 510184c89f
			
		
	
	
	510184c89f
	
	
	
		
			
			Under memory pressure, let's avoid skipping data writes. Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
		
			
				
	
	
		
			749 lines
		
	
	
	
		
			22 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			749 lines
		
	
	
	
		
			22 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * fs/f2fs/segment.h
 | |
|  *
 | |
|  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
 | |
|  *             http://www.samsung.com/
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| #include <linux/blkdev.h>
 | |
| 
 | |
| /* constant macro */
 | |
| #define NULL_SEGNO			((unsigned int)(~0))
 | |
| #define NULL_SECNO			((unsigned int)(~0))
 | |
| 
 | |
| #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
 | |
| 
 | |
| /* L: Logical segment # in volume, R: Relative segment # in main area */
 | |
| #define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
 | |
| #define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)
 | |
| 
 | |
| #define IS_DATASEG(t)	(t <= CURSEG_COLD_DATA)
 | |
| #define IS_NODESEG(t)	(t >= CURSEG_HOT_NODE)
 | |
| 
 | |
| #define IS_CURSEG(sbi, seg)						\
 | |
| 	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
 | |
| 	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
 | |
| 	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
 | |
| 	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
 | |
| 	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
 | |
| 	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
 | |
| 
 | |
| #define IS_CURSEC(sbi, secno)						\
 | |
| 	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
 | |
| 	  sbi->segs_per_sec) ||	\
 | |
| 	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
 | |
| 	  sbi->segs_per_sec) ||	\
 | |
| 	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
 | |
| 	  sbi->segs_per_sec) ||	\
 | |
| 	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
 | |
| 	  sbi->segs_per_sec) ||	\
 | |
| 	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
 | |
| 	  sbi->segs_per_sec) ||	\
 | |
| 	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
 | |
| 	  sbi->segs_per_sec))	\
 | |
| 
 | |
| #define MAIN_BLKADDR(sbi)	(SM_I(sbi)->main_blkaddr)
 | |
| #define SEG0_BLKADDR(sbi)	(SM_I(sbi)->seg0_blkaddr)
 | |
| 
 | |
| #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
 | |
| #define MAIN_SECS(sbi)	(sbi->total_sections)
 | |
| 
 | |
| #define TOTAL_SEGS(sbi)	(SM_I(sbi)->segment_count)
 | |
| #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
 | |
| 
 | |
| #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
 | |
| #define SEGMENT_SIZE(sbi)	(1ULL << (sbi->log_blocksize +		\
 | |
| 					sbi->log_blocks_per_seg))
 | |
| 
 | |
| #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
 | |
| 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
 | |
| 
 | |
| #define NEXT_FREE_BLKADDR(sbi, curseg)					\
 | |
| 	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
 | |
| 
 | |
| #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
 | |
| #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
 | |
| 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
 | |
| #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
 | |
| 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
 | |
| 
 | |
| #define GET_SEGNO(sbi, blk_addr)					\
 | |
| 	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
 | |
| 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
 | |
| 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
 | |
| #define GET_SECNO(sbi, segno)					\
 | |
| 	((segno) / sbi->segs_per_sec)
 | |
| #define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
 | |
| 	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
 | |
| 
 | |
| #define GET_SUM_BLOCK(sbi, segno)				\
 | |
| 	((sbi->sm_info->ssa_blkaddr) + segno)
 | |
| 
 | |
| #define GET_SUM_TYPE(footer) ((footer)->entry_type)
 | |
| #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
 | |
| 
 | |
| #define SIT_ENTRY_OFFSET(sit_i, segno)					\
 | |
| 	(segno % sit_i->sents_per_block)
 | |
| #define SIT_BLOCK_OFFSET(segno)					\
 | |
| 	(segno / SIT_ENTRY_PER_BLOCK)
 | |
| #define	START_SEGNO(segno)		\
 | |
| 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
 | |
| #define SIT_BLK_CNT(sbi)			\
 | |
| 	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
 | |
| #define f2fs_bitmap_size(nr)			\
 | |
| 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
 | |
| 
 | |
| #define SECTOR_FROM_BLOCK(blk_addr)					\
 | |
| 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
 | |
| #define SECTOR_TO_BLOCK(sectors)					\
 | |
| 	(sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
 | |
| #define MAX_BIO_BLOCKS(sbi)						\
 | |
| 	((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
 | |
| 
 | |
| /*
 | |
|  * indicate a block allocation direction: RIGHT and LEFT.
 | |
|  * RIGHT means allocating new sections towards the end of volume.
 | |
|  * LEFT means the opposite direction.
 | |
|  */
 | |
| enum {
 | |
| 	ALLOC_RIGHT = 0,
 | |
| 	ALLOC_LEFT
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
 | |
|  * LFS writes data sequentially with cleaning operations.
 | |
|  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
 | |
|  */
 | |
| enum {
 | |
| 	LFS = 0,
 | |
| 	SSR
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
 | |
|  * GC_CB is based on cost-benefit algorithm.
 | |
|  * GC_GREEDY is based on greedy algorithm.
 | |
|  */
 | |
| enum {
 | |
| 	GC_CB = 0,
 | |
| 	GC_GREEDY
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * BG_GC means the background cleaning job.
 | |
|  * FG_GC means the on-demand cleaning job.
 | |
|  */
 | |
| enum {
 | |
| 	BG_GC = 0,
 | |
| 	FG_GC
 | |
| };
 | |
| 
 | |
| /* for a function parameter to select a victim segment */
 | |
| struct victim_sel_policy {
 | |
| 	int alloc_mode;			/* LFS or SSR */
 | |
| 	int gc_mode;			/* GC_CB or GC_GREEDY */
 | |
| 	unsigned long *dirty_segmap;	/* dirty segment bitmap */
 | |
| 	unsigned int max_search;	/* maximum # of segments to search */
 | |
| 	unsigned int offset;		/* last scanned bitmap offset */
 | |
| 	unsigned int ofs_unit;		/* bitmap search unit */
 | |
| 	unsigned int min_cost;		/* minimum cost */
 | |
| 	unsigned int min_segno;		/* segment # having min. cost */
 | |
| };
 | |
| 
 | |
| struct seg_entry {
 | |
| 	unsigned short valid_blocks;	/* # of valid blocks */
 | |
| 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
 | |
| 	/*
 | |
| 	 * # of valid blocks and the validity bitmap stored in the the last
 | |
| 	 * checkpoint pack. This information is used by the SSR mode.
 | |
| 	 */
 | |
| 	unsigned short ckpt_valid_blocks;
 | |
| 	unsigned char *ckpt_valid_map;
 | |
| 	unsigned char type;		/* segment type like CURSEG_XXX_TYPE */
 | |
| 	unsigned long long mtime;	/* modification time of the segment */
 | |
| };
 | |
| 
 | |
| struct sec_entry {
 | |
| 	unsigned int valid_blocks;	/* # of valid blocks in a section */
 | |
| };
 | |
| 
 | |
| struct segment_allocation {
 | |
| 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
 | |
| };
 | |
| 
 | |
| struct inmem_pages {
 | |
| 	struct list_head list;
 | |
| 	struct page *page;
 | |
| };
 | |
| 
 | |
| struct sit_info {
 | |
| 	const struct segment_allocation *s_ops;
 | |
| 
 | |
| 	block_t sit_base_addr;		/* start block address of SIT area */
 | |
| 	block_t sit_blocks;		/* # of blocks used by SIT area */
 | |
| 	block_t written_valid_blocks;	/* # of valid blocks in main area */
 | |
| 	char *sit_bitmap;		/* SIT bitmap pointer */
 | |
| 	unsigned int bitmap_size;	/* SIT bitmap size */
 | |
| 
 | |
| 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
 | |
| 	unsigned int dirty_sentries;		/* # of dirty sentries */
 | |
| 	unsigned int sents_per_block;		/* # of SIT entries per block */
 | |
| 	struct mutex sentry_lock;		/* to protect SIT cache */
 | |
| 	struct seg_entry *sentries;		/* SIT segment-level cache */
 | |
| 	struct sec_entry *sec_entries;		/* SIT section-level cache */
 | |
| 
 | |
| 	/* for cost-benefit algorithm in cleaning procedure */
 | |
| 	unsigned long long elapsed_time;	/* elapsed time after mount */
 | |
| 	unsigned long long mounted_time;	/* mount time */
 | |
| 	unsigned long long min_mtime;		/* min. modification time */
 | |
| 	unsigned long long max_mtime;		/* max. modification time */
 | |
| };
 | |
| 
 | |
| struct free_segmap_info {
 | |
| 	unsigned int start_segno;	/* start segment number logically */
 | |
| 	unsigned int free_segments;	/* # of free segments */
 | |
| 	unsigned int free_sections;	/* # of free sections */
 | |
| 	rwlock_t segmap_lock;		/* free segmap lock */
 | |
| 	unsigned long *free_segmap;	/* free segment bitmap */
 | |
| 	unsigned long *free_secmap;	/* free section bitmap */
 | |
| };
 | |
| 
 | |
| /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
 | |
| enum dirty_type {
 | |
| 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
 | |
| 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
 | |
| 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
 | |
| 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
 | |
| 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
 | |
| 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
 | |
| 	DIRTY,			/* to count # of dirty segments */
 | |
| 	PRE,			/* to count # of entirely obsolete segments */
 | |
| 	NR_DIRTY_TYPE
 | |
| };
 | |
| 
 | |
| struct dirty_seglist_info {
 | |
| 	const struct victim_selection *v_ops;	/* victim selction operation */
 | |
| 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
 | |
| 	struct mutex seglist_lock;		/* lock for segment bitmaps */
 | |
| 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
 | |
| 	unsigned long *victim_secmap;		/* background GC victims */
 | |
| };
 | |
| 
 | |
| /* victim selection function for cleaning and SSR */
 | |
| struct victim_selection {
 | |
| 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
 | |
| 							int, int, char);
 | |
| };
 | |
| 
 | |
| /* for active log information */
 | |
| struct curseg_info {
 | |
| 	struct mutex curseg_mutex;		/* lock for consistency */
 | |
| 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
 | |
| 	unsigned char alloc_type;		/* current allocation type */
 | |
| 	unsigned int segno;			/* current segment number */
 | |
| 	unsigned short next_blkoff;		/* next block offset to write */
 | |
| 	unsigned int zone;			/* current zone number */
 | |
| 	unsigned int next_segno;		/* preallocated segment */
 | |
| };
 | |
| 
 | |
| struct sit_entry_set {
 | |
| 	struct list_head set_list;	/* link with all sit sets */
 | |
| 	unsigned int start_segno;	/* start segno of sits in set */
 | |
| 	unsigned int entry_cnt;		/* the # of sit entries in set */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * inline functions
 | |
|  */
 | |
| static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
 | |
| {
 | |
| 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
 | |
| }
 | |
| 
 | |
| static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
 | |
| 						unsigned int segno)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	return &sit_i->sentries[segno];
 | |
| }
 | |
| 
 | |
| static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
 | |
| 						unsigned int segno)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
 | |
| }
 | |
| 
 | |
| static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
 | |
| 				unsigned int segno, int section)
 | |
| {
 | |
| 	/*
 | |
| 	 * In order to get # of valid blocks in a section instantly from many
 | |
| 	 * segments, f2fs manages two counting structures separately.
 | |
| 	 */
 | |
| 	if (section > 1)
 | |
| 		return get_sec_entry(sbi, segno)->valid_blocks;
 | |
| 	else
 | |
| 		return get_seg_entry(sbi, segno)->valid_blocks;
 | |
| }
 | |
| 
 | |
| static inline void seg_info_from_raw_sit(struct seg_entry *se,
 | |
| 					struct f2fs_sit_entry *rs)
 | |
| {
 | |
| 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
 | |
| 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
 | |
| 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 | |
| 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 | |
| 	se->type = GET_SIT_TYPE(rs);
 | |
| 	se->mtime = le64_to_cpu(rs->mtime);
 | |
| }
 | |
| 
 | |
| static inline void seg_info_to_raw_sit(struct seg_entry *se,
 | |
| 					struct f2fs_sit_entry *rs)
 | |
| {
 | |
| 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
 | |
| 					se->valid_blocks;
 | |
| 	rs->vblocks = cpu_to_le16(raw_vblocks);
 | |
| 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
 | |
| 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 | |
| 	se->ckpt_valid_blocks = se->valid_blocks;
 | |
| 	rs->mtime = cpu_to_le64(se->mtime);
 | |
| }
 | |
| 
 | |
| static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
 | |
| 		unsigned int max, unsigned int segno)
 | |
| {
 | |
| 	unsigned int ret;
 | |
| 	read_lock(&free_i->segmap_lock);
 | |
| 	ret = find_next_bit(free_i->free_segmap, max, segno);
 | |
| 	read_unlock(&free_i->segmap_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
 | |
| {
 | |
| 	struct free_segmap_info *free_i = FREE_I(sbi);
 | |
| 	unsigned int secno = segno / sbi->segs_per_sec;
 | |
| 	unsigned int start_segno = secno * sbi->segs_per_sec;
 | |
| 	unsigned int next;
 | |
| 
 | |
| 	write_lock(&free_i->segmap_lock);
 | |
| 	clear_bit(segno, free_i->free_segmap);
 | |
| 	free_i->free_segments++;
 | |
| 
 | |
| 	next = find_next_bit(free_i->free_segmap, MAIN_SEGS(sbi), start_segno);
 | |
| 	if (next >= start_segno + sbi->segs_per_sec) {
 | |
| 		clear_bit(secno, free_i->free_secmap);
 | |
| 		free_i->free_sections++;
 | |
| 	}
 | |
| 	write_unlock(&free_i->segmap_lock);
 | |
| }
 | |
| 
 | |
| static inline void __set_inuse(struct f2fs_sb_info *sbi,
 | |
| 		unsigned int segno)
 | |
| {
 | |
| 	struct free_segmap_info *free_i = FREE_I(sbi);
 | |
| 	unsigned int secno = segno / sbi->segs_per_sec;
 | |
| 	set_bit(segno, free_i->free_segmap);
 | |
| 	free_i->free_segments--;
 | |
| 	if (!test_and_set_bit(secno, free_i->free_secmap))
 | |
| 		free_i->free_sections--;
 | |
| }
 | |
| 
 | |
| static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
 | |
| 		unsigned int segno)
 | |
| {
 | |
| 	struct free_segmap_info *free_i = FREE_I(sbi);
 | |
| 	unsigned int secno = segno / sbi->segs_per_sec;
 | |
| 	unsigned int start_segno = secno * sbi->segs_per_sec;
 | |
| 	unsigned int next;
 | |
| 
 | |
| 	write_lock(&free_i->segmap_lock);
 | |
| 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
 | |
| 		free_i->free_segments++;
 | |
| 
 | |
| 		next = find_next_bit(free_i->free_segmap,
 | |
| 				start_segno + sbi->segs_per_sec, start_segno);
 | |
| 		if (next >= start_segno + sbi->segs_per_sec) {
 | |
| 			if (test_and_clear_bit(secno, free_i->free_secmap))
 | |
| 				free_i->free_sections++;
 | |
| 		}
 | |
| 	}
 | |
| 	write_unlock(&free_i->segmap_lock);
 | |
| }
 | |
| 
 | |
| static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
 | |
| 		unsigned int segno)
 | |
| {
 | |
| 	struct free_segmap_info *free_i = FREE_I(sbi);
 | |
| 	unsigned int secno = segno / sbi->segs_per_sec;
 | |
| 	write_lock(&free_i->segmap_lock);
 | |
| 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
 | |
| 		free_i->free_segments--;
 | |
| 		if (!test_and_set_bit(secno, free_i->free_secmap))
 | |
| 			free_i->free_sections--;
 | |
| 	}
 | |
| 	write_unlock(&free_i->segmap_lock);
 | |
| }
 | |
| 
 | |
| static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
 | |
| 		void *dst_addr)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
 | |
| }
 | |
| 
 | |
| static inline block_t written_block_count(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	return SIT_I(sbi)->written_valid_blocks;
 | |
| }
 | |
| 
 | |
| static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	return FREE_I(sbi)->free_segments;
 | |
| }
 | |
| 
 | |
| static inline int reserved_segments(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	return SM_I(sbi)->reserved_segments;
 | |
| }
 | |
| 
 | |
| static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	return FREE_I(sbi)->free_sections;
 | |
| }
 | |
| 
 | |
| static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	return DIRTY_I(sbi)->nr_dirty[PRE];
 | |
| }
 | |
| 
 | |
| static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
 | |
| 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
 | |
| 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
 | |
| 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
 | |
| 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
 | |
| 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
 | |
| }
 | |
| 
 | |
| static inline int overprovision_segments(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	return SM_I(sbi)->ovp_segments;
 | |
| }
 | |
| 
 | |
| static inline int overprovision_sections(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
 | |
| }
 | |
| 
 | |
| static inline int reserved_sections(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
 | |
| }
 | |
| 
 | |
| static inline bool need_SSR(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 | |
| 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 | |
| 	return free_sections(sbi) <= (node_secs + 2 * dent_secs +
 | |
| 						reserved_sections(sbi) + 1);
 | |
| }
 | |
| 
 | |
| static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
 | |
| {
 | |
| 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 | |
| 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 | |
| 
 | |
| 	if (unlikely(sbi->por_doing))
 | |
| 		return false;
 | |
| 
 | |
| 	return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
 | |
| 						reserved_sections(sbi));
 | |
| }
 | |
| 
 | |
| static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
 | |
| }
 | |
| 
 | |
| static inline int utilization(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	return div_u64((u64)valid_user_blocks(sbi) * 100,
 | |
| 					sbi->user_block_count);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sometimes f2fs may be better to drop out-of-place update policy.
 | |
|  * And, users can control the policy through sysfs entries.
 | |
|  * There are five policies with triggering conditions as follows.
 | |
|  * F2FS_IPU_FORCE - all the time,
 | |
|  * F2FS_IPU_SSR - if SSR mode is activated,
 | |
|  * F2FS_IPU_UTIL - if FS utilization is over threashold,
 | |
|  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
 | |
|  *                     threashold,
 | |
|  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
 | |
|  *                     storages. IPU will be triggered only if the # of dirty
 | |
|  *                     pages over min_fsync_blocks.
 | |
|  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
 | |
|  */
 | |
| #define DEF_MIN_IPU_UTIL	70
 | |
| #define DEF_MIN_FSYNC_BLOCKS	8
 | |
| 
 | |
| enum {
 | |
| 	F2FS_IPU_FORCE,
 | |
| 	F2FS_IPU_SSR,
 | |
| 	F2FS_IPU_UTIL,
 | |
| 	F2FS_IPU_SSR_UTIL,
 | |
| 	F2FS_IPU_FSYNC,
 | |
| };
 | |
| 
 | |
| static inline bool need_inplace_update(struct inode *inode)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 | |
| 	unsigned int policy = SM_I(sbi)->ipu_policy;
 | |
| 
 | |
| 	/* IPU can be done only for the user data */
 | |
| 	if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
 | |
| 		return false;
 | |
| 
 | |
| 	if (policy & (0x1 << F2FS_IPU_FORCE))
 | |
| 		return true;
 | |
| 	if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
 | |
| 		return true;
 | |
| 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
 | |
| 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
 | |
| 		return true;
 | |
| 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
 | |
| 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
 | |
| 		return true;
 | |
| 
 | |
| 	/* this is only set during fdatasync */
 | |
| 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
 | |
| 			is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
 | |
| 		int type)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	return curseg->segno;
 | |
| }
 | |
| 
 | |
| static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
 | |
| 		int type)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	return curseg->alloc_type;
 | |
| }
 | |
| 
 | |
| static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	return curseg->next_blkoff;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_F2FS_CHECK_FS
 | |
| static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
 | |
| {
 | |
| 	BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
 | |
| }
 | |
| 
 | |
| static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
 | |
| {
 | |
| 	BUG_ON(blk_addr < SEG0_BLKADDR(sbi));
 | |
| 	BUG_ON(blk_addr >= MAX_BLKADDR(sbi));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Summary block is always treated as an invalid block
 | |
|  */
 | |
| static inline void check_block_count(struct f2fs_sb_info *sbi,
 | |
| 		int segno, struct f2fs_sit_entry *raw_sit)
 | |
| {
 | |
| 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
 | |
| 	int valid_blocks = 0;
 | |
| 	int cur_pos = 0, next_pos;
 | |
| 
 | |
| 	/* check segment usage */
 | |
| 	BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
 | |
| 
 | |
| 	/* check boundary of a given segment number */
 | |
| 	BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
 | |
| 
 | |
| 	/* check bitmap with valid block count */
 | |
| 	do {
 | |
| 		if (is_valid) {
 | |
| 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
 | |
| 					sbi->blocks_per_seg,
 | |
| 					cur_pos);
 | |
| 			valid_blocks += next_pos - cur_pos;
 | |
| 		} else
 | |
| 			next_pos = find_next_bit_le(&raw_sit->valid_map,
 | |
| 					sbi->blocks_per_seg,
 | |
| 					cur_pos);
 | |
| 		cur_pos = next_pos;
 | |
| 		is_valid = !is_valid;
 | |
| 	} while (cur_pos < sbi->blocks_per_seg);
 | |
| 	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
 | |
| }
 | |
| #else
 | |
| static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
 | |
| {
 | |
| 	if (segno > TOTAL_SEGS(sbi) - 1)
 | |
| 		sbi->need_fsck = true;
 | |
| }
 | |
| 
 | |
| static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
 | |
| {
 | |
| 	if (blk_addr < SEG0_BLKADDR(sbi) || blk_addr >= MAX_BLKADDR(sbi))
 | |
| 		sbi->need_fsck = true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Summary block is always treated as an invalid block
 | |
|  */
 | |
| static inline void check_block_count(struct f2fs_sb_info *sbi,
 | |
| 		int segno, struct f2fs_sit_entry *raw_sit)
 | |
| {
 | |
| 	/* check segment usage */
 | |
| 	if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg)
 | |
| 		sbi->need_fsck = true;
 | |
| 
 | |
| 	/* check boundary of a given segment number */
 | |
| 	if (segno > TOTAL_SEGS(sbi) - 1)
 | |
| 		sbi->need_fsck = true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
 | |
| 						unsigned int start)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	unsigned int offset = SIT_BLOCK_OFFSET(start);
 | |
| 	block_t blk_addr = sit_i->sit_base_addr + offset;
 | |
| 
 | |
| 	check_seg_range(sbi, start);
 | |
| 
 | |
| 	/* calculate sit block address */
 | |
| 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
 | |
| 		blk_addr += sit_i->sit_blocks;
 | |
| 
 | |
| 	return blk_addr;
 | |
| }
 | |
| 
 | |
| static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
 | |
| 						pgoff_t block_addr)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	block_addr -= sit_i->sit_base_addr;
 | |
| 	if (block_addr < sit_i->sit_blocks)
 | |
| 		block_addr += sit_i->sit_blocks;
 | |
| 	else
 | |
| 		block_addr -= sit_i->sit_blocks;
 | |
| 
 | |
| 	return block_addr + sit_i->sit_base_addr;
 | |
| }
 | |
| 
 | |
| static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
 | |
| {
 | |
| 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
 | |
| 
 | |
| 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
 | |
| }
 | |
| 
 | |
| static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
 | |
| 						sit_i->mounted_time;
 | |
| }
 | |
| 
 | |
| static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
 | |
| 			unsigned int ofs_in_node, unsigned char version)
 | |
| {
 | |
| 	sum->nid = cpu_to_le32(nid);
 | |
| 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
 | |
| 	sum->version = version;
 | |
| }
 | |
| 
 | |
| static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	return __start_cp_addr(sbi) +
 | |
| 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
 | |
| }
 | |
| 
 | |
| static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
 | |
| {
 | |
| 	return __start_cp_addr(sbi) +
 | |
| 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
 | |
| 				- (base + 1) + type;
 | |
| }
 | |
| 
 | |
| static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
 | |
| {
 | |
| 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct block_device *bdev = sbi->sb->s_bdev;
 | |
| 	struct request_queue *q = bdev_get_queue(bdev);
 | |
| 	return SECTOR_TO_BLOCK(queue_max_sectors(q));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It is very important to gather dirty pages and write at once, so that we can
 | |
|  * submit a big bio without interfering other data writes.
 | |
|  * By default, 512 pages for directory data,
 | |
|  * 512 pages (2MB) * 3 for three types of nodes, and
 | |
|  * max_bio_blocks for meta are set.
 | |
|  */
 | |
| static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
 | |
| {
 | |
| 	if (sbi->sb->s_bdi->dirty_exceeded)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (type == DATA)
 | |
| 		return sbi->blocks_per_seg;
 | |
| 	else if (type == NODE)
 | |
| 		return 3 * sbi->blocks_per_seg;
 | |
| 	else if (type == META)
 | |
| 		return MAX_BIO_BLOCKS(sbi);
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When writing pages, it'd better align nr_to_write for segment size.
 | |
|  */
 | |
| static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
 | |
| 					struct writeback_control *wbc)
 | |
| {
 | |
| 	long nr_to_write, desired;
 | |
| 
 | |
| 	if (wbc->sync_mode != WB_SYNC_NONE)
 | |
| 		return 0;
 | |
| 
 | |
| 	nr_to_write = wbc->nr_to_write;
 | |
| 
 | |
| 	if (type == DATA)
 | |
| 		desired = 4096;
 | |
| 	else if (type == NODE)
 | |
| 		desired = 3 * max_hw_blocks(sbi);
 | |
| 	else
 | |
| 		desired = MAX_BIO_BLOCKS(sbi);
 | |
| 
 | |
| 	wbc->nr_to_write = desired;
 | |
| 	return desired - nr_to_write;
 | |
| }
 |