 13b546d962
			
		
	
	
	13b546d962
	
	
	
		
			
			We triggered soft-lockup under stress test on 2.6.34 kernel. BUG: soft lockup - CPU#1 stuck for 60009ms! [lockf2.test:14488] ... [<bf09a4d4>] (jffs2_do_reserve_space+0x420/0x440 [jffs2]) [<bf09a528>] (jffs2_reserve_space_gc+0x34/0x78 [jffs2]) [<bf0a1350>] (jffs2_garbage_collect_dnode.isra.3+0x264/0x478 [jffs2]) [<bf0a2078>] (jffs2_garbage_collect_pass+0x9c0/0xe4c [jffs2]) [<bf09a670>] (jffs2_reserve_space+0x104/0x2a8 [jffs2]) [<bf09dc48>] (jffs2_write_inode_range+0x5c/0x4d4 [jffs2]) [<bf097d8c>] (jffs2_write_end+0x198/0x2c0 [jffs2]) [<c00e00a4>] (generic_file_buffered_write+0x158/0x200) [<c00e14f4>] (__generic_file_aio_write+0x3a4/0x414) [<c00e15c0>] (generic_file_aio_write+0x5c/0xbc) [<c012334c>] (do_sync_write+0x98/0xd4) [<c0123a84>] (vfs_write+0xa8/0x150) [<c0123d74>] (sys_write+0x3c/0xc0)] Fix this by adding a cond_resched() in the while loop. [akpm@linux-foundation.org: don't initialize `ret'] Signed-off-by: Li Zefan <lizefan@huawei.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
		
			
				
	
	
		
			883 lines
		
	
	
	
		
			28 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			883 lines
		
	
	
	
		
			28 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * JFFS2 -- Journalling Flash File System, Version 2.
 | |
|  *
 | |
|  * Copyright © 2001-2007 Red Hat, Inc.
 | |
|  *
 | |
|  * Created by David Woodhouse <dwmw2@infradead.org>
 | |
|  *
 | |
|  * For licensing information, see the file 'LICENCE' in this directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/sched.h> /* For cond_resched() */
 | |
| #include "nodelist.h"
 | |
| #include "debug.h"
 | |
| 
 | |
| /*
 | |
|  * Check whether the user is allowed to write.
 | |
|  */
 | |
| static int jffs2_rp_can_write(struct jffs2_sb_info *c)
 | |
| {
 | |
| 	uint32_t avail;
 | |
| 	struct jffs2_mount_opts *opts = &c->mount_opts;
 | |
| 
 | |
| 	avail = c->dirty_size + c->free_size + c->unchecked_size +
 | |
| 		c->erasing_size - c->resv_blocks_write * c->sector_size
 | |
| 		- c->nospc_dirty_size;
 | |
| 
 | |
| 	if (avail < 2 * opts->rp_size)
 | |
| 		jffs2_dbg(1, "rpsize %u, dirty_size %u, free_size %u, "
 | |
| 			  "erasing_size %u, unchecked_size %u, "
 | |
| 			  "nr_erasing_blocks %u, avail %u, resrv %u\n",
 | |
| 			  opts->rp_size, c->dirty_size, c->free_size,
 | |
| 			  c->erasing_size, c->unchecked_size,
 | |
| 			  c->nr_erasing_blocks, avail, c->nospc_dirty_size);
 | |
| 
 | |
| 	if (avail > opts->rp_size)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Always allow root */
 | |
| 	if (capable(CAP_SYS_RESOURCE))
 | |
| 		return 1;
 | |
| 
 | |
| 	jffs2_dbg(1, "forbid writing\n");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	jffs2_reserve_space - request physical space to write nodes to flash
 | |
|  *	@c: superblock info
 | |
|  *	@minsize: Minimum acceptable size of allocation
 | |
|  *	@len: Returned value of allocation length
 | |
|  *	@prio: Allocation type - ALLOC_{NORMAL,DELETION}
 | |
|  *
 | |
|  *	Requests a block of physical space on the flash. Returns zero for success
 | |
|  *	and puts 'len' into the appropriate place, or returns -ENOSPC or other 
 | |
|  *	error if appropriate. Doesn't return len since that's 
 | |
|  *
 | |
|  *	If it returns zero, jffs2_reserve_space() also downs the per-filesystem
 | |
|  *	allocation semaphore, to prevent more than one allocation from being
 | |
|  *	active at any time. The semaphore is later released by jffs2_commit_allocation()
 | |
|  *
 | |
|  *	jffs2_reserve_space() may trigger garbage collection in order to make room
 | |
|  *	for the requested allocation.
 | |
|  */
 | |
| 
 | |
| static int jffs2_do_reserve_space(struct jffs2_sb_info *c,  uint32_t minsize,
 | |
| 				  uint32_t *len, uint32_t sumsize);
 | |
| 
 | |
| int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
 | |
| 			uint32_t *len, int prio, uint32_t sumsize)
 | |
| {
 | |
| 	int ret = -EAGAIN;
 | |
| 	int blocksneeded = c->resv_blocks_write;
 | |
| 	/* align it */
 | |
| 	minsize = PAD(minsize);
 | |
| 
 | |
| 	jffs2_dbg(1, "%s(): Requested 0x%x bytes\n", __func__, minsize);
 | |
| 	mutex_lock(&c->alloc_sem);
 | |
| 
 | |
| 	jffs2_dbg(1, "%s(): alloc sem got\n", __func__);
 | |
| 
 | |
| 	spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the free space is greater then size of the reserved pool.
 | |
| 	 * If not, only allow root to proceed with writing.
 | |
| 	 */
 | |
| 	if (prio != ALLOC_DELETION && !jffs2_rp_can_write(c)) {
 | |
| 		ret = -ENOSPC;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* this needs a little more thought (true <tglx> :)) */
 | |
| 	while(ret == -EAGAIN) {
 | |
| 		while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
 | |
| 			uint32_t dirty, avail;
 | |
| 
 | |
| 			/* calculate real dirty size
 | |
| 			 * dirty_size contains blocks on erase_pending_list
 | |
| 			 * those blocks are counted in c->nr_erasing_blocks.
 | |
| 			 * If one block is actually erased, it is not longer counted as dirty_space
 | |
| 			 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
 | |
| 			 * with c->nr_erasing_blocks * c->sector_size again.
 | |
| 			 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
 | |
| 			 * This helps us to force gc and pick eventually a clean block to spread the load.
 | |
| 			 * We add unchecked_size here, as we hopefully will find some space to use.
 | |
| 			 * This will affect the sum only once, as gc first finishes checking
 | |
| 			 * of nodes.
 | |
| 			 */
 | |
| 			dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
 | |
| 			if (dirty < c->nospc_dirty_size) {
 | |
| 				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
 | |
| 					jffs2_dbg(1, "%s(): Low on dirty space to GC, but it's a deletion. Allowing...\n",
 | |
| 						  __func__);
 | |
| 					break;
 | |
| 				}
 | |
| 				jffs2_dbg(1, "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
 | |
| 					  dirty, c->unchecked_size,
 | |
| 					  c->sector_size);
 | |
| 
 | |
| 				spin_unlock(&c->erase_completion_lock);
 | |
| 				mutex_unlock(&c->alloc_sem);
 | |
| 				return -ENOSPC;
 | |
| 			}
 | |
| 
 | |
| 			/* Calc possibly available space. Possibly available means that we
 | |
| 			 * don't know, if unchecked size contains obsoleted nodes, which could give us some
 | |
| 			 * more usable space. This will affect the sum only once, as gc first finishes checking
 | |
| 			 * of nodes.
 | |
| 			 + Return -ENOSPC, if the maximum possibly available space is less or equal than
 | |
| 			 * blocksneeded * sector_size.
 | |
| 			 * This blocks endless gc looping on a filesystem, which is nearly full, even if
 | |
| 			 * the check above passes.
 | |
| 			 */
 | |
| 			avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
 | |
| 			if ( (avail / c->sector_size) <= blocksneeded) {
 | |
| 				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
 | |
| 					jffs2_dbg(1, "%s(): Low on possibly available space, but it's a deletion. Allowing...\n",
 | |
| 						  __func__);
 | |
| 					break;
 | |
| 				}
 | |
| 
 | |
| 				jffs2_dbg(1, "max. available size 0x%08x  < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
 | |
| 					  avail, blocksneeded * c->sector_size);
 | |
| 				spin_unlock(&c->erase_completion_lock);
 | |
| 				mutex_unlock(&c->alloc_sem);
 | |
| 				return -ENOSPC;
 | |
| 			}
 | |
| 
 | |
| 			mutex_unlock(&c->alloc_sem);
 | |
| 
 | |
| 			jffs2_dbg(1, "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
 | |
| 				  c->nr_free_blocks, c->nr_erasing_blocks,
 | |
| 				  c->free_size, c->dirty_size, c->wasted_size,
 | |
| 				  c->used_size, c->erasing_size, c->bad_size,
 | |
| 				  c->free_size + c->dirty_size +
 | |
| 				  c->wasted_size + c->used_size +
 | |
| 				  c->erasing_size + c->bad_size,
 | |
| 				  c->flash_size);
 | |
| 			spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 			ret = jffs2_garbage_collect_pass(c);
 | |
| 
 | |
| 			if (ret == -EAGAIN) {
 | |
| 				spin_lock(&c->erase_completion_lock);
 | |
| 				if (c->nr_erasing_blocks &&
 | |
| 				    list_empty(&c->erase_pending_list) &&
 | |
| 				    list_empty(&c->erase_complete_list)) {
 | |
| 					DECLARE_WAITQUEUE(wait, current);
 | |
| 					set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 					add_wait_queue(&c->erase_wait, &wait);
 | |
| 					jffs2_dbg(1, "%s waiting for erase to complete\n",
 | |
| 						  __func__);
 | |
| 					spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 					schedule();
 | |
| 					remove_wait_queue(&c->erase_wait, &wait);
 | |
| 				} else
 | |
| 					spin_unlock(&c->erase_completion_lock);
 | |
| 			} else if (ret)
 | |
| 				return ret;
 | |
| 
 | |
| 			cond_resched();
 | |
| 
 | |
| 			if (signal_pending(current))
 | |
| 				return -EINTR;
 | |
| 
 | |
| 			mutex_lock(&c->alloc_sem);
 | |
| 			spin_lock(&c->erase_completion_lock);
 | |
| 		}
 | |
| 
 | |
| 		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
 | |
| 		if (ret) {
 | |
| 			jffs2_dbg(1, "%s(): ret is %d\n", __func__, ret);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	spin_unlock(&c->erase_completion_lock);
 | |
| 	if (!ret)
 | |
| 		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
 | |
| 	if (ret)
 | |
| 		mutex_unlock(&c->alloc_sem);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
 | |
| 			   uint32_t *len, uint32_t sumsize)
 | |
| {
 | |
| 	int ret;
 | |
| 	minsize = PAD(minsize);
 | |
| 
 | |
| 	jffs2_dbg(1, "%s(): Requested 0x%x bytes\n", __func__, minsize);
 | |
| 
 | |
| 	while (true) {
 | |
| 		spin_lock(&c->erase_completion_lock);
 | |
| 		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
 | |
| 		if (ret) {
 | |
| 			jffs2_dbg(1, "%s(): looping, ret is %d\n",
 | |
| 				  __func__, ret);
 | |
| 		}
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 		if (ret == -EAGAIN)
 | |
| 			cond_resched();
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 	if (!ret)
 | |
| 		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
 | |
| 
 | |
| static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
 | |
| {
 | |
| 
 | |
| 	if (c->nextblock == NULL) {
 | |
| 		jffs2_dbg(1, "%s(): Erase block at 0x%08x has already been placed in a list\n",
 | |
| 			  __func__, jeb->offset);
 | |
| 		return;
 | |
| 	}
 | |
| 	/* Check, if we have a dirty block now, or if it was dirty already */
 | |
| 	if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
 | |
| 		c->dirty_size += jeb->wasted_size;
 | |
| 		c->wasted_size -= jeb->wasted_size;
 | |
| 		jeb->dirty_size += jeb->wasted_size;
 | |
| 		jeb->wasted_size = 0;
 | |
| 		if (VERYDIRTY(c, jeb->dirty_size)) {
 | |
| 			jffs2_dbg(1, "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
 | |
| 				  jeb->offset, jeb->free_size, jeb->dirty_size,
 | |
| 				  jeb->used_size);
 | |
| 			list_add_tail(&jeb->list, &c->very_dirty_list);
 | |
| 		} else {
 | |
| 			jffs2_dbg(1, "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
 | |
| 				  jeb->offset, jeb->free_size, jeb->dirty_size,
 | |
| 				  jeb->used_size);
 | |
| 			list_add_tail(&jeb->list, &c->dirty_list);
 | |
| 		}
 | |
| 	} else {
 | |
| 		jffs2_dbg(1, "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
 | |
| 			  jeb->offset, jeb->free_size, jeb->dirty_size,
 | |
| 			  jeb->used_size);
 | |
| 		list_add_tail(&jeb->list, &c->clean_list);
 | |
| 	}
 | |
| 	c->nextblock = NULL;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Select a new jeb for nextblock */
 | |
| 
 | |
| static int jffs2_find_nextblock(struct jffs2_sb_info *c)
 | |
| {
 | |
| 	struct list_head *next;
 | |
| 
 | |
| 	/* Take the next block off the 'free' list */
 | |
| 
 | |
| 	if (list_empty(&c->free_list)) {
 | |
| 
 | |
| 		if (!c->nr_erasing_blocks &&
 | |
| 			!list_empty(&c->erasable_list)) {
 | |
| 			struct jffs2_eraseblock *ejeb;
 | |
| 
 | |
| 			ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
 | |
| 			list_move_tail(&ejeb->list, &c->erase_pending_list);
 | |
| 			c->nr_erasing_blocks++;
 | |
| 			jffs2_garbage_collect_trigger(c);
 | |
| 			jffs2_dbg(1, "%s(): Triggering erase of erasable block at 0x%08x\n",
 | |
| 				  __func__, ejeb->offset);
 | |
| 		}
 | |
| 
 | |
| 		if (!c->nr_erasing_blocks &&
 | |
| 			!list_empty(&c->erasable_pending_wbuf_list)) {
 | |
| 			jffs2_dbg(1, "%s(): Flushing write buffer\n",
 | |
| 				  __func__);
 | |
| 			/* c->nextblock is NULL, no update to c->nextblock allowed */
 | |
| 			spin_unlock(&c->erase_completion_lock);
 | |
| 			jffs2_flush_wbuf_pad(c);
 | |
| 			spin_lock(&c->erase_completion_lock);
 | |
| 			/* Have another go. It'll be on the erasable_list now */
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 
 | |
| 		if (!c->nr_erasing_blocks) {
 | |
| 			/* Ouch. We're in GC, or we wouldn't have got here.
 | |
| 			   And there's no space left. At all. */
 | |
| 			pr_crit("Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
 | |
| 				c->nr_erasing_blocks, c->nr_free_blocks,
 | |
| 				list_empty(&c->erasable_list) ? "yes" : "no",
 | |
| 				list_empty(&c->erasing_list) ? "yes" : "no",
 | |
| 				list_empty(&c->erase_pending_list) ? "yes" : "no");
 | |
| 			return -ENOSPC;
 | |
| 		}
 | |
| 
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 		/* Don't wait for it; just erase one right now */
 | |
| 		jffs2_erase_pending_blocks(c, 1);
 | |
| 		spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 		/* An erase may have failed, decreasing the
 | |
| 		   amount of free space available. So we must
 | |
| 		   restart from the beginning */
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	next = c->free_list.next;
 | |
| 	list_del(next);
 | |
| 	c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
 | |
| 	c->nr_free_blocks--;
 | |
| 
 | |
| 	jffs2_sum_reset_collected(c->summary); /* reset collected summary */
 | |
| 
 | |
| #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
 | |
| 	/* adjust write buffer offset, else we get a non contiguous write bug */
 | |
| 	if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len)
 | |
| 		c->wbuf_ofs = 0xffffffff;
 | |
| #endif
 | |
| 
 | |
| 	jffs2_dbg(1, "%s(): new nextblock = 0x%08x\n",
 | |
| 		  __func__, c->nextblock->offset);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Called with alloc sem _and_ erase_completion_lock */
 | |
| static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
 | |
| 				  uint32_t *len, uint32_t sumsize)
 | |
| {
 | |
| 	struct jffs2_eraseblock *jeb = c->nextblock;
 | |
| 	uint32_t reserved_size;				/* for summary information at the end of the jeb */
 | |
| 	int ret;
 | |
| 
 | |
|  restart:
 | |
| 	reserved_size = 0;
 | |
| 
 | |
| 	if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
 | |
| 							/* NOSUM_SIZE means not to generate summary */
 | |
| 
 | |
| 		if (jeb) {
 | |
| 			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
 | |
| 			dbg_summary("minsize=%d , jeb->free=%d ,"
 | |
| 						"summary->size=%d , sumsize=%d\n",
 | |
| 						minsize, jeb->free_size,
 | |
| 						c->summary->sum_size, sumsize);
 | |
| 		}
 | |
| 
 | |
| 		/* Is there enough space for writing out the current node, or we have to
 | |
| 		   write out summary information now, close this jeb and select new nextblock? */
 | |
| 		if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
 | |
| 					JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
 | |
| 
 | |
| 			/* Has summary been disabled for this jeb? */
 | |
| 			if (jffs2_sum_is_disabled(c->summary)) {
 | |
| 				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
 | |
| 				goto restart;
 | |
| 			}
 | |
| 
 | |
| 			/* Writing out the collected summary information */
 | |
| 			dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
 | |
| 			ret = jffs2_sum_write_sumnode(c);
 | |
| 
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 
 | |
| 			if (jffs2_sum_is_disabled(c->summary)) {
 | |
| 				/* jffs2_write_sumnode() couldn't write out the summary information
 | |
| 				   diabling summary for this jeb and free the collected information
 | |
| 				 */
 | |
| 				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
 | |
| 				goto restart;
 | |
| 			}
 | |
| 
 | |
| 			jffs2_close_nextblock(c, jeb);
 | |
| 			jeb = NULL;
 | |
| 			/* keep always valid value in reserved_size */
 | |
| 			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (jeb && minsize > jeb->free_size) {
 | |
| 			uint32_t waste;
 | |
| 
 | |
| 			/* Skip the end of this block and file it as having some dirty space */
 | |
| 			/* If there's a pending write to it, flush now */
 | |
| 
 | |
| 			if (jffs2_wbuf_dirty(c)) {
 | |
| 				spin_unlock(&c->erase_completion_lock);
 | |
| 				jffs2_dbg(1, "%s(): Flushing write buffer\n",
 | |
| 					  __func__);
 | |
| 				jffs2_flush_wbuf_pad(c);
 | |
| 				spin_lock(&c->erase_completion_lock);
 | |
| 				jeb = c->nextblock;
 | |
| 				goto restart;
 | |
| 			}
 | |
| 
 | |
| 			spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 			ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
 | |
| 
 | |
| 			/* Just lock it again and continue. Nothing much can change because
 | |
| 			   we hold c->alloc_sem anyway. In fact, it's not entirely clear why
 | |
| 			   we hold c->erase_completion_lock in the majority of this function...
 | |
| 			   but that's a question for another (more caffeine-rich) day. */
 | |
| 			spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 
 | |
| 			waste = jeb->free_size;
 | |
| 			jffs2_link_node_ref(c, jeb,
 | |
| 					    (jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
 | |
| 					    waste, NULL);
 | |
| 			/* FIXME: that made it count as dirty. Convert to wasted */
 | |
| 			jeb->dirty_size -= waste;
 | |
| 			c->dirty_size -= waste;
 | |
| 			jeb->wasted_size += waste;
 | |
| 			c->wasted_size += waste;
 | |
| 
 | |
| 			jffs2_close_nextblock(c, jeb);
 | |
| 			jeb = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!jeb) {
 | |
| 
 | |
| 		ret = jffs2_find_nextblock(c);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		jeb = c->nextblock;
 | |
| 
 | |
| 		if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
 | |
| 			pr_warn("Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n",
 | |
| 				jeb->offset, jeb->free_size);
 | |
| 			goto restart;
 | |
| 		}
 | |
| 	}
 | |
| 	/* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
 | |
| 	   enough space */
 | |
| 	*len = jeb->free_size - reserved_size;
 | |
| 
 | |
| 	if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
 | |
| 	    !jeb->first_node->next_in_ino) {
 | |
| 		/* Only node in it beforehand was a CLEANMARKER node (we think).
 | |
| 		   So mark it obsolete now that there's going to be another node
 | |
| 		   in the block. This will reduce used_size to zero but We've
 | |
| 		   already set c->nextblock so that jffs2_mark_node_obsolete()
 | |
| 		   won't try to refile it to the dirty_list.
 | |
| 		*/
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 		jffs2_mark_node_obsolete(c, jeb->first_node);
 | |
| 		spin_lock(&c->erase_completion_lock);
 | |
| 	}
 | |
| 
 | |
| 	jffs2_dbg(1, "%s(): Giving 0x%x bytes at 0x%x\n",
 | |
| 		  __func__,
 | |
| 		  *len, jeb->offset + (c->sector_size - jeb->free_size));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	jffs2_add_physical_node_ref - add a physical node reference to the list
 | |
|  *	@c: superblock info
 | |
|  *	@new: new node reference to add
 | |
|  *	@len: length of this physical node
 | |
|  *
 | |
|  *	Should only be used to report nodes for which space has been allocated
 | |
|  *	by jffs2_reserve_space.
 | |
|  *
 | |
|  *	Must be called with the alloc_sem held.
 | |
|  */
 | |
| 
 | |
| struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
 | |
| 						       uint32_t ofs, uint32_t len,
 | |
| 						       struct jffs2_inode_cache *ic)
 | |
| {
 | |
| 	struct jffs2_eraseblock *jeb;
 | |
| 	struct jffs2_raw_node_ref *new;
 | |
| 
 | |
| 	jeb = &c->blocks[ofs / c->sector_size];
 | |
| 
 | |
| 	jffs2_dbg(1, "%s(): Node at 0x%x(%d), size 0x%x\n",
 | |
| 		  __func__, ofs & ~3, ofs & 3, len);
 | |
| #if 1
 | |
| 	/* Allow non-obsolete nodes only to be added at the end of c->nextblock, 
 | |
| 	   if c->nextblock is set. Note that wbuf.c will file obsolete nodes
 | |
| 	   even after refiling c->nextblock */
 | |
| 	if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
 | |
| 	    && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
 | |
| 		pr_warn("argh. node added in wrong place at 0x%08x(%d)\n",
 | |
| 			ofs & ~3, ofs & 3);
 | |
| 		if (c->nextblock)
 | |
| 			pr_warn("nextblock 0x%08x", c->nextblock->offset);
 | |
| 		else
 | |
| 			pr_warn("No nextblock");
 | |
| 		pr_cont(", expected at %08x\n",
 | |
| 			jeb->offset + (c->sector_size - jeb->free_size));
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| #endif
 | |
| 	spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 	new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
 | |
| 
 | |
| 	if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
 | |
| 		/* If it lives on the dirty_list, jffs2_reserve_space will put it there */
 | |
| 		jffs2_dbg(1, "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
 | |
| 			  jeb->offset, jeb->free_size, jeb->dirty_size,
 | |
| 			  jeb->used_size);
 | |
| 		if (jffs2_wbuf_dirty(c)) {
 | |
| 			/* Flush the last write in the block if it's outstanding */
 | |
| 			spin_unlock(&c->erase_completion_lock);
 | |
| 			jffs2_flush_wbuf_pad(c);
 | |
| 			spin_lock(&c->erase_completion_lock);
 | |
| 		}
 | |
| 
 | |
| 		list_add_tail(&jeb->list, &c->clean_list);
 | |
| 		c->nextblock = NULL;
 | |
| 	}
 | |
| 	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
 | |
| 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
 | |
| 
 | |
| 	spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 	return new;
 | |
| }
 | |
| 
 | |
| 
 | |
| void jffs2_complete_reservation(struct jffs2_sb_info *c)
 | |
| {
 | |
| 	jffs2_dbg(1, "jffs2_complete_reservation()\n");
 | |
| 	spin_lock(&c->erase_completion_lock);
 | |
| 	jffs2_garbage_collect_trigger(c);
 | |
| 	spin_unlock(&c->erase_completion_lock);
 | |
| 	mutex_unlock(&c->alloc_sem);
 | |
| }
 | |
| 
 | |
| static inline int on_list(struct list_head *obj, struct list_head *head)
 | |
| {
 | |
| 	struct list_head *this;
 | |
| 
 | |
| 	list_for_each(this, head) {
 | |
| 		if (this == obj) {
 | |
| 			jffs2_dbg(1, "%p is on list at %p\n", obj, head);
 | |
| 			return 1;
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
 | |
| {
 | |
| 	struct jffs2_eraseblock *jeb;
 | |
| 	int blocknr;
 | |
| 	struct jffs2_unknown_node n;
 | |
| 	int ret, addedsize;
 | |
| 	size_t retlen;
 | |
| 	uint32_t freed_len;
 | |
| 
 | |
| 	if(unlikely(!ref)) {
 | |
| 		pr_notice("EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	if (ref_obsolete(ref)) {
 | |
| 		jffs2_dbg(1, "%s(): called with already obsolete node at 0x%08x\n",
 | |
| 			  __func__, ref_offset(ref));
 | |
| 		return;
 | |
| 	}
 | |
| 	blocknr = ref->flash_offset / c->sector_size;
 | |
| 	if (blocknr >= c->nr_blocks) {
 | |
| 		pr_notice("raw node at 0x%08x is off the end of device!\n",
 | |
| 			  ref->flash_offset);
 | |
| 		BUG();
 | |
| 	}
 | |
| 	jeb = &c->blocks[blocknr];
 | |
| 
 | |
| 	if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
 | |
| 	    !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
 | |
| 		/* Hm. This may confuse static lock analysis. If any of the above
 | |
| 		   three conditions is false, we're going to return from this
 | |
| 		   function without actually obliterating any nodes or freeing
 | |
| 		   any jffs2_raw_node_refs. So we don't need to stop erases from
 | |
| 		   happening, or protect against people holding an obsolete
 | |
| 		   jffs2_raw_node_ref without the erase_completion_lock. */
 | |
| 		mutex_lock(&c->erase_free_sem);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 	freed_len = ref_totlen(c, jeb, ref);
 | |
| 
 | |
| 	if (ref_flags(ref) == REF_UNCHECKED) {
 | |
| 		D1(if (unlikely(jeb->unchecked_size < freed_len)) {
 | |
| 				pr_notice("raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
 | |
| 					  freed_len, blocknr,
 | |
| 					  ref->flash_offset, jeb->used_size);
 | |
| 			BUG();
 | |
| 		})
 | |
| 			jffs2_dbg(1, "Obsoleting previously unchecked node at 0x%08x of len %x\n",
 | |
| 				  ref_offset(ref), freed_len);
 | |
| 		jeb->unchecked_size -= freed_len;
 | |
| 		c->unchecked_size -= freed_len;
 | |
| 	} else {
 | |
| 		D1(if (unlikely(jeb->used_size < freed_len)) {
 | |
| 				pr_notice("raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
 | |
| 					  freed_len, blocknr,
 | |
| 					  ref->flash_offset, jeb->used_size);
 | |
| 			BUG();
 | |
| 		})
 | |
| 			jffs2_dbg(1, "Obsoleting node at 0x%08x of len %#x: ",
 | |
| 				  ref_offset(ref), freed_len);
 | |
| 		jeb->used_size -= freed_len;
 | |
| 		c->used_size -= freed_len;
 | |
| 	}
 | |
| 
 | |
| 	// Take care, that wasted size is taken into concern
 | |
| 	if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
 | |
| 		jffs2_dbg(1, "Dirtying\n");
 | |
| 		addedsize = freed_len;
 | |
| 		jeb->dirty_size += freed_len;
 | |
| 		c->dirty_size += freed_len;
 | |
| 
 | |
| 		/* Convert wasted space to dirty, if not a bad block */
 | |
| 		if (jeb->wasted_size) {
 | |
| 			if (on_list(&jeb->list, &c->bad_used_list)) {
 | |
| 				jffs2_dbg(1, "Leaving block at %08x on the bad_used_list\n",
 | |
| 					  jeb->offset);
 | |
| 				addedsize = 0; /* To fool the refiling code later */
 | |
| 			} else {
 | |
| 				jffs2_dbg(1, "Converting %d bytes of wasted space to dirty in block at %08x\n",
 | |
| 					  jeb->wasted_size, jeb->offset);
 | |
| 				addedsize += jeb->wasted_size;
 | |
| 				jeb->dirty_size += jeb->wasted_size;
 | |
| 				c->dirty_size += jeb->wasted_size;
 | |
| 				c->wasted_size -= jeb->wasted_size;
 | |
| 				jeb->wasted_size = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		jffs2_dbg(1, "Wasting\n");
 | |
| 		addedsize = 0;
 | |
| 		jeb->wasted_size += freed_len;
 | |
| 		c->wasted_size += freed_len;
 | |
| 	}
 | |
| 	ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
 | |
| 
 | |
| 	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
 | |
| 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
 | |
| 
 | |
| 	if (c->flags & JFFS2_SB_FLAG_SCANNING) {
 | |
| 		/* Flash scanning is in progress. Don't muck about with the block
 | |
| 		   lists because they're not ready yet, and don't actually
 | |
| 		   obliterate nodes that look obsolete. If they weren't
 | |
| 		   marked obsolete on the flash at the time they _became_
 | |
| 		   obsolete, there was probably a reason for that. */
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 		/* We didn't lock the erase_free_sem */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (jeb == c->nextblock) {
 | |
| 		jffs2_dbg(2, "Not moving nextblock 0x%08x to dirty/erase_pending list\n",
 | |
| 			  jeb->offset);
 | |
| 	} else if (!jeb->used_size && !jeb->unchecked_size) {
 | |
| 		if (jeb == c->gcblock) {
 | |
| 			jffs2_dbg(1, "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n",
 | |
| 				  jeb->offset);
 | |
| 			c->gcblock = NULL;
 | |
| 		} else {
 | |
| 			jffs2_dbg(1, "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n",
 | |
| 				  jeb->offset);
 | |
| 			list_del(&jeb->list);
 | |
| 		}
 | |
| 		if (jffs2_wbuf_dirty(c)) {
 | |
| 			jffs2_dbg(1, "...and adding to erasable_pending_wbuf_list\n");
 | |
| 			list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
 | |
| 		} else {
 | |
| 			if (jiffies & 127) {
 | |
| 				/* Most of the time, we just erase it immediately. Otherwise we
 | |
| 				   spend ages scanning it on mount, etc. */
 | |
| 				jffs2_dbg(1, "...and adding to erase_pending_list\n");
 | |
| 				list_add_tail(&jeb->list, &c->erase_pending_list);
 | |
| 				c->nr_erasing_blocks++;
 | |
| 				jffs2_garbage_collect_trigger(c);
 | |
| 			} else {
 | |
| 				/* Sometimes, however, we leave it elsewhere so it doesn't get
 | |
| 				   immediately reused, and we spread the load a bit. */
 | |
| 				jffs2_dbg(1, "...and adding to erasable_list\n");
 | |
| 				list_add_tail(&jeb->list, &c->erasable_list);
 | |
| 			}
 | |
| 		}
 | |
| 		jffs2_dbg(1, "Done OK\n");
 | |
| 	} else if (jeb == c->gcblock) {
 | |
| 		jffs2_dbg(2, "Not moving gcblock 0x%08x to dirty_list\n",
 | |
| 			  jeb->offset);
 | |
| 	} else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
 | |
| 		jffs2_dbg(1, "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n",
 | |
| 			  jeb->offset);
 | |
| 		list_del(&jeb->list);
 | |
| 		jffs2_dbg(1, "...and adding to dirty_list\n");
 | |
| 		list_add_tail(&jeb->list, &c->dirty_list);
 | |
| 	} else if (VERYDIRTY(c, jeb->dirty_size) &&
 | |
| 		   !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
 | |
| 		jffs2_dbg(1, "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n",
 | |
| 			  jeb->offset);
 | |
| 		list_del(&jeb->list);
 | |
| 		jffs2_dbg(1, "...and adding to very_dirty_list\n");
 | |
| 		list_add_tail(&jeb->list, &c->very_dirty_list);
 | |
| 	} else {
 | |
| 		jffs2_dbg(1, "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
 | |
| 			  jeb->offset, jeb->free_size, jeb->dirty_size,
 | |
| 			  jeb->used_size);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 	if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
 | |
| 		(c->flags & JFFS2_SB_FLAG_BUILDING)) {
 | |
| 		/* We didn't lock the erase_free_sem */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* The erase_free_sem is locked, and has been since before we marked the node obsolete
 | |
| 	   and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
 | |
| 	   the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
 | |
| 	   by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
 | |
| 
 | |
| 	jffs2_dbg(1, "obliterating obsoleted node at 0x%08x\n",
 | |
| 		  ref_offset(ref));
 | |
| 	ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
 | |
| 	if (ret) {
 | |
| 		pr_warn("Read error reading from obsoleted node at 0x%08x: %d\n",
 | |
| 			ref_offset(ref), ret);
 | |
| 		goto out_erase_sem;
 | |
| 	}
 | |
| 	if (retlen != sizeof(n)) {
 | |
| 		pr_warn("Short read from obsoleted node at 0x%08x: %zd\n",
 | |
| 			ref_offset(ref), retlen);
 | |
| 		goto out_erase_sem;
 | |
| 	}
 | |
| 	if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
 | |
| 		pr_warn("Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n",
 | |
| 			je32_to_cpu(n.totlen), freed_len);
 | |
| 		goto out_erase_sem;
 | |
| 	}
 | |
| 	if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
 | |
| 		jffs2_dbg(1, "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n",
 | |
| 			  ref_offset(ref), je16_to_cpu(n.nodetype));
 | |
| 		goto out_erase_sem;
 | |
| 	}
 | |
| 	/* XXX FIXME: This is ugly now */
 | |
| 	n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
 | |
| 	ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
 | |
| 	if (ret) {
 | |
| 		pr_warn("Write error in obliterating obsoleted node at 0x%08x: %d\n",
 | |
| 			ref_offset(ref), ret);
 | |
| 		goto out_erase_sem;
 | |
| 	}
 | |
| 	if (retlen != sizeof(n)) {
 | |
| 		pr_warn("Short write in obliterating obsoleted node at 0x%08x: %zd\n",
 | |
| 			ref_offset(ref), retlen);
 | |
| 		goto out_erase_sem;
 | |
| 	}
 | |
| 
 | |
| 	/* Nodes which have been marked obsolete no longer need to be
 | |
| 	   associated with any inode. Remove them from the per-inode list.
 | |
| 
 | |
| 	   Note we can't do this for NAND at the moment because we need
 | |
| 	   obsolete dirent nodes to stay on the lists, because of the
 | |
| 	   horridness in jffs2_garbage_collect_deletion_dirent(). Also
 | |
| 	   because we delete the inocache, and on NAND we need that to
 | |
| 	   stay around until all the nodes are actually erased, in order
 | |
| 	   to stop us from giving the same inode number to another newly
 | |
| 	   created inode. */
 | |
| 	if (ref->next_in_ino) {
 | |
| 		struct jffs2_inode_cache *ic;
 | |
| 		struct jffs2_raw_node_ref **p;
 | |
| 
 | |
| 		spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 		ic = jffs2_raw_ref_to_ic(ref);
 | |
| 		for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
 | |
| 			;
 | |
| 
 | |
| 		*p = ref->next_in_ino;
 | |
| 		ref->next_in_ino = NULL;
 | |
| 
 | |
| 		switch (ic->class) {
 | |
| #ifdef CONFIG_JFFS2_FS_XATTR
 | |
| 			case RAWNODE_CLASS_XATTR_DATUM:
 | |
| 				jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
 | |
| 				break;
 | |
| 			case RAWNODE_CLASS_XATTR_REF:
 | |
| 				jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
 | |
| 				break;
 | |
| #endif
 | |
| 			default:
 | |
| 				if (ic->nodes == (void *)ic && ic->pino_nlink == 0)
 | |
| 					jffs2_del_ino_cache(c, ic);
 | |
| 				break;
 | |
| 		}
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 	}
 | |
| 
 | |
|  out_erase_sem:
 | |
| 	mutex_unlock(&c->erase_free_sem);
 | |
| }
 | |
| 
 | |
| int jffs2_thread_should_wake(struct jffs2_sb_info *c)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	uint32_t dirty;
 | |
| 	int nr_very_dirty = 0;
 | |
| 	struct jffs2_eraseblock *jeb;
 | |
| 
 | |
| 	if (!list_empty(&c->erase_complete_list) ||
 | |
| 	    !list_empty(&c->erase_pending_list))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (c->unchecked_size) {
 | |
| 		jffs2_dbg(1, "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
 | |
| 			  c->unchecked_size, c->checked_ino);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* dirty_size contains blocks on erase_pending_list
 | |
| 	 * those blocks are counted in c->nr_erasing_blocks.
 | |
| 	 * If one block is actually erased, it is not longer counted as dirty_space
 | |
| 	 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
 | |
| 	 * with c->nr_erasing_blocks * c->sector_size again.
 | |
| 	 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
 | |
| 	 * This helps us to force gc and pick eventually a clean block to spread the load.
 | |
| 	 */
 | |
| 	dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
 | |
| 
 | |
| 	if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
 | |
| 			(dirty > c->nospc_dirty_size))
 | |
| 		ret = 1;
 | |
| 
 | |
| 	list_for_each_entry(jeb, &c->very_dirty_list, list) {
 | |
| 		nr_very_dirty++;
 | |
| 		if (nr_very_dirty == c->vdirty_blocks_gctrigger) {
 | |
| 			ret = 1;
 | |
| 			/* In debug mode, actually go through and count them all */
 | |
| 			D1(continue);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	jffs2_dbg(1, "%s(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
 | |
| 		  __func__, c->nr_free_blocks, c->nr_erasing_blocks,
 | |
| 		  c->dirty_size, nr_very_dirty, ret ? "yes" : "no");
 | |
| 
 | |
| 	return ret;
 | |
| }
 |