 2184aa3d0f
			
		
	
	
	2184aa3d0f
	
	
	
		
			
			Remove a FIXME comment that was missed in a commit on 1/2007. Signed-off-by: Todd Fujinaka <todd.fujinaka@intel.com> Reported-by: nick <xerofoify@gmail.com> Tested-by: Aaron Brown <aaron.f.brown@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
		
			
				
	
	
		
			2884 lines
		
	
	
	
		
			77 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2884 lines
		
	
	
	
		
			77 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Intel(R) Gigabit Ethernet Linux driver
 | |
|  * Copyright(c) 2007-2014 Intel Corporation.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms and conditions of the GNU General Public License,
 | |
|  * version 2, as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|  * more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License along with
 | |
|  * this program; if not, see <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  * The full GNU General Public License is included in this distribution in
 | |
|  * the file called "COPYING".
 | |
|  *
 | |
|  * Contact Information:
 | |
|  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 | |
|  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 | |
|  */
 | |
| 
 | |
| /* e1000_82575
 | |
|  * e1000_82576
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/types.h>
 | |
| #include <linux/if_ether.h>
 | |
| #include <linux/i2c.h>
 | |
| 
 | |
| #include "e1000_mac.h"
 | |
| #include "e1000_82575.h"
 | |
| #include "e1000_i210.h"
 | |
| 
 | |
| static s32  igb_get_invariants_82575(struct e1000_hw *);
 | |
| static s32  igb_acquire_phy_82575(struct e1000_hw *);
 | |
| static void igb_release_phy_82575(struct e1000_hw *);
 | |
| static s32  igb_acquire_nvm_82575(struct e1000_hw *);
 | |
| static void igb_release_nvm_82575(struct e1000_hw *);
 | |
| static s32  igb_check_for_link_82575(struct e1000_hw *);
 | |
| static s32  igb_get_cfg_done_82575(struct e1000_hw *);
 | |
| static s32  igb_init_hw_82575(struct e1000_hw *);
 | |
| static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
 | |
| static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
 | |
| static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
 | |
| static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
 | |
| static s32  igb_reset_hw_82575(struct e1000_hw *);
 | |
| static s32  igb_reset_hw_82580(struct e1000_hw *);
 | |
| static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
 | |
| static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
 | |
| static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
 | |
| static s32  igb_setup_copper_link_82575(struct e1000_hw *);
 | |
| static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
 | |
| static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
 | |
| static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
 | |
| static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
 | |
| static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
 | |
| 						 u16 *);
 | |
| static s32  igb_get_phy_id_82575(struct e1000_hw *);
 | |
| static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
 | |
| static bool igb_sgmii_active_82575(struct e1000_hw *);
 | |
| static s32  igb_reset_init_script_82575(struct e1000_hw *);
 | |
| static s32  igb_read_mac_addr_82575(struct e1000_hw *);
 | |
| static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
 | |
| static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
 | |
| static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
 | |
| static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
 | |
| static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
 | |
| static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
 | |
| static const u16 e1000_82580_rxpbs_table[] = {
 | |
| 	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
 | |
| 
 | |
| /**
 | |
|  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Called to determine if the I2C pins are being used for I2C or as an
 | |
|  *  external MDIO interface since the two options are mutually exclusive.
 | |
|  **/
 | |
| static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	u32 reg = 0;
 | |
| 	bool ext_mdio = false;
 | |
| 
 | |
| 	switch (hw->mac.type) {
 | |
| 	case e1000_82575:
 | |
| 	case e1000_82576:
 | |
| 		reg = rd32(E1000_MDIC);
 | |
| 		ext_mdio = !!(reg & E1000_MDIC_DEST);
 | |
| 		break;
 | |
| 	case e1000_82580:
 | |
| 	case e1000_i350:
 | |
| 	case e1000_i354:
 | |
| 	case e1000_i210:
 | |
| 	case e1000_i211:
 | |
| 		reg = rd32(E1000_MDICNFG);
 | |
| 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return ext_mdio;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Poll the M88E1112 interfaces to see which interface achieved link.
 | |
|  */
 | |
| static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct e1000_phy_info *phy = &hw->phy;
 | |
| 	s32 ret_val;
 | |
| 	u16 data;
 | |
| 	u8 port = 0;
 | |
| 
 | |
| 	/* Check the copper medium. */
 | |
| 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	if (data & E1000_M88E1112_STATUS_LINK)
 | |
| 		port = E1000_MEDIA_PORT_COPPER;
 | |
| 
 | |
| 	/* Check the other medium. */
 | |
| 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	/* reset page to 0 */
 | |
| 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	if (data & E1000_M88E1112_STATUS_LINK)
 | |
| 		port = E1000_MEDIA_PORT_OTHER;
 | |
| 
 | |
| 	/* Determine if a swap needs to happen. */
 | |
| 	if (port && (hw->dev_spec._82575.media_port != port)) {
 | |
| 		hw->dev_spec._82575.media_port = port;
 | |
| 		hw->dev_spec._82575.media_changed = true;
 | |
| 	} else {
 | |
| 		ret_val = igb_check_for_link_82575(hw);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_init_phy_params_82575 - Init PHY func ptrs.
 | |
|  *  @hw: pointer to the HW structure
 | |
|  **/
 | |
| static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct e1000_phy_info *phy = &hw->phy;
 | |
| 	s32 ret_val = 0;
 | |
| 	u32 ctrl_ext;
 | |
| 
 | |
| 	if (hw->phy.media_type != e1000_media_type_copper) {
 | |
| 		phy->type = e1000_phy_none;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
 | |
| 	phy->reset_delay_us	= 100;
 | |
| 
 | |
| 	ctrl_ext = rd32(E1000_CTRL_EXT);
 | |
| 
 | |
| 	if (igb_sgmii_active_82575(hw)) {
 | |
| 		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
 | |
| 		ctrl_ext |= E1000_CTRL_I2C_ENA;
 | |
| 	} else {
 | |
| 		phy->ops.reset = igb_phy_hw_reset;
 | |
| 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
 | |
| 	}
 | |
| 
 | |
| 	wr32(E1000_CTRL_EXT, ctrl_ext);
 | |
| 	igb_reset_mdicnfg_82580(hw);
 | |
| 
 | |
| 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
 | |
| 		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
 | |
| 		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
 | |
| 	} else {
 | |
| 		switch (hw->mac.type) {
 | |
| 		case e1000_82580:
 | |
| 		case e1000_i350:
 | |
| 		case e1000_i354:
 | |
| 			phy->ops.read_reg = igb_read_phy_reg_82580;
 | |
| 			phy->ops.write_reg = igb_write_phy_reg_82580;
 | |
| 			break;
 | |
| 		case e1000_i210:
 | |
| 		case e1000_i211:
 | |
| 			phy->ops.read_reg = igb_read_phy_reg_gs40g;
 | |
| 			phy->ops.write_reg = igb_write_phy_reg_gs40g;
 | |
| 			break;
 | |
| 		default:
 | |
| 			phy->ops.read_reg = igb_read_phy_reg_igp;
 | |
| 			phy->ops.write_reg = igb_write_phy_reg_igp;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* set lan id */
 | |
| 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
 | |
| 			E1000_STATUS_FUNC_SHIFT;
 | |
| 
 | |
| 	/* Set phy->phy_addr and phy->id. */
 | |
| 	ret_val = igb_get_phy_id_82575(hw);
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	/* Verify phy id and set remaining function pointers */
 | |
| 	switch (phy->id) {
 | |
| 	case M88E1543_E_PHY_ID:
 | |
| 	case I347AT4_E_PHY_ID:
 | |
| 	case M88E1112_E_PHY_ID:
 | |
| 	case M88E1111_I_PHY_ID:
 | |
| 		phy->type		= e1000_phy_m88;
 | |
| 		phy->ops.check_polarity	= igb_check_polarity_m88;
 | |
| 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
 | |
| 		if (phy->id != M88E1111_I_PHY_ID)
 | |
| 			phy->ops.get_cable_length =
 | |
| 					 igb_get_cable_length_m88_gen2;
 | |
| 		else
 | |
| 			phy->ops.get_cable_length = igb_get_cable_length_m88;
 | |
| 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 | |
| 		/* Check if this PHY is confgured for media swap. */
 | |
| 		if (phy->id == M88E1112_E_PHY_ID) {
 | |
| 			u16 data;
 | |
| 
 | |
| 			ret_val = phy->ops.write_reg(hw,
 | |
| 						     E1000_M88E1112_PAGE_ADDR,
 | |
| 						     2);
 | |
| 			if (ret_val)
 | |
| 				goto out;
 | |
| 
 | |
| 			ret_val = phy->ops.read_reg(hw,
 | |
| 						    E1000_M88E1112_MAC_CTRL_1,
 | |
| 						    &data);
 | |
| 			if (ret_val)
 | |
| 				goto out;
 | |
| 
 | |
| 			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
 | |
| 			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
 | |
| 			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
 | |
| 			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
 | |
| 				hw->mac.ops.check_for_link =
 | |
| 						igb_check_for_link_media_swap;
 | |
| 		}
 | |
| 		break;
 | |
| 	case IGP03E1000_E_PHY_ID:
 | |
| 		phy->type = e1000_phy_igp_3;
 | |
| 		phy->ops.get_phy_info = igb_get_phy_info_igp;
 | |
| 		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
 | |
| 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
 | |
| 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
 | |
| 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
 | |
| 		break;
 | |
| 	case I82580_I_PHY_ID:
 | |
| 	case I350_I_PHY_ID:
 | |
| 		phy->type = e1000_phy_82580;
 | |
| 		phy->ops.force_speed_duplex =
 | |
| 					 igb_phy_force_speed_duplex_82580;
 | |
| 		phy->ops.get_cable_length = igb_get_cable_length_82580;
 | |
| 		phy->ops.get_phy_info = igb_get_phy_info_82580;
 | |
| 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 | |
| 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 | |
| 		break;
 | |
| 	case I210_I_PHY_ID:
 | |
| 		phy->type		= e1000_phy_i210;
 | |
| 		phy->ops.check_polarity	= igb_check_polarity_m88;
 | |
| 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
 | |
| 		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
 | |
| 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 | |
| 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 | |
| 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret_val = -E1000_ERR_PHY;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
 | |
|  *  @hw: pointer to the HW structure
 | |
|  **/
 | |
| static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct e1000_nvm_info *nvm = &hw->nvm;
 | |
| 	u32 eecd = rd32(E1000_EECD);
 | |
| 	u16 size;
 | |
| 
 | |
| 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 | |
| 		     E1000_EECD_SIZE_EX_SHIFT);
 | |
| 
 | |
| 	/* Added to a constant, "size" becomes the left-shift value
 | |
| 	 * for setting word_size.
 | |
| 	 */
 | |
| 	size += NVM_WORD_SIZE_BASE_SHIFT;
 | |
| 
 | |
| 	/* Just in case size is out of range, cap it to the largest
 | |
| 	 * EEPROM size supported
 | |
| 	 */
 | |
| 	if (size > 15)
 | |
| 		size = 15;
 | |
| 
 | |
| 	nvm->word_size = 1 << size;
 | |
| 	nvm->opcode_bits = 8;
 | |
| 	nvm->delay_usec = 1;
 | |
| 
 | |
| 	switch (nvm->override) {
 | |
| 	case e1000_nvm_override_spi_large:
 | |
| 		nvm->page_size = 32;
 | |
| 		nvm->address_bits = 16;
 | |
| 		break;
 | |
| 	case e1000_nvm_override_spi_small:
 | |
| 		nvm->page_size = 8;
 | |
| 		nvm->address_bits = 8;
 | |
| 		break;
 | |
| 	default:
 | |
| 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 | |
| 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
 | |
| 				    16 : 8;
 | |
| 		break;
 | |
| 	}
 | |
| 	if (nvm->word_size == (1 << 15))
 | |
| 		nvm->page_size = 128;
 | |
| 
 | |
| 	nvm->type = e1000_nvm_eeprom_spi;
 | |
| 
 | |
| 	/* NVM Function Pointers */
 | |
| 	nvm->ops.acquire = igb_acquire_nvm_82575;
 | |
| 	nvm->ops.release = igb_release_nvm_82575;
 | |
| 	nvm->ops.write = igb_write_nvm_spi;
 | |
| 	nvm->ops.validate = igb_validate_nvm_checksum;
 | |
| 	nvm->ops.update = igb_update_nvm_checksum;
 | |
| 	if (nvm->word_size < (1 << 15))
 | |
| 		nvm->ops.read = igb_read_nvm_eerd;
 | |
| 	else
 | |
| 		nvm->ops.read = igb_read_nvm_spi;
 | |
| 
 | |
| 	/* override generic family function pointers for specific descendants */
 | |
| 	switch (hw->mac.type) {
 | |
| 	case e1000_82580:
 | |
| 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
 | |
| 		nvm->ops.update = igb_update_nvm_checksum_82580;
 | |
| 		break;
 | |
| 	case e1000_i354:
 | |
| 	case e1000_i350:
 | |
| 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
 | |
| 		nvm->ops.update = igb_update_nvm_checksum_i350;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_init_mac_params_82575 - Init MAC func ptrs.
 | |
|  *  @hw: pointer to the HW structure
 | |
|  **/
 | |
| static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct e1000_mac_info *mac = &hw->mac;
 | |
| 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 | |
| 
 | |
| 	/* Set mta register count */
 | |
| 	mac->mta_reg_count = 128;
 | |
| 	/* Set rar entry count */
 | |
| 	switch (mac->type) {
 | |
| 	case e1000_82576:
 | |
| 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
 | |
| 		break;
 | |
| 	case e1000_82580:
 | |
| 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
 | |
| 		break;
 | |
| 	case e1000_i350:
 | |
| 	case e1000_i354:
 | |
| 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
 | |
| 		break;
 | |
| 	default:
 | |
| 		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
 | |
| 		break;
 | |
| 	}
 | |
| 	/* reset */
 | |
| 	if (mac->type >= e1000_82580)
 | |
| 		mac->ops.reset_hw = igb_reset_hw_82580;
 | |
| 	else
 | |
| 		mac->ops.reset_hw = igb_reset_hw_82575;
 | |
| 
 | |
| 	if (mac->type >= e1000_i210) {
 | |
| 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
 | |
| 		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
 | |
| 
 | |
| 	} else {
 | |
| 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
 | |
| 		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
 | |
| 	}
 | |
| 
 | |
| 	/* Set if part includes ASF firmware */
 | |
| 	mac->asf_firmware_present = true;
 | |
| 	/* Set if manageability features are enabled. */
 | |
| 	mac->arc_subsystem_valid =
 | |
| 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
 | |
| 			? true : false;
 | |
| 	/* enable EEE on i350 parts and later parts */
 | |
| 	if (mac->type >= e1000_i350)
 | |
| 		dev_spec->eee_disable = false;
 | |
| 	else
 | |
| 		dev_spec->eee_disable = true;
 | |
| 	/* Allow a single clear of the SW semaphore on I210 and newer */
 | |
| 	if (mac->type >= e1000_i210)
 | |
| 		dev_spec->clear_semaphore_once = true;
 | |
| 	/* physical interface link setup */
 | |
| 	mac->ops.setup_physical_interface =
 | |
| 		(hw->phy.media_type == e1000_media_type_copper)
 | |
| 			? igb_setup_copper_link_82575
 | |
| 			: igb_setup_serdes_link_82575;
 | |
| 
 | |
| 	if (mac->type == e1000_82580) {
 | |
| 		switch (hw->device_id) {
 | |
| 		/* feature not supported on these id's */
 | |
| 		case E1000_DEV_ID_DH89XXCC_SGMII:
 | |
| 		case E1000_DEV_ID_DH89XXCC_SERDES:
 | |
| 		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 | |
| 		case E1000_DEV_ID_DH89XXCC_SFP:
 | |
| 			break;
 | |
| 		default:
 | |
| 			hw->dev_spec._82575.mas_capable = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_set_sfp_media_type_82575 - derives SFP module media type.
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  The media type is chosen based on SFP module.
 | |
|  *  compatibility flags retrieved from SFP ID EEPROM.
 | |
|  **/
 | |
| static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	s32 ret_val = E1000_ERR_CONFIG;
 | |
| 	u32 ctrl_ext = 0;
 | |
| 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 | |
| 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 | |
| 	u8 tranceiver_type = 0;
 | |
| 	s32 timeout = 3;
 | |
| 
 | |
| 	/* Turn I2C interface ON and power on sfp cage */
 | |
| 	ctrl_ext = rd32(E1000_CTRL_EXT);
 | |
| 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
 | |
| 	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
 | |
| 
 | |
| 	wrfl();
 | |
| 
 | |
| 	/* Read SFP module data */
 | |
| 	while (timeout) {
 | |
| 		ret_val = igb_read_sfp_data_byte(hw,
 | |
| 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
 | |
| 			&tranceiver_type);
 | |
| 		if (ret_val == 0)
 | |
| 			break;
 | |
| 		msleep(100);
 | |
| 		timeout--;
 | |
| 	}
 | |
| 	if (ret_val != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret_val = igb_read_sfp_data_byte(hw,
 | |
| 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
 | |
| 			(u8 *)eth_flags);
 | |
| 	if (ret_val != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Check if there is some SFP module plugged and powered */
 | |
| 	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
 | |
| 	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
 | |
| 		dev_spec->module_plugged = true;
 | |
| 		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
 | |
| 			hw->phy.media_type = e1000_media_type_internal_serdes;
 | |
| 		} else if (eth_flags->e100_base_fx) {
 | |
| 			dev_spec->sgmii_active = true;
 | |
| 			hw->phy.media_type = e1000_media_type_internal_serdes;
 | |
| 		} else if (eth_flags->e1000_base_t) {
 | |
| 			dev_spec->sgmii_active = true;
 | |
| 			hw->phy.media_type = e1000_media_type_copper;
 | |
| 		} else {
 | |
| 			hw->phy.media_type = e1000_media_type_unknown;
 | |
| 			hw_dbg("PHY module has not been recognized\n");
 | |
| 			goto out;
 | |
| 		}
 | |
| 	} else {
 | |
| 		hw->phy.media_type = e1000_media_type_unknown;
 | |
| 	}
 | |
| 	ret_val = 0;
 | |
| out:
 | |
| 	/* Restore I2C interface setting */
 | |
| 	wr32(E1000_CTRL_EXT, ctrl_ext);
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| static s32 igb_get_invariants_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct e1000_mac_info *mac = &hw->mac;
 | |
| 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 | |
| 	s32 ret_val;
 | |
| 	u32 ctrl_ext = 0;
 | |
| 	u32 link_mode = 0;
 | |
| 
 | |
| 	switch (hw->device_id) {
 | |
| 	case E1000_DEV_ID_82575EB_COPPER:
 | |
| 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
 | |
| 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
 | |
| 		mac->type = e1000_82575;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82576:
 | |
| 	case E1000_DEV_ID_82576_NS:
 | |
| 	case E1000_DEV_ID_82576_NS_SERDES:
 | |
| 	case E1000_DEV_ID_82576_FIBER:
 | |
| 	case E1000_DEV_ID_82576_SERDES:
 | |
| 	case E1000_DEV_ID_82576_QUAD_COPPER:
 | |
| 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 | |
| 	case E1000_DEV_ID_82576_SERDES_QUAD:
 | |
| 		mac->type = e1000_82576;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82580_COPPER:
 | |
| 	case E1000_DEV_ID_82580_FIBER:
 | |
| 	case E1000_DEV_ID_82580_QUAD_FIBER:
 | |
| 	case E1000_DEV_ID_82580_SERDES:
 | |
| 	case E1000_DEV_ID_82580_SGMII:
 | |
| 	case E1000_DEV_ID_82580_COPPER_DUAL:
 | |
| 	case E1000_DEV_ID_DH89XXCC_SGMII:
 | |
| 	case E1000_DEV_ID_DH89XXCC_SERDES:
 | |
| 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 | |
| 	case E1000_DEV_ID_DH89XXCC_SFP:
 | |
| 		mac->type = e1000_82580;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_I350_COPPER:
 | |
| 	case E1000_DEV_ID_I350_FIBER:
 | |
| 	case E1000_DEV_ID_I350_SERDES:
 | |
| 	case E1000_DEV_ID_I350_SGMII:
 | |
| 		mac->type = e1000_i350;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_I210_COPPER:
 | |
| 	case E1000_DEV_ID_I210_FIBER:
 | |
| 	case E1000_DEV_ID_I210_SERDES:
 | |
| 	case E1000_DEV_ID_I210_SGMII:
 | |
| 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
 | |
| 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
 | |
| 		mac->type = e1000_i210;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_I211_COPPER:
 | |
| 		mac->type = e1000_i211;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
 | |
| 	case E1000_DEV_ID_I354_SGMII:
 | |
| 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
 | |
| 		mac->type = e1000_i354;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -E1000_ERR_MAC_INIT;
 | |
| 	}
 | |
| 
 | |
| 	/* Set media type */
 | |
| 	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
 | |
| 	 * based on the EEPROM. We cannot rely upon device ID. There
 | |
| 	 * is no distinguishable difference between fiber and internal
 | |
| 	 * SerDes mode on the 82575. There can be an external PHY attached
 | |
| 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
 | |
| 	 */
 | |
| 	hw->phy.media_type = e1000_media_type_copper;
 | |
| 	dev_spec->sgmii_active = false;
 | |
| 	dev_spec->module_plugged = false;
 | |
| 
 | |
| 	ctrl_ext = rd32(E1000_CTRL_EXT);
 | |
| 
 | |
| 	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
 | |
| 	switch (link_mode) {
 | |
| 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
 | |
| 		hw->phy.media_type = e1000_media_type_internal_serdes;
 | |
| 		break;
 | |
| 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
 | |
| 		/* Get phy control interface type set (MDIO vs. I2C)*/
 | |
| 		if (igb_sgmii_uses_mdio_82575(hw)) {
 | |
| 			hw->phy.media_type = e1000_media_type_copper;
 | |
| 			dev_spec->sgmii_active = true;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* fall through for I2C based SGMII */
 | |
| 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
 | |
| 		/* read media type from SFP EEPROM */
 | |
| 		ret_val = igb_set_sfp_media_type_82575(hw);
 | |
| 		if ((ret_val != 0) ||
 | |
| 		    (hw->phy.media_type == e1000_media_type_unknown)) {
 | |
| 			/* If media type was not identified then return media
 | |
| 			 * type defined by the CTRL_EXT settings.
 | |
| 			 */
 | |
| 			hw->phy.media_type = e1000_media_type_internal_serdes;
 | |
| 
 | |
| 			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
 | |
| 				hw->phy.media_type = e1000_media_type_copper;
 | |
| 				dev_spec->sgmii_active = true;
 | |
| 			}
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* do not change link mode for 100BaseFX */
 | |
| 		if (dev_spec->eth_flags.e100_base_fx)
 | |
| 			break;
 | |
| 
 | |
| 		/* change current link mode setting */
 | |
| 		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 | |
| 
 | |
| 		if (hw->phy.media_type == e1000_media_type_copper)
 | |
| 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
 | |
| 		else
 | |
| 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 | |
| 
 | |
| 		wr32(E1000_CTRL_EXT, ctrl_ext);
 | |
| 
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* mac initialization and operations */
 | |
| 	ret_val = igb_init_mac_params_82575(hw);
 | |
| 	if (ret_val)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* NVM initialization */
 | |
| 	ret_val = igb_init_nvm_params_82575(hw);
 | |
| 	switch (hw->mac.type) {
 | |
| 	case e1000_i210:
 | |
| 	case e1000_i211:
 | |
| 		ret_val = igb_init_nvm_params_i210(hw);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (ret_val)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* if part supports SR-IOV then initialize mailbox parameters */
 | |
| 	switch (mac->type) {
 | |
| 	case e1000_82576:
 | |
| 	case e1000_i350:
 | |
| 		igb_init_mbx_params_pf(hw);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* setup PHY parameters */
 | |
| 	ret_val = igb_init_phy_params_82575(hw);
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_acquire_phy_82575 - Acquire rights to access PHY
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Acquire access rights to the correct PHY.  This is a
 | |
|  *  function pointer entry point called by the api module.
 | |
|  **/
 | |
| static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	u16 mask = E1000_SWFW_PHY0_SM;
 | |
| 
 | |
| 	if (hw->bus.func == E1000_FUNC_1)
 | |
| 		mask = E1000_SWFW_PHY1_SM;
 | |
| 	else if (hw->bus.func == E1000_FUNC_2)
 | |
| 		mask = E1000_SWFW_PHY2_SM;
 | |
| 	else if (hw->bus.func == E1000_FUNC_3)
 | |
| 		mask = E1000_SWFW_PHY3_SM;
 | |
| 
 | |
| 	return hw->mac.ops.acquire_swfw_sync(hw, mask);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_release_phy_82575 - Release rights to access PHY
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  A wrapper to release access rights to the correct PHY.  This is a
 | |
|  *  function pointer entry point called by the api module.
 | |
|  **/
 | |
| static void igb_release_phy_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	u16 mask = E1000_SWFW_PHY0_SM;
 | |
| 
 | |
| 	if (hw->bus.func == E1000_FUNC_1)
 | |
| 		mask = E1000_SWFW_PHY1_SM;
 | |
| 	else if (hw->bus.func == E1000_FUNC_2)
 | |
| 		mask = E1000_SWFW_PHY2_SM;
 | |
| 	else if (hw->bus.func == E1000_FUNC_3)
 | |
| 		mask = E1000_SWFW_PHY3_SM;
 | |
| 
 | |
| 	hw->mac.ops.release_swfw_sync(hw, mask);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @offset: register offset to be read
 | |
|  *  @data: pointer to the read data
 | |
|  *
 | |
|  *  Reads the PHY register at offset using the serial gigabit media independent
 | |
|  *  interface and stores the retrieved information in data.
 | |
|  **/
 | |
| static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 | |
| 					  u16 *data)
 | |
| {
 | |
| 	s32 ret_val = -E1000_ERR_PARAM;
 | |
| 
 | |
| 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 | |
| 		hw_dbg("PHY Address %u is out of range\n", offset);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret_val = hw->phy.ops.acquire(hw);
 | |
| 	if (ret_val)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
 | |
| 
 | |
| 	hw->phy.ops.release(hw);
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @offset: register offset to write to
 | |
|  *  @data: data to write at register offset
 | |
|  *
 | |
|  *  Writes the data to PHY register at the offset using the serial gigabit
 | |
|  *  media independent interface.
 | |
|  **/
 | |
| static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 | |
| 					   u16 data)
 | |
| {
 | |
| 	s32 ret_val = -E1000_ERR_PARAM;
 | |
| 
 | |
| 
 | |
| 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 | |
| 		hw_dbg("PHY Address %d is out of range\n", offset);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret_val = hw->phy.ops.acquire(hw);
 | |
| 	if (ret_val)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
 | |
| 
 | |
| 	hw->phy.ops.release(hw);
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Retrieves the PHY address and ID for both PHY's which do and do not use
 | |
|  *  sgmi interface.
 | |
|  **/
 | |
| static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct e1000_phy_info *phy = &hw->phy;
 | |
| 	s32  ret_val = 0;
 | |
| 	u16 phy_id;
 | |
| 	u32 ctrl_ext;
 | |
| 	u32 mdic;
 | |
| 
 | |
| 	/* Extra read required for some PHY's on i354 */
 | |
| 	if (hw->mac.type == e1000_i354)
 | |
| 		igb_get_phy_id(hw);
 | |
| 
 | |
| 	/* For SGMII PHYs, we try the list of possible addresses until
 | |
| 	 * we find one that works.  For non-SGMII PHYs
 | |
| 	 * (e.g. integrated copper PHYs), an address of 1 should
 | |
| 	 * work.  The result of this function should mean phy->phy_addr
 | |
| 	 * and phy->id are set correctly.
 | |
| 	 */
 | |
| 	if (!(igb_sgmii_active_82575(hw))) {
 | |
| 		phy->addr = 1;
 | |
| 		ret_val = igb_get_phy_id(hw);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (igb_sgmii_uses_mdio_82575(hw)) {
 | |
| 		switch (hw->mac.type) {
 | |
| 		case e1000_82575:
 | |
| 		case e1000_82576:
 | |
| 			mdic = rd32(E1000_MDIC);
 | |
| 			mdic &= E1000_MDIC_PHY_MASK;
 | |
| 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
 | |
| 			break;
 | |
| 		case e1000_82580:
 | |
| 		case e1000_i350:
 | |
| 		case e1000_i354:
 | |
| 		case e1000_i210:
 | |
| 		case e1000_i211:
 | |
| 			mdic = rd32(E1000_MDICNFG);
 | |
| 			mdic &= E1000_MDICNFG_PHY_MASK;
 | |
| 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
 | |
| 			break;
 | |
| 		default:
 | |
| 			ret_val = -E1000_ERR_PHY;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		ret_val = igb_get_phy_id(hw);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Power on sgmii phy if it is disabled */
 | |
| 	ctrl_ext = rd32(E1000_CTRL_EXT);
 | |
| 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
 | |
| 	wrfl();
 | |
| 	msleep(300);
 | |
| 
 | |
| 	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
 | |
| 	 * Therefore, we need to test 1-7
 | |
| 	 */
 | |
| 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
 | |
| 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
 | |
| 		if (ret_val == 0) {
 | |
| 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
 | |
| 			       phy_id, phy->addr);
 | |
| 			/* At the time of this writing, The M88 part is
 | |
| 			 * the only supported SGMII PHY product.
 | |
| 			 */
 | |
| 			if (phy_id == M88_VENDOR)
 | |
| 				break;
 | |
| 		} else {
 | |
| 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* A valid PHY type couldn't be found. */
 | |
| 	if (phy->addr == 8) {
 | |
| 		phy->addr = 0;
 | |
| 		ret_val = -E1000_ERR_PHY;
 | |
| 		goto out;
 | |
| 	} else {
 | |
| 		ret_val = igb_get_phy_id(hw);
 | |
| 	}
 | |
| 
 | |
| 	/* restore previous sfp cage power state */
 | |
| 	wr32(E1000_CTRL_EXT, ctrl_ext);
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Resets the PHY using the serial gigabit media independent interface.
 | |
|  **/
 | |
| static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	s32 ret_val;
 | |
| 
 | |
| 	/* This isn't a true "hard" reset, but is the only reset
 | |
| 	 * available to us at this time.
 | |
| 	 */
 | |
| 
 | |
| 	hw_dbg("Soft resetting SGMII attached PHY...\n");
 | |
| 
 | |
| 	/* SFP documentation requires the following to configure the SPF module
 | |
| 	 * to work on SGMII.  No further documentation is given.
 | |
| 	 */
 | |
| 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
 | |
| 	if (ret_val)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret_val = igb_phy_sw_reset(hw);
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @active: true to enable LPLU, false to disable
 | |
|  *
 | |
|  *  Sets the LPLU D0 state according to the active flag.  When
 | |
|  *  activating LPLU this function also disables smart speed
 | |
|  *  and vice versa.  LPLU will not be activated unless the
 | |
|  *  device autonegotiation advertisement meets standards of
 | |
|  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 | |
|  *  This is a function pointer entry point only called by
 | |
|  *  PHY setup routines.
 | |
|  **/
 | |
| static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
 | |
| {
 | |
| 	struct e1000_phy_info *phy = &hw->phy;
 | |
| 	s32 ret_val;
 | |
| 	u16 data;
 | |
| 
 | |
| 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
 | |
| 	if (ret_val)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (active) {
 | |
| 		data |= IGP02E1000_PM_D0_LPLU;
 | |
| 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 | |
| 						 data);
 | |
| 		if (ret_val)
 | |
| 			goto out;
 | |
| 
 | |
| 		/* When LPLU is enabled, we should disable SmartSpeed */
 | |
| 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 | |
| 						&data);
 | |
| 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 | |
| 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 | |
| 						 data);
 | |
| 		if (ret_val)
 | |
| 			goto out;
 | |
| 	} else {
 | |
| 		data &= ~IGP02E1000_PM_D0_LPLU;
 | |
| 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 | |
| 						 data);
 | |
| 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 | |
| 		 * during Dx states where the power conservation is most
 | |
| 		 * important.  During driver activity we should enable
 | |
| 		 * SmartSpeed, so performance is maintained.
 | |
| 		 */
 | |
| 		if (phy->smart_speed == e1000_smart_speed_on) {
 | |
| 			ret_val = phy->ops.read_reg(hw,
 | |
| 					IGP01E1000_PHY_PORT_CONFIG, &data);
 | |
| 			if (ret_val)
 | |
| 				goto out;
 | |
| 
 | |
| 			data |= IGP01E1000_PSCFR_SMART_SPEED;
 | |
| 			ret_val = phy->ops.write_reg(hw,
 | |
| 					IGP01E1000_PHY_PORT_CONFIG, data);
 | |
| 			if (ret_val)
 | |
| 				goto out;
 | |
| 		} else if (phy->smart_speed == e1000_smart_speed_off) {
 | |
| 			ret_val = phy->ops.read_reg(hw,
 | |
| 					IGP01E1000_PHY_PORT_CONFIG, &data);
 | |
| 			if (ret_val)
 | |
| 				goto out;
 | |
| 
 | |
| 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 | |
| 			ret_val = phy->ops.write_reg(hw,
 | |
| 					IGP01E1000_PHY_PORT_CONFIG, data);
 | |
| 			if (ret_val)
 | |
| 				goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @active: true to enable LPLU, false to disable
 | |
|  *
 | |
|  *  Sets the LPLU D0 state according to the active flag.  When
 | |
|  *  activating LPLU this function also disables smart speed
 | |
|  *  and vice versa.  LPLU will not be activated unless the
 | |
|  *  device autonegotiation advertisement meets standards of
 | |
|  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 | |
|  *  This is a function pointer entry point only called by
 | |
|  *  PHY setup routines.
 | |
|  **/
 | |
| static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
 | |
| {
 | |
| 	struct e1000_phy_info *phy = &hw->phy;
 | |
| 	u16 data;
 | |
| 
 | |
| 	data = rd32(E1000_82580_PHY_POWER_MGMT);
 | |
| 
 | |
| 	if (active) {
 | |
| 		data |= E1000_82580_PM_D0_LPLU;
 | |
| 
 | |
| 		/* When LPLU is enabled, we should disable SmartSpeed */
 | |
| 		data &= ~E1000_82580_PM_SPD;
 | |
| 	} else {
 | |
| 		data &= ~E1000_82580_PM_D0_LPLU;
 | |
| 
 | |
| 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 | |
| 		 * during Dx states where the power conservation is most
 | |
| 		 * important.  During driver activity we should enable
 | |
| 		 * SmartSpeed, so performance is maintained.
 | |
| 		 */
 | |
| 		if (phy->smart_speed == e1000_smart_speed_on)
 | |
| 			data |= E1000_82580_PM_SPD;
 | |
| 		else if (phy->smart_speed == e1000_smart_speed_off)
 | |
| 			data &= ~E1000_82580_PM_SPD; }
 | |
| 
 | |
| 	wr32(E1000_82580_PHY_POWER_MGMT, data);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @active: boolean used to enable/disable lplu
 | |
|  *
 | |
|  *  Success returns 0, Failure returns 1
 | |
|  *
 | |
|  *  The low power link up (lplu) state is set to the power management level D3
 | |
|  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
 | |
|  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
 | |
|  *  is used during Dx states where the power conservation is most important.
 | |
|  *  During driver activity, SmartSpeed should be enabled so performance is
 | |
|  *  maintained.
 | |
|  **/
 | |
| static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
 | |
| {
 | |
| 	struct e1000_phy_info *phy = &hw->phy;
 | |
| 	u16 data;
 | |
| 
 | |
| 	data = rd32(E1000_82580_PHY_POWER_MGMT);
 | |
| 
 | |
| 	if (!active) {
 | |
| 		data &= ~E1000_82580_PM_D3_LPLU;
 | |
| 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 | |
| 		 * during Dx states where the power conservation is most
 | |
| 		 * important.  During driver activity we should enable
 | |
| 		 * SmartSpeed, so performance is maintained.
 | |
| 		 */
 | |
| 		if (phy->smart_speed == e1000_smart_speed_on)
 | |
| 			data |= E1000_82580_PM_SPD;
 | |
| 		else if (phy->smart_speed == e1000_smart_speed_off)
 | |
| 			data &= ~E1000_82580_PM_SPD;
 | |
| 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
 | |
| 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
 | |
| 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
 | |
| 		data |= E1000_82580_PM_D3_LPLU;
 | |
| 		/* When LPLU is enabled, we should disable SmartSpeed */
 | |
| 		data &= ~E1000_82580_PM_SPD;
 | |
| 	}
 | |
| 
 | |
| 	wr32(E1000_82580_PHY_POWER_MGMT, data);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_acquire_nvm_82575 - Request for access to EEPROM
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
 | |
|  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 | |
|  *  Return successful if access grant bit set, else clear the request for
 | |
|  *  EEPROM access and return -E1000_ERR_NVM (-1).
 | |
|  **/
 | |
| static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	s32 ret_val;
 | |
| 
 | |
| 	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
 | |
| 	if (ret_val)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret_val = igb_acquire_nvm(hw);
 | |
| 
 | |
| 	if (ret_val)
 | |
| 		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
 | |
|  *  then release the semaphores acquired.
 | |
|  **/
 | |
| static void igb_release_nvm_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	igb_release_nvm(hw);
 | |
| 	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @mask: specifies which semaphore to acquire
 | |
|  *
 | |
|  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 | |
|  *  will also specify which port we're acquiring the lock for.
 | |
|  **/
 | |
| static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
 | |
| {
 | |
| 	u32 swfw_sync;
 | |
| 	u32 swmask = mask;
 | |
| 	u32 fwmask = mask << 16;
 | |
| 	s32 ret_val = 0;
 | |
| 	s32 i = 0, timeout = 200;
 | |
| 
 | |
| 	while (i < timeout) {
 | |
| 		if (igb_get_hw_semaphore(hw)) {
 | |
| 			ret_val = -E1000_ERR_SWFW_SYNC;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		swfw_sync = rd32(E1000_SW_FW_SYNC);
 | |
| 		if (!(swfw_sync & (fwmask | swmask)))
 | |
| 			break;
 | |
| 
 | |
| 		/* Firmware currently using resource (fwmask)
 | |
| 		 * or other software thread using resource (swmask)
 | |
| 		 */
 | |
| 		igb_put_hw_semaphore(hw);
 | |
| 		mdelay(5);
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	if (i == timeout) {
 | |
| 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
 | |
| 		ret_val = -E1000_ERR_SWFW_SYNC;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	swfw_sync |= swmask;
 | |
| 	wr32(E1000_SW_FW_SYNC, swfw_sync);
 | |
| 
 | |
| 	igb_put_hw_semaphore(hw);
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @mask: specifies which semaphore to acquire
 | |
|  *
 | |
|  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 | |
|  *  will also specify which port we're releasing the lock for.
 | |
|  **/
 | |
| static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
 | |
| {
 | |
| 	u32 swfw_sync;
 | |
| 
 | |
| 	while (igb_get_hw_semaphore(hw) != 0)
 | |
| 		; /* Empty */
 | |
| 
 | |
| 	swfw_sync = rd32(E1000_SW_FW_SYNC);
 | |
| 	swfw_sync &= ~mask;
 | |
| 	wr32(E1000_SW_FW_SYNC, swfw_sync);
 | |
| 
 | |
| 	igb_put_hw_semaphore(hw);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_get_cfg_done_82575 - Read config done bit
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Read the management control register for the config done bit for
 | |
|  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
 | |
|  *  to read the config done bit, so an error is *ONLY* logged and returns
 | |
|  *  0.  If we were to return with error, EEPROM-less silicon
 | |
|  *  would not be able to be reset or change link.
 | |
|  **/
 | |
| static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	s32 timeout = PHY_CFG_TIMEOUT;
 | |
| 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
 | |
| 
 | |
| 	if (hw->bus.func == 1)
 | |
| 		mask = E1000_NVM_CFG_DONE_PORT_1;
 | |
| 	else if (hw->bus.func == E1000_FUNC_2)
 | |
| 		mask = E1000_NVM_CFG_DONE_PORT_2;
 | |
| 	else if (hw->bus.func == E1000_FUNC_3)
 | |
| 		mask = E1000_NVM_CFG_DONE_PORT_3;
 | |
| 
 | |
| 	while (timeout) {
 | |
| 		if (rd32(E1000_EEMNGCTL) & mask)
 | |
| 			break;
 | |
| 		usleep_range(1000, 2000);
 | |
| 		timeout--;
 | |
| 	}
 | |
| 	if (!timeout)
 | |
| 		hw_dbg("MNG configuration cycle has not completed.\n");
 | |
| 
 | |
| 	/* If EEPROM is not marked present, init the PHY manually */
 | |
| 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
 | |
| 	    (hw->phy.type == e1000_phy_igp_3))
 | |
| 		igb_phy_init_script_igp3(hw);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_get_link_up_info_82575 - Get link speed/duplex info
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @speed: stores the current speed
 | |
|  *  @duplex: stores the current duplex
 | |
|  *
 | |
|  *  This is a wrapper function, if using the serial gigabit media independent
 | |
|  *  interface, use PCS to retrieve the link speed and duplex information.
 | |
|  *  Otherwise, use the generic function to get the link speed and duplex info.
 | |
|  **/
 | |
| static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
 | |
| 					u16 *duplex)
 | |
| {
 | |
| 	s32 ret_val;
 | |
| 
 | |
| 	if (hw->phy.media_type != e1000_media_type_copper)
 | |
| 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
 | |
| 							       duplex);
 | |
| 	else
 | |
| 		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
 | |
| 								    duplex);
 | |
| 
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_check_for_link_82575 - Check for link
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
 | |
|  *  use the generic interface for determining link.
 | |
|  **/
 | |
| static s32 igb_check_for_link_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	s32 ret_val;
 | |
| 	u16 speed, duplex;
 | |
| 
 | |
| 	if (hw->phy.media_type != e1000_media_type_copper) {
 | |
| 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
 | |
| 							     &duplex);
 | |
| 		/* Use this flag to determine if link needs to be checked or
 | |
| 		 * not.  If  we have link clear the flag so that we do not
 | |
| 		 * continue to check for link.
 | |
| 		 */
 | |
| 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
 | |
| 
 | |
| 		/* Configure Flow Control now that Auto-Neg has completed.
 | |
| 		 * First, we need to restore the desired flow control
 | |
| 		 * settings because we may have had to re-autoneg with a
 | |
| 		 * different link partner.
 | |
| 		 */
 | |
| 		ret_val = igb_config_fc_after_link_up(hw);
 | |
| 		if (ret_val)
 | |
| 			hw_dbg("Error configuring flow control\n");
 | |
| 	} else {
 | |
| 		ret_val = igb_check_for_copper_link(hw);
 | |
| 	}
 | |
| 
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
 | |
|  *  @hw: pointer to the HW structure
 | |
|  **/
 | |
| void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 
 | |
| 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
 | |
| 	    !igb_sgmii_active_82575(hw))
 | |
| 		return;
 | |
| 
 | |
| 	/* Enable PCS to turn on link */
 | |
| 	reg = rd32(E1000_PCS_CFG0);
 | |
| 	reg |= E1000_PCS_CFG_PCS_EN;
 | |
| 	wr32(E1000_PCS_CFG0, reg);
 | |
| 
 | |
| 	/* Power up the laser */
 | |
| 	reg = rd32(E1000_CTRL_EXT);
 | |
| 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
 | |
| 	wr32(E1000_CTRL_EXT, reg);
 | |
| 
 | |
| 	/* flush the write to verify completion */
 | |
| 	wrfl();
 | |
| 	usleep_range(1000, 2000);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @speed: stores the current speed
 | |
|  *  @duplex: stores the current duplex
 | |
|  *
 | |
|  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
 | |
|  *  duplex, then store the values in the pointers provided.
 | |
|  **/
 | |
| static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
 | |
| 						u16 *duplex)
 | |
| {
 | |
| 	struct e1000_mac_info *mac = &hw->mac;
 | |
| 	u32 pcs, status;
 | |
| 
 | |
| 	/* Set up defaults for the return values of this function */
 | |
| 	mac->serdes_has_link = false;
 | |
| 	*speed = 0;
 | |
| 	*duplex = 0;
 | |
| 
 | |
| 	/* Read the PCS Status register for link state. For non-copper mode,
 | |
| 	 * the status register is not accurate. The PCS status register is
 | |
| 	 * used instead.
 | |
| 	 */
 | |
| 	pcs = rd32(E1000_PCS_LSTAT);
 | |
| 
 | |
| 	/* The link up bit determines when link is up on autoneg. The sync ok
 | |
| 	 * gets set once both sides sync up and agree upon link. Stable link
 | |
| 	 * can be determined by checking for both link up and link sync ok
 | |
| 	 */
 | |
| 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
 | |
| 		mac->serdes_has_link = true;
 | |
| 
 | |
| 		/* Detect and store PCS speed */
 | |
| 		if (pcs & E1000_PCS_LSTS_SPEED_1000)
 | |
| 			*speed = SPEED_1000;
 | |
| 		else if (pcs & E1000_PCS_LSTS_SPEED_100)
 | |
| 			*speed = SPEED_100;
 | |
| 		else
 | |
| 			*speed = SPEED_10;
 | |
| 
 | |
| 		/* Detect and store PCS duplex */
 | |
| 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
 | |
| 			*duplex = FULL_DUPLEX;
 | |
| 		else
 | |
| 			*duplex = HALF_DUPLEX;
 | |
| 
 | |
| 	/* Check if it is an I354 2.5Gb backplane connection. */
 | |
| 		if (mac->type == e1000_i354) {
 | |
| 			status = rd32(E1000_STATUS);
 | |
| 			if ((status & E1000_STATUS_2P5_SKU) &&
 | |
| 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
 | |
| 				*speed = SPEED_2500;
 | |
| 				*duplex = FULL_DUPLEX;
 | |
| 				hw_dbg("2500 Mbs, ");
 | |
| 				hw_dbg("Full Duplex\n");
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_shutdown_serdes_link_82575 - Remove link during power down
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  In the case of fiber serdes, shut down optics and PCS on driver unload
 | |
|  *  when management pass thru is not enabled.
 | |
|  **/
 | |
| void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
 | |
| 	    igb_sgmii_active_82575(hw))
 | |
| 		return;
 | |
| 
 | |
| 	if (!igb_enable_mng_pass_thru(hw)) {
 | |
| 		/* Disable PCS to turn off link */
 | |
| 		reg = rd32(E1000_PCS_CFG0);
 | |
| 		reg &= ~E1000_PCS_CFG_PCS_EN;
 | |
| 		wr32(E1000_PCS_CFG0, reg);
 | |
| 
 | |
| 		/* shutdown the laser */
 | |
| 		reg = rd32(E1000_CTRL_EXT);
 | |
| 		reg |= E1000_CTRL_EXT_SDP3_DATA;
 | |
| 		wr32(E1000_CTRL_EXT, reg);
 | |
| 
 | |
| 		/* flush the write to verify completion */
 | |
| 		wrfl();
 | |
| 		usleep_range(1000, 2000);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_reset_hw_82575 - Reset hardware
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  This resets the hardware into a known state.  This is a
 | |
|  *  function pointer entry point called by the api module.
 | |
|  **/
 | |
| static s32 igb_reset_hw_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	u32 ctrl;
 | |
| 	s32 ret_val;
 | |
| 
 | |
| 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
 | |
| 	 * on the last TLP read/write transaction when MAC is reset.
 | |
| 	 */
 | |
| 	ret_val = igb_disable_pcie_master(hw);
 | |
| 	if (ret_val)
 | |
| 		hw_dbg("PCI-E Master disable polling has failed.\n");
 | |
| 
 | |
| 	/* set the completion timeout for interface */
 | |
| 	ret_val = igb_set_pcie_completion_timeout(hw);
 | |
| 	if (ret_val)
 | |
| 		hw_dbg("PCI-E Set completion timeout has failed.\n");
 | |
| 
 | |
| 	hw_dbg("Masking off all interrupts\n");
 | |
| 	wr32(E1000_IMC, 0xffffffff);
 | |
| 
 | |
| 	wr32(E1000_RCTL, 0);
 | |
| 	wr32(E1000_TCTL, E1000_TCTL_PSP);
 | |
| 	wrfl();
 | |
| 
 | |
| 	usleep_range(10000, 20000);
 | |
| 
 | |
| 	ctrl = rd32(E1000_CTRL);
 | |
| 
 | |
| 	hw_dbg("Issuing a global reset to MAC\n");
 | |
| 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
 | |
| 
 | |
| 	ret_val = igb_get_auto_rd_done(hw);
 | |
| 	if (ret_val) {
 | |
| 		/* When auto config read does not complete, do not
 | |
| 		 * return with an error. This can happen in situations
 | |
| 		 * where there is no eeprom and prevents getting link.
 | |
| 		 */
 | |
| 		hw_dbg("Auto Read Done did not complete\n");
 | |
| 	}
 | |
| 
 | |
| 	/* If EEPROM is not present, run manual init scripts */
 | |
| 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
 | |
| 		igb_reset_init_script_82575(hw);
 | |
| 
 | |
| 	/* Clear any pending interrupt events. */
 | |
| 	wr32(E1000_IMC, 0xffffffff);
 | |
| 	rd32(E1000_ICR);
 | |
| 
 | |
| 	/* Install any alternate MAC address into RAR0 */
 | |
| 	ret_val = igb_check_alt_mac_addr(hw);
 | |
| 
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_init_hw_82575 - Initialize hardware
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  This inits the hardware readying it for operation.
 | |
|  **/
 | |
| static s32 igb_init_hw_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct e1000_mac_info *mac = &hw->mac;
 | |
| 	s32 ret_val;
 | |
| 	u16 i, rar_count = mac->rar_entry_count;
 | |
| 
 | |
| 	if ((hw->mac.type >= e1000_i210) &&
 | |
| 	    !(igb_get_flash_presence_i210(hw))) {
 | |
| 		ret_val = igb_pll_workaround_i210(hw);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize identification LED */
 | |
| 	ret_val = igb_id_led_init(hw);
 | |
| 	if (ret_val) {
 | |
| 		hw_dbg("Error initializing identification LED\n");
 | |
| 		/* This is not fatal and we should not stop init due to this */
 | |
| 	}
 | |
| 
 | |
| 	/* Disabling VLAN filtering */
 | |
| 	hw_dbg("Initializing the IEEE VLAN\n");
 | |
| 	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
 | |
| 		igb_clear_vfta_i350(hw);
 | |
| 	else
 | |
| 		igb_clear_vfta(hw);
 | |
| 
 | |
| 	/* Setup the receive address */
 | |
| 	igb_init_rx_addrs(hw, rar_count);
 | |
| 
 | |
| 	/* Zero out the Multicast HASH table */
 | |
| 	hw_dbg("Zeroing the MTA\n");
 | |
| 	for (i = 0; i < mac->mta_reg_count; i++)
 | |
| 		array_wr32(E1000_MTA, i, 0);
 | |
| 
 | |
| 	/* Zero out the Unicast HASH table */
 | |
| 	hw_dbg("Zeroing the UTA\n");
 | |
| 	for (i = 0; i < mac->uta_reg_count; i++)
 | |
| 		array_wr32(E1000_UTA, i, 0);
 | |
| 
 | |
| 	/* Setup link and flow control */
 | |
| 	ret_val = igb_setup_link(hw);
 | |
| 
 | |
| 	/* Clear all of the statistics registers (clear on read).  It is
 | |
| 	 * important that we do this after we have tried to establish link
 | |
| 	 * because the symbol error count will increment wildly if there
 | |
| 	 * is no link.
 | |
| 	 */
 | |
| 	igb_clear_hw_cntrs_82575(hw);
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_setup_copper_link_82575 - Configure copper link settings
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
 | |
|  *  for link, once link is established calls to configure collision distance
 | |
|  *  and flow control are called.
 | |
|  **/
 | |
| static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	u32 ctrl;
 | |
| 	s32  ret_val;
 | |
| 	u32 phpm_reg;
 | |
| 
 | |
| 	ctrl = rd32(E1000_CTRL);
 | |
| 	ctrl |= E1000_CTRL_SLU;
 | |
| 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
 | |
| 	wr32(E1000_CTRL, ctrl);
 | |
| 
 | |
| 	/* Clear Go Link Disconnect bit on supported devices */
 | |
| 	switch (hw->mac.type) {
 | |
| 	case e1000_82580:
 | |
| 	case e1000_i350:
 | |
| 	case e1000_i210:
 | |
| 	case e1000_i211:
 | |
| 		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
 | |
| 		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
 | |
| 		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	ret_val = igb_setup_serdes_link_82575(hw);
 | |
| 	if (ret_val)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
 | |
| 		/* allow time for SFP cage time to power up phy */
 | |
| 		msleep(300);
 | |
| 
 | |
| 		ret_val = hw->phy.ops.reset(hw);
 | |
| 		if (ret_val) {
 | |
| 			hw_dbg("Error resetting the PHY.\n");
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	switch (hw->phy.type) {
 | |
| 	case e1000_phy_i210:
 | |
| 	case e1000_phy_m88:
 | |
| 		switch (hw->phy.id) {
 | |
| 		case I347AT4_E_PHY_ID:
 | |
| 		case M88E1112_E_PHY_ID:
 | |
| 		case M88E1543_E_PHY_ID:
 | |
| 		case I210_I_PHY_ID:
 | |
| 			ret_val = igb_copper_link_setup_m88_gen2(hw);
 | |
| 			break;
 | |
| 		default:
 | |
| 			ret_val = igb_copper_link_setup_m88(hw);
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case e1000_phy_igp_3:
 | |
| 		ret_val = igb_copper_link_setup_igp(hw);
 | |
| 		break;
 | |
| 	case e1000_phy_82580:
 | |
| 		ret_val = igb_copper_link_setup_82580(hw);
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret_val = -E1000_ERR_PHY;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (ret_val)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret_val = igb_setup_copper_link(hw);
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_setup_serdes_link_82575 - Setup link for serdes
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
 | |
|  *  used on copper connections where the serialized gigabit media independent
 | |
|  *  interface (sgmii), or serdes fiber is being used.  Configures the link
 | |
|  *  for auto-negotiation or forces speed/duplex.
 | |
|  **/
 | |
| static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
 | |
| 	bool pcs_autoneg;
 | |
| 	s32 ret_val = 0;
 | |
| 	u16 data;
 | |
| 
 | |
| 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
 | |
| 	    !igb_sgmii_active_82575(hw))
 | |
| 		return ret_val;
 | |
| 
 | |
| 
 | |
| 	/* On the 82575, SerDes loopback mode persists until it is
 | |
| 	 * explicitly turned off or a power cycle is performed.  A read to
 | |
| 	 * the register does not indicate its status.  Therefore, we ensure
 | |
| 	 * loopback mode is disabled during initialization.
 | |
| 	 */
 | |
| 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
 | |
| 
 | |
| 	/* power on the sfp cage if present and turn on I2C */
 | |
| 	ctrl_ext = rd32(E1000_CTRL_EXT);
 | |
| 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
 | |
| 	ctrl_ext |= E1000_CTRL_I2C_ENA;
 | |
| 	wr32(E1000_CTRL_EXT, ctrl_ext);
 | |
| 
 | |
| 	ctrl_reg = rd32(E1000_CTRL);
 | |
| 	ctrl_reg |= E1000_CTRL_SLU;
 | |
| 
 | |
| 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
 | |
| 		/* set both sw defined pins */
 | |
| 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
 | |
| 
 | |
| 		/* Set switch control to serdes energy detect */
 | |
| 		reg = rd32(E1000_CONNSW);
 | |
| 		reg |= E1000_CONNSW_ENRGSRC;
 | |
| 		wr32(E1000_CONNSW, reg);
 | |
| 	}
 | |
| 
 | |
| 	reg = rd32(E1000_PCS_LCTL);
 | |
| 
 | |
| 	/* default pcs_autoneg to the same setting as mac autoneg */
 | |
| 	pcs_autoneg = hw->mac.autoneg;
 | |
| 
 | |
| 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
 | |
| 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
 | |
| 		/* sgmii mode lets the phy handle forcing speed/duplex */
 | |
| 		pcs_autoneg = true;
 | |
| 		/* autoneg time out should be disabled for SGMII mode */
 | |
| 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
 | |
| 		break;
 | |
| 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
 | |
| 		/* disable PCS autoneg and support parallel detect only */
 | |
| 		pcs_autoneg = false;
 | |
| 	default:
 | |
| 		if (hw->mac.type == e1000_82575 ||
 | |
| 		    hw->mac.type == e1000_82576) {
 | |
| 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
 | |
| 			if (ret_val) {
 | |
| 				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
 | |
| 				return ret_val;
 | |
| 			}
 | |
| 
 | |
| 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
 | |
| 				pcs_autoneg = false;
 | |
| 		}
 | |
| 
 | |
| 		/* non-SGMII modes only supports a speed of 1000/Full for the
 | |
| 		 * link so it is best to just force the MAC and let the pcs
 | |
| 		 * link either autoneg or be forced to 1000/Full
 | |
| 		 */
 | |
| 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
 | |
| 				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
 | |
| 
 | |
| 		/* set speed of 1000/Full if speed/duplex is forced */
 | |
| 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	wr32(E1000_CTRL, ctrl_reg);
 | |
| 
 | |
| 	/* New SerDes mode allows for forcing speed or autonegotiating speed
 | |
| 	 * at 1gb. Autoneg should be default set by most drivers. This is the
 | |
| 	 * mode that will be compatible with older link partners and switches.
 | |
| 	 * However, both are supported by the hardware and some drivers/tools.
 | |
| 	 */
 | |
| 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
 | |
| 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
 | |
| 
 | |
| 	if (pcs_autoneg) {
 | |
| 		/* Set PCS register for autoneg */
 | |
| 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
 | |
| 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
 | |
| 
 | |
| 		/* Disable force flow control for autoneg */
 | |
| 		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
 | |
| 
 | |
| 		/* Configure flow control advertisement for autoneg */
 | |
| 		anadv_reg = rd32(E1000_PCS_ANADV);
 | |
| 		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
 | |
| 		switch (hw->fc.requested_mode) {
 | |
| 		case e1000_fc_full:
 | |
| 		case e1000_fc_rx_pause:
 | |
| 			anadv_reg |= E1000_TXCW_ASM_DIR;
 | |
| 			anadv_reg |= E1000_TXCW_PAUSE;
 | |
| 			break;
 | |
| 		case e1000_fc_tx_pause:
 | |
| 			anadv_reg |= E1000_TXCW_ASM_DIR;
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 		wr32(E1000_PCS_ANADV, anadv_reg);
 | |
| 
 | |
| 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
 | |
| 	} else {
 | |
| 		/* Set PCS register for forced link */
 | |
| 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
 | |
| 
 | |
| 		/* Force flow control for forced link */
 | |
| 		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
 | |
| 
 | |
| 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
 | |
| 	}
 | |
| 
 | |
| 	wr32(E1000_PCS_LCTL, reg);
 | |
| 
 | |
| 	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
 | |
| 		igb_force_mac_fc(hw);
 | |
| 
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_sgmii_active_82575 - Return sgmii state
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
 | |
|  *  which can be enabled for use in the embedded applications.  Simply
 | |
|  *  return the current state of the sgmii interface.
 | |
|  **/
 | |
| static bool igb_sgmii_active_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 | |
| 	return dev_spec->sgmii_active;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_reset_init_script_82575 - Inits HW defaults after reset
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Inits recommended HW defaults after a reset when there is no EEPROM
 | |
|  *  detected. This is only for the 82575.
 | |
|  **/
 | |
| static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	if (hw->mac.type == e1000_82575) {
 | |
| 		hw_dbg("Running reset init script for 82575\n");
 | |
| 		/* SerDes configuration via SERDESCTRL */
 | |
| 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
 | |
| 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
 | |
| 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
 | |
| 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
 | |
| 
 | |
| 		/* CCM configuration via CCMCTL register */
 | |
| 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
 | |
| 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
 | |
| 
 | |
| 		/* PCIe lanes configuration */
 | |
| 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
 | |
| 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
 | |
| 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
 | |
| 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
 | |
| 
 | |
| 		/* PCIe PLL Configuration */
 | |
| 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
 | |
| 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
 | |
| 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_read_mac_addr_82575 - Read device MAC address
 | |
|  *  @hw: pointer to the HW structure
 | |
|  **/
 | |
| static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	s32 ret_val = 0;
 | |
| 
 | |
| 	/* If there's an alternate MAC address place it in RAR0
 | |
| 	 * so that it will override the Si installed default perm
 | |
| 	 * address.
 | |
| 	 */
 | |
| 	ret_val = igb_check_alt_mac_addr(hw);
 | |
| 	if (ret_val)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret_val = igb_read_mac_addr(hw);
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
 | |
|  * @hw: pointer to the HW structure
 | |
|  *
 | |
|  * In the case of a PHY power down to save power, or to turn off link during a
 | |
|  * driver unload, or wake on lan is not enabled, remove the link.
 | |
|  **/
 | |
| void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	/* If the management interface is not enabled, then power down */
 | |
| 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
 | |
| 		igb_power_down_phy_copper(hw);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Clears the hardware counters by reading the counter registers.
 | |
|  **/
 | |
| static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	igb_clear_hw_cntrs_base(hw);
 | |
| 
 | |
| 	rd32(E1000_PRC64);
 | |
| 	rd32(E1000_PRC127);
 | |
| 	rd32(E1000_PRC255);
 | |
| 	rd32(E1000_PRC511);
 | |
| 	rd32(E1000_PRC1023);
 | |
| 	rd32(E1000_PRC1522);
 | |
| 	rd32(E1000_PTC64);
 | |
| 	rd32(E1000_PTC127);
 | |
| 	rd32(E1000_PTC255);
 | |
| 	rd32(E1000_PTC511);
 | |
| 	rd32(E1000_PTC1023);
 | |
| 	rd32(E1000_PTC1522);
 | |
| 
 | |
| 	rd32(E1000_ALGNERRC);
 | |
| 	rd32(E1000_RXERRC);
 | |
| 	rd32(E1000_TNCRS);
 | |
| 	rd32(E1000_CEXTERR);
 | |
| 	rd32(E1000_TSCTC);
 | |
| 	rd32(E1000_TSCTFC);
 | |
| 
 | |
| 	rd32(E1000_MGTPRC);
 | |
| 	rd32(E1000_MGTPDC);
 | |
| 	rd32(E1000_MGTPTC);
 | |
| 
 | |
| 	rd32(E1000_IAC);
 | |
| 	rd32(E1000_ICRXOC);
 | |
| 
 | |
| 	rd32(E1000_ICRXPTC);
 | |
| 	rd32(E1000_ICRXATC);
 | |
| 	rd32(E1000_ICTXPTC);
 | |
| 	rd32(E1000_ICTXATC);
 | |
| 	rd32(E1000_ICTXQEC);
 | |
| 	rd32(E1000_ICTXQMTC);
 | |
| 	rd32(E1000_ICRXDMTC);
 | |
| 
 | |
| 	rd32(E1000_CBTMPC);
 | |
| 	rd32(E1000_HTDPMC);
 | |
| 	rd32(E1000_CBRMPC);
 | |
| 	rd32(E1000_RPTHC);
 | |
| 	rd32(E1000_HGPTC);
 | |
| 	rd32(E1000_HTCBDPC);
 | |
| 	rd32(E1000_HGORCL);
 | |
| 	rd32(E1000_HGORCH);
 | |
| 	rd32(E1000_HGOTCL);
 | |
| 	rd32(E1000_HGOTCH);
 | |
| 	rd32(E1000_LENERRS);
 | |
| 
 | |
| 	/* This register should not be read in copper configurations */
 | |
| 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
 | |
| 	    igb_sgmii_active_82575(hw))
 | |
| 		rd32(E1000_SCVPC);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  After rx enable if managability is enabled then there is likely some
 | |
|  *  bad data at the start of the fifo and possibly in the DMA fifo.  This
 | |
|  *  function clears the fifos and flushes any packets that came in as rx was
 | |
|  *  being enabled.
 | |
|  **/
 | |
| void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
 | |
| {
 | |
| 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
 | |
| 	int i, ms_wait;
 | |
| 
 | |
| 	if (hw->mac.type != e1000_82575 ||
 | |
| 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
 | |
| 		return;
 | |
| 
 | |
| 	/* Disable all RX queues */
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		rxdctl[i] = rd32(E1000_RXDCTL(i));
 | |
| 		wr32(E1000_RXDCTL(i),
 | |
| 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
 | |
| 	}
 | |
| 	/* Poll all queues to verify they have shut down */
 | |
| 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
 | |
| 		usleep_range(1000, 2000);
 | |
| 		rx_enabled = 0;
 | |
| 		for (i = 0; i < 4; i++)
 | |
| 			rx_enabled |= rd32(E1000_RXDCTL(i));
 | |
| 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (ms_wait == 10)
 | |
| 		hw_dbg("Queue disable timed out after 10ms\n");
 | |
| 
 | |
| 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
 | |
| 	 * incoming packets are rejected.  Set enable and wait 2ms so that
 | |
| 	 * any packet that was coming in as RCTL.EN was set is flushed
 | |
| 	 */
 | |
| 	rfctl = rd32(E1000_RFCTL);
 | |
| 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
 | |
| 
 | |
| 	rlpml = rd32(E1000_RLPML);
 | |
| 	wr32(E1000_RLPML, 0);
 | |
| 
 | |
| 	rctl = rd32(E1000_RCTL);
 | |
| 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
 | |
| 	temp_rctl |= E1000_RCTL_LPE;
 | |
| 
 | |
| 	wr32(E1000_RCTL, temp_rctl);
 | |
| 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
 | |
| 	wrfl();
 | |
| 	usleep_range(2000, 3000);
 | |
| 
 | |
| 	/* Enable RX queues that were previously enabled and restore our
 | |
| 	 * previous state
 | |
| 	 */
 | |
| 	for (i = 0; i < 4; i++)
 | |
| 		wr32(E1000_RXDCTL(i), rxdctl[i]);
 | |
| 	wr32(E1000_RCTL, rctl);
 | |
| 	wrfl();
 | |
| 
 | |
| 	wr32(E1000_RLPML, rlpml);
 | |
| 	wr32(E1000_RFCTL, rfctl);
 | |
| 
 | |
| 	/* Flush receive errors generated by workaround */
 | |
| 	rd32(E1000_ROC);
 | |
| 	rd32(E1000_RNBC);
 | |
| 	rd32(E1000_MPC);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
 | |
|  *  however the hardware default for these parts is 500us to 1ms which is less
 | |
|  *  than the 10ms recommended by the pci-e spec.  To address this we need to
 | |
|  *  increase the value to either 10ms to 200ms for capability version 1 config,
 | |
|  *  or 16ms to 55ms for version 2.
 | |
|  **/
 | |
| static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
 | |
| {
 | |
| 	u32 gcr = rd32(E1000_GCR);
 | |
| 	s32 ret_val = 0;
 | |
| 	u16 pcie_devctl2;
 | |
| 
 | |
| 	/* only take action if timeout value is defaulted to 0 */
 | |
| 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* if capabilities version is type 1 we can write the
 | |
| 	 * timeout of 10ms to 200ms through the GCR register
 | |
| 	 */
 | |
| 	if (!(gcr & E1000_GCR_CAP_VER2)) {
 | |
| 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* for version 2 capabilities we need to write the config space
 | |
| 	 * directly in order to set the completion timeout value for
 | |
| 	 * 16ms to 55ms
 | |
| 	 */
 | |
| 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
 | |
| 					&pcie_devctl2);
 | |
| 	if (ret_val)
 | |
| 		goto out;
 | |
| 
 | |
| 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
 | |
| 
 | |
| 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
 | |
| 					 &pcie_devctl2);
 | |
| out:
 | |
| 	/* disable completion timeout resend */
 | |
| 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
 | |
| 
 | |
| 	wr32(E1000_GCR, gcr);
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
 | |
|  *  @hw: pointer to the hardware struct
 | |
|  *  @enable: state to enter, either enabled or disabled
 | |
|  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
 | |
|  *
 | |
|  *  enables/disables L2 switch anti-spoofing functionality.
 | |
|  **/
 | |
| void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
 | |
| {
 | |
| 	u32 reg_val, reg_offset;
 | |
| 
 | |
| 	switch (hw->mac.type) {
 | |
| 	case e1000_82576:
 | |
| 		reg_offset = E1000_DTXSWC;
 | |
| 		break;
 | |
| 	case e1000_i350:
 | |
| 	case e1000_i354:
 | |
| 		reg_offset = E1000_TXSWC;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	reg_val = rd32(reg_offset);
 | |
| 	if (enable) {
 | |
| 		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
 | |
| 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
 | |
| 		/* The PF can spoof - it has to in order to
 | |
| 		 * support emulation mode NICs
 | |
| 		 */
 | |
| 		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
 | |
| 	} else {
 | |
| 		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
 | |
| 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
 | |
| 	}
 | |
| 	wr32(reg_offset, reg_val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
 | |
|  *  @hw: pointer to the hardware struct
 | |
|  *  @enable: state to enter, either enabled or disabled
 | |
|  *
 | |
|  *  enables/disables L2 switch loopback functionality.
 | |
|  **/
 | |
| void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
 | |
| {
 | |
| 	u32 dtxswc;
 | |
| 
 | |
| 	switch (hw->mac.type) {
 | |
| 	case e1000_82576:
 | |
| 		dtxswc = rd32(E1000_DTXSWC);
 | |
| 		if (enable)
 | |
| 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
 | |
| 		else
 | |
| 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
 | |
| 		wr32(E1000_DTXSWC, dtxswc);
 | |
| 		break;
 | |
| 	case e1000_i354:
 | |
| 	case e1000_i350:
 | |
| 		dtxswc = rd32(E1000_TXSWC);
 | |
| 		if (enable)
 | |
| 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
 | |
| 		else
 | |
| 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
 | |
| 		wr32(E1000_TXSWC, dtxswc);
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* Currently no other hardware supports loopback */
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
 | |
|  *  @hw: pointer to the hardware struct
 | |
|  *  @enable: state to enter, either enabled or disabled
 | |
|  *
 | |
|  *  enables/disables replication of packets across multiple pools.
 | |
|  **/
 | |
| void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
 | |
| {
 | |
| 	u32 vt_ctl = rd32(E1000_VT_CTL);
 | |
| 
 | |
| 	if (enable)
 | |
| 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
 | |
| 	else
 | |
| 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
 | |
| 
 | |
| 	wr32(E1000_VT_CTL, vt_ctl);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @offset: register offset to be read
 | |
|  *  @data: pointer to the read data
 | |
|  *
 | |
|  *  Reads the MDI control register in the PHY at offset and stores the
 | |
|  *  information read to data.
 | |
|  **/
 | |
| static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
 | |
| {
 | |
| 	s32 ret_val;
 | |
| 
 | |
| 	ret_val = hw->phy.ops.acquire(hw);
 | |
| 	if (ret_val)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
 | |
| 
 | |
| 	hw->phy.ops.release(hw);
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @offset: register offset to write to
 | |
|  *  @data: data to write to register at offset
 | |
|  *
 | |
|  *  Writes data to MDI control register in the PHY at offset.
 | |
|  **/
 | |
| static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
 | |
| {
 | |
| 	s32 ret_val;
 | |
| 
 | |
| 
 | |
| 	ret_val = hw->phy.ops.acquire(hw);
 | |
| 	if (ret_val)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
 | |
| 
 | |
| 	hw->phy.ops.release(hw);
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
 | |
|  *  the values found in the EEPROM.  This addresses an issue in which these
 | |
|  *  bits are not restored from EEPROM after reset.
 | |
|  **/
 | |
| static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
 | |
| {
 | |
| 	s32 ret_val = 0;
 | |
| 	u32 mdicnfg;
 | |
| 	u16 nvm_data = 0;
 | |
| 
 | |
| 	if (hw->mac.type != e1000_82580)
 | |
| 		goto out;
 | |
| 	if (!igb_sgmii_active_82575(hw))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
 | |
| 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
 | |
| 				   &nvm_data);
 | |
| 	if (ret_val) {
 | |
| 		hw_dbg("NVM Read Error\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	mdicnfg = rd32(E1000_MDICNFG);
 | |
| 	if (nvm_data & NVM_WORD24_EXT_MDIO)
 | |
| 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
 | |
| 	if (nvm_data & NVM_WORD24_COM_MDIO)
 | |
| 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
 | |
| 	wr32(E1000_MDICNFG, mdicnfg);
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_reset_hw_82580 - Reset hardware
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  This resets function or entire device (all ports, etc.)
 | |
|  *  to a known state.
 | |
|  **/
 | |
| static s32 igb_reset_hw_82580(struct e1000_hw *hw)
 | |
| {
 | |
| 	s32 ret_val = 0;
 | |
| 	/* BH SW mailbox bit in SW_FW_SYNC */
 | |
| 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
 | |
| 	u32 ctrl;
 | |
| 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
 | |
| 
 | |
| 	hw->dev_spec._82575.global_device_reset = false;
 | |
| 
 | |
| 	/* due to hw errata, global device reset doesn't always
 | |
| 	 * work on 82580
 | |
| 	 */
 | |
| 	if (hw->mac.type == e1000_82580)
 | |
| 		global_device_reset = false;
 | |
| 
 | |
| 	/* Get current control state. */
 | |
| 	ctrl = rd32(E1000_CTRL);
 | |
| 
 | |
| 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
 | |
| 	 * on the last TLP read/write transaction when MAC is reset.
 | |
| 	 */
 | |
| 	ret_val = igb_disable_pcie_master(hw);
 | |
| 	if (ret_val)
 | |
| 		hw_dbg("PCI-E Master disable polling has failed.\n");
 | |
| 
 | |
| 	hw_dbg("Masking off all interrupts\n");
 | |
| 	wr32(E1000_IMC, 0xffffffff);
 | |
| 	wr32(E1000_RCTL, 0);
 | |
| 	wr32(E1000_TCTL, E1000_TCTL_PSP);
 | |
| 	wrfl();
 | |
| 
 | |
| 	usleep_range(10000, 11000);
 | |
| 
 | |
| 	/* Determine whether or not a global dev reset is requested */
 | |
| 	if (global_device_reset &&
 | |
| 		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
 | |
| 			global_device_reset = false;
 | |
| 
 | |
| 	if (global_device_reset &&
 | |
| 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
 | |
| 		ctrl |= E1000_CTRL_DEV_RST;
 | |
| 	else
 | |
| 		ctrl |= E1000_CTRL_RST;
 | |
| 
 | |
| 	wr32(E1000_CTRL, ctrl);
 | |
| 	wrfl();
 | |
| 
 | |
| 	/* Add delay to insure DEV_RST has time to complete */
 | |
| 	if (global_device_reset)
 | |
| 		usleep_range(5000, 6000);
 | |
| 
 | |
| 	ret_val = igb_get_auto_rd_done(hw);
 | |
| 	if (ret_val) {
 | |
| 		/* When auto config read does not complete, do not
 | |
| 		 * return with an error. This can happen in situations
 | |
| 		 * where there is no eeprom and prevents getting link.
 | |
| 		 */
 | |
| 		hw_dbg("Auto Read Done did not complete\n");
 | |
| 	}
 | |
| 
 | |
| 	/* clear global device reset status bit */
 | |
| 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
 | |
| 
 | |
| 	/* Clear any pending interrupt events. */
 | |
| 	wr32(E1000_IMC, 0xffffffff);
 | |
| 	rd32(E1000_ICR);
 | |
| 
 | |
| 	ret_val = igb_reset_mdicnfg_82580(hw);
 | |
| 	if (ret_val)
 | |
| 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
 | |
| 
 | |
| 	/* Install any alternate MAC address into RAR0 */
 | |
| 	ret_val = igb_check_alt_mac_addr(hw);
 | |
| 
 | |
| 	/* Release semaphore */
 | |
| 	if (global_device_reset)
 | |
| 		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
 | |
| 
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
 | |
|  *  @data: data received by reading RXPBS register
 | |
|  *
 | |
|  *  The 82580 uses a table based approach for packet buffer allocation sizes.
 | |
|  *  This function converts the retrieved value into the correct table value
 | |
|  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
 | |
|  *  0x0 36  72 144   1   2   4   8  16
 | |
|  *  0x8 35  70 140 rsv rsv rsv rsv rsv
 | |
|  */
 | |
| u16 igb_rxpbs_adjust_82580(u32 data)
 | |
| {
 | |
| 	u16 ret_val = 0;
 | |
| 
 | |
| 	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
 | |
| 		ret_val = e1000_82580_rxpbs_table[data];
 | |
| 
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
 | |
|  *  checksum
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @offset: offset in words of the checksum protected region
 | |
|  *
 | |
|  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 | |
|  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 | |
|  **/
 | |
| static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
 | |
| 						 u16 offset)
 | |
| {
 | |
| 	s32 ret_val = 0;
 | |
| 	u16 checksum = 0;
 | |
| 	u16 i, nvm_data;
 | |
| 
 | |
| 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
 | |
| 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
 | |
| 		if (ret_val) {
 | |
| 			hw_dbg("NVM Read Error\n");
 | |
| 			goto out;
 | |
| 		}
 | |
| 		checksum += nvm_data;
 | |
| 	}
 | |
| 
 | |
| 	if (checksum != (u16) NVM_SUM) {
 | |
| 		hw_dbg("NVM Checksum Invalid\n");
 | |
| 		ret_val = -E1000_ERR_NVM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_update_nvm_checksum_with_offset - Update EEPROM
 | |
|  *  checksum
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @offset: offset in words of the checksum protected region
 | |
|  *
 | |
|  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 | |
|  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 | |
|  *  value to the EEPROM.
 | |
|  **/
 | |
| static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
 | |
| {
 | |
| 	s32 ret_val;
 | |
| 	u16 checksum = 0;
 | |
| 	u16 i, nvm_data;
 | |
| 
 | |
| 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
 | |
| 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
 | |
| 		if (ret_val) {
 | |
| 			hw_dbg("NVM Read Error while updating checksum.\n");
 | |
| 			goto out;
 | |
| 		}
 | |
| 		checksum += nvm_data;
 | |
| 	}
 | |
| 	checksum = (u16) NVM_SUM - checksum;
 | |
| 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
 | |
| 				&checksum);
 | |
| 	if (ret_val)
 | |
| 		hw_dbg("NVM Write Error while updating checksum.\n");
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Calculates the EEPROM section checksum by reading/adding each word of
 | |
|  *  the EEPROM and then verifies that the sum of the EEPROM is
 | |
|  *  equal to 0xBABA.
 | |
|  **/
 | |
| static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
 | |
| {
 | |
| 	s32 ret_val = 0;
 | |
| 	u16 eeprom_regions_count = 1;
 | |
| 	u16 j, nvm_data;
 | |
| 	u16 nvm_offset;
 | |
| 
 | |
| 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
 | |
| 	if (ret_val) {
 | |
| 		hw_dbg("NVM Read Error\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
 | |
| 		/* if checksums compatibility bit is set validate checksums
 | |
| 		 * for all 4 ports.
 | |
| 		 */
 | |
| 		eeprom_regions_count = 4;
 | |
| 	}
 | |
| 
 | |
| 	for (j = 0; j < eeprom_regions_count; j++) {
 | |
| 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
 | |
| 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
 | |
| 								nvm_offset);
 | |
| 		if (ret_val != 0)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
 | |
|  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
 | |
|  *  checksum and writes the value to the EEPROM.
 | |
|  **/
 | |
| static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
 | |
| {
 | |
| 	s32 ret_val;
 | |
| 	u16 j, nvm_data;
 | |
| 	u16 nvm_offset;
 | |
| 
 | |
| 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
 | |
| 	if (ret_val) {
 | |
| 		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
 | |
| 		/* set compatibility bit to validate checksums appropriately */
 | |
| 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
 | |
| 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
 | |
| 					&nvm_data);
 | |
| 		if (ret_val) {
 | |
| 			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (j = 0; j < 4; j++) {
 | |
| 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
 | |
| 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
 | |
| 		if (ret_val)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Calculates the EEPROM section checksum by reading/adding each word of
 | |
|  *  the EEPROM and then verifies that the sum of the EEPROM is
 | |
|  *  equal to 0xBABA.
 | |
|  **/
 | |
| static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
 | |
| {
 | |
| 	s32 ret_val = 0;
 | |
| 	u16 j;
 | |
| 	u16 nvm_offset;
 | |
| 
 | |
| 	for (j = 0; j < 4; j++) {
 | |
| 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
 | |
| 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
 | |
| 								nvm_offset);
 | |
| 		if (ret_val != 0)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
 | |
|  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
 | |
|  *  checksum and writes the value to the EEPROM.
 | |
|  **/
 | |
| static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
 | |
| {
 | |
| 	s32 ret_val = 0;
 | |
| 	u16 j;
 | |
| 	u16 nvm_offset;
 | |
| 
 | |
| 	for (j = 0; j < 4; j++) {
 | |
| 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
 | |
| 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
 | |
| 		if (ret_val != 0)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  __igb_access_emi_reg - Read/write EMI register
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @addr: EMI address to program
 | |
|  *  @data: pointer to value to read/write from/to the EMI address
 | |
|  *  @read: boolean flag to indicate read or write
 | |
|  **/
 | |
| static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
 | |
| 				  u16 *data, bool read)
 | |
| {
 | |
| 	s32 ret_val = 0;
 | |
| 
 | |
| 	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	if (read)
 | |
| 		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
 | |
| 	else
 | |
| 		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
 | |
| 
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_read_emi_reg - Read Extended Management Interface register
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @addr: EMI address to program
 | |
|  *  @data: value to be read from the EMI address
 | |
|  **/
 | |
| s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
 | |
| {
 | |
| 	return __igb_access_emi_reg(hw, addr, data, true);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_set_eee_i350 - Enable/disable EEE support
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @adv1G: boolean flag enabling 1G EEE advertisement
 | |
|  *  @adv100m: boolean flag enabling 100M EEE advertisement
 | |
|  *
 | |
|  *  Enable/disable EEE based on setting in dev_spec structure.
 | |
|  *
 | |
|  **/
 | |
| s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
 | |
| {
 | |
| 	u32 ipcnfg, eeer;
 | |
| 
 | |
| 	if ((hw->mac.type < e1000_i350) ||
 | |
| 	    (hw->phy.media_type != e1000_media_type_copper))
 | |
| 		goto out;
 | |
| 	ipcnfg = rd32(E1000_IPCNFG);
 | |
| 	eeer = rd32(E1000_EEER);
 | |
| 
 | |
| 	/* enable or disable per user setting */
 | |
| 	if (!(hw->dev_spec._82575.eee_disable)) {
 | |
| 		u32 eee_su = rd32(E1000_EEE_SU);
 | |
| 
 | |
| 		if (adv100M)
 | |
| 			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
 | |
| 		else
 | |
| 			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
 | |
| 
 | |
| 		if (adv1G)
 | |
| 			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
 | |
| 		else
 | |
| 			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
 | |
| 
 | |
| 		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
 | |
| 			E1000_EEER_LPI_FC);
 | |
| 
 | |
| 		/* This bit should not be set in normal operation. */
 | |
| 		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
 | |
| 			hw_dbg("LPI Clock Stop Bit should not be set!\n");
 | |
| 
 | |
| 	} else {
 | |
| 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
 | |
| 			E1000_IPCNFG_EEE_100M_AN);
 | |
| 		eeer &= ~(E1000_EEER_TX_LPI_EN |
 | |
| 			E1000_EEER_RX_LPI_EN |
 | |
| 			E1000_EEER_LPI_FC);
 | |
| 	}
 | |
| 	wr32(E1000_IPCNFG, ipcnfg);
 | |
| 	wr32(E1000_EEER, eeer);
 | |
| 	rd32(E1000_IPCNFG);
 | |
| 	rd32(E1000_EEER);
 | |
| out:
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_set_eee_i354 - Enable/disable EEE support
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @adv1G: boolean flag enabling 1G EEE advertisement
 | |
|  *  @adv100m: boolean flag enabling 100M EEE advertisement
 | |
|  *
 | |
|  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
 | |
|  *
 | |
|  **/
 | |
| s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
 | |
| {
 | |
| 	struct e1000_phy_info *phy = &hw->phy;
 | |
| 	s32 ret_val = 0;
 | |
| 	u16 phy_data;
 | |
| 
 | |
| 	if ((hw->phy.media_type != e1000_media_type_copper) ||
 | |
| 	    (phy->id != M88E1543_E_PHY_ID))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!hw->dev_spec._82575.eee_disable) {
 | |
| 		/* Switch to PHY page 18. */
 | |
| 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
 | |
| 		if (ret_val)
 | |
| 			goto out;
 | |
| 
 | |
| 		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
 | |
| 					    &phy_data);
 | |
| 		if (ret_val)
 | |
| 			goto out;
 | |
| 
 | |
| 		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
 | |
| 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
 | |
| 					     phy_data);
 | |
| 		if (ret_val)
 | |
| 			goto out;
 | |
| 
 | |
| 		/* Return the PHY to page 0. */
 | |
| 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
 | |
| 		if (ret_val)
 | |
| 			goto out;
 | |
| 
 | |
| 		/* Turn on EEE advertisement. */
 | |
| 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
 | |
| 					     E1000_EEE_ADV_DEV_I354,
 | |
| 					     &phy_data);
 | |
| 		if (ret_val)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (adv100M)
 | |
| 			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
 | |
| 		else
 | |
| 			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
 | |
| 
 | |
| 		if (adv1G)
 | |
| 			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
 | |
| 		else
 | |
| 			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
 | |
| 
 | |
| 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
 | |
| 						E1000_EEE_ADV_DEV_I354,
 | |
| 						phy_data);
 | |
| 	} else {
 | |
| 		/* Turn off EEE advertisement. */
 | |
| 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
 | |
| 					     E1000_EEE_ADV_DEV_I354,
 | |
| 					     &phy_data);
 | |
| 		if (ret_val)
 | |
| 			goto out;
 | |
| 
 | |
| 		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
 | |
| 			      E1000_EEE_ADV_1000_SUPPORTED);
 | |
| 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
 | |
| 					      E1000_EEE_ADV_DEV_I354,
 | |
| 					      phy_data);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_get_eee_status_i354 - Get EEE status
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @status: EEE status
 | |
|  *
 | |
|  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
 | |
|  *  been received.
 | |
|  **/
 | |
| s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
 | |
| {
 | |
| 	struct e1000_phy_info *phy = &hw->phy;
 | |
| 	s32 ret_val = 0;
 | |
| 	u16 phy_data;
 | |
| 
 | |
| 	/* Check if EEE is supported on this device. */
 | |
| 	if ((hw->phy.media_type != e1000_media_type_copper) ||
 | |
| 	    (phy->id != M88E1543_E_PHY_ID))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
 | |
| 				     E1000_PCS_STATUS_DEV_I354,
 | |
| 				     &phy_data);
 | |
| 	if (ret_val)
 | |
| 		goto out;
 | |
| 
 | |
| 	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
 | |
| 			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| static const u8 e1000_emc_temp_data[4] = {
 | |
| 	E1000_EMC_INTERNAL_DATA,
 | |
| 	E1000_EMC_DIODE1_DATA,
 | |
| 	E1000_EMC_DIODE2_DATA,
 | |
| 	E1000_EMC_DIODE3_DATA
 | |
| };
 | |
| static const u8 e1000_emc_therm_limit[4] = {
 | |
| 	E1000_EMC_INTERNAL_THERM_LIMIT,
 | |
| 	E1000_EMC_DIODE1_THERM_LIMIT,
 | |
| 	E1000_EMC_DIODE2_THERM_LIMIT,
 | |
| 	E1000_EMC_DIODE3_THERM_LIMIT
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_IGB_HWMON
 | |
| /**
 | |
|  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Updates the temperatures in mac.thermal_sensor_data
 | |
|  **/
 | |
| static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
 | |
| {
 | |
| 	u16 ets_offset;
 | |
| 	u16 ets_cfg;
 | |
| 	u16 ets_sensor;
 | |
| 	u8  num_sensors;
 | |
| 	u8  sensor_index;
 | |
| 	u8  sensor_location;
 | |
| 	u8  i;
 | |
| 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
 | |
| 
 | |
| 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
 | |
| 		return E1000_NOT_IMPLEMENTED;
 | |
| 
 | |
| 	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
 | |
| 
 | |
| 	/* Return the internal sensor only if ETS is unsupported */
 | |
| 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
 | |
| 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
 | |
| 		return 0;
 | |
| 
 | |
| 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
 | |
| 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
 | |
| 	    != NVM_ETS_TYPE_EMC)
 | |
| 		return E1000_NOT_IMPLEMENTED;
 | |
| 
 | |
| 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
 | |
| 	if (num_sensors > E1000_MAX_SENSORS)
 | |
| 		num_sensors = E1000_MAX_SENSORS;
 | |
| 
 | |
| 	for (i = 1; i < num_sensors; i++) {
 | |
| 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
 | |
| 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
 | |
| 				NVM_ETS_DATA_INDEX_SHIFT);
 | |
| 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
 | |
| 				   NVM_ETS_DATA_LOC_SHIFT);
 | |
| 
 | |
| 		if (sensor_location != 0)
 | |
| 			hw->phy.ops.read_i2c_byte(hw,
 | |
| 					e1000_emc_temp_data[sensor_index],
 | |
| 					E1000_I2C_THERMAL_SENSOR_ADDR,
 | |
| 					&data->sensor[i].temp);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Sets the thermal sensor thresholds according to the NVM map
 | |
|  *  and save off the threshold and location values into mac.thermal_sensor_data
 | |
|  **/
 | |
| static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
 | |
| {
 | |
| 	u16 ets_offset;
 | |
| 	u16 ets_cfg;
 | |
| 	u16 ets_sensor;
 | |
| 	u8  low_thresh_delta;
 | |
| 	u8  num_sensors;
 | |
| 	u8  sensor_index;
 | |
| 	u8  sensor_location;
 | |
| 	u8  therm_limit;
 | |
| 	u8  i;
 | |
| 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
 | |
| 
 | |
| 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
 | |
| 		return E1000_NOT_IMPLEMENTED;
 | |
| 
 | |
| 	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
 | |
| 
 | |
| 	data->sensor[0].location = 0x1;
 | |
| 	data->sensor[0].caution_thresh =
 | |
| 		(rd32(E1000_THHIGHTC) & 0xFF);
 | |
| 	data->sensor[0].max_op_thresh =
 | |
| 		(rd32(E1000_THLOWTC) & 0xFF);
 | |
| 
 | |
| 	/* Return the internal sensor only if ETS is unsupported */
 | |
| 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
 | |
| 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
 | |
| 		return 0;
 | |
| 
 | |
| 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
 | |
| 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
 | |
| 	    != NVM_ETS_TYPE_EMC)
 | |
| 		return E1000_NOT_IMPLEMENTED;
 | |
| 
 | |
| 	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
 | |
| 			    NVM_ETS_LTHRES_DELTA_SHIFT);
 | |
| 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
 | |
| 
 | |
| 	for (i = 1; i <= num_sensors; i++) {
 | |
| 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
 | |
| 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
 | |
| 				NVM_ETS_DATA_INDEX_SHIFT);
 | |
| 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
 | |
| 				   NVM_ETS_DATA_LOC_SHIFT);
 | |
| 		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
 | |
| 
 | |
| 		hw->phy.ops.write_i2c_byte(hw,
 | |
| 			e1000_emc_therm_limit[sensor_index],
 | |
| 			E1000_I2C_THERMAL_SENSOR_ADDR,
 | |
| 			therm_limit);
 | |
| 
 | |
| 		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
 | |
| 			data->sensor[i].location = sensor_location;
 | |
| 			data->sensor[i].caution_thresh = therm_limit;
 | |
| 			data->sensor[i].max_op_thresh = therm_limit -
 | |
| 							low_thresh_delta;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| static struct e1000_mac_operations e1000_mac_ops_82575 = {
 | |
| 	.init_hw              = igb_init_hw_82575,
 | |
| 	.check_for_link       = igb_check_for_link_82575,
 | |
| 	.rar_set              = igb_rar_set,
 | |
| 	.read_mac_addr        = igb_read_mac_addr_82575,
 | |
| 	.get_speed_and_duplex = igb_get_link_up_info_82575,
 | |
| #ifdef CONFIG_IGB_HWMON
 | |
| 	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
 | |
| 	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static struct e1000_phy_operations e1000_phy_ops_82575 = {
 | |
| 	.acquire              = igb_acquire_phy_82575,
 | |
| 	.get_cfg_done         = igb_get_cfg_done_82575,
 | |
| 	.release              = igb_release_phy_82575,
 | |
| 	.write_i2c_byte       = igb_write_i2c_byte,
 | |
| 	.read_i2c_byte        = igb_read_i2c_byte,
 | |
| };
 | |
| 
 | |
| static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
 | |
| 	.acquire              = igb_acquire_nvm_82575,
 | |
| 	.read                 = igb_read_nvm_eerd,
 | |
| 	.release              = igb_release_nvm_82575,
 | |
| 	.write                = igb_write_nvm_spi,
 | |
| };
 | |
| 
 | |
| const struct e1000_info e1000_82575_info = {
 | |
| 	.get_invariants = igb_get_invariants_82575,
 | |
| 	.mac_ops = &e1000_mac_ops_82575,
 | |
| 	.phy_ops = &e1000_phy_ops_82575,
 | |
| 	.nvm_ops = &e1000_nvm_ops_82575,
 | |
| };
 | |
| 
 |