Previously, we requested that drivers pass ecc.size and ecc.bytes when
using NAND_ECC_SOFT_BCH. However, a driver is likely to only know the ECC
strength required for its NAND, so each driver would need to perform a
strength-to-bytes calculation.
Avoid duplicating this calculation in each driver by asking drivers to
pass ecc.size and ecc.strength so that the strength-to-bytes calculation
need only be implemented once.
This reverts/generalizes this commit:
    mtd: nand: Base BCH ECC bytes on required strength
Signed-off-by: Aaron Sierra <asierra@xes-inc.com>
Reviewed-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
		
	
			
		
			
				
	
	
		
			1430 lines
		
	
	
	
		
			34 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1430 lines
		
	
	
	
		
			34 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
 | 
						|
 *
 | 
						|
 * Derived from:
 | 
						|
 *	https://github.com/yuq/sunxi-nfc-mtd
 | 
						|
 *	Copyright (C) 2013 Qiang Yu <yuq825@gmail.com>
 | 
						|
 *
 | 
						|
 *	https://github.com/hno/Allwinner-Info
 | 
						|
 *	Copyright (C) 2013 Henrik Nordström <Henrik Nordström>
 | 
						|
 *
 | 
						|
 *	Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
 | 
						|
 *	Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/dma-mapping.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/moduleparam.h>
 | 
						|
#include <linux/platform_device.h>
 | 
						|
#include <linux/of.h>
 | 
						|
#include <linux/of_device.h>
 | 
						|
#include <linux/of_gpio.h>
 | 
						|
#include <linux/of_mtd.h>
 | 
						|
#include <linux/mtd/mtd.h>
 | 
						|
#include <linux/mtd/nand.h>
 | 
						|
#include <linux/mtd/partitions.h>
 | 
						|
#include <linux/clk.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
#include <linux/dmaengine.h>
 | 
						|
#include <linux/gpio.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/io.h>
 | 
						|
 | 
						|
#define NFC_REG_CTL		0x0000
 | 
						|
#define NFC_REG_ST		0x0004
 | 
						|
#define NFC_REG_INT		0x0008
 | 
						|
#define NFC_REG_TIMING_CTL	0x000C
 | 
						|
#define NFC_REG_TIMING_CFG	0x0010
 | 
						|
#define NFC_REG_ADDR_LOW	0x0014
 | 
						|
#define NFC_REG_ADDR_HIGH	0x0018
 | 
						|
#define NFC_REG_SECTOR_NUM	0x001C
 | 
						|
#define NFC_REG_CNT		0x0020
 | 
						|
#define NFC_REG_CMD		0x0024
 | 
						|
#define NFC_REG_RCMD_SET	0x0028
 | 
						|
#define NFC_REG_WCMD_SET	0x002C
 | 
						|
#define NFC_REG_IO_DATA		0x0030
 | 
						|
#define NFC_REG_ECC_CTL		0x0034
 | 
						|
#define NFC_REG_ECC_ST		0x0038
 | 
						|
#define NFC_REG_DEBUG		0x003C
 | 
						|
#define NFC_REG_ECC_CNT0	0x0040
 | 
						|
#define NFC_REG_ECC_CNT1	0x0044
 | 
						|
#define NFC_REG_ECC_CNT2	0x0048
 | 
						|
#define NFC_REG_ECC_CNT3	0x004c
 | 
						|
#define NFC_REG_USER_DATA_BASE	0x0050
 | 
						|
#define NFC_REG_SPARE_AREA	0x00A0
 | 
						|
#define NFC_RAM0_BASE		0x0400
 | 
						|
#define NFC_RAM1_BASE		0x0800
 | 
						|
 | 
						|
/* define bit use in NFC_CTL */
 | 
						|
#define NFC_EN			BIT(0)
 | 
						|
#define NFC_RESET		BIT(1)
 | 
						|
#define NFC_BUS_WIDYH		BIT(2)
 | 
						|
#define NFC_RB_SEL		BIT(3)
 | 
						|
#define NFC_CE_SEL		GENMASK(26, 24)
 | 
						|
#define NFC_CE_CTL		BIT(6)
 | 
						|
#define NFC_CE_CTL1		BIT(7)
 | 
						|
#define NFC_PAGE_SIZE		GENMASK(11, 8)
 | 
						|
#define NFC_SAM			BIT(12)
 | 
						|
#define NFC_RAM_METHOD		BIT(14)
 | 
						|
#define NFC_DEBUG_CTL		BIT(31)
 | 
						|
 | 
						|
/* define bit use in NFC_ST */
 | 
						|
#define NFC_RB_B2R		BIT(0)
 | 
						|
#define NFC_CMD_INT_FLAG	BIT(1)
 | 
						|
#define NFC_DMA_INT_FLAG	BIT(2)
 | 
						|
#define NFC_CMD_FIFO_STATUS	BIT(3)
 | 
						|
#define NFC_STA			BIT(4)
 | 
						|
#define NFC_NATCH_INT_FLAG	BIT(5)
 | 
						|
#define NFC_RB_STATE0		BIT(8)
 | 
						|
#define NFC_RB_STATE1		BIT(9)
 | 
						|
#define NFC_RB_STATE2		BIT(10)
 | 
						|
#define NFC_RB_STATE3		BIT(11)
 | 
						|
 | 
						|
/* define bit use in NFC_INT */
 | 
						|
#define NFC_B2R_INT_ENABLE	BIT(0)
 | 
						|
#define NFC_CMD_INT_ENABLE	BIT(1)
 | 
						|
#define NFC_DMA_INT_ENABLE	BIT(2)
 | 
						|
#define NFC_INT_MASK		(NFC_B2R_INT_ENABLE | \
 | 
						|
				 NFC_CMD_INT_ENABLE | \
 | 
						|
				 NFC_DMA_INT_ENABLE)
 | 
						|
 | 
						|
/* define bit use in NFC_CMD */
 | 
						|
#define NFC_CMD_LOW_BYTE	GENMASK(7, 0)
 | 
						|
#define NFC_CMD_HIGH_BYTE	GENMASK(15, 8)
 | 
						|
#define NFC_ADR_NUM		GENMASK(18, 16)
 | 
						|
#define NFC_SEND_ADR		BIT(19)
 | 
						|
#define NFC_ACCESS_DIR		BIT(20)
 | 
						|
#define NFC_DATA_TRANS		BIT(21)
 | 
						|
#define NFC_SEND_CMD1		BIT(22)
 | 
						|
#define NFC_WAIT_FLAG		BIT(23)
 | 
						|
#define NFC_SEND_CMD2		BIT(24)
 | 
						|
#define NFC_SEQ			BIT(25)
 | 
						|
#define NFC_DATA_SWAP_METHOD	BIT(26)
 | 
						|
#define NFC_ROW_AUTO_INC	BIT(27)
 | 
						|
#define NFC_SEND_CMD3		BIT(28)
 | 
						|
#define NFC_SEND_CMD4		BIT(29)
 | 
						|
#define NFC_CMD_TYPE		GENMASK(31, 30)
 | 
						|
 | 
						|
/* define bit use in NFC_RCMD_SET */
 | 
						|
#define NFC_READ_CMD		GENMASK(7, 0)
 | 
						|
#define NFC_RANDOM_READ_CMD0	GENMASK(15, 8)
 | 
						|
#define NFC_RANDOM_READ_CMD1	GENMASK(23, 16)
 | 
						|
 | 
						|
/* define bit use in NFC_WCMD_SET */
 | 
						|
#define NFC_PROGRAM_CMD		GENMASK(7, 0)
 | 
						|
#define NFC_RANDOM_WRITE_CMD	GENMASK(15, 8)
 | 
						|
#define NFC_READ_CMD0		GENMASK(23, 16)
 | 
						|
#define NFC_READ_CMD1		GENMASK(31, 24)
 | 
						|
 | 
						|
/* define bit use in NFC_ECC_CTL */
 | 
						|
#define NFC_ECC_EN		BIT(0)
 | 
						|
#define NFC_ECC_PIPELINE	BIT(3)
 | 
						|
#define NFC_ECC_EXCEPTION	BIT(4)
 | 
						|
#define NFC_ECC_BLOCK_SIZE	BIT(5)
 | 
						|
#define NFC_RANDOM_EN		BIT(9)
 | 
						|
#define NFC_RANDOM_DIRECTION	BIT(10)
 | 
						|
#define NFC_ECC_MODE_SHIFT	12
 | 
						|
#define NFC_ECC_MODE		GENMASK(15, 12)
 | 
						|
#define NFC_RANDOM_SEED		GENMASK(30, 16)
 | 
						|
 | 
						|
#define NFC_DEFAULT_TIMEOUT_MS	1000
 | 
						|
 | 
						|
#define NFC_SRAM_SIZE		1024
 | 
						|
 | 
						|
#define NFC_MAX_CS		7
 | 
						|
 | 
						|
/*
 | 
						|
 * Ready/Busy detection type: describes the Ready/Busy detection modes
 | 
						|
 *
 | 
						|
 * @RB_NONE:	no external detection available, rely on STATUS command
 | 
						|
 *		and software timeouts
 | 
						|
 * @RB_NATIVE:	use sunxi NAND controller Ready/Busy support. The Ready/Busy
 | 
						|
 *		pin of the NAND flash chip must be connected to one of the
 | 
						|
 *		native NAND R/B pins (those which can be muxed to the NAND
 | 
						|
 *		Controller)
 | 
						|
 * @RB_GPIO:	use a simple GPIO to handle Ready/Busy status. The Ready/Busy
 | 
						|
 *		pin of the NAND flash chip must be connected to a GPIO capable
 | 
						|
 *		pin.
 | 
						|
 */
 | 
						|
enum sunxi_nand_rb_type {
 | 
						|
	RB_NONE,
 | 
						|
	RB_NATIVE,
 | 
						|
	RB_GPIO,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Ready/Busy structure: stores information related to Ready/Busy detection
 | 
						|
 *
 | 
						|
 * @type:	the Ready/Busy detection mode
 | 
						|
 * @info:	information related to the R/B detection mode. Either a gpio
 | 
						|
 *		id or a native R/B id (those supported by the NAND controller).
 | 
						|
 */
 | 
						|
struct sunxi_nand_rb {
 | 
						|
	enum sunxi_nand_rb_type type;
 | 
						|
	union {
 | 
						|
		int gpio;
 | 
						|
		int nativeid;
 | 
						|
	} info;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Chip Select structure: stores information related to NAND Chip Select
 | 
						|
 *
 | 
						|
 * @cs:		the NAND CS id used to communicate with a NAND Chip
 | 
						|
 * @rb:		the Ready/Busy description
 | 
						|
 */
 | 
						|
struct sunxi_nand_chip_sel {
 | 
						|
	u8 cs;
 | 
						|
	struct sunxi_nand_rb rb;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * sunxi HW ECC infos: stores information related to HW ECC support
 | 
						|
 *
 | 
						|
 * @mode:	the sunxi ECC mode field deduced from ECC requirements
 | 
						|
 * @layout:	the OOB layout depending on the ECC requirements and the
 | 
						|
 *		selected ECC mode
 | 
						|
 */
 | 
						|
struct sunxi_nand_hw_ecc {
 | 
						|
	int mode;
 | 
						|
	struct nand_ecclayout layout;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * NAND chip structure: stores NAND chip device related information
 | 
						|
 *
 | 
						|
 * @node:		used to store NAND chips into a list
 | 
						|
 * @nand:		base NAND chip structure
 | 
						|
 * @mtd:		base MTD structure
 | 
						|
 * @clk_rate:		clk_rate required for this NAND chip
 | 
						|
 * @selected:		current active CS
 | 
						|
 * @nsels:		number of CS lines required by the NAND chip
 | 
						|
 * @sels:		array of CS lines descriptions
 | 
						|
 */
 | 
						|
struct sunxi_nand_chip {
 | 
						|
	struct list_head node;
 | 
						|
	struct nand_chip nand;
 | 
						|
	struct mtd_info mtd;
 | 
						|
	unsigned long clk_rate;
 | 
						|
	int selected;
 | 
						|
	int nsels;
 | 
						|
	struct sunxi_nand_chip_sel sels[0];
 | 
						|
};
 | 
						|
 | 
						|
static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
 | 
						|
{
 | 
						|
	return container_of(nand, struct sunxi_nand_chip, nand);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * NAND Controller structure: stores sunxi NAND controller information
 | 
						|
 *
 | 
						|
 * @controller:		base controller structure
 | 
						|
 * @dev:		parent device (used to print error messages)
 | 
						|
 * @regs:		NAND controller registers
 | 
						|
 * @ahb_clk:		NAND Controller AHB clock
 | 
						|
 * @mod_clk:		NAND Controller mod clock
 | 
						|
 * @assigned_cs:	bitmask describing already assigned CS lines
 | 
						|
 * @clk_rate:		NAND controller current clock rate
 | 
						|
 * @chips:		a list containing all the NAND chips attached to
 | 
						|
 *			this NAND controller
 | 
						|
 * @complete:		a completion object used to wait for NAND
 | 
						|
 *			controller events
 | 
						|
 */
 | 
						|
struct sunxi_nfc {
 | 
						|
	struct nand_hw_control controller;
 | 
						|
	struct device *dev;
 | 
						|
	void __iomem *regs;
 | 
						|
	struct clk *ahb_clk;
 | 
						|
	struct clk *mod_clk;
 | 
						|
	unsigned long assigned_cs;
 | 
						|
	unsigned long clk_rate;
 | 
						|
	struct list_head chips;
 | 
						|
	struct completion complete;
 | 
						|
};
 | 
						|
 | 
						|
static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl)
 | 
						|
{
 | 
						|
	return container_of(ctrl, struct sunxi_nfc, controller);
 | 
						|
}
 | 
						|
 | 
						|
static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id)
 | 
						|
{
 | 
						|
	struct sunxi_nfc *nfc = dev_id;
 | 
						|
	u32 st = readl(nfc->regs + NFC_REG_ST);
 | 
						|
	u32 ien = readl(nfc->regs + NFC_REG_INT);
 | 
						|
 | 
						|
	if (!(ien & st))
 | 
						|
		return IRQ_NONE;
 | 
						|
 | 
						|
	if ((ien & st) == ien)
 | 
						|
		complete(&nfc->complete);
 | 
						|
 | 
						|
	writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST);
 | 
						|
	writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT);
 | 
						|
 | 
						|
	return IRQ_HANDLED;
 | 
						|
}
 | 
						|
 | 
						|
static int sunxi_nfc_wait_int(struct sunxi_nfc *nfc, u32 flags,
 | 
						|
			      unsigned int timeout_ms)
 | 
						|
{
 | 
						|
	init_completion(&nfc->complete);
 | 
						|
 | 
						|
	writel(flags, nfc->regs + NFC_REG_INT);
 | 
						|
 | 
						|
	if (!timeout_ms)
 | 
						|
		timeout_ms = NFC_DEFAULT_TIMEOUT_MS;
 | 
						|
 | 
						|
	if (!wait_for_completion_timeout(&nfc->complete,
 | 
						|
					 msecs_to_jiffies(timeout_ms))) {
 | 
						|
		dev_err(nfc->dev, "wait interrupt timedout\n");
 | 
						|
		return -ETIMEDOUT;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc)
 | 
						|
{
 | 
						|
	unsigned long timeout = jiffies +
 | 
						|
				msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);
 | 
						|
 | 
						|
	do {
 | 
						|
		if (!(readl(nfc->regs + NFC_REG_ST) & NFC_CMD_FIFO_STATUS))
 | 
						|
			return 0;
 | 
						|
	} while (time_before(jiffies, timeout));
 | 
						|
 | 
						|
	dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n");
 | 
						|
	return -ETIMEDOUT;
 | 
						|
}
 | 
						|
 | 
						|
static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
 | 
						|
{
 | 
						|
	unsigned long timeout = jiffies +
 | 
						|
				msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);
 | 
						|
 | 
						|
	writel(0, nfc->regs + NFC_REG_ECC_CTL);
 | 
						|
	writel(NFC_RESET, nfc->regs + NFC_REG_CTL);
 | 
						|
 | 
						|
	do {
 | 
						|
		if (!(readl(nfc->regs + NFC_REG_CTL) & NFC_RESET))
 | 
						|
			return 0;
 | 
						|
	} while (time_before(jiffies, timeout));
 | 
						|
 | 
						|
	dev_err(nfc->dev, "wait for NAND controller reset timedout\n");
 | 
						|
	return -ETIMEDOUT;
 | 
						|
}
 | 
						|
 | 
						|
static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
 | 
						|
{
 | 
						|
	struct nand_chip *nand = mtd->priv;
 | 
						|
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
 | 
						|
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
 | 
						|
	struct sunxi_nand_rb *rb;
 | 
						|
	unsigned long timeo = (sunxi_nand->nand.state == FL_ERASING ? 400 : 20);
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (sunxi_nand->selected < 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	rb = &sunxi_nand->sels[sunxi_nand->selected].rb;
 | 
						|
 | 
						|
	switch (rb->type) {
 | 
						|
	case RB_NATIVE:
 | 
						|
		ret = !!(readl(nfc->regs + NFC_REG_ST) &
 | 
						|
			 (NFC_RB_STATE0 << rb->info.nativeid));
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
 | 
						|
		sunxi_nfc_wait_int(nfc, NFC_RB_B2R, timeo);
 | 
						|
		ret = !!(readl(nfc->regs + NFC_REG_ST) &
 | 
						|
			 (NFC_RB_STATE0 << rb->info.nativeid));
 | 
						|
		break;
 | 
						|
	case RB_GPIO:
 | 
						|
		ret = gpio_get_value(rb->info.gpio);
 | 
						|
		break;
 | 
						|
	case RB_NONE:
 | 
						|
	default:
 | 
						|
		ret = 0;
 | 
						|
		dev_err(nfc->dev, "cannot check R/B NAND status!\n");
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip)
 | 
						|
{
 | 
						|
	struct nand_chip *nand = mtd->priv;
 | 
						|
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
 | 
						|
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
 | 
						|
	struct sunxi_nand_chip_sel *sel;
 | 
						|
	u32 ctl;
 | 
						|
 | 
						|
	if (chip > 0 && chip >= sunxi_nand->nsels)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (chip == sunxi_nand->selected)
 | 
						|
		return;
 | 
						|
 | 
						|
	ctl = readl(nfc->regs + NFC_REG_CTL) &
 | 
						|
	      ~(NFC_CE_SEL | NFC_RB_SEL | NFC_EN);
 | 
						|
 | 
						|
	if (chip >= 0) {
 | 
						|
		sel = &sunxi_nand->sels[chip];
 | 
						|
 | 
						|
		ctl |= (sel->cs << 24) | NFC_EN |
 | 
						|
		       (((nand->page_shift - 10) & 0xf) << 8);
 | 
						|
		if (sel->rb.type == RB_NONE) {
 | 
						|
			nand->dev_ready = NULL;
 | 
						|
		} else {
 | 
						|
			nand->dev_ready = sunxi_nfc_dev_ready;
 | 
						|
			if (sel->rb.type == RB_NATIVE)
 | 
						|
				ctl |= (sel->rb.info.nativeid << 3);
 | 
						|
		}
 | 
						|
 | 
						|
		writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);
 | 
						|
 | 
						|
		if (nfc->clk_rate != sunxi_nand->clk_rate) {
 | 
						|
			clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate);
 | 
						|
			nfc->clk_rate = sunxi_nand->clk_rate;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	writel(ctl, nfc->regs + NFC_REG_CTL);
 | 
						|
 | 
						|
	sunxi_nand->selected = chip;
 | 
						|
}
 | 
						|
 | 
						|
static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 | 
						|
{
 | 
						|
	struct nand_chip *nand = mtd->priv;
 | 
						|
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
 | 
						|
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
 | 
						|
	int ret;
 | 
						|
	int cnt;
 | 
						|
	int offs = 0;
 | 
						|
	u32 tmp;
 | 
						|
 | 
						|
	while (len > offs) {
 | 
						|
		cnt = min(len - offs, NFC_SRAM_SIZE);
 | 
						|
 | 
						|
		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
 | 
						|
		writel(cnt, nfc->regs + NFC_REG_CNT);
 | 
						|
		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
 | 
						|
		writel(tmp, nfc->regs + NFC_REG_CMD);
 | 
						|
 | 
						|
		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
 | 
						|
		if (buf)
 | 
						|
			memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE,
 | 
						|
				      cnt);
 | 
						|
		offs += cnt;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
 | 
						|
				int len)
 | 
						|
{
 | 
						|
	struct nand_chip *nand = mtd->priv;
 | 
						|
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
 | 
						|
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
 | 
						|
	int ret;
 | 
						|
	int cnt;
 | 
						|
	int offs = 0;
 | 
						|
	u32 tmp;
 | 
						|
 | 
						|
	while (len > offs) {
 | 
						|
		cnt = min(len - offs, NFC_SRAM_SIZE);
 | 
						|
 | 
						|
		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
 | 
						|
		writel(cnt, nfc->regs + NFC_REG_CNT);
 | 
						|
		memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt);
 | 
						|
		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
 | 
						|
		      NFC_ACCESS_DIR;
 | 
						|
		writel(tmp, nfc->regs + NFC_REG_CMD);
 | 
						|
 | 
						|
		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
 | 
						|
		offs += cnt;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd)
 | 
						|
{
 | 
						|
	uint8_t ret;
 | 
						|
 | 
						|
	sunxi_nfc_read_buf(mtd, &ret, 1);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
 | 
						|
			       unsigned int ctrl)
 | 
						|
{
 | 
						|
	struct nand_chip *nand = mtd->priv;
 | 
						|
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
 | 
						|
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
 | 
						|
	int ret;
 | 
						|
	u32 tmp;
 | 
						|
 | 
						|
	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
 | 
						|
	if (ret)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (ctrl & NAND_CTRL_CHANGE) {
 | 
						|
		tmp = readl(nfc->regs + NFC_REG_CTL);
 | 
						|
		if (ctrl & NAND_NCE)
 | 
						|
			tmp |= NFC_CE_CTL;
 | 
						|
		else
 | 
						|
			tmp &= ~NFC_CE_CTL;
 | 
						|
		writel(tmp, nfc->regs + NFC_REG_CTL);
 | 
						|
	}
 | 
						|
 | 
						|
	if (dat == NAND_CMD_NONE)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (ctrl & NAND_CLE) {
 | 
						|
		writel(NFC_SEND_CMD1 | dat, nfc->regs + NFC_REG_CMD);
 | 
						|
	} else {
 | 
						|
		writel(dat, nfc->regs + NFC_REG_ADDR_LOW);
 | 
						|
		writel(NFC_SEND_ADR, nfc->regs + NFC_REG_CMD);
 | 
						|
	}
 | 
						|
 | 
						|
	sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
 | 
						|
}
 | 
						|
 | 
						|
static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
 | 
						|
				      struct nand_chip *chip, uint8_t *buf,
 | 
						|
				      int oob_required, int page)
 | 
						|
{
 | 
						|
	struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
 | 
						|
	struct nand_ecc_ctrl *ecc = &chip->ecc;
 | 
						|
	struct nand_ecclayout *layout = ecc->layout;
 | 
						|
	struct sunxi_nand_hw_ecc *data = ecc->priv;
 | 
						|
	unsigned int max_bitflips = 0;
 | 
						|
	int offset;
 | 
						|
	int ret;
 | 
						|
	u32 tmp;
 | 
						|
	int i;
 | 
						|
	int cnt;
 | 
						|
 | 
						|
	tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
 | 
						|
	tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
 | 
						|
	tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
 | 
						|
	       NFC_ECC_EXCEPTION;
 | 
						|
 | 
						|
	writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
 | 
						|
 | 
						|
	for (i = 0; i < ecc->steps; i++) {
 | 
						|
		if (i)
 | 
						|
			chip->cmdfunc(mtd, NAND_CMD_RNDOUT, i * ecc->size, -1);
 | 
						|
 | 
						|
		offset = mtd->writesize + layout->eccpos[i * ecc->bytes] - 4;
 | 
						|
 | 
						|
		chip->read_buf(mtd, NULL, ecc->size);
 | 
						|
 | 
						|
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
 | 
						|
 | 
						|
		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
 | 
						|
		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | (1 << 30);
 | 
						|
		writel(tmp, nfc->regs + NFC_REG_CMD);
 | 
						|
 | 
						|
		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
 | 
						|
		memcpy_fromio(buf + (i * ecc->size),
 | 
						|
			      nfc->regs + NFC_RAM0_BASE, ecc->size);
 | 
						|
 | 
						|
		if (readl(nfc->regs + NFC_REG_ECC_ST) & 0x1) {
 | 
						|
			mtd->ecc_stats.failed++;
 | 
						|
		} else {
 | 
						|
			tmp = readl(nfc->regs + NFC_REG_ECC_CNT0) & 0xff;
 | 
						|
			mtd->ecc_stats.corrected += tmp;
 | 
						|
			max_bitflips = max_t(unsigned int, max_bitflips, tmp);
 | 
						|
		}
 | 
						|
 | 
						|
		if (oob_required) {
 | 
						|
			chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
 | 
						|
 | 
						|
			ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
 | 
						|
			if (ret)
 | 
						|
				return ret;
 | 
						|
 | 
						|
			offset -= mtd->writesize;
 | 
						|
			chip->read_buf(mtd, chip->oob_poi + offset,
 | 
						|
				      ecc->bytes + 4);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (oob_required) {
 | 
						|
		cnt = ecc->layout->oobfree[ecc->steps].length;
 | 
						|
		if (cnt > 0) {
 | 
						|
			offset = mtd->writesize +
 | 
						|
				 ecc->layout->oobfree[ecc->steps].offset;
 | 
						|
			chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
 | 
						|
			offset -= mtd->writesize;
 | 
						|
			chip->read_buf(mtd, chip->oob_poi + offset, cnt);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
 | 
						|
	tmp &= ~NFC_ECC_EN;
 | 
						|
 | 
						|
	writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
 | 
						|
 | 
						|
	return max_bitflips;
 | 
						|
}
 | 
						|
 | 
						|
static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
 | 
						|
				       struct nand_chip *chip,
 | 
						|
				       const uint8_t *buf, int oob_required)
 | 
						|
{
 | 
						|
	struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
 | 
						|
	struct nand_ecc_ctrl *ecc = &chip->ecc;
 | 
						|
	struct nand_ecclayout *layout = ecc->layout;
 | 
						|
	struct sunxi_nand_hw_ecc *data = ecc->priv;
 | 
						|
	int offset;
 | 
						|
	int ret;
 | 
						|
	u32 tmp;
 | 
						|
	int i;
 | 
						|
	int cnt;
 | 
						|
 | 
						|
	tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
 | 
						|
	tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
 | 
						|
	tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
 | 
						|
	       NFC_ECC_EXCEPTION;
 | 
						|
 | 
						|
	writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
 | 
						|
 | 
						|
	for (i = 0; i < ecc->steps; i++) {
 | 
						|
		if (i)
 | 
						|
			chip->cmdfunc(mtd, NAND_CMD_RNDIN, i * ecc->size, -1);
 | 
						|
 | 
						|
		chip->write_buf(mtd, buf + (i * ecc->size), ecc->size);
 | 
						|
 | 
						|
		offset = layout->eccpos[i * ecc->bytes] - 4 + mtd->writesize;
 | 
						|
 | 
						|
		/* Fill OOB data in */
 | 
						|
		if (oob_required) {
 | 
						|
			tmp = 0xffffffff;
 | 
						|
			memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, &tmp,
 | 
						|
				    4);
 | 
						|
		} else {
 | 
						|
			memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE,
 | 
						|
				    chip->oob_poi + offset - mtd->writesize,
 | 
						|
				    4);
 | 
						|
		}
 | 
						|
 | 
						|
		chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1);
 | 
						|
 | 
						|
		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
 | 
						|
		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR |
 | 
						|
		      (1 << 30);
 | 
						|
		writel(tmp, nfc->regs + NFC_REG_CMD);
 | 
						|
		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	if (oob_required) {
 | 
						|
		cnt = ecc->layout->oobfree[i].length;
 | 
						|
		if (cnt > 0) {
 | 
						|
			offset = mtd->writesize +
 | 
						|
				 ecc->layout->oobfree[i].offset;
 | 
						|
			chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1);
 | 
						|
			offset -= mtd->writesize;
 | 
						|
			chip->write_buf(mtd, chip->oob_poi + offset, cnt);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
 | 
						|
	tmp &= ~NFC_ECC_EN;
 | 
						|
 | 
						|
	writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
 | 
						|
					       struct nand_chip *chip,
 | 
						|
					       uint8_t *buf, int oob_required,
 | 
						|
					       int page)
 | 
						|
{
 | 
						|
	struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
 | 
						|
	struct nand_ecc_ctrl *ecc = &chip->ecc;
 | 
						|
	struct sunxi_nand_hw_ecc *data = ecc->priv;
 | 
						|
	unsigned int max_bitflips = 0;
 | 
						|
	uint8_t *oob = chip->oob_poi;
 | 
						|
	int offset = 0;
 | 
						|
	int ret;
 | 
						|
	int cnt;
 | 
						|
	u32 tmp;
 | 
						|
	int i;
 | 
						|
 | 
						|
	tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
 | 
						|
	tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
 | 
						|
	tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
 | 
						|
	       NFC_ECC_EXCEPTION;
 | 
						|
 | 
						|
	writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
 | 
						|
 | 
						|
	for (i = 0; i < ecc->steps; i++) {
 | 
						|
		chip->read_buf(mtd, NULL, ecc->size);
 | 
						|
 | 
						|
		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | (1 << 30);
 | 
						|
		writel(tmp, nfc->regs + NFC_REG_CMD);
 | 
						|
 | 
						|
		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
 | 
						|
		memcpy_fromio(buf, nfc->regs + NFC_RAM0_BASE, ecc->size);
 | 
						|
		buf += ecc->size;
 | 
						|
		offset += ecc->size;
 | 
						|
 | 
						|
		if (readl(nfc->regs + NFC_REG_ECC_ST) & 0x1) {
 | 
						|
			mtd->ecc_stats.failed++;
 | 
						|
		} else {
 | 
						|
			tmp = readl(nfc->regs + NFC_REG_ECC_CNT0) & 0xff;
 | 
						|
			mtd->ecc_stats.corrected += tmp;
 | 
						|
			max_bitflips = max_t(unsigned int, max_bitflips, tmp);
 | 
						|
		}
 | 
						|
 | 
						|
		if (oob_required) {
 | 
						|
			chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
 | 
						|
			chip->read_buf(mtd, oob, ecc->bytes + ecc->prepad);
 | 
						|
			oob += ecc->bytes + ecc->prepad;
 | 
						|
		}
 | 
						|
 | 
						|
		offset += ecc->bytes + ecc->prepad;
 | 
						|
	}
 | 
						|
 | 
						|
	if (oob_required) {
 | 
						|
		cnt = mtd->oobsize - (oob - chip->oob_poi);
 | 
						|
		if (cnt > 0) {
 | 
						|
			chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
 | 
						|
			chip->read_buf(mtd, oob, cnt);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
 | 
						|
	       nfc->regs + NFC_REG_ECC_CTL);
 | 
						|
 | 
						|
	return max_bitflips;
 | 
						|
}
 | 
						|
 | 
						|
static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd,
 | 
						|
						struct nand_chip *chip,
 | 
						|
						const uint8_t *buf,
 | 
						|
						int oob_required)
 | 
						|
{
 | 
						|
	struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
 | 
						|
	struct nand_ecc_ctrl *ecc = &chip->ecc;
 | 
						|
	struct sunxi_nand_hw_ecc *data = ecc->priv;
 | 
						|
	uint8_t *oob = chip->oob_poi;
 | 
						|
	int offset = 0;
 | 
						|
	int ret;
 | 
						|
	int cnt;
 | 
						|
	u32 tmp;
 | 
						|
	int i;
 | 
						|
 | 
						|
	tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
 | 
						|
	tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
 | 
						|
	tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
 | 
						|
	       NFC_ECC_EXCEPTION;
 | 
						|
 | 
						|
	writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
 | 
						|
 | 
						|
	for (i = 0; i < ecc->steps; i++) {
 | 
						|
		chip->write_buf(mtd, buf + (i * ecc->size), ecc->size);
 | 
						|
		offset += ecc->size;
 | 
						|
 | 
						|
		/* Fill OOB data in */
 | 
						|
		if (oob_required) {
 | 
						|
			tmp = 0xffffffff;
 | 
						|
			memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, &tmp,
 | 
						|
				    4);
 | 
						|
		} else {
 | 
						|
			memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, oob,
 | 
						|
				    4);
 | 
						|
		}
 | 
						|
 | 
						|
		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR |
 | 
						|
		      (1 << 30);
 | 
						|
		writel(tmp, nfc->regs + NFC_REG_CMD);
 | 
						|
 | 
						|
		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
 | 
						|
		offset += ecc->bytes + ecc->prepad;
 | 
						|
		oob += ecc->bytes + ecc->prepad;
 | 
						|
	}
 | 
						|
 | 
						|
	if (oob_required) {
 | 
						|
		cnt = mtd->oobsize - (oob - chip->oob_poi);
 | 
						|
		if (cnt > 0) {
 | 
						|
			chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1);
 | 
						|
			chip->write_buf(mtd, oob, cnt);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
 | 
						|
	tmp &= ~NFC_ECC_EN;
 | 
						|
 | 
						|
	writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip,
 | 
						|
				       const struct nand_sdr_timings *timings)
 | 
						|
{
 | 
						|
	u32 min_clk_period = 0;
 | 
						|
 | 
						|
	/* T1 <=> tCLS */
 | 
						|
	if (timings->tCLS_min > min_clk_period)
 | 
						|
		min_clk_period = timings->tCLS_min;
 | 
						|
 | 
						|
	/* T2 <=> tCLH */
 | 
						|
	if (timings->tCLH_min > min_clk_period)
 | 
						|
		min_clk_period = timings->tCLH_min;
 | 
						|
 | 
						|
	/* T3 <=> tCS */
 | 
						|
	if (timings->tCS_min > min_clk_period)
 | 
						|
		min_clk_period = timings->tCS_min;
 | 
						|
 | 
						|
	/* T4 <=> tCH */
 | 
						|
	if (timings->tCH_min > min_clk_period)
 | 
						|
		min_clk_period = timings->tCH_min;
 | 
						|
 | 
						|
	/* T5 <=> tWP */
 | 
						|
	if (timings->tWP_min > min_clk_period)
 | 
						|
		min_clk_period = timings->tWP_min;
 | 
						|
 | 
						|
	/* T6 <=> tWH */
 | 
						|
	if (timings->tWH_min > min_clk_period)
 | 
						|
		min_clk_period = timings->tWH_min;
 | 
						|
 | 
						|
	/* T7 <=> tALS */
 | 
						|
	if (timings->tALS_min > min_clk_period)
 | 
						|
		min_clk_period = timings->tALS_min;
 | 
						|
 | 
						|
	/* T8 <=> tDS */
 | 
						|
	if (timings->tDS_min > min_clk_period)
 | 
						|
		min_clk_period = timings->tDS_min;
 | 
						|
 | 
						|
	/* T9 <=> tDH */
 | 
						|
	if (timings->tDH_min > min_clk_period)
 | 
						|
		min_clk_period = timings->tDH_min;
 | 
						|
 | 
						|
	/* T10 <=> tRR */
 | 
						|
	if (timings->tRR_min > (min_clk_period * 3))
 | 
						|
		min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3);
 | 
						|
 | 
						|
	/* T11 <=> tALH */
 | 
						|
	if (timings->tALH_min > min_clk_period)
 | 
						|
		min_clk_period = timings->tALH_min;
 | 
						|
 | 
						|
	/* T12 <=> tRP */
 | 
						|
	if (timings->tRP_min > min_clk_period)
 | 
						|
		min_clk_period = timings->tRP_min;
 | 
						|
 | 
						|
	/* T13 <=> tREH */
 | 
						|
	if (timings->tREH_min > min_clk_period)
 | 
						|
		min_clk_period = timings->tREH_min;
 | 
						|
 | 
						|
	/* T14 <=> tRC */
 | 
						|
	if (timings->tRC_min > (min_clk_period * 2))
 | 
						|
		min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2);
 | 
						|
 | 
						|
	/* T15 <=> tWC */
 | 
						|
	if (timings->tWC_min > (min_clk_period * 2))
 | 
						|
		min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2);
 | 
						|
 | 
						|
 | 
						|
	/* Convert min_clk_period from picoseconds to nanoseconds */
 | 
						|
	min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Convert min_clk_period into a clk frequency, then get the
 | 
						|
	 * appropriate rate for the NAND controller IP given this formula
 | 
						|
	 * (specified in the datasheet):
 | 
						|
	 * nand clk_rate = 2 * min_clk_rate
 | 
						|
	 */
 | 
						|
	chip->clk_rate = (2 * NSEC_PER_SEC) / min_clk_period;
 | 
						|
 | 
						|
	/* TODO: configure T16-T19 */
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip,
 | 
						|
					struct device_node *np)
 | 
						|
{
 | 
						|
	const struct nand_sdr_timings *timings;
 | 
						|
	int ret;
 | 
						|
	int mode;
 | 
						|
 | 
						|
	mode = onfi_get_async_timing_mode(&chip->nand);
 | 
						|
	if (mode == ONFI_TIMING_MODE_UNKNOWN) {
 | 
						|
		mode = chip->nand.onfi_timing_mode_default;
 | 
						|
	} else {
 | 
						|
		uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {};
 | 
						|
 | 
						|
		mode = fls(mode) - 1;
 | 
						|
		if (mode < 0)
 | 
						|
			mode = 0;
 | 
						|
 | 
						|
		feature[0] = mode;
 | 
						|
		ret = chip->nand.onfi_set_features(&chip->mtd, &chip->nand,
 | 
						|
						ONFI_FEATURE_ADDR_TIMING_MODE,
 | 
						|
						feature);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	timings = onfi_async_timing_mode_to_sdr_timings(mode);
 | 
						|
	if (IS_ERR(timings))
 | 
						|
		return PTR_ERR(timings);
 | 
						|
 | 
						|
	return sunxi_nand_chip_set_timings(chip, timings);
 | 
						|
}
 | 
						|
 | 
						|
static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
 | 
						|
					      struct nand_ecc_ctrl *ecc,
 | 
						|
					      struct device_node *np)
 | 
						|
{
 | 
						|
	static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
 | 
						|
	struct nand_chip *nand = mtd->priv;
 | 
						|
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
 | 
						|
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
 | 
						|
	struct sunxi_nand_hw_ecc *data;
 | 
						|
	struct nand_ecclayout *layout;
 | 
						|
	int nsectors;
 | 
						|
	int ret;
 | 
						|
	int i;
 | 
						|
 | 
						|
	data = kzalloc(sizeof(*data), GFP_KERNEL);
 | 
						|
	if (!data)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	/* Add ECC info retrieval from DT */
 | 
						|
	for (i = 0; i < ARRAY_SIZE(strengths); i++) {
 | 
						|
		if (ecc->strength <= strengths[i])
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (i >= ARRAY_SIZE(strengths)) {
 | 
						|
		dev_err(nfc->dev, "unsupported strength\n");
 | 
						|
		ret = -ENOTSUPP;
 | 
						|
		goto err;
 | 
						|
	}
 | 
						|
 | 
						|
	data->mode = i;
 | 
						|
 | 
						|
	/* HW ECC always request ECC bytes for 1024 bytes blocks */
 | 
						|
	ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
 | 
						|
 | 
						|
	/* HW ECC always work with even numbers of ECC bytes */
 | 
						|
	ecc->bytes = ALIGN(ecc->bytes, 2);
 | 
						|
 | 
						|
	layout = &data->layout;
 | 
						|
	nsectors = mtd->writesize / ecc->size;
 | 
						|
 | 
						|
	if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto err;
 | 
						|
	}
 | 
						|
 | 
						|
	layout->eccbytes = (ecc->bytes * nsectors);
 | 
						|
 | 
						|
	ecc->layout = layout;
 | 
						|
	ecc->priv = data;
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
err:
 | 
						|
	kfree(data);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
 | 
						|
{
 | 
						|
	kfree(ecc->priv);
 | 
						|
}
 | 
						|
 | 
						|
static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
 | 
						|
				       struct nand_ecc_ctrl *ecc,
 | 
						|
				       struct device_node *np)
 | 
						|
{
 | 
						|
	struct nand_ecclayout *layout;
 | 
						|
	int nsectors;
 | 
						|
	int i, j;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ecc->read_page = sunxi_nfc_hw_ecc_read_page;
 | 
						|
	ecc->write_page = sunxi_nfc_hw_ecc_write_page;
 | 
						|
	layout = ecc->layout;
 | 
						|
	nsectors = mtd->writesize / ecc->size;
 | 
						|
 | 
						|
	for (i = 0; i < nsectors; i++) {
 | 
						|
		if (i) {
 | 
						|
			layout->oobfree[i].offset =
 | 
						|
				layout->oobfree[i - 1].offset +
 | 
						|
				layout->oobfree[i - 1].length +
 | 
						|
				ecc->bytes;
 | 
						|
			layout->oobfree[i].length = 4;
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * The first 2 bytes are used for BB markers, hence we
 | 
						|
			 * only have 2 bytes available in the first user data
 | 
						|
			 * section.
 | 
						|
			 */
 | 
						|
			layout->oobfree[i].length = 2;
 | 
						|
			layout->oobfree[i].offset = 2;
 | 
						|
		}
 | 
						|
 | 
						|
		for (j = 0; j < ecc->bytes; j++)
 | 
						|
			layout->eccpos[(ecc->bytes * i) + j] =
 | 
						|
					layout->oobfree[i].offset +
 | 
						|
					layout->oobfree[i].length + j;
 | 
						|
	}
 | 
						|
 | 
						|
	if (mtd->oobsize > (ecc->bytes + 4) * nsectors) {
 | 
						|
		layout->oobfree[nsectors].offset =
 | 
						|
				layout->oobfree[nsectors - 1].offset +
 | 
						|
				layout->oobfree[nsectors - 1].length +
 | 
						|
				ecc->bytes;
 | 
						|
		layout->oobfree[nsectors].length = mtd->oobsize -
 | 
						|
				((ecc->bytes + 4) * nsectors);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd,
 | 
						|
						struct nand_ecc_ctrl *ecc,
 | 
						|
						struct device_node *np)
 | 
						|
{
 | 
						|
	struct nand_ecclayout *layout;
 | 
						|
	int nsectors;
 | 
						|
	int i;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ecc->prepad = 4;
 | 
						|
	ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page;
 | 
						|
	ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page;
 | 
						|
 | 
						|
	layout = ecc->layout;
 | 
						|
	nsectors = mtd->writesize / ecc->size;
 | 
						|
 | 
						|
	for (i = 0; i < (ecc->bytes * nsectors); i++)
 | 
						|
		layout->eccpos[i] = i;
 | 
						|
 | 
						|
	layout->oobfree[0].length = mtd->oobsize - i;
 | 
						|
	layout->oobfree[0].offset = i;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
 | 
						|
{
 | 
						|
	switch (ecc->mode) {
 | 
						|
	case NAND_ECC_HW:
 | 
						|
	case NAND_ECC_HW_SYNDROME:
 | 
						|
		sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc);
 | 
						|
		break;
 | 
						|
	case NAND_ECC_NONE:
 | 
						|
		kfree(ecc->layout);
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
 | 
						|
			       struct device_node *np)
 | 
						|
{
 | 
						|
	struct nand_chip *nand = mtd->priv;
 | 
						|
	int strength;
 | 
						|
	int blk_size;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	blk_size = of_get_nand_ecc_step_size(np);
 | 
						|
	strength = of_get_nand_ecc_strength(np);
 | 
						|
	if (blk_size > 0 && strength > 0) {
 | 
						|
		ecc->size = blk_size;
 | 
						|
		ecc->strength = strength;
 | 
						|
	} else {
 | 
						|
		ecc->size = nand->ecc_step_ds;
 | 
						|
		ecc->strength = nand->ecc_strength_ds;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!ecc->size || !ecc->strength)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	ecc->mode = NAND_ECC_HW;
 | 
						|
 | 
						|
	ret = of_get_nand_ecc_mode(np);
 | 
						|
	if (ret >= 0)
 | 
						|
		ecc->mode = ret;
 | 
						|
 | 
						|
	switch (ecc->mode) {
 | 
						|
	case NAND_ECC_SOFT_BCH:
 | 
						|
		break;
 | 
						|
	case NAND_ECC_HW:
 | 
						|
		ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
		break;
 | 
						|
	case NAND_ECC_HW_SYNDROME:
 | 
						|
		ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
		break;
 | 
						|
	case NAND_ECC_NONE:
 | 
						|
		ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL);
 | 
						|
		if (!ecc->layout)
 | 
						|
			return -ENOMEM;
 | 
						|
		ecc->layout->oobfree[0].length = mtd->oobsize;
 | 
						|
	case NAND_ECC_SOFT:
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
 | 
						|
				struct device_node *np)
 | 
						|
{
 | 
						|
	const struct nand_sdr_timings *timings;
 | 
						|
	struct sunxi_nand_chip *chip;
 | 
						|
	struct mtd_part_parser_data ppdata;
 | 
						|
	struct mtd_info *mtd;
 | 
						|
	struct nand_chip *nand;
 | 
						|
	int nsels;
 | 
						|
	int ret;
 | 
						|
	int i;
 | 
						|
	u32 tmp;
 | 
						|
 | 
						|
	if (!of_get_property(np, "reg", &nsels))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	nsels /= sizeof(u32);
 | 
						|
	if (!nsels) {
 | 
						|
		dev_err(dev, "invalid reg property size\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	chip = devm_kzalloc(dev,
 | 
						|
			    sizeof(*chip) +
 | 
						|
			    (nsels * sizeof(struct sunxi_nand_chip_sel)),
 | 
						|
			    GFP_KERNEL);
 | 
						|
	if (!chip) {
 | 
						|
		dev_err(dev, "could not allocate chip\n");
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	chip->nsels = nsels;
 | 
						|
	chip->selected = -1;
 | 
						|
 | 
						|
	for (i = 0; i < nsels; i++) {
 | 
						|
		ret = of_property_read_u32_index(np, "reg", i, &tmp);
 | 
						|
		if (ret) {
 | 
						|
			dev_err(dev, "could not retrieve reg property: %d\n",
 | 
						|
				ret);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
 | 
						|
		if (tmp > NFC_MAX_CS) {
 | 
						|
			dev_err(dev,
 | 
						|
				"invalid reg value: %u (max CS = 7)\n",
 | 
						|
				tmp);
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
 | 
						|
		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
 | 
						|
			dev_err(dev, "CS %d already assigned\n", tmp);
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
 | 
						|
		chip->sels[i].cs = tmp;
 | 
						|
 | 
						|
		if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) &&
 | 
						|
		    tmp < 2) {
 | 
						|
			chip->sels[i].rb.type = RB_NATIVE;
 | 
						|
			chip->sels[i].rb.info.nativeid = tmp;
 | 
						|
		} else {
 | 
						|
			ret = of_get_named_gpio(np, "rb-gpios", i);
 | 
						|
			if (ret >= 0) {
 | 
						|
				tmp = ret;
 | 
						|
				chip->sels[i].rb.type = RB_GPIO;
 | 
						|
				chip->sels[i].rb.info.gpio = tmp;
 | 
						|
				ret = devm_gpio_request(dev, tmp, "nand-rb");
 | 
						|
				if (ret)
 | 
						|
					return ret;
 | 
						|
 | 
						|
				ret = gpio_direction_input(tmp);
 | 
						|
				if (ret)
 | 
						|
					return ret;
 | 
						|
			} else {
 | 
						|
				chip->sels[i].rb.type = RB_NONE;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	timings = onfi_async_timing_mode_to_sdr_timings(0);
 | 
						|
	if (IS_ERR(timings)) {
 | 
						|
		ret = PTR_ERR(timings);
 | 
						|
		dev_err(dev,
 | 
						|
			"could not retrieve timings for ONFI mode 0: %d\n",
 | 
						|
			ret);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = sunxi_nand_chip_set_timings(chip, timings);
 | 
						|
	if (ret) {
 | 
						|
		dev_err(dev, "could not configure chip timings: %d\n", ret);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	nand = &chip->nand;
 | 
						|
	/* Default tR value specified in the ONFI spec (chapter 4.15.1) */
 | 
						|
	nand->chip_delay = 200;
 | 
						|
	nand->controller = &nfc->controller;
 | 
						|
	nand->select_chip = sunxi_nfc_select_chip;
 | 
						|
	nand->cmd_ctrl = sunxi_nfc_cmd_ctrl;
 | 
						|
	nand->read_buf = sunxi_nfc_read_buf;
 | 
						|
	nand->write_buf = sunxi_nfc_write_buf;
 | 
						|
	nand->read_byte = sunxi_nfc_read_byte;
 | 
						|
 | 
						|
	if (of_get_nand_on_flash_bbt(np))
 | 
						|
		nand->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
 | 
						|
 | 
						|
	mtd = &chip->mtd;
 | 
						|
	mtd->dev.parent = dev;
 | 
						|
	mtd->priv = nand;
 | 
						|
	mtd->owner = THIS_MODULE;
 | 
						|
 | 
						|
	ret = nand_scan_ident(mtd, nsels, NULL);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = sunxi_nand_chip_init_timings(chip, np);
 | 
						|
	if (ret) {
 | 
						|
		dev_err(dev, "could not configure chip timings: %d\n", ret);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np);
 | 
						|
	if (ret) {
 | 
						|
		dev_err(dev, "ECC init failed: %d\n", ret);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = nand_scan_tail(mtd);
 | 
						|
	if (ret) {
 | 
						|
		dev_err(dev, "nand_scan_tail failed: %d\n", ret);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	ppdata.of_node = np;
 | 
						|
	ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
 | 
						|
	if (ret) {
 | 
						|
		dev_err(dev, "failed to register mtd device: %d\n", ret);
 | 
						|
		nand_release(mtd);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	list_add_tail(&chip->node, &nfc->chips);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc)
 | 
						|
{
 | 
						|
	struct device_node *np = dev->of_node;
 | 
						|
	struct device_node *nand_np;
 | 
						|
	int nchips = of_get_child_count(np);
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (nchips > 8) {
 | 
						|
		dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	for_each_child_of_node(np, nand_np) {
 | 
						|
		ret = sunxi_nand_chip_init(dev, nfc, nand_np);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
 | 
						|
{
 | 
						|
	struct sunxi_nand_chip *chip;
 | 
						|
 | 
						|
	while (!list_empty(&nfc->chips)) {
 | 
						|
		chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
 | 
						|
					node);
 | 
						|
		nand_release(&chip->mtd);
 | 
						|
		sunxi_nand_ecc_cleanup(&chip->nand.ecc);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int sunxi_nfc_probe(struct platform_device *pdev)
 | 
						|
{
 | 
						|
	struct device *dev = &pdev->dev;
 | 
						|
	struct resource *r;
 | 
						|
	struct sunxi_nfc *nfc;
 | 
						|
	int irq;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
 | 
						|
	if (!nfc)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	nfc->dev = dev;
 | 
						|
	spin_lock_init(&nfc->controller.lock);
 | 
						|
	init_waitqueue_head(&nfc->controller.wq);
 | 
						|
	INIT_LIST_HEAD(&nfc->chips);
 | 
						|
 | 
						|
	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 | 
						|
	nfc->regs = devm_ioremap_resource(dev, r);
 | 
						|
	if (IS_ERR(nfc->regs))
 | 
						|
		return PTR_ERR(nfc->regs);
 | 
						|
 | 
						|
	irq = platform_get_irq(pdev, 0);
 | 
						|
	if (irq < 0) {
 | 
						|
		dev_err(dev, "failed to retrieve irq\n");
 | 
						|
		return irq;
 | 
						|
	}
 | 
						|
 | 
						|
	nfc->ahb_clk = devm_clk_get(dev, "ahb");
 | 
						|
	if (IS_ERR(nfc->ahb_clk)) {
 | 
						|
		dev_err(dev, "failed to retrieve ahb clk\n");
 | 
						|
		return PTR_ERR(nfc->ahb_clk);
 | 
						|
	}
 | 
						|
 | 
						|
	ret = clk_prepare_enable(nfc->ahb_clk);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	nfc->mod_clk = devm_clk_get(dev, "mod");
 | 
						|
	if (IS_ERR(nfc->mod_clk)) {
 | 
						|
		dev_err(dev, "failed to retrieve mod clk\n");
 | 
						|
		ret = PTR_ERR(nfc->mod_clk);
 | 
						|
		goto out_ahb_clk_unprepare;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = clk_prepare_enable(nfc->mod_clk);
 | 
						|
	if (ret)
 | 
						|
		goto out_ahb_clk_unprepare;
 | 
						|
 | 
						|
	ret = sunxi_nfc_rst(nfc);
 | 
						|
	if (ret)
 | 
						|
		goto out_mod_clk_unprepare;
 | 
						|
 | 
						|
	writel(0, nfc->regs + NFC_REG_INT);
 | 
						|
	ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt,
 | 
						|
			       0, "sunxi-nand", nfc);
 | 
						|
	if (ret)
 | 
						|
		goto out_mod_clk_unprepare;
 | 
						|
 | 
						|
	platform_set_drvdata(pdev, nfc);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * TODO: replace these magic values with proper flags as soon as we
 | 
						|
	 * know what they are encoding.
 | 
						|
	 */
 | 
						|
	writel(0x100, nfc->regs + NFC_REG_TIMING_CTL);
 | 
						|
	writel(0x7ff, nfc->regs + NFC_REG_TIMING_CFG);
 | 
						|
 | 
						|
	ret = sunxi_nand_chips_init(dev, nfc);
 | 
						|
	if (ret) {
 | 
						|
		dev_err(dev, "failed to init nand chips\n");
 | 
						|
		goto out_mod_clk_unprepare;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
out_mod_clk_unprepare:
 | 
						|
	clk_disable_unprepare(nfc->mod_clk);
 | 
						|
out_ahb_clk_unprepare:
 | 
						|
	clk_disable_unprepare(nfc->ahb_clk);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int sunxi_nfc_remove(struct platform_device *pdev)
 | 
						|
{
 | 
						|
	struct sunxi_nfc *nfc = platform_get_drvdata(pdev);
 | 
						|
 | 
						|
	sunxi_nand_chips_cleanup(nfc);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static const struct of_device_id sunxi_nfc_ids[] = {
 | 
						|
	{ .compatible = "allwinner,sun4i-a10-nand" },
 | 
						|
	{ /* sentinel */ }
 | 
						|
};
 | 
						|
MODULE_DEVICE_TABLE(of, sunxi_nfc_ids);
 | 
						|
 | 
						|
static struct platform_driver sunxi_nfc_driver = {
 | 
						|
	.driver = {
 | 
						|
		.name = "sunxi_nand",
 | 
						|
		.of_match_table = sunxi_nfc_ids,
 | 
						|
	},
 | 
						|
	.probe = sunxi_nfc_probe,
 | 
						|
	.remove = sunxi_nfc_remove,
 | 
						|
};
 | 
						|
module_platform_driver(sunxi_nfc_driver);
 | 
						|
 | 
						|
MODULE_LICENSE("GPL v2");
 | 
						|
MODULE_AUTHOR("Boris BREZILLON");
 | 
						|
MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
 | 
						|
MODULE_ALIAS("platform:sunxi_nand");
 |