.
 | |
|  *   Before changing the MTU the device must be stopped.
 | |
|  *  Return value:
 | |
|  *   0 on success and an appropriate (-)ve integer as defined in errno.h
 | |
|  *   file on failure.
 | |
|  */
 | |
| 
 | |
| static int s2io_change_mtu(struct net_device *dev, int new_mtu)
 | |
| {
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
 | |
| 		DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
 | |
| 		return -EPERM;
 | |
| 	}
 | |
| 
 | |
| 	dev->mtu = new_mtu;
 | |
| 	if (netif_running(dev)) {
 | |
| 		s2io_stop_all_tx_queue(sp);
 | |
| 		s2io_card_down(sp);
 | |
| 		ret = s2io_card_up(sp);
 | |
| 		if (ret) {
 | |
| 			DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
 | |
| 				  __func__);
 | |
| 			return ret;
 | |
| 		}
 | |
| 		s2io_wake_all_tx_queue(sp);
 | |
| 	} else { /* Device is down */
 | |
| 		struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 		u64 val64 = new_mtu;
 | |
| 
 | |
| 		writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_set_link - Set the LInk status
 | |
|  * @data: long pointer to device private structue
 | |
|  * Description: Sets the link status for the adapter
 | |
|  */
 | |
| 
 | |
| static void s2io_set_link(struct work_struct *work)
 | |
| {
 | |
| 	struct s2io_nic *nic = container_of(work, struct s2io_nic,
 | |
| 					    set_link_task);
 | |
| 	struct net_device *dev = nic->dev;
 | |
| 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
 | |
| 	register u64 val64;
 | |
| 	u16 subid;
 | |
| 
 | |
| 	rtnl_lock();
 | |
| 
 | |
| 	if (!netif_running(dev))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
 | |
| 		/* The card is being reset, no point doing anything */
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	subid = nic->pdev->subsystem_device;
 | |
| 	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
 | |
| 		/*
 | |
| 		 * Allow a small delay for the NICs self initiated
 | |
| 		 * cleanup to complete.
 | |
| 		 */
 | |
| 		msleep(100);
 | |
| 	}
 | |
| 
 | |
| 	val64 = readq(&bar0->adapter_status);
 | |
| 	if (LINK_IS_UP(val64)) {
 | |
| 		if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
 | |
| 			if (verify_xena_quiescence(nic)) {
 | |
| 				val64 = readq(&bar0->adapter_control);
 | |
| 				val64 |= ADAPTER_CNTL_EN;
 | |
| 				writeq(val64, &bar0->adapter_control);
 | |
| 				if (CARDS_WITH_FAULTY_LINK_INDICATORS(
 | |
| 					    nic->device_type, subid)) {
 | |
| 					val64 = readq(&bar0->gpio_control);
 | |
| 					val64 |= GPIO_CTRL_GPIO_0;
 | |
| 					writeq(val64, &bar0->gpio_control);
 | |
| 					val64 = readq(&bar0->gpio_control);
 | |
| 				} else {
 | |
| 					val64 |= ADAPTER_LED_ON;
 | |
| 					writeq(val64, &bar0->adapter_control);
 | |
| 				}
 | |
| 				nic->device_enabled_once = true;
 | |
| 			} else {
 | |
| 				DBG_PRINT(ERR_DBG,
 | |
| 					  "%s: Error: device is not Quiescent\n",
 | |
| 					  dev->name);
 | |
| 				s2io_stop_all_tx_queue(nic);
 | |
| 			}
 | |
| 		}
 | |
| 		val64 = readq(&bar0->adapter_control);
 | |
| 		val64 |= ADAPTER_LED_ON;
 | |
| 		writeq(val64, &bar0->adapter_control);
 | |
| 		s2io_link(nic, LINK_UP);
 | |
| 	} else {
 | |
| 		if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
 | |
| 						      subid)) {
 | |
| 			val64 = readq(&bar0->gpio_control);
 | |
| 			val64 &= ~GPIO_CTRL_GPIO_0;
 | |
| 			writeq(val64, &bar0->gpio_control);
 | |
| 			val64 = readq(&bar0->gpio_control);
 | |
| 		}
 | |
| 		/* turn off LED */
 | |
| 		val64 = readq(&bar0->adapter_control);
 | |
| 		val64 = val64 & (~ADAPTER_LED_ON);
 | |
| 		writeq(val64, &bar0->adapter_control);
 | |
| 		s2io_link(nic, LINK_DOWN);
 | |
| 	}
 | |
| 	clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
 | |
| 
 | |
| out_unlock:
 | |
| 	rtnl_unlock();
 | |
| }
 | |
| 
 | |
| static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
 | |
| 				  struct buffAdd *ba,
 | |
| 				  struct sk_buff **skb, u64 *temp0, u64 *temp1,
 | |
| 				  u64 *temp2, int size)
 | |
| {
 | |
| 	struct net_device *dev = sp->dev;
 | |
| 	struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
 | |
| 
 | |
| 	if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
 | |
| 		struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
 | |
| 		/* allocate skb */
 | |
| 		if (*skb) {
 | |
| 			DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
 | |
| 			/*
 | |
| 			 * As Rx frame are not going to be processed,
 | |
| 			 * using same mapped address for the Rxd
 | |
| 			 * buffer pointer
 | |
| 			 */
 | |
| 			rxdp1->Buffer0_ptr = *temp0;
 | |
| 		} else {
 | |
| 			*skb = netdev_alloc_skb(dev, size);
 | |
| 			if (!(*skb)) {
 | |
| 				DBG_PRINT(INFO_DBG,
 | |
| 					  "%s: Out of memory to allocate %s\n",
 | |
| 					  dev->name, "1 buf mode SKBs");
 | |
| 				stats->mem_alloc_fail_cnt++;
 | |
| 				return -ENOMEM ;
 | |
| 			}
 | |
| 			stats->mem_allocated += (*skb)->truesize;
 | |
| 			/* storing the mapped addr in a temp variable
 | |
| 			 * such it will be used for next rxd whose
 | |
| 			 * Host Control is NULL
 | |
| 			 */
 | |
| 			rxdp1->Buffer0_ptr = *temp0 =
 | |
| 				pci_map_single(sp->pdev, (*skb)->data,
 | |
| 					       size - NET_IP_ALIGN,
 | |
| 					       PCI_DMA_FROMDEVICE);
 | |
| 			if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
 | |
| 				goto memalloc_failed;
 | |
| 			rxdp->Host_Control = (unsigned long) (*skb);
 | |
| 		}
 | |
| 	} else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
 | |
| 		struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
 | |
| 		/* Two buffer Mode */
 | |
| 		if (*skb) {
 | |
| 			rxdp3->Buffer2_ptr = *temp2;
 | |
| 			rxdp3->Buffer0_ptr = *temp0;
 | |
| 			rxdp3->Buffer1_ptr = *temp1;
 | |
| 		} else {
 | |
| 			*skb = netdev_alloc_skb(dev, size);
 | |
| 			if (!(*skb)) {
 | |
| 				DBG_PRINT(INFO_DBG,
 | |
| 					  "%s: Out of memory to allocate %s\n",
 | |
| 					  dev->name,
 | |
| 					  "2 buf mode SKBs");
 | |
| 				stats->mem_alloc_fail_cnt++;
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 			stats->mem_allocated += (*skb)->truesize;
 | |
| 			rxdp3->Buffer2_ptr = *temp2 =
 | |
| 				pci_map_single(sp->pdev, (*skb)->data,
 | |
| 					       dev->mtu + 4,
 | |
| 					       PCI_DMA_FROMDEVICE);
 | |
| 			if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
 | |
| 				goto memalloc_failed;
 | |
| 			rxdp3->Buffer0_ptr = *temp0 =
 | |
| 				pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
 | |
| 					       PCI_DMA_FROMDEVICE);
 | |
| 			if (pci_dma_mapping_error(sp->pdev,
 | |
| 						  rxdp3->Buffer0_ptr)) {
 | |
| 				pci_unmap_single(sp->pdev,
 | |
| 						 (dma_addr_t)rxdp3->Buffer2_ptr,
 | |
| 						 dev->mtu + 4,
 | |
| 						 PCI_DMA_FROMDEVICE);
 | |
| 				goto memalloc_failed;
 | |
| 			}
 | |
| 			rxdp->Host_Control = (unsigned long) (*skb);
 | |
| 
 | |
| 			/* Buffer-1 will be dummy buffer not used */
 | |
| 			rxdp3->Buffer1_ptr = *temp1 =
 | |
| 				pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
 | |
| 					       PCI_DMA_FROMDEVICE);
 | |
| 			if (pci_dma_mapping_error(sp->pdev,
 | |
| 						  rxdp3->Buffer1_ptr)) {
 | |
| 				pci_unmap_single(sp->pdev,
 | |
| 						 (dma_addr_t)rxdp3->Buffer0_ptr,
 | |
| 						 BUF0_LEN, PCI_DMA_FROMDEVICE);
 | |
| 				pci_unmap_single(sp->pdev,
 | |
| 						 (dma_addr_t)rxdp3->Buffer2_ptr,
 | |
| 						 dev->mtu + 4,
 | |
| 						 PCI_DMA_FROMDEVICE);
 | |
| 				goto memalloc_failed;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| memalloc_failed:
 | |
| 	stats->pci_map_fail_cnt++;
 | |
| 	stats->mem_freed += (*skb)->truesize;
 | |
| 	dev_kfree_skb(*skb);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
 | |
| 				int size)
 | |
| {
 | |
| 	struct net_device *dev = sp->dev;
 | |
| 	if (sp->rxd_mode == RXD_MODE_1) {
 | |
| 		rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
 | |
| 	} else if (sp->rxd_mode == RXD_MODE_3B) {
 | |
| 		rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
 | |
| 		rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
 | |
| 		rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static  int rxd_owner_bit_reset(struct s2io_nic *sp)
 | |
| {
 | |
| 	int i, j, k, blk_cnt = 0, size;
 | |
| 	struct config_param *config = &sp->config;
 | |
| 	struct mac_info *mac_control = &sp->mac_control;
 | |
| 	struct net_device *dev = sp->dev;
 | |
| 	struct RxD_t *rxdp = NULL;
 | |
| 	struct sk_buff *skb = NULL;
 | |
| 	struct buffAdd *ba = NULL;
 | |
| 	u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
 | |
| 
 | |
| 	/* Calculate the size based on ring mode */
 | |
| 	size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
 | |
| 		HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
 | |
| 	if (sp->rxd_mode == RXD_MODE_1)
 | |
| 		size += NET_IP_ALIGN;
 | |
| 	else if (sp->rxd_mode == RXD_MODE_3B)
 | |
| 		size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
 | |
| 
 | |
| 	for (i = 0; i < config->rx_ring_num; i++) {
 | |
| 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
 | |
| 		struct ring_info *ring = &mac_control->rings[i];
 | |
| 
 | |
| 		blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
 | |
| 
 | |
| 		for (j = 0; j < blk_cnt; j++) {
 | |
| 			for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
 | |
| 				rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
 | |
| 				if (sp->rxd_mode == RXD_MODE_3B)
 | |
| 					ba = &ring->ba[j][k];
 | |
| 				if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
 | |
| 							   &temp0_64,
 | |
| 							   &temp1_64,
 | |
| 							   &temp2_64,
 | |
| 							   size) == -ENOMEM) {
 | |
| 					return 0;
 | |
| 				}
 | |
| 
 | |
| 				set_rxd_buffer_size(sp, rxdp, size);
 | |
| 				wmb();
 | |
| 				/* flip the Ownership bit to Hardware */
 | |
| 				rxdp->Control_1 |= RXD_OWN_XENA;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| static int s2io_add_isr(struct s2io_nic *sp)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct net_device *dev = sp->dev;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (sp->config.intr_type == MSI_X)
 | |
| 		ret = s2io_enable_msi_x(sp);
 | |
| 	if (ret) {
 | |
| 		DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
 | |
| 		sp->config.intr_type = INTA;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Store the values of the MSIX table in
 | |
| 	 * the struct s2io_nic structure
 | |
| 	 */
 | |
| 	store_xmsi_data(sp);
 | |
| 
 | |
| 	/* After proper initialization of H/W, register ISR */
 | |
| 	if (sp->config.intr_type == MSI_X) {
 | |
| 		int i, msix_rx_cnt = 0;
 | |
| 
 | |
| 		for (i = 0; i < sp->num_entries; i++) {
 | |
| 			if (sp->s2io_entries[i].in_use == MSIX_FLG) {
 | |
| 				if (sp->s2io_entries[i].type ==
 | |
| 				    MSIX_RING_TYPE) {
 | |
| 					snprintf(sp->desc[i],
 | |
| 						sizeof(sp->desc[i]),
 | |
| 						"%s:MSI-X-%d-RX",
 | |
| 						dev->name, i);
 | |
| 					err = request_irq(sp->entries[i].vector,
 | |
| 							  s2io_msix_ring_handle,
 | |
| 							  0,
 | |
| 							  sp->desc[i],
 | |
| 							  sp->s2io_entries[i].arg);
 | |
| 				} else if (sp->s2io_entries[i].type ==
 | |
| 					   MSIX_ALARM_TYPE) {
 | |
| 					snprintf(sp->desc[i],
 | |
| 						sizeof(sp->desc[i]),
 | |
| 						"%s:MSI-X-%d-TX",
 | |
| 						dev->name, i);
 | |
| 					err = request_irq(sp->entries[i].vector,
 | |
| 							  s2io_msix_fifo_handle,
 | |
| 							  0,
 | |
| 							  sp->desc[i],
 | |
| 							  sp->s2io_entries[i].arg);
 | |
| 
 | |
| 				}
 | |
| 				/* if either data or addr is zero print it. */
 | |
| 				if (!(sp->msix_info[i].addr &&
 | |
| 				      sp->msix_info[i].data)) {
 | |
| 					DBG_PRINT(ERR_DBG,
 | |
| 						  "%s @Addr:0x%llx Data:0x%llx\n",
 | |
| 						  sp->desc[i],
 | |
| 						  (unsigned long long)
 | |
| 						  sp->msix_info[i].addr,
 | |
| 						  (unsigned long long)
 | |
| 						  ntohl(sp->msix_info[i].data));
 | |
| 				} else
 | |
| 					msix_rx_cnt++;
 | |
| 				if (err) {
 | |
| 					remove_msix_isr(sp);
 | |
| 
 | |
| 					DBG_PRINT(ERR_DBG,
 | |
| 						  "%s:MSI-X-%d registration "
 | |
| 						  "failed\n", dev->name, i);
 | |
| 
 | |
| 					DBG_PRINT(ERR_DBG,
 | |
| 						  "%s: Defaulting to INTA\n",
 | |
| 						  dev->name);
 | |
| 					sp->config.intr_type = INTA;
 | |
| 					break;
 | |
| 				}
 | |
| 				sp->s2io_entries[i].in_use =
 | |
| 					MSIX_REGISTERED_SUCCESS;
 | |
| 			}
 | |
| 		}
 | |
| 		if (!err) {
 | |
| 			pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
 | |
| 			DBG_PRINT(INFO_DBG,
 | |
| 				  "MSI-X-TX entries enabled through alarm vector\n");
 | |
| 		}
 | |
| 	}
 | |
| 	if (sp->config.intr_type == INTA) {
 | |
| 		err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
 | |
| 				  sp->name, dev);
 | |
| 		if (err) {
 | |
| 			DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
 | |
| 				  dev->name);
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void s2io_rem_isr(struct s2io_nic *sp)
 | |
| {
 | |
| 	if (sp->config.intr_type == MSI_X)
 | |
| 		remove_msix_isr(sp);
 | |
| 	else
 | |
| 		remove_inta_isr(sp);
 | |
| }
 | |
| 
 | |
| static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
 | |
| {
 | |
| 	int cnt = 0;
 | |
| 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
 | |
| 	register u64 val64 = 0;
 | |
| 	struct config_param *config;
 | |
| 	config = &sp->config;
 | |
| 
 | |
| 	if (!is_s2io_card_up(sp))
 | |
| 		return;
 | |
| 
 | |
| 	del_timer_sync(&sp->alarm_timer);
 | |
| 	/* If s2io_set_link task is executing, wait till it completes. */
 | |
| 	while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
 | |
| 		msleep(50);
 | |
| 	clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
 | |
| 
 | |
| 	/* Disable napi */
 | |
| 	if (sp->config.napi) {
 | |
| 		int off = 0;
 | |
| 		if (config->intr_type ==  MSI_X) {
 | |
| 			for (; off < sp->config.rx_ring_num; off++)
 | |
| 				napi_disable(&sp->mac_control.rings[off].napi);
 | |
| 		}
 | |
| 		else
 | |
| 			napi_disable(&sp->napi);
 | |
| 	}
 | |
| 
 | |
| 	/* disable Tx and Rx traffic on the NIC */
 | |
| 	if (do_io)
 | |
| 		stop_nic(sp);
 | |
| 
 | |
| 	s2io_rem_isr(sp);
 | |
| 
 | |
| 	/* stop the tx queue, indicate link down */
 | |
| 	s2io_link(sp, LINK_DOWN);
 | |
| 
 | |
| 	/* Check if the device is Quiescent and then Reset the NIC */
 | |
| 	while (do_io) {
 | |
| 		/* As per the HW requirement we need to replenish the
 | |
| 		 * receive buffer to avoid the ring bump. Since there is
 | |
| 		 * no intention of processing the Rx frame at this pointwe are
 | |
| 		 * just setting the ownership bit of rxd in Each Rx
 | |
| 		 * ring to HW and set the appropriate buffer size
 | |
| 		 * based on the ring mode
 | |
| 		 */
 | |
| 		rxd_owner_bit_reset(sp);
 | |
| 
 | |
| 		val64 = readq(&bar0->adapter_status);
 | |
| 		if (verify_xena_quiescence(sp)) {
 | |
| 			if (verify_pcc_quiescent(sp, sp->device_enabled_once))
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		msleep(50);
 | |
| 		cnt++;
 | |
| 		if (cnt == 10) {
 | |
| 			DBG_PRINT(ERR_DBG, "Device not Quiescent - "
 | |
| 				  "adapter status reads 0x%llx\n",
 | |
| 				  (unsigned long long)val64);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (do_io)
 | |
| 		s2io_reset(sp);
 | |
| 
 | |
| 	/* Free all Tx buffers */
 | |
| 	free_tx_buffers(sp);
 | |
| 
 | |
| 	/* Free all Rx buffers */
 | |
| 	free_rx_buffers(sp);
 | |
| 
 | |
| 	clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
 | |
| }
 | |
| 
 | |
| static void s2io_card_down(struct s2io_nic *sp)
 | |
| {
 | |
| 	do_s2io_card_down(sp, 1);
 | |
| }
 | |
| 
 | |
| static int s2io_card_up(struct s2io_nic *sp)
 | |
| {
 | |
| 	int i, ret = 0;
 | |
| 	struct config_param *config;
 | |
| 	struct mac_info *mac_control;
 | |
| 	struct net_device *dev = sp->dev;
 | |
| 	u16 interruptible;
 | |
| 
 | |
| 	/* Initialize the H/W I/O registers */
 | |
| 	ret = init_nic(sp);
 | |
| 	if (ret != 0) {
 | |
| 		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
 | |
| 			  dev->name);
 | |
| 		if (ret != -EIO)
 | |
| 			s2io_reset(sp);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initializing the Rx buffers. For now we are considering only 1
 | |
| 	 * Rx ring and initializing buffers into 30 Rx blocks
 | |
| 	 */
 | |
| 	config = &sp->config;
 | |
| 	mac_control = &sp->mac_control;
 | |
| 
 | |
| 	for (i = 0; i < config->rx_ring_num; i++) {
 | |
| 		struct ring_info *ring = &mac_control->rings[i];
 | |
| 
 | |
| 		ring->mtu = dev->mtu;
 | |
| 		ring->lro = !!(dev->features & NETIF_F_LRO);
 | |
| 		ret = fill_rx_buffers(sp, ring, 1);
 | |
| 		if (ret) {
 | |
| 			DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
 | |
| 				  dev->name);
 | |
| 			s2io_reset(sp);
 | |
| 			free_rx_buffers(sp);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
 | |
| 			  ring->rx_bufs_left);
 | |
| 	}
 | |
| 
 | |
| 	/* Initialise napi */
 | |
| 	if (config->napi) {
 | |
| 		if (config->intr_type ==  MSI_X) {
 | |
| 			for (i = 0; i < sp->config.rx_ring_num; i++)
 | |
| 				napi_enable(&sp->mac_control.rings[i].napi);
 | |
| 		} else {
 | |
| 			napi_enable(&sp->napi);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Maintain the state prior to the open */
 | |
| 	if (sp->promisc_flg)
 | |
| 		sp->promisc_flg = 0;
 | |
| 	if (sp->m_cast_flg) {
 | |
| 		sp->m_cast_flg = 0;
 | |
| 		sp->all_multi_pos = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Setting its receive mode */
 | |
| 	s2io_set_multicast(dev);
 | |
| 
 | |
| 	if (dev->features & NETIF_F_LRO) {
 | |
| 		/* Initialize max aggregatable pkts per session based on MTU */
 | |
| 		sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
 | |
| 		/* Check if we can use (if specified) user provided value */
 | |
| 		if (lro_max_pkts < sp->lro_max_aggr_per_sess)
 | |
| 			sp->lro_max_aggr_per_sess = lro_max_pkts;
 | |
| 	}
 | |
| 
 | |
| 	/* Enable Rx Traffic and interrupts on the NIC */
 | |
| 	if (start_nic(sp)) {
 | |
| 		DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
 | |
| 		s2io_reset(sp);
 | |
| 		free_rx_buffers(sp);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/* Add interrupt service routine */
 | |
| 	if (s2io_add_isr(sp) != 0) {
 | |
| 		if (sp->config.intr_type == MSI_X)
 | |
| 			s2io_rem_isr(sp);
 | |
| 		s2io_reset(sp);
 | |
| 		free_rx_buffers(sp);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
 | |
| 
 | |
| 	set_bit(__S2IO_STATE_CARD_UP, &sp->state);
 | |
| 
 | |
| 	/*  Enable select interrupts */
 | |
| 	en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
 | |
| 	if (sp->config.intr_type != INTA) {
 | |
| 		interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
 | |
| 		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
 | |
| 	} else {
 | |
| 		interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
 | |
| 		interruptible |= TX_PIC_INTR;
 | |
| 		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_restart_nic - Resets the NIC.
 | |
|  * @data : long pointer to the device private structure
 | |
|  * Description:
 | |
|  * This function is scheduled to be run by the s2io_tx_watchdog
 | |
|  * function after 0.5 secs to reset the NIC. The idea is to reduce
 | |
|  * the run time of the watch dog routine which is run holding a
 | |
|  * spin lock.
 | |
|  */
 | |
| 
 | |
| static void s2io_restart_nic(struct work_struct *work)
 | |
| {
 | |
| 	struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
 | |
| 	struct net_device *dev = sp->dev;
 | |
| 
 | |
| 	rtnl_lock();
 | |
| 
 | |
| 	if (!netif_running(dev))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	s2io_card_down(sp);
 | |
| 	if (s2io_card_up(sp)) {
 | |
| 		DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
 | |
| 	}
 | |
| 	s2io_wake_all_tx_queue(sp);
 | |
| 	DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
 | |
| out_unlock:
 | |
| 	rtnl_unlock();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  s2io_tx_watchdog - Watchdog for transmit side.
 | |
|  *  @dev : Pointer to net device structure
 | |
|  *  Description:
 | |
|  *  This function is triggered if the Tx Queue is stopped
 | |
|  *  for a pre-defined amount of time when the Interface is still up.
 | |
|  *  If the Interface is jammed in such a situation, the hardware is
 | |
|  *  reset (by s2io_close) and restarted again (by s2io_open) to
 | |
|  *  overcome any problem that might have been caused in the hardware.
 | |
|  *  Return value:
 | |
|  *  void
 | |
|  */
 | |
| 
 | |
| static void s2io_tx_watchdog(struct net_device *dev)
 | |
| {
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
 | |
| 
 | |
| 	if (netif_carrier_ok(dev)) {
 | |
| 		swstats->watchdog_timer_cnt++;
 | |
| 		schedule_work(&sp->rst_timer_task);
 | |
| 		swstats->soft_reset_cnt++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *   rx_osm_handler - To perform some OS related operations on SKB.
 | |
|  *   @sp: private member of the device structure,pointer to s2io_nic structure.
 | |
|  *   @skb : the socket buffer pointer.
 | |
|  *   @len : length of the packet
 | |
|  *   @cksum : FCS checksum of the frame.
 | |
|  *   @ring_no : the ring from which this RxD was extracted.
 | |
|  *   Description:
 | |
|  *   This function is called by the Rx interrupt serivce routine to perform
 | |
|  *   some OS related operations on the SKB before passing it to the upper
 | |
|  *   layers. It mainly checks if the checksum is OK, if so adds it to the
 | |
|  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
 | |
|  *   to the upper layer. If the checksum is wrong, it increments the Rx
 | |
|  *   packet error count, frees the SKB and returns error.
 | |
|  *   Return value:
 | |
|  *   SUCCESS on success and -1 on failure.
 | |
|  */
 | |
| static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
 | |
| {
 | |
| 	struct s2io_nic *sp = ring_data->nic;
 | |
| 	struct net_device *dev = ring_data->dev;
 | |
| 	struct sk_buff *skb = (struct sk_buff *)
 | |
| 		((unsigned long)rxdp->Host_Control);
 | |
| 	int ring_no = ring_data->ring_no;
 | |
| 	u16 l3_csum, l4_csum;
 | |
| 	unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
 | |
| 	struct lro *uninitialized_var(lro);
 | |
| 	u8 err_mask;
 | |
| 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
 | |
| 
 | |
| 	skb->dev = dev;
 | |
| 
 | |
| 	if (err) {
 | |
| 		/* Check for parity error */
 | |
| 		if (err & 0x1)
 | |
| 			swstats->parity_err_cnt++;
 | |
| 
 | |
| 		err_mask = err >> 48;
 | |
| 		switch (err_mask) {
 | |
| 		case 1:
 | |
| 			swstats->rx_parity_err_cnt++;
 | |
| 			break;
 | |
| 
 | |
| 		case 2:
 | |
| 			swstats->rx_abort_cnt++;
 | |
| 			break;
 | |
| 
 | |
| 		case 3:
 | |
| 			swstats->rx_parity_abort_cnt++;
 | |
| 			break;
 | |
| 
 | |
| 		case 4:
 | |
| 			swstats->rx_rda_fail_cnt++;
 | |
| 			break;
 | |
| 
 | |
| 		case 5:
 | |
| 			swstats->rx_unkn_prot_cnt++;
 | |
| 			break;
 | |
| 
 | |
| 		case 6:
 | |
| 			swstats->rx_fcs_err_cnt++;
 | |
| 			break;
 | |
| 
 | |
| 		case 7:
 | |
| 			swstats->rx_buf_size_err_cnt++;
 | |
| 			break;
 | |
| 
 | |
| 		case 8:
 | |
| 			swstats->rx_rxd_corrupt_cnt++;
 | |
| 			break;
 | |
| 
 | |
| 		case 15:
 | |
| 			swstats->rx_unkn_err_cnt++;
 | |
| 			break;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Drop the packet if bad transfer code. Exception being
 | |
| 		 * 0x5, which could be due to unsupported IPv6 extension header.
 | |
| 		 * In this case, we let stack handle the packet.
 | |
| 		 * Note that in this case, since checksum will be incorrect,
 | |
| 		 * stack will validate the same.
 | |
| 		 */
 | |
| 		if (err_mask != 0x5) {
 | |
| 			DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
 | |
| 				  dev->name, err_mask);
 | |
| 			dev->stats.rx_crc_errors++;
 | |
| 			swstats->mem_freed
 | |
| 				+= skb->truesize;
 | |
| 			dev_kfree_skb(skb);
 | |
| 			ring_data->rx_bufs_left -= 1;
 | |
| 			rxdp->Host_Control = 0;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rxdp->Host_Control = 0;
 | |
| 	if (sp->rxd_mode == RXD_MODE_1) {
 | |
| 		int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
 | |
| 
 | |
| 		skb_put(skb, len);
 | |
| 	} else if (sp->rxd_mode == RXD_MODE_3B) {
 | |
| 		int get_block = ring_data->rx_curr_get_info.block_index;
 | |
| 		int get_off = ring_data->rx_curr_get_info.offset;
 | |
| 		int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
 | |
| 		int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
 | |
| 		unsigned char *buff = skb_push(skb, buf0_len);
 | |
| 
 | |
| 		struct buffAdd *ba = &ring_data->ba[get_block][get_off];
 | |
| 		memcpy(buff, ba->ba_0, buf0_len);
 | |
| 		skb_put(skb, buf2_len);
 | |
| 	}
 | |
| 
 | |
| 	if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
 | |
| 	    ((!ring_data->lro) ||
 | |
| 	     (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
 | |
| 	    (dev->features & NETIF_F_RXCSUM)) {
 | |
| 		l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
 | |
| 		l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
 | |
| 		if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
 | |
| 			/*
 | |
| 			 * NIC verifies if the Checksum of the received
 | |
| 			 * frame is Ok or not and accordingly returns
 | |
| 			 * a flag in the RxD.
 | |
| 			 */
 | |
| 			skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 			if (ring_data->lro) {
 | |
| 				u32 tcp_len = 0;
 | |
| 				u8 *tcp;
 | |
| 				int ret = 0;
 | |
| 
 | |
| 				ret = s2io_club_tcp_session(ring_data,
 | |
| 							    skb->data, &tcp,
 | |
| 							    &tcp_len, &lro,
 | |
| 							    rxdp, sp);
 | |
| 				switch (ret) {
 | |
| 				case 3: /* Begin anew */
 | |
| 					lro->parent = skb;
 | |
| 					goto aggregate;
 | |
| 				case 1: /* Aggregate */
 | |
| 					lro_append_pkt(sp, lro, skb, tcp_len);
 | |
| 					goto aggregate;
 | |
| 				case 4: /* Flush session */
 | |
| 					lro_append_pkt(sp, lro, skb, tcp_len);
 | |
| 					queue_rx_frame(lro->parent,
 | |
| 						       lro->vlan_tag);
 | |
| 					clear_lro_session(lro);
 | |
| 					swstats->flush_max_pkts++;
 | |
| 					goto aggregate;
 | |
| 				case 2: /* Flush both */
 | |
| 					lro->parent->data_len = lro->frags_len;
 | |
| 					swstats->sending_both++;
 | |
| 					queue_rx_frame(lro->parent,
 | |
| 						       lro->vlan_tag);
 | |
| 					clear_lro_session(lro);
 | |
| 					goto send_up;
 | |
| 				case 0: /* sessions exceeded */
 | |
| 				case -1: /* non-TCP or not L2 aggregatable */
 | |
| 				case 5: /*
 | |
| 					 * First pkt in session not
 | |
| 					 * L3/L4 aggregatable
 | |
| 					 */
 | |
| 					break;
 | |
| 				default:
 | |
| 					DBG_PRINT(ERR_DBG,
 | |
| 						  "%s: Samadhana!!\n",
 | |
| 						  __func__);
 | |
| 					BUG();
 | |
| 				}
 | |
| 			}
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Packet with erroneous checksum, let the
 | |
| 			 * upper layers deal with it.
 | |
| 			 */
 | |
| 			skb_checksum_none_assert(skb);
 | |
| 		}
 | |
| 	} else
 | |
| 		skb_checksum_none_assert(skb);
 | |
| 
 | |
| 	swstats->mem_freed += skb->truesize;
 | |
| send_up:
 | |
| 	skb_record_rx_queue(skb, ring_no);
 | |
| 	queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
 | |
| aggregate:
 | |
| 	sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
 | |
| 	return SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  s2io_link - stops/starts the Tx queue.
 | |
|  *  @sp : private member of the device structure, which is a pointer to the
 | |
|  *  s2io_nic structure.
 | |
|  *  @link : inidicates whether link is UP/DOWN.
 | |
|  *  Description:
 | |
|  *  This function stops/starts the Tx queue depending on whether the link
 | |
|  *  status of the NIC is is down or up. This is called by the Alarm
 | |
|  *  interrupt handler whenever a link change interrupt comes up.
 | |
|  *  Return value:
 | |
|  *  void.
 | |
|  */
 | |
| 
 | |
| static void s2io_link(struct s2io_nic *sp, int link)
 | |
| {
 | |
| 	struct net_device *dev = sp->dev;
 | |
| 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
 | |
| 
 | |
| 	if (link != sp->last_link_state) {
 | |
| 		init_tti(sp, link);
 | |
| 		if (link == LINK_DOWN) {
 | |
| 			DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
 | |
| 			s2io_stop_all_tx_queue(sp);
 | |
| 			netif_carrier_off(dev);
 | |
| 			if (swstats->link_up_cnt)
 | |
| 				swstats->link_up_time =
 | |
| 					jiffies - sp->start_time;
 | |
| 			swstats->link_down_cnt++;
 | |
| 		} else {
 | |
| 			DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
 | |
| 			if (swstats->link_down_cnt)
 | |
| 				swstats->link_down_time =
 | |
| 					jiffies - sp->start_time;
 | |
| 			swstats->link_up_cnt++;
 | |
| 			netif_carrier_on(dev);
 | |
| 			s2io_wake_all_tx_queue(sp);
 | |
| 		}
 | |
| 	}
 | |
| 	sp->last_link_state = link;
 | |
| 	sp->start_time = jiffies;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
 | |
|  *  @sp : private member of the device structure, which is a pointer to the
 | |
|  *  s2io_nic structure.
 | |
|  *  Description:
 | |
|  *  This function initializes a few of the PCI and PCI-X configuration registers
 | |
|  *  with recommended values.
 | |
|  *  Return value:
 | |
|  *  void
 | |
|  */
 | |
| 
 | |
| static void s2io_init_pci(struct s2io_nic *sp)
 | |
| {
 | |
| 	u16 pci_cmd = 0, pcix_cmd = 0;
 | |
| 
 | |
| 	/* Enable Data Parity Error Recovery in PCI-X command register. */
 | |
| 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
 | |
| 			     &(pcix_cmd));
 | |
| 	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
 | |
| 			      (pcix_cmd | 1));
 | |
| 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
 | |
| 			     &(pcix_cmd));
 | |
| 
 | |
| 	/* Set the PErr Response bit in PCI command register. */
 | |
| 	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
 | |
| 	pci_write_config_word(sp->pdev, PCI_COMMAND,
 | |
| 			      (pci_cmd | PCI_COMMAND_PARITY));
 | |
| 	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
 | |
| }
 | |
| 
 | |
| static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
 | |
| 			    u8 *dev_multiq)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
 | |
| 		DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
 | |
| 			  "(%d) not supported\n", tx_fifo_num);
 | |
| 
 | |
| 		if (tx_fifo_num < 1)
 | |
| 			tx_fifo_num = 1;
 | |
| 		else
 | |
| 			tx_fifo_num = MAX_TX_FIFOS;
 | |
| 
 | |
| 		DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
 | |
| 	}
 | |
| 
 | |
| 	if (multiq)
 | |
| 		*dev_multiq = multiq;
 | |
| 
 | |
| 	if (tx_steering_type && (1 == tx_fifo_num)) {
 | |
| 		if (tx_steering_type != TX_DEFAULT_STEERING)
 | |
| 			DBG_PRINT(ERR_DBG,
 | |
| 				  "Tx steering is not supported with "
 | |
| 				  "one fifo. Disabling Tx steering.\n");
 | |
| 		tx_steering_type = NO_STEERING;
 | |
| 	}
 | |
| 
 | |
| 	if ((tx_steering_type < NO_STEERING) ||
 | |
| 	    (tx_steering_type > TX_DEFAULT_STEERING)) {
 | |
| 		DBG_PRINT(ERR_DBG,
 | |
| 			  "Requested transmit steering not supported\n");
 | |
| 		DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
 | |
| 		tx_steering_type = NO_STEERING;
 | |
| 	}
 | |
| 
 | |
| 	if (rx_ring_num > MAX_RX_RINGS) {
 | |
| 		DBG_PRINT(ERR_DBG,
 | |
| 			  "Requested number of rx rings not supported\n");
 | |
| 		DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
 | |
| 			  MAX_RX_RINGS);
 | |
| 		rx_ring_num = MAX_RX_RINGS;
 | |
| 	}
 | |
| 
 | |
| 	if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
 | |
| 		DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
 | |
| 			  "Defaulting to INTA\n");
 | |
| 		*dev_intr_type = INTA;
 | |
| 	}
 | |
| 
 | |
| 	if ((*dev_intr_type == MSI_X) &&
 | |
| 	    ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
 | |
| 	     (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
 | |
| 		DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
 | |
| 			  "Defaulting to INTA\n");
 | |
| 		*dev_intr_type = INTA;
 | |
| 	}
 | |
| 
 | |
| 	if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
 | |
| 		DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
 | |
| 		DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
 | |
| 		rx_ring_mode = 1;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < MAX_RX_RINGS; i++)
 | |
| 		if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
 | |
| 			DBG_PRINT(ERR_DBG, "Requested rx ring size not "
 | |
| 				  "supported\nDefaulting to %d\n",
 | |
| 				  MAX_RX_BLOCKS_PER_RING);
 | |
| 			rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
 | |
| 		}
 | |
| 
 | |
| 	return SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
 | |
|  * or Traffic class respectively.
 | |
|  * @nic: device private variable
 | |
|  * Description: The function configures the receive steering to
 | |
|  * desired receive ring.
 | |
|  * Return Value:  SUCCESS on success and
 | |
|  * '-1' on failure (endian settings incorrect).
 | |
|  */
 | |
| static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
 | |
| {
 | |
| 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
 | |
| 	register u64 val64 = 0;
 | |
| 
 | |
| 	if (ds_codepoint > 63)
 | |
| 		return FAILURE;
 | |
| 
 | |
| 	val64 = RTS_DS_MEM_DATA(ring);
 | |
| 	writeq(val64, &bar0->rts_ds_mem_data);
 | |
| 
 | |
| 	val64 = RTS_DS_MEM_CTRL_WE |
 | |
| 		RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
 | |
| 		RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
 | |
| 
 | |
| 	writeq(val64, &bar0->rts_ds_mem_ctrl);
 | |
| 
 | |
| 	return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
 | |
| 				     RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
 | |
| 				     S2IO_BIT_RESET);
 | |
| }
 | |
| 
 | |
| static const struct net_device_ops s2io_netdev_ops = {
 | |
| 	.ndo_open	        = s2io_open,
 | |
| 	.ndo_stop	        = s2io_close,
 | |
| 	.ndo_get_stats	        = s2io_get_stats,
 | |
| 	.ndo_start_xmit    	= s2io_xmit,
 | |
| 	.ndo_validate_addr	= eth_validate_addr,
 | |
| 	.ndo_set_rx_mode	= s2io_set_multicast,
 | |
| 	.ndo_do_ioctl	   	= s2io_ioctl,
 | |
| 	.ndo_set_mac_address    = s2io_set_mac_addr,
 | |
| 	.ndo_change_mtu	   	= s2io_change_mtu,
 | |
| 	.ndo_set_features	= s2io_set_features,
 | |
| 	.ndo_tx_timeout	   	= s2io_tx_watchdog,
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| 	.ndo_poll_controller    = s2io_netpoll,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /**
 | |
|  *  s2io_init_nic - Initialization of the adapter .
 | |
|  *  @pdev : structure containing the PCI related information of the device.
 | |
|  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
 | |
|  *  Description:
 | |
|  *  The function initializes an adapter identified by the pci_dec structure.
 | |
|  *  All OS related initialization including memory and device structure and
 | |
|  *  initlaization of the device private variable is done. Also the swapper
 | |
|  *  control register is initialized to enable read and write into the I/O
 | |
|  *  registers of the device.
 | |
|  *  Return value:
 | |
|  *  returns 0 on success and negative on failure.
 | |
|  */
 | |
| 
 | |
| static int
 | |
| s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
 | |
| {
 | |
| 	struct s2io_nic *sp;
 | |
| 	struct net_device *dev;
 | |
| 	int i, j, ret;
 | |
| 	int dma_flag = false;
 | |
| 	u32 mac_up, mac_down;
 | |
| 	u64 val64 = 0, tmp64 = 0;
 | |
| 	struct XENA_dev_config __iomem *bar0 = NULL;
 | |
| 	u16 subid;
 | |
| 	struct config_param *config;
 | |
| 	struct mac_info *mac_control;
 | |
| 	int mode;
 | |
| 	u8 dev_intr_type = intr_type;
 | |
| 	u8 dev_multiq = 0;
 | |
| 
 | |
| 	ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = pci_enable_device(pdev);
 | |
| 	if (ret) {
 | |
| 		DBG_PRINT(ERR_DBG,
 | |
| 			  "%s: pci_enable_device failed\n", __func__);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
 | |
| 		DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
 | |
| 		dma_flag = true;
 | |
| 		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
 | |
| 			DBG_PRINT(ERR_DBG,
 | |
| 				  "Unable to obtain 64bit DMA "
 | |
| 				  "for consistent allocations\n");
 | |
| 			pci_disable_device(pdev);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	} else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
 | |
| 		DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
 | |
| 	} else {
 | |
| 		pci_disable_device(pdev);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	ret = pci_request_regions(pdev, s2io_driver_name);
 | |
| 	if (ret) {
 | |
| 		DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
 | |
| 			  __func__, ret);
 | |
| 		pci_disable_device(pdev);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	if (dev_multiq)
 | |
| 		dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
 | |
| 	else
 | |
| 		dev = alloc_etherdev(sizeof(struct s2io_nic));
 | |
| 	if (dev == NULL) {
 | |
| 		pci_disable_device(pdev);
 | |
| 		pci_release_regions(pdev);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	pci_set_master(pdev);
 | |
| 	pci_set_drvdata(pdev, dev);
 | |
| 	SET_NETDEV_DEV(dev, &pdev->dev);
 | |
| 
 | |
| 	/*  Private member variable initialized to s2io NIC structure */
 | |
| 	sp = netdev_priv(dev);
 | |
| 	sp->dev = dev;
 | |
| 	sp->pdev = pdev;
 | |
| 	sp->high_dma_flag = dma_flag;
 | |
| 	sp->device_enabled_once = false;
 | |
| 	if (rx_ring_mode == 1)
 | |
| 		sp->rxd_mode = RXD_MODE_1;
 | |
| 	if (rx_ring_mode == 2)
 | |
| 		sp->rxd_mode = RXD_MODE_3B;
 | |
| 
 | |
| 	sp->config.intr_type = dev_intr_type;
 | |
| 
 | |
| 	if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
 | |
| 	    (pdev->device == PCI_DEVICE_ID_HERC_UNI))
 | |
| 		sp->device_type = XFRAME_II_DEVICE;
 | |
| 	else
 | |
| 		sp->device_type = XFRAME_I_DEVICE;
 | |
| 
 | |
| 
 | |
| 	/* Initialize some PCI/PCI-X fields of the NIC. */
 | |
| 	s2io_init_pci(sp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Setting the device configuration parameters.
 | |
| 	 * Most of these parameters can be specified by the user during
 | |
| 	 * module insertion as they are module loadable parameters. If
 | |
| 	 * these parameters are not not specified during load time, they
 | |
| 	 * are initialized with default values.
 | |
| 	 */
 | |
| 	config = &sp->config;
 | |
| 	mac_control = &sp->mac_control;
 | |
| 
 | |
| 	config->napi = napi;
 | |
| 	config->tx_steering_type = tx_steering_type;
 | |
| 
 | |
| 	/* Tx side parameters. */
 | |
| 	if (config->tx_steering_type == TX_PRIORITY_STEERING)
 | |
| 		config->tx_fifo_num = MAX_TX_FIFOS;
 | |
| 	else
 | |
| 		config->tx_fifo_num = tx_fifo_num;
 | |
| 
 | |
| 	/* Initialize the fifos used for tx steering */
 | |
| 	if (config->tx_fifo_num < 5) {
 | |
| 		if (config->tx_fifo_num  == 1)
 | |
| 			sp->total_tcp_fifos = 1;
 | |
| 		else
 | |
| 			sp->total_tcp_fifos = config->tx_fifo_num - 1;
 | |
| 		sp->udp_fifo_idx = config->tx_fifo_num - 1;
 | |
| 		sp->total_udp_fifos = 1;
 | |
| 		sp->other_fifo_idx = sp->total_tcp_fifos - 1;
 | |
| 	} else {
 | |
| 		sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
 | |
| 				       FIFO_OTHER_MAX_NUM);
 | |
| 		sp->udp_fifo_idx = sp->total_tcp_fifos;
 | |
| 		sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
 | |
| 		sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
 | |
| 	}
 | |
| 
 | |
| 	config->multiq = dev_multiq;
 | |
| 	for (i = 0; i < config->tx_fifo_num; i++) {
 | |
| 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 | |
| 
 | |
| 		tx_cfg->fifo_len = tx_fifo_len[i];
 | |
| 		tx_cfg->fifo_priority = i;
 | |
| 	}
 | |
| 
 | |
| 	/* mapping the QoS priority to the configured fifos */
 | |
| 	for (i = 0; i < MAX_TX_FIFOS; i++)
 | |
| 		config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
 | |
| 
 | |
| 	/* map the hashing selector table to the configured fifos */
 | |
| 	for (i = 0; i < config->tx_fifo_num; i++)
 | |
| 		sp->fifo_selector[i] = fifo_selector[i];
 | |
| 
 | |
| 
 | |
| 	config->tx_intr_type = TXD_INT_TYPE_UTILZ;
 | |
| 	for (i = 0; i < config->tx_fifo_num; i++) {
 | |
| 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 | |
| 
 | |
| 		tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
 | |
| 		if (tx_cfg->fifo_len < 65) {
 | |
| 			config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	/* + 2 because one Txd for skb->data and one Txd for UFO */
 | |
| 	config->max_txds = MAX_SKB_FRAGS + 2;
 | |
| 
 | |
| 	/* Rx side parameters. */
 | |
| 	config->rx_ring_num = rx_ring_num;
 | |
| 	for (i = 0; i < config->rx_ring_num; i++) {
 | |
| 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
 | |
| 		struct ring_info *ring = &mac_control->rings[i];
 | |
| 
 | |
| 		rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
 | |
| 		rx_cfg->ring_priority = i;
 | |
| 		ring->rx_bufs_left = 0;
 | |
| 		ring->rxd_mode = sp->rxd_mode;
 | |
| 		ring->rxd_count = rxd_count[sp->rxd_mode];
 | |
| 		ring->pdev = sp->pdev;
 | |
| 		ring->dev = sp->dev;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < rx_ring_num; i++) {
 | |
| 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
 | |
| 
 | |
| 		rx_cfg->ring_org = RING_ORG_BUFF1;
 | |
| 		rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
 | |
| 	}
 | |
| 
 | |
| 	/*  Setting Mac Control parameters */
 | |
| 	mac_control->rmac_pause_time = rmac_pause_time;
 | |
| 	mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
 | |
| 	mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
 | |
| 
 | |
| 
 | |
| 	/*  initialize the shared memory used by the NIC and the host */
 | |
| 	if (init_shared_mem(sp)) {
 | |
| 		DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
 | |
| 		ret = -ENOMEM;
 | |
| 		goto mem_alloc_failed;
 | |
| 	}
 | |
| 
 | |
| 	sp->bar0 = pci_ioremap_bar(pdev, 0);
 | |
| 	if (!sp->bar0) {
 | |
| 		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
 | |
| 			  dev->name);
 | |
| 		ret = -ENOMEM;
 | |
| 		goto bar0_remap_failed;
 | |
| 	}
 | |
| 
 | |
| 	sp->bar1 = pci_ioremap_bar(pdev, 2);
 | |
| 	if (!sp->bar1) {
 | |
| 		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
 | |
| 			  dev->name);
 | |
| 		ret = -ENOMEM;
 | |
| 		goto bar1_remap_failed;
 | |
| 	}
 | |
| 
 | |
| 	/* Initializing the BAR1 address as the start of the FIFO pointer. */
 | |
| 	for (j = 0; j < MAX_TX_FIFOS; j++) {
 | |
| 		mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
 | |
| 	}
 | |
| 
 | |
| 	/*  Driver entry points */
 | |
| 	dev->netdev_ops = &s2io_netdev_ops;
 | |
| 	dev->ethtool_ops = &netdev_ethtool_ops;
 | |
| 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
 | |
| 		NETIF_F_TSO | NETIF_F_TSO6 |
 | |
| 		NETIF_F_RXCSUM | NETIF_F_LRO;
 | |
| 	dev->features |= dev->hw_features |
 | |
| 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
 | |
| 	if (sp->device_type & XFRAME_II_DEVICE) {
 | |
| 		dev->hw_features |= NETIF_F_UFO;
 | |
| 		if (ufo)
 | |
| 			dev->features |= NETIF_F_UFO;
 | |
| 	}
 | |
| 	if (sp->high_dma_flag == true)
 | |
| 		dev->features |= NETIF_F_HIGHDMA;
 | |
| 	dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
 | |
| 	INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
 | |
| 	INIT_WORK(&sp->set_link_task, s2io_set_link);
 | |
| 
 | |
| 	pci_save_state(sp->pdev);
 | |
| 
 | |
| 	/* Setting swapper control on the NIC, for proper reset operation */
 | |
| 	if (s2io_set_swapper(sp)) {
 | |
| 		DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
 | |
| 			  dev->name);
 | |
| 		ret = -EAGAIN;
 | |
| 		goto set_swap_failed;
 | |
| 	}
 | |
| 
 | |
| 	/* Verify if the Herc works on the slot its placed into */
 | |
| 	if (sp->device_type & XFRAME_II_DEVICE) {
 | |
| 		mode = s2io_verify_pci_mode(sp);
 | |
| 		if (mode < 0) {
 | |
| 			DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
 | |
| 				  __func__);
 | |
| 			ret = -EBADSLT;
 | |
| 			goto set_swap_failed;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sp->config.intr_type == MSI_X) {
 | |
| 		sp->num_entries = config->rx_ring_num + 1;
 | |
| 		ret = s2io_enable_msi_x(sp);
 | |
| 
 | |
| 		if (!ret) {
 | |
| 			ret = s2io_test_msi(sp);
 | |
| 			/* rollback MSI-X, will re-enable during add_isr() */
 | |
| 			remove_msix_isr(sp);
 | |
| 		}
 | |
| 		if (ret) {
 | |
| 
 | |
| 			DBG_PRINT(ERR_DBG,
 | |
| 				  "MSI-X requested but failed to enable\n");
 | |
| 			sp->config.intr_type = INTA;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (config->intr_type ==  MSI_X) {
 | |
| 		for (i = 0; i < config->rx_ring_num ; i++) {
 | |
| 			struct ring_info *ring = &mac_control->rings[i];
 | |
| 
 | |
| 			netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
 | |
| 		}
 | |
| 	} else {
 | |
| 		netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
 | |
| 	}
 | |
| 
 | |
| 	/* Not needed for Herc */
 | |
| 	if (sp->device_type & XFRAME_I_DEVICE) {
 | |
| 		/*
 | |
| 		 * Fix for all "FFs" MAC address problems observed on
 | |
| 		 * Alpha platforms
 | |
| 		 */
 | |
| 		fix_mac_address(sp);
 | |
| 		s2io_reset(sp);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * MAC address initialization.
 | |
| 	 * For now only one mac address will be read and used.
 | |
| 	 */
 | |
| 	bar0 = sp->bar0;
 | |
| 	val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
 | |
| 		RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
 | |
| 	writeq(val64, &bar0->rmac_addr_cmd_mem);
 | |
| 	wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
 | |
| 			      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
 | |
| 			      S2IO_BIT_RESET);
 | |
| 	tmp64 = readq(&bar0->rmac_addr_data0_mem);
 | |
| 	mac_down = (u32)tmp64;
 | |
| 	mac_up = (u32) (tmp64 >> 32);
 | |
| 
 | |
| 	sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
 | |
| 	sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
 | |
| 	sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
 | |
| 	sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
 | |
| 	sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
 | |
| 	sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
 | |
| 
 | |
| 	/*  Set the factory defined MAC address initially   */
 | |
| 	dev->addr_len = ETH_ALEN;
 | |
| 	memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
 | |
| 
 | |
| 	/* initialize number of multicast & unicast MAC entries variables */
 | |
| 	if (sp->device_type == XFRAME_I_DEVICE) {
 | |
| 		config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
 | |
| 		config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
 | |
| 		config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
 | |
| 	} else if (sp->device_type == XFRAME_II_DEVICE) {
 | |
| 		config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
 | |
| 		config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
 | |
| 		config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
 | |
| 	}
 | |
| 
 | |
| 	/* store mac addresses from CAM to s2io_nic structure */
 | |
| 	do_s2io_store_unicast_mc(sp);
 | |
| 
 | |
| 	/* Configure MSIX vector for number of rings configured plus one */
 | |
| 	if ((sp->device_type == XFRAME_II_DEVICE) &&
 | |
| 	    (config->intr_type == MSI_X))
 | |
| 		sp->num_entries = config->rx_ring_num + 1;
 | |
| 
 | |
| 	/* Store the values of the MSIX table in the s2io_nic structure */
 | |
| 	store_xmsi_data(sp);
 | |
| 	/* reset Nic and bring it to known state */
 | |
| 	s2io_reset(sp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize link state flags
 | |
| 	 * and the card state parameter
 | |
| 	 */
 | |
| 	sp->state = 0;
 | |
| 
 | |
| 	/* Initialize spinlocks */
 | |
| 	for (i = 0; i < sp->config.tx_fifo_num; i++) {
 | |
| 		struct fifo_info *fifo = &mac_control->fifos[i];
 | |
| 
 | |
| 		spin_lock_init(&fifo->tx_lock);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * SXE-002: Configure link and activity LED to init state
 | |
| 	 * on driver load.
 | |
| 	 */
 | |
| 	subid = sp->pdev->subsystem_device;
 | |
| 	if ((subid & 0xFF) >= 0x07) {
 | |
| 		val64 = readq(&bar0->gpio_control);
 | |
| 		val64 |= 0x0000800000000000ULL;
 | |
| 		writeq(val64, &bar0->gpio_control);
 | |
| 		val64 = 0x0411040400000000ULL;
 | |
| 		writeq(val64, (void __iomem *)bar0 + 0x2700);
 | |
| 		val64 = readq(&bar0->gpio_control);
 | |
| 	}
 | |
| 
 | |
| 	sp->rx_csum = 1;	/* Rx chksum verify enabled by default */
 | |
| 
 | |
| 	if (register_netdev(dev)) {
 | |
| 		DBG_PRINT(ERR_DBG, "Device registration failed\n");
 | |
| 		ret = -ENODEV;
 | |
| 		goto register_failed;
 | |
| 	}
 | |
| 	s2io_vpd_read(sp);
 | |
| 	DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
 | |
| 	DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
 | |
| 		  sp->product_name, pdev->revision);
 | |
| 	DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
 | |
| 		  s2io_driver_version);
 | |
| 	DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
 | |
| 	DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
 | |
| 	if (sp->device_type & XFRAME_II_DEVICE) {
 | |
| 		mode = s2io_print_pci_mode(sp);
 | |
| 		if (mode < 0) {
 | |
| 			ret = -EBADSLT;
 | |
| 			unregister_netdev(dev);
 | |
| 			goto set_swap_failed;
 | |
| 		}
 | |
| 	}
 | |
| 	switch (sp->rxd_mode) {
 | |
| 	case RXD_MODE_1:
 | |
| 		DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
 | |
| 			  dev->name);
 | |
| 		break;
 | |
| 	case RXD_MODE_3B:
 | |
| 		DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
 | |
| 			  dev->name);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	switch (sp->config.napi) {
 | |
| 	case 0:
 | |
| 		DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
 | |
| 		  sp->config.tx_fifo_num);
 | |
| 
 | |
| 	DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
 | |
| 		  sp->config.rx_ring_num);
 | |
| 
 | |
| 	switch (sp->config.intr_type) {
 | |
| 	case INTA:
 | |
| 		DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
 | |
| 		break;
 | |
| 	case MSI_X:
 | |
| 		DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
 | |
| 		break;
 | |
| 	}
 | |
| 	if (sp->config.multiq) {
 | |
| 		for (i = 0; i < sp->config.tx_fifo_num; i++) {
 | |
| 			struct fifo_info *fifo = &mac_control->fifos[i];
 | |
| 
 | |
| 			fifo->multiq = config->multiq;
 | |
| 		}
 | |
| 		DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
 | |
| 			  dev->name);
 | |
| 	} else
 | |
| 		DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
 | |
| 			  dev->name);
 | |
| 
 | |
| 	switch (sp->config.tx_steering_type) {
 | |
| 	case NO_STEERING:
 | |
| 		DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
 | |
| 			  dev->name);
 | |
| 		break;
 | |
| 	case TX_PRIORITY_STEERING:
 | |
| 		DBG_PRINT(ERR_DBG,
 | |
| 			  "%s: Priority steering enabled for transmit\n",
 | |
| 			  dev->name);
 | |
| 		break;
 | |
| 	case TX_DEFAULT_STEERING:
 | |
| 		DBG_PRINT(ERR_DBG,
 | |
| 			  "%s: Default steering enabled for transmit\n",
 | |
| 			  dev->name);
 | |
| 	}
 | |
| 
 | |
| 	DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
 | |
| 		  dev->name);
 | |
| 	if (ufo)
 | |
| 		DBG_PRINT(ERR_DBG,
 | |
| 			  "%s: UDP Fragmentation Offload(UFO) enabled\n",
 | |
| 			  dev->name);
 | |
| 	/* Initialize device name */
 | |
| 	snprintf(sp->name, sizeof(sp->name), "%s Neterion %s", dev->name,
 | |
| 		 sp->product_name);
 | |
| 
 | |
| 	if (vlan_tag_strip)
 | |
| 		sp->vlan_strip_flag = 1;
 | |
| 	else
 | |
| 		sp->vlan_strip_flag = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make Link state as off at this point, when the Link change
 | |
| 	 * interrupt comes the state will be automatically changed to
 | |
| 	 * the right state.
 | |
| 	 */
 | |
| 	netif_carrier_off(dev);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| register_failed:
 | |
| set_swap_failed:
 | |
| 	iounmap(sp->bar1);
 | |
| bar1_remap_failed:
 | |
| 	iounmap(sp->bar0);
 | |
| bar0_remap_failed:
 | |
| mem_alloc_failed:
 | |
| 	free_shared_mem(sp);
 | |
| 	pci_disable_device(pdev);
 | |
| 	pci_release_regions(pdev);
 | |
| 	free_netdev(dev);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_rem_nic - Free the PCI device
 | |
|  * @pdev: structure containing the PCI related information of the device.
 | |
|  * Description: This function is called by the Pci subsystem to release a
 | |
|  * PCI device and free up all resource held up by the device. This could
 | |
|  * be in response to a Hot plug event or when the driver is to be removed
 | |
|  * from memory.
 | |
|  */
 | |
| 
 | |
| static void s2io_rem_nic(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *dev = pci_get_drvdata(pdev);
 | |
| 	struct s2io_nic *sp;
 | |
| 
 | |
| 	if (dev == NULL) {
 | |
| 		DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	sp = netdev_priv(dev);
 | |
| 
 | |
| 	cancel_work_sync(&sp->rst_timer_task);
 | |
| 	cancel_work_sync(&sp->set_link_task);
 | |
| 
 | |
| 	unregister_netdev(dev);
 | |
| 
 | |
| 	free_shared_mem(sp);
 | |
| 	iounmap(sp->bar0);
 | |
| 	iounmap(sp->bar1);
 | |
| 	pci_release_regions(pdev);
 | |
| 	free_netdev(dev);
 | |
| 	pci_disable_device(pdev);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_starter - Entry point for the driver
 | |
|  * Description: This function is the entry point for the driver. It verifies
 | |
|  * the module loadable parameters and initializes PCI configuration space.
 | |
|  */
 | |
| 
 | |
| static int __init s2io_starter(void)
 | |
| {
 | |
| 	return pci_register_driver(&s2io_driver);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_closer - Cleanup routine for the driver
 | |
|  * Description: This function is the cleanup routine for the driver. It
 | |
|  * unregisters the driver.
 | |
|  */
 | |
| 
 | |
| static __exit void s2io_closer(void)
 | |
| {
 | |
| 	pci_unregister_driver(&s2io_driver);
 | |
| 	DBG_PRINT(INIT_DBG, "cleanup done\n");
 | |
| }
 | |
| 
 | |
| module_init(s2io_starter);
 | |
| module_exit(s2io_closer);
 | |
| 
 | |
| static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
 | |
| 				struct tcphdr **tcp, struct RxD_t *rxdp,
 | |
| 				struct s2io_nic *sp)
 | |
| {
 | |
| 	int ip_off;
 | |
| 	u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
 | |
| 
 | |
| 	if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
 | |
| 		DBG_PRINT(INIT_DBG,
 | |
| 			  "%s: Non-TCP frames not supported for LRO\n",
 | |
| 			  __func__);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* Checking for DIX type or DIX type with VLAN */
 | |
| 	if ((l2_type == 0) || (l2_type == 4)) {
 | |
| 		ip_off = HEADER_ETHERNET_II_802_3_SIZE;
 | |
| 		/*
 | |
| 		 * If vlan stripping is disabled and the frame is VLAN tagged,
 | |
| 		 * shift the offset by the VLAN header size bytes.
 | |
| 		 */
 | |
| 		if ((!sp->vlan_strip_flag) &&
 | |
| 		    (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
 | |
| 			ip_off += HEADER_VLAN_SIZE;
 | |
| 	} else {
 | |
| 		/* LLC, SNAP etc are considered non-mergeable */
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	*ip = (struct iphdr *)(buffer + ip_off);
 | |
| 	ip_len = (u8)((*ip)->ihl);
 | |
| 	ip_len <<= 2;
 | |
| 	*tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
 | |
| 				  struct tcphdr *tcp)
 | |
| {
 | |
| 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
 | |
| 	if ((lro->iph->saddr != ip->saddr) ||
 | |
| 	    (lro->iph->daddr != ip->daddr) ||
 | |
| 	    (lro->tcph->source != tcp->source) ||
 | |
| 	    (lro->tcph->dest != tcp->dest))
 | |
| 		return -1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
 | |
| {
 | |
| 	return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
 | |
| }
 | |
| 
 | |
| static void initiate_new_session(struct lro *lro, u8 *l2h,
 | |
| 				 struct iphdr *ip, struct tcphdr *tcp,
 | |
| 				 u32 tcp_pyld_len, u16 vlan_tag)
 | |
| {
 | |
| 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
 | |
| 	lro->l2h = l2h;
 | |
| 	lro->iph = ip;
 | |
| 	lro->tcph = tcp;
 | |
| 	lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
 | |
| 	lro->tcp_ack = tcp->ack_seq;
 | |
| 	lro->sg_num = 1;
 | |
| 	lro->total_len = ntohs(ip->tot_len);
 | |
| 	lro->frags_len = 0;
 | |
| 	lro->vlan_tag = vlan_tag;
 | |
| 	/*
 | |
| 	 * Check if we saw TCP timestamp.
 | |
| 	 * Other consistency checks have already been done.
 | |
| 	 */
 | |
| 	if (tcp->doff == 8) {
 | |
| 		__be32 *ptr;
 | |
| 		ptr = (__be32 *)(tcp+1);
 | |
| 		lro->saw_ts = 1;
 | |
| 		lro->cur_tsval = ntohl(*(ptr+1));
 | |
| 		lro->cur_tsecr = *(ptr+2);
 | |
| 	}
 | |
| 	lro->in_use = 1;
 | |
| }
 | |
| 
 | |
| static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
 | |
| {
 | |
| 	struct iphdr *ip = lro->iph;
 | |
| 	struct tcphdr *tcp = lro->tcph;
 | |
| 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
 | |
| 
 | |
| 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
 | |
| 
 | |
| 	/* Update L3 header */
 | |
| 	csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len));
 | |
| 	ip->tot_len = htons(lro->total_len);
 | |
| 
 | |
| 	/* Update L4 header */
 | |
| 	tcp->ack_seq = lro->tcp_ack;
 | |
| 	tcp->window = lro->window;
 | |
| 
 | |
| 	/* Update tsecr field if this session has timestamps enabled */
 | |
| 	if (lro->saw_ts) {
 | |
| 		__be32 *ptr = (__be32 *)(tcp + 1);
 | |
| 		*(ptr+2) = lro->cur_tsecr;
 | |
| 	}
 | |
| 
 | |
| 	/* Update counters required for calculation of
 | |
| 	 * average no. of packets aggregated.
 | |
| 	 */
 | |
| 	swstats->sum_avg_pkts_aggregated += lro->sg_num;
 | |
| 	swstats->num_aggregations++;
 | |
| }
 | |
| 
 | |
| static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
 | |
| 			     struct tcphdr *tcp, u32 l4_pyld)
 | |
| {
 | |
| 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
 | |
| 	lro->total_len += l4_pyld;
 | |
| 	lro->frags_len += l4_pyld;
 | |
| 	lro->tcp_next_seq += l4_pyld;
 | |
| 	lro->sg_num++;
 | |
| 
 | |
| 	/* Update ack seq no. and window ad(from this pkt) in LRO object */
 | |
| 	lro->tcp_ack = tcp->ack_seq;
 | |
| 	lro->window = tcp->window;
 | |
| 
 | |
| 	if (lro->saw_ts) {
 | |
| 		__be32 *ptr;
 | |
| 		/* Update tsecr and tsval from this packet */
 | |
| 		ptr = (__be32 *)(tcp+1);
 | |
| 		lro->cur_tsval = ntohl(*(ptr+1));
 | |
| 		lro->cur_tsecr = *(ptr + 2);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
 | |
| 				    struct tcphdr *tcp, u32 tcp_pyld_len)
 | |
| {
 | |
| 	u8 *ptr;
 | |
| 
 | |
| 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
 | |
| 
 | |
| 	if (!tcp_pyld_len) {
 | |
| 		/* Runt frame or a pure ack */
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if (ip->ihl != 5) /* IP has options */
 | |
| 		return -1;
 | |
| 
 | |
| 	/* If we see CE codepoint in IP header, packet is not mergeable */
 | |
| 	if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
 | |
| 		return -1;
 | |
| 
 | |
| 	/* If we see ECE or CWR flags in TCP header, packet is not mergeable */
 | |
| 	if (tcp->urg || tcp->psh || tcp->rst ||
 | |
| 	    tcp->syn || tcp->fin ||
 | |
| 	    tcp->ece || tcp->cwr || !tcp->ack) {
 | |
| 		/*
 | |
| 		 * Currently recognize only the ack control word and
 | |
| 		 * any other control field being set would result in
 | |
| 		 * flushing the LRO session
 | |
| 		 */
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow only one TCP timestamp option. Don't aggregate if
 | |
| 	 * any other options are detected.
 | |
| 	 */
 | |
| 	if (tcp->doff != 5 && tcp->doff != 8)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (tcp->doff == 8) {
 | |
| 		ptr = (u8 *)(tcp + 1);
 | |
| 		while (*ptr == TCPOPT_NOP)
 | |
| 			ptr++;
 | |
| 		if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
 | |
| 			return -1;
 | |
| 
 | |
| 		/* Ensure timestamp value increases monotonically */
 | |
| 		if (l_lro)
 | |
| 			if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
 | |
| 				return -1;
 | |
| 
 | |
| 		/* timestamp echo reply should be non-zero */
 | |
| 		if (*((__be32 *)(ptr+6)) == 0)
 | |
| 			return -1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
 | |
| 				 u8 **tcp, u32 *tcp_len, struct lro **lro,
 | |
| 				 struct RxD_t *rxdp, struct s2io_nic *sp)
 | |
| {
 | |
| 	struct iphdr *ip;
 | |
| 	struct tcphdr *tcph;
 | |
| 	int ret = 0, i;
 | |
| 	u16 vlan_tag = 0;
 | |
| 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
 | |
| 
 | |
| 	ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
 | |
| 				   rxdp, sp);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
 | |
| 
 | |
| 	vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
 | |
| 	tcph = (struct tcphdr *)*tcp;
 | |
| 	*tcp_len = get_l4_pyld_length(ip, tcph);
 | |
| 	for (i = 0; i < MAX_LRO_SESSIONS; i++) {
 | |
| 		struct lro *l_lro = &ring_data->lro0_n[i];
 | |
| 		if (l_lro->in_use) {
 | |
| 			if (check_for_socket_match(l_lro, ip, tcph))
 | |
| 				continue;
 | |
| 			/* Sock pair matched */
 | |
| 			*lro = l_lro;
 | |
| 
 | |
| 			if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
 | |
| 				DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
 | |
| 					  "expected 0x%x, actual 0x%x\n",
 | |
| 					  __func__,
 | |
| 					  (*lro)->tcp_next_seq,
 | |
| 					  ntohl(tcph->seq));
 | |
| 
 | |
| 				swstats->outof_sequence_pkts++;
 | |
| 				ret = 2;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
 | |
| 						      *tcp_len))
 | |
| 				ret = 1; /* Aggregate */
 | |
| 			else
 | |
| 				ret = 2; /* Flush both */
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ret == 0) {
 | |
| 		/* Before searching for available LRO objects,
 | |
| 		 * check if the pkt is L3/L4 aggregatable. If not
 | |
| 		 * don't create new LRO session. Just send this
 | |
| 		 * packet up.
 | |
| 		 */
 | |
| 		if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
 | |
| 			return 5;
 | |
| 
 | |
| 		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
 | |
| 			struct lro *l_lro = &ring_data->lro0_n[i];
 | |
| 			if (!(l_lro->in_use)) {
 | |
| 				*lro = l_lro;
 | |
| 				ret = 3; /* Begin anew */
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ret == 0) { /* sessions exceeded */
 | |
| 		DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
 | |
| 			  __func__);
 | |
| 		*lro = NULL;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	switch (ret) {
 | |
| 	case 3:
 | |
| 		initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
 | |
| 				     vlan_tag);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		update_L3L4_header(sp, *lro);
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		aggregate_new_rx(*lro, ip, tcph, *tcp_len);
 | |
| 		if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
 | |
| 			update_L3L4_header(sp, *lro);
 | |
| 			ret = 4; /* Flush the LRO */
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void clear_lro_session(struct lro *lro)
 | |
| {
 | |
| 	static u16 lro_struct_size = sizeof(struct lro);
 | |
| 
 | |
| 	memset(lro, 0, lro_struct_size);
 | |
| }
 | |
| 
 | |
| static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
 | |
| {
 | |
| 	struct net_device *dev = skb->dev;
 | |
| 	struct s2io_nic *sp = netdev_priv(dev);
 | |
| 
 | |
| 	skb->protocol = eth_type_trans(skb, dev);
 | |
| 	if (vlan_tag && sp->vlan_strip_flag)
 | |
| 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
 | |
| 	if (sp->config.napi)
 | |
| 		netif_receive_skb(skb);
 | |
| 	else
 | |
| 		netif_rx(skb);
 | |
| }
 | |
| 
 | |
| static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
 | |
| 			   struct sk_buff *skb, u32 tcp_len)
 | |
| {
 | |
| 	struct sk_buff *first = lro->parent;
 | |
| 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
 | |
| 
 | |
| 	first->len += tcp_len;
 | |
| 	first->data_len = lro->frags_len;
 | |
| 	skb_pull(skb, (skb->len - tcp_len));
 | |
| 	if (skb_shinfo(first)->frag_list)
 | |
| 		lro->last_frag->next = skb;
 | |
| 	else
 | |
| 		skb_shinfo(first)->frag_list = skb;
 | |
| 	first->truesize += skb->truesize;
 | |
| 	lro->last_frag = skb;
 | |
| 	swstats->clubbed_frms_cnt++;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_io_error_detected - called when PCI error is detected
 | |
|  * @pdev: Pointer to PCI device
 | |
|  * @state: The current pci connection state
 | |
|  *
 | |
|  * This function is called after a PCI bus error affecting
 | |
|  * this device has been detected.
 | |
|  */
 | |
| static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
 | |
| 					       pci_channel_state_t state)
 | |
| {
 | |
| 	struct net_device *netdev = pci_get_drvdata(pdev);
 | |
| 	struct s2io_nic *sp = netdev_priv(netdev);
 | |
| 
 | |
| 	netif_device_detach(netdev);
 | |
| 
 | |
| 	if (state == pci_channel_io_perm_failure)
 | |
| 		return PCI_ERS_RESULT_DISCONNECT;
 | |
| 
 | |
| 	if (netif_running(netdev)) {
 | |
| 		/* Bring down the card, while avoiding PCI I/O */
 | |
| 		do_s2io_card_down(sp, 0);
 | |
| 	}
 | |
| 	pci_disable_device(pdev);
 | |
| 
 | |
| 	return PCI_ERS_RESULT_NEED_RESET;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_io_slot_reset - called after the pci bus has been reset.
 | |
|  * @pdev: Pointer to PCI device
 | |
|  *
 | |
|  * Restart the card from scratch, as if from a cold-boot.
 | |
|  * At this point, the card has exprienced a hard reset,
 | |
|  * followed by fixups by BIOS, and has its config space
 | |
|  * set up identically to what it was at cold boot.
 | |
|  */
 | |
| static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *netdev = pci_get_drvdata(pdev);
 | |
| 	struct s2io_nic *sp = netdev_priv(netdev);
 | |
| 
 | |
| 	if (pci_enable_device(pdev)) {
 | |
| 		pr_err("Cannot re-enable PCI device after reset.\n");
 | |
| 		return PCI_ERS_RESULT_DISCONNECT;
 | |
| 	}
 | |
| 
 | |
| 	pci_set_master(pdev);
 | |
| 	s2io_reset(sp);
 | |
| 
 | |
| 	return PCI_ERS_RESULT_RECOVERED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * s2io_io_resume - called when traffic can start flowing again.
 | |
|  * @pdev: Pointer to PCI device
 | |
|  *
 | |
|  * This callback is called when the error recovery driver tells
 | |
|  * us that its OK to resume normal operation.
 | |
|  */
 | |
| static void s2io_io_resume(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *netdev = pci_get_drvdata(pdev);
 | |
| 	struct s2io_nic *sp = netdev_priv(netdev);
 | |
| 
 | |
| 	if (netif_running(netdev)) {
 | |
| 		if (s2io_card_up(sp)) {
 | |
| 			pr_err("Can't bring device back up after reset.\n");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
 | |
| 			s2io_card_down(sp);
 | |
| 			pr_err("Can't restore mac addr after reset.\n");
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	netif_device_attach(netdev);
 | |
| 	netif_tx_wake_all_queues(netdev);
 | |
| }
 |