- The filename decryption routines were, at times, writing a zero byte one
   character past the end of the filename buffer
 - The encrypted view feature attempted, and failed, to roll its own form of
   enforcing a read-only mount instead of letting the VFS enforce it
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABCgAGBQJUlGlWAAoJENaSAD2qAscKgdwQAJLCgt5xgoij8uH65mYVy6PE
 ++E8KggCHchhUcFh19EuuG++ENzwZedqKqbbRhmZt+svla08uPDO0jY+sYaOZzqB
 HMzZyyL4Fw/DiVsK6LUMGfN2CS7tua9ReK0dj4tUc3jwBplnQnGrQlUPbgdPRJJp
 XJDKHVtHGQPQC1dJAeProCJTg23jv5wXacly2I5VxZuh5DnDWjuo2KkzqGMKfadU
 9bxOf5DjVwQ/X6apgkNxG/8Q6J8a+80K7SGs/aRELIuRL0+mIj5AX9ht+p5Z0XI+
 E8jU4HM2biuqj8PtxK/WbyF1bHiREVyOLdneW+n3pcqGTLMZ3TLpDURkNd0cwZcd
 AGoZtUZZuQ/xvzE9IrEj+KYeINnZzPQpyJu9jXXp1CsQJ8u/wUG9e0kcJrUI1dZ/
 q26zhPaVhJ9x0go/BNOxzTUpOtuMWXttAVZGICthp74I5l+DgfSZ4J4CeQmFMMRs
 kbiTg5h4qsrD4jnEU/BCscpCLoz4qlF6+q/+lspwkg7OwvhHc0qSMJn3UjZ/eYzb
 ncDp6gc4Iju3RhWnVEZphA4ttbZJX7ahER4y0NdIG65Fa37AUEUxy0OmGfoyFOmC
 KVtlHkl2hKoCB5+ujLzL7WimH33ogtVhtOJTZlXzS0lsdSfSxUWU4/OZ22jTy0hL
 Bnx6uoNIPWsr6b5OJiA0
 =jTyq
 -----END PGP SIGNATURE-----
Merge tag 'ecryptfs-3.19-rc1-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tyhicks/ecryptfs
Pull eCryptfs fixes from Tyler Hicks:
 "Fixes for filename decryption and encrypted view plus a cleanup
   - The filename decryption routines were, at times, writing a zero
     byte one character past the end of the filename buffer
   - The encrypted view feature attempted, and failed, to roll its own
     form of enforcing a read-only mount instead of letting the VFS
     enforce it"
* tag 'ecryptfs-3.19-rc1-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tyhicks/ecryptfs:
  eCryptfs: Remove buggy and unnecessary write in file name decode routine
  eCryptfs: Remove unnecessary casts when parsing packet lengths
  eCryptfs: Force RO mount when encrypted view is enabled
		
	
			
		
			
				
	
	
		
			2166 lines
		
	
	
	
		
			64 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2166 lines
		
	
	
	
		
			64 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/**
 | 
						|
 * eCryptfs: Linux filesystem encryption layer
 | 
						|
 *
 | 
						|
 * Copyright (C) 1997-2004 Erez Zadok
 | 
						|
 * Copyright (C) 2001-2004 Stony Brook University
 | 
						|
 * Copyright (C) 2004-2007 International Business Machines Corp.
 | 
						|
 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
 | 
						|
 *   		Michael C. Thompson <mcthomps@us.ibm.com>
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License as
 | 
						|
 * published by the Free Software Foundation; either version 2 of the
 | 
						|
 * License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful, but
 | 
						|
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 | 
						|
 * 02111-1307, USA.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/mount.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/random.h>
 | 
						|
#include <linux/compiler.h>
 | 
						|
#include <linux/key.h>
 | 
						|
#include <linux/namei.h>
 | 
						|
#include <linux/crypto.h>
 | 
						|
#include <linux/file.h>
 | 
						|
#include <linux/scatterlist.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <asm/unaligned.h>
 | 
						|
#include "ecryptfs_kernel.h"
 | 
						|
 | 
						|
#define DECRYPT		0
 | 
						|
#define ENCRYPT		1
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_to_hex
 | 
						|
 * @dst: Buffer to take hex character representation of contents of
 | 
						|
 *       src; must be at least of size (src_size * 2)
 | 
						|
 * @src: Buffer to be converted to a hex string respresentation
 | 
						|
 * @src_size: number of bytes to convert
 | 
						|
 */
 | 
						|
void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
 | 
						|
{
 | 
						|
	int x;
 | 
						|
 | 
						|
	for (x = 0; x < src_size; x++)
 | 
						|
		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_from_hex
 | 
						|
 * @dst: Buffer to take the bytes from src hex; must be at least of
 | 
						|
 *       size (src_size / 2)
 | 
						|
 * @src: Buffer to be converted from a hex string respresentation to raw value
 | 
						|
 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
 | 
						|
 */
 | 
						|
void ecryptfs_from_hex(char *dst, char *src, int dst_size)
 | 
						|
{
 | 
						|
	int x;
 | 
						|
	char tmp[3] = { 0, };
 | 
						|
 | 
						|
	for (x = 0; x < dst_size; x++) {
 | 
						|
		tmp[0] = src[x * 2];
 | 
						|
		tmp[1] = src[x * 2 + 1];
 | 
						|
		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_calculate_md5 - calculates the md5 of @src
 | 
						|
 * @dst: Pointer to 16 bytes of allocated memory
 | 
						|
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 | 
						|
 * @src: Data to be md5'd
 | 
						|
 * @len: Length of @src
 | 
						|
 *
 | 
						|
 * Uses the allocated crypto context that crypt_stat references to
 | 
						|
 * generate the MD5 sum of the contents of src.
 | 
						|
 */
 | 
						|
static int ecryptfs_calculate_md5(char *dst,
 | 
						|
				  struct ecryptfs_crypt_stat *crypt_stat,
 | 
						|
				  char *src, int len)
 | 
						|
{
 | 
						|
	struct scatterlist sg;
 | 
						|
	struct hash_desc desc = {
 | 
						|
		.tfm = crypt_stat->hash_tfm,
 | 
						|
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
 | 
						|
	};
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
 | 
						|
	sg_init_one(&sg, (u8 *)src, len);
 | 
						|
	if (!desc.tfm) {
 | 
						|
		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
 | 
						|
					     CRYPTO_ALG_ASYNC);
 | 
						|
		if (IS_ERR(desc.tfm)) {
 | 
						|
			rc = PTR_ERR(desc.tfm);
 | 
						|
			ecryptfs_printk(KERN_ERR, "Error attempting to "
 | 
						|
					"allocate crypto context; rc = [%d]\n",
 | 
						|
					rc);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		crypt_stat->hash_tfm = desc.tfm;
 | 
						|
	}
 | 
						|
	rc = crypto_hash_init(&desc);
 | 
						|
	if (rc) {
 | 
						|
		printk(KERN_ERR
 | 
						|
		       "%s: Error initializing crypto hash; rc = [%d]\n",
 | 
						|
		       __func__, rc);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	rc = crypto_hash_update(&desc, &sg, len);
 | 
						|
	if (rc) {
 | 
						|
		printk(KERN_ERR
 | 
						|
		       "%s: Error updating crypto hash; rc = [%d]\n",
 | 
						|
		       __func__, rc);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	rc = crypto_hash_final(&desc, dst);
 | 
						|
	if (rc) {
 | 
						|
		printk(KERN_ERR
 | 
						|
		       "%s: Error finalizing crypto hash; rc = [%d]\n",
 | 
						|
		       __func__, rc);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
 | 
						|
						  char *cipher_name,
 | 
						|
						  char *chaining_modifier)
 | 
						|
{
 | 
						|
	int cipher_name_len = strlen(cipher_name);
 | 
						|
	int chaining_modifier_len = strlen(chaining_modifier);
 | 
						|
	int algified_name_len;
 | 
						|
	int rc;
 | 
						|
 | 
						|
	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
 | 
						|
	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
 | 
						|
	if (!(*algified_name)) {
 | 
						|
		rc = -ENOMEM;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	snprintf((*algified_name), algified_name_len, "%s(%s)",
 | 
						|
		 chaining_modifier, cipher_name);
 | 
						|
	rc = 0;
 | 
						|
out:
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_derive_iv
 | 
						|
 * @iv: destination for the derived iv vale
 | 
						|
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 | 
						|
 * @offset: Offset of the extent whose IV we are to derive
 | 
						|
 *
 | 
						|
 * Generate the initialization vector from the given root IV and page
 | 
						|
 * offset.
 | 
						|
 *
 | 
						|
 * Returns zero on success; non-zero on error.
 | 
						|
 */
 | 
						|
int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
 | 
						|
		       loff_t offset)
 | 
						|
{
 | 
						|
	int rc = 0;
 | 
						|
	char dst[MD5_DIGEST_SIZE];
 | 
						|
	char src[ECRYPTFS_MAX_IV_BYTES + 16];
 | 
						|
 | 
						|
	if (unlikely(ecryptfs_verbosity > 0)) {
 | 
						|
		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
 | 
						|
		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
 | 
						|
	}
 | 
						|
	/* TODO: It is probably secure to just cast the least
 | 
						|
	 * significant bits of the root IV into an unsigned long and
 | 
						|
	 * add the offset to that rather than go through all this
 | 
						|
	 * hashing business. -Halcrow */
 | 
						|
	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
 | 
						|
	memset((src + crypt_stat->iv_bytes), 0, 16);
 | 
						|
	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
 | 
						|
	if (unlikely(ecryptfs_verbosity > 0)) {
 | 
						|
		ecryptfs_printk(KERN_DEBUG, "source:\n");
 | 
						|
		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
 | 
						|
	}
 | 
						|
	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
 | 
						|
				    (crypt_stat->iv_bytes + 16));
 | 
						|
	if (rc) {
 | 
						|
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 | 
						|
				"MD5 while generating IV for a page\n");
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	memcpy(iv, dst, crypt_stat->iv_bytes);
 | 
						|
	if (unlikely(ecryptfs_verbosity > 0)) {
 | 
						|
		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
 | 
						|
		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
 | 
						|
	}
 | 
						|
out:
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_init_crypt_stat
 | 
						|
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 | 
						|
 *
 | 
						|
 * Initialize the crypt_stat structure.
 | 
						|
 */
 | 
						|
void
 | 
						|
ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 | 
						|
{
 | 
						|
	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 | 
						|
	INIT_LIST_HEAD(&crypt_stat->keysig_list);
 | 
						|
	mutex_init(&crypt_stat->keysig_list_mutex);
 | 
						|
	mutex_init(&crypt_stat->cs_mutex);
 | 
						|
	mutex_init(&crypt_stat->cs_tfm_mutex);
 | 
						|
	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
 | 
						|
	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_destroy_crypt_stat
 | 
						|
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 | 
						|
 *
 | 
						|
 * Releases all memory associated with a crypt_stat struct.
 | 
						|
 */
 | 
						|
void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 | 
						|
{
 | 
						|
	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
 | 
						|
 | 
						|
	if (crypt_stat->tfm)
 | 
						|
		crypto_free_ablkcipher(crypt_stat->tfm);
 | 
						|
	if (crypt_stat->hash_tfm)
 | 
						|
		crypto_free_hash(crypt_stat->hash_tfm);
 | 
						|
	list_for_each_entry_safe(key_sig, key_sig_tmp,
 | 
						|
				 &crypt_stat->keysig_list, crypt_stat_list) {
 | 
						|
		list_del(&key_sig->crypt_stat_list);
 | 
						|
		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
 | 
						|
	}
 | 
						|
	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 | 
						|
}
 | 
						|
 | 
						|
void ecryptfs_destroy_mount_crypt_stat(
 | 
						|
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 | 
						|
{
 | 
						|
	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
 | 
						|
 | 
						|
	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
 | 
						|
		return;
 | 
						|
	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 | 
						|
	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
 | 
						|
				 &mount_crypt_stat->global_auth_tok_list,
 | 
						|
				 mount_crypt_stat_list) {
 | 
						|
		list_del(&auth_tok->mount_crypt_stat_list);
 | 
						|
		if (auth_tok->global_auth_tok_key
 | 
						|
		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
 | 
						|
			key_put(auth_tok->global_auth_tok_key);
 | 
						|
		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
 | 
						|
	}
 | 
						|
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 | 
						|
	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * virt_to_scatterlist
 | 
						|
 * @addr: Virtual address
 | 
						|
 * @size: Size of data; should be an even multiple of the block size
 | 
						|
 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 | 
						|
 *      the number of scatterlist structs required in array
 | 
						|
 * @sg_size: Max array size
 | 
						|
 *
 | 
						|
 * Fills in a scatterlist array with page references for a passed
 | 
						|
 * virtual address.
 | 
						|
 *
 | 
						|
 * Returns the number of scatterlist structs in array used
 | 
						|
 */
 | 
						|
int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
 | 
						|
			int sg_size)
 | 
						|
{
 | 
						|
	int i = 0;
 | 
						|
	struct page *pg;
 | 
						|
	int offset;
 | 
						|
	int remainder_of_page;
 | 
						|
 | 
						|
	sg_init_table(sg, sg_size);
 | 
						|
 | 
						|
	while (size > 0 && i < sg_size) {
 | 
						|
		pg = virt_to_page(addr);
 | 
						|
		offset = offset_in_page(addr);
 | 
						|
		sg_set_page(&sg[i], pg, 0, offset);
 | 
						|
		remainder_of_page = PAGE_CACHE_SIZE - offset;
 | 
						|
		if (size >= remainder_of_page) {
 | 
						|
			sg[i].length = remainder_of_page;
 | 
						|
			addr += remainder_of_page;
 | 
						|
			size -= remainder_of_page;
 | 
						|
		} else {
 | 
						|
			sg[i].length = size;
 | 
						|
			addr += size;
 | 
						|
			size = 0;
 | 
						|
		}
 | 
						|
		i++;
 | 
						|
	}
 | 
						|
	if (size > 0)
 | 
						|
		return -ENOMEM;
 | 
						|
	return i;
 | 
						|
}
 | 
						|
 | 
						|
struct extent_crypt_result {
 | 
						|
	struct completion completion;
 | 
						|
	int rc;
 | 
						|
};
 | 
						|
 | 
						|
static void extent_crypt_complete(struct crypto_async_request *req, int rc)
 | 
						|
{
 | 
						|
	struct extent_crypt_result *ecr = req->data;
 | 
						|
 | 
						|
	if (rc == -EINPROGRESS)
 | 
						|
		return;
 | 
						|
 | 
						|
	ecr->rc = rc;
 | 
						|
	complete(&ecr->completion);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * crypt_scatterlist
 | 
						|
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 | 
						|
 * @dst_sg: Destination of the data after performing the crypto operation
 | 
						|
 * @src_sg: Data to be encrypted or decrypted
 | 
						|
 * @size: Length of data
 | 
						|
 * @iv: IV to use
 | 
						|
 * @op: ENCRYPT or DECRYPT to indicate the desired operation
 | 
						|
 *
 | 
						|
 * Returns the number of bytes encrypted or decrypted; negative value on error
 | 
						|
 */
 | 
						|
static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
 | 
						|
			     struct scatterlist *dst_sg,
 | 
						|
			     struct scatterlist *src_sg, int size,
 | 
						|
			     unsigned char *iv, int op)
 | 
						|
{
 | 
						|
	struct ablkcipher_request *req = NULL;
 | 
						|
	struct extent_crypt_result ecr;
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	BUG_ON(!crypt_stat || !crypt_stat->tfm
 | 
						|
	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
 | 
						|
	if (unlikely(ecryptfs_verbosity > 0)) {
 | 
						|
		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
 | 
						|
				crypt_stat->key_size);
 | 
						|
		ecryptfs_dump_hex(crypt_stat->key,
 | 
						|
				  crypt_stat->key_size);
 | 
						|
	}
 | 
						|
 | 
						|
	init_completion(&ecr.completion);
 | 
						|
 | 
						|
	mutex_lock(&crypt_stat->cs_tfm_mutex);
 | 
						|
	req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
 | 
						|
	if (!req) {
 | 
						|
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
 | 
						|
		rc = -ENOMEM;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	ablkcipher_request_set_callback(req,
 | 
						|
			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 | 
						|
			extent_crypt_complete, &ecr);
 | 
						|
	/* Consider doing this once, when the file is opened */
 | 
						|
	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
 | 
						|
		rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
 | 
						|
					      crypt_stat->key_size);
 | 
						|
		if (rc) {
 | 
						|
			ecryptfs_printk(KERN_ERR,
 | 
						|
					"Error setting key; rc = [%d]\n",
 | 
						|
					rc);
 | 
						|
			mutex_unlock(&crypt_stat->cs_tfm_mutex);
 | 
						|
			rc = -EINVAL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		crypt_stat->flags |= ECRYPTFS_KEY_SET;
 | 
						|
	}
 | 
						|
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
 | 
						|
	ablkcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
 | 
						|
	rc = op == ENCRYPT ? crypto_ablkcipher_encrypt(req) :
 | 
						|
			     crypto_ablkcipher_decrypt(req);
 | 
						|
	if (rc == -EINPROGRESS || rc == -EBUSY) {
 | 
						|
		struct extent_crypt_result *ecr = req->base.data;
 | 
						|
 | 
						|
		wait_for_completion(&ecr->completion);
 | 
						|
		rc = ecr->rc;
 | 
						|
		reinit_completion(&ecr->completion);
 | 
						|
	}
 | 
						|
out:
 | 
						|
	ablkcipher_request_free(req);
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * lower_offset_for_page
 | 
						|
 *
 | 
						|
 * Convert an eCryptfs page index into a lower byte offset
 | 
						|
 */
 | 
						|
static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
 | 
						|
				    struct page *page)
 | 
						|
{
 | 
						|
	return ecryptfs_lower_header_size(crypt_stat) +
 | 
						|
	       ((loff_t)page->index << PAGE_CACHE_SHIFT);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * crypt_extent
 | 
						|
 * @crypt_stat: crypt_stat containing cryptographic context for the
 | 
						|
 *              encryption operation
 | 
						|
 * @dst_page: The page to write the result into
 | 
						|
 * @src_page: The page to read from
 | 
						|
 * @extent_offset: Page extent offset for use in generating IV
 | 
						|
 * @op: ENCRYPT or DECRYPT to indicate the desired operation
 | 
						|
 *
 | 
						|
 * Encrypts or decrypts one extent of data.
 | 
						|
 *
 | 
						|
 * Return zero on success; non-zero otherwise
 | 
						|
 */
 | 
						|
static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
 | 
						|
			struct page *dst_page,
 | 
						|
			struct page *src_page,
 | 
						|
			unsigned long extent_offset, int op)
 | 
						|
{
 | 
						|
	pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
 | 
						|
	loff_t extent_base;
 | 
						|
	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
 | 
						|
	struct scatterlist src_sg, dst_sg;
 | 
						|
	size_t extent_size = crypt_stat->extent_size;
 | 
						|
	int rc;
 | 
						|
 | 
						|
	extent_base = (((loff_t)page_index) * (PAGE_CACHE_SIZE / extent_size));
 | 
						|
	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
 | 
						|
				(extent_base + extent_offset));
 | 
						|
	if (rc) {
 | 
						|
		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
 | 
						|
			"extent [0x%.16llx]; rc = [%d]\n",
 | 
						|
			(unsigned long long)(extent_base + extent_offset), rc);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	sg_init_table(&src_sg, 1);
 | 
						|
	sg_init_table(&dst_sg, 1);
 | 
						|
 | 
						|
	sg_set_page(&src_sg, src_page, extent_size,
 | 
						|
		    extent_offset * extent_size);
 | 
						|
	sg_set_page(&dst_sg, dst_page, extent_size,
 | 
						|
		    extent_offset * extent_size);
 | 
						|
 | 
						|
	rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
 | 
						|
			       extent_iv, op);
 | 
						|
	if (rc < 0) {
 | 
						|
		printk(KERN_ERR "%s: Error attempting to crypt page with "
 | 
						|
		       "page_index = [%ld], extent_offset = [%ld]; "
 | 
						|
		       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	rc = 0;
 | 
						|
out:
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_encrypt_page
 | 
						|
 * @page: Page mapped from the eCryptfs inode for the file; contains
 | 
						|
 *        decrypted content that needs to be encrypted (to a temporary
 | 
						|
 *        page; not in place) and written out to the lower file
 | 
						|
 *
 | 
						|
 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 | 
						|
 * that eCryptfs pages may straddle the lower pages -- for instance,
 | 
						|
 * if the file was created on a machine with an 8K page size
 | 
						|
 * (resulting in an 8K header), and then the file is copied onto a
 | 
						|
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 | 
						|
 * file, 24K of page 0 of the lower file will be read and decrypted,
 | 
						|
 * and then 8K of page 1 of the lower file will be read and decrypted.
 | 
						|
 *
 | 
						|
 * Returns zero on success; negative on error
 | 
						|
 */
 | 
						|
int ecryptfs_encrypt_page(struct page *page)
 | 
						|
{
 | 
						|
	struct inode *ecryptfs_inode;
 | 
						|
	struct ecryptfs_crypt_stat *crypt_stat;
 | 
						|
	char *enc_extent_virt;
 | 
						|
	struct page *enc_extent_page = NULL;
 | 
						|
	loff_t extent_offset;
 | 
						|
	loff_t lower_offset;
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	ecryptfs_inode = page->mapping->host;
 | 
						|
	crypt_stat =
 | 
						|
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 | 
						|
	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 | 
						|
	enc_extent_page = alloc_page(GFP_USER);
 | 
						|
	if (!enc_extent_page) {
 | 
						|
		rc = -ENOMEM;
 | 
						|
		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
 | 
						|
				"encrypted extent\n");
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	for (extent_offset = 0;
 | 
						|
	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
 | 
						|
	     extent_offset++) {
 | 
						|
		rc = crypt_extent(crypt_stat, enc_extent_page, page,
 | 
						|
				  extent_offset, ENCRYPT);
 | 
						|
		if (rc) {
 | 
						|
			printk(KERN_ERR "%s: Error encrypting extent; "
 | 
						|
			       "rc = [%d]\n", __func__, rc);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	lower_offset = lower_offset_for_page(crypt_stat, page);
 | 
						|
	enc_extent_virt = kmap(enc_extent_page);
 | 
						|
	rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
 | 
						|
				  PAGE_CACHE_SIZE);
 | 
						|
	kunmap(enc_extent_page);
 | 
						|
	if (rc < 0) {
 | 
						|
		ecryptfs_printk(KERN_ERR,
 | 
						|
			"Error attempting to write lower page; rc = [%d]\n",
 | 
						|
			rc);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	rc = 0;
 | 
						|
out:
 | 
						|
	if (enc_extent_page) {
 | 
						|
		__free_page(enc_extent_page);
 | 
						|
	}
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_decrypt_page
 | 
						|
 * @page: Page mapped from the eCryptfs inode for the file; data read
 | 
						|
 *        and decrypted from the lower file will be written into this
 | 
						|
 *        page
 | 
						|
 *
 | 
						|
 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 | 
						|
 * that eCryptfs pages may straddle the lower pages -- for instance,
 | 
						|
 * if the file was created on a machine with an 8K page size
 | 
						|
 * (resulting in an 8K header), and then the file is copied onto a
 | 
						|
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 | 
						|
 * file, 24K of page 0 of the lower file will be read and decrypted,
 | 
						|
 * and then 8K of page 1 of the lower file will be read and decrypted.
 | 
						|
 *
 | 
						|
 * Returns zero on success; negative on error
 | 
						|
 */
 | 
						|
int ecryptfs_decrypt_page(struct page *page)
 | 
						|
{
 | 
						|
	struct inode *ecryptfs_inode;
 | 
						|
	struct ecryptfs_crypt_stat *crypt_stat;
 | 
						|
	char *page_virt;
 | 
						|
	unsigned long extent_offset;
 | 
						|
	loff_t lower_offset;
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	ecryptfs_inode = page->mapping->host;
 | 
						|
	crypt_stat =
 | 
						|
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 | 
						|
	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 | 
						|
 | 
						|
	lower_offset = lower_offset_for_page(crypt_stat, page);
 | 
						|
	page_virt = kmap(page);
 | 
						|
	rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_CACHE_SIZE,
 | 
						|
				 ecryptfs_inode);
 | 
						|
	kunmap(page);
 | 
						|
	if (rc < 0) {
 | 
						|
		ecryptfs_printk(KERN_ERR,
 | 
						|
			"Error attempting to read lower page; rc = [%d]\n",
 | 
						|
			rc);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	for (extent_offset = 0;
 | 
						|
	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
 | 
						|
	     extent_offset++) {
 | 
						|
		rc = crypt_extent(crypt_stat, page, page,
 | 
						|
				  extent_offset, DECRYPT);
 | 
						|
		if (rc) {
 | 
						|
			printk(KERN_ERR "%s: Error encrypting extent; "
 | 
						|
			       "rc = [%d]\n", __func__, rc);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
out:
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_init_crypt_ctx
 | 
						|
 * @crypt_stat: Uninitialized crypt stats structure
 | 
						|
 *
 | 
						|
 * Initialize the crypto context.
 | 
						|
 *
 | 
						|
 * TODO: Performance: Keep a cache of initialized cipher contexts;
 | 
						|
 * only init if needed
 | 
						|
 */
 | 
						|
int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
 | 
						|
{
 | 
						|
	char *full_alg_name;
 | 
						|
	int rc = -EINVAL;
 | 
						|
 | 
						|
	ecryptfs_printk(KERN_DEBUG,
 | 
						|
			"Initializing cipher [%s]; strlen = [%d]; "
 | 
						|
			"key_size_bits = [%zd]\n",
 | 
						|
			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
 | 
						|
			crypt_stat->key_size << 3);
 | 
						|
	mutex_lock(&crypt_stat->cs_tfm_mutex);
 | 
						|
	if (crypt_stat->tfm) {
 | 
						|
		rc = 0;
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
 | 
						|
						    crypt_stat->cipher, "cbc");
 | 
						|
	if (rc)
 | 
						|
		goto out_unlock;
 | 
						|
	crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
 | 
						|
	if (IS_ERR(crypt_stat->tfm)) {
 | 
						|
		rc = PTR_ERR(crypt_stat->tfm);
 | 
						|
		crypt_stat->tfm = NULL;
 | 
						|
		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
 | 
						|
				"Error initializing cipher [%s]\n",
 | 
						|
				full_alg_name);
 | 
						|
		goto out_free;
 | 
						|
	}
 | 
						|
	crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
 | 
						|
	rc = 0;
 | 
						|
out_free:
 | 
						|
	kfree(full_alg_name);
 | 
						|
out_unlock:
 | 
						|
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
 | 
						|
{
 | 
						|
	int extent_size_tmp;
 | 
						|
 | 
						|
	crypt_stat->extent_mask = 0xFFFFFFFF;
 | 
						|
	crypt_stat->extent_shift = 0;
 | 
						|
	if (crypt_stat->extent_size == 0)
 | 
						|
		return;
 | 
						|
	extent_size_tmp = crypt_stat->extent_size;
 | 
						|
	while ((extent_size_tmp & 0x01) == 0) {
 | 
						|
		extent_size_tmp >>= 1;
 | 
						|
		crypt_stat->extent_mask <<= 1;
 | 
						|
		crypt_stat->extent_shift++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
 | 
						|
{
 | 
						|
	/* Default values; may be overwritten as we are parsing the
 | 
						|
	 * packets. */
 | 
						|
	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
 | 
						|
	set_extent_mask_and_shift(crypt_stat);
 | 
						|
	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
 | 
						|
	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
 | 
						|
		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 | 
						|
	else {
 | 
						|
		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
 | 
						|
			crypt_stat->metadata_size =
 | 
						|
				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 | 
						|
		else
 | 
						|
			crypt_stat->metadata_size = PAGE_CACHE_SIZE;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_compute_root_iv
 | 
						|
 * @crypt_stats
 | 
						|
 *
 | 
						|
 * On error, sets the root IV to all 0's.
 | 
						|
 */
 | 
						|
int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
 | 
						|
{
 | 
						|
	int rc = 0;
 | 
						|
	char dst[MD5_DIGEST_SIZE];
 | 
						|
 | 
						|
	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
 | 
						|
	BUG_ON(crypt_stat->iv_bytes <= 0);
 | 
						|
	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
 | 
						|
		rc = -EINVAL;
 | 
						|
		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
 | 
						|
				"cannot generate root IV\n");
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
 | 
						|
				    crypt_stat->key_size);
 | 
						|
	if (rc) {
 | 
						|
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 | 
						|
				"MD5 while generating root IV\n");
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
 | 
						|
out:
 | 
						|
	if (rc) {
 | 
						|
		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
 | 
						|
		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
 | 
						|
	}
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
 | 
						|
{
 | 
						|
	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
 | 
						|
	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
 | 
						|
	ecryptfs_compute_root_iv(crypt_stat);
 | 
						|
	if (unlikely(ecryptfs_verbosity > 0)) {
 | 
						|
		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
 | 
						|
		ecryptfs_dump_hex(crypt_stat->key,
 | 
						|
				  crypt_stat->key_size);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_copy_mount_wide_flags_to_inode_flags
 | 
						|
 * @crypt_stat: The inode's cryptographic context
 | 
						|
 * @mount_crypt_stat: The mount point's cryptographic context
 | 
						|
 *
 | 
						|
 * This function propagates the mount-wide flags to individual inode
 | 
						|
 * flags.
 | 
						|
 */
 | 
						|
static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
 | 
						|
	struct ecryptfs_crypt_stat *crypt_stat,
 | 
						|
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 | 
						|
{
 | 
						|
	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
 | 
						|
		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
 | 
						|
	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
 | 
						|
		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
 | 
						|
	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
 | 
						|
		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
 | 
						|
		if (mount_crypt_stat->flags
 | 
						|
		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
 | 
						|
			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
 | 
						|
		else if (mount_crypt_stat->flags
 | 
						|
			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
 | 
						|
			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
 | 
						|
	struct ecryptfs_crypt_stat *crypt_stat,
 | 
						|
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 | 
						|
{
 | 
						|
	struct ecryptfs_global_auth_tok *global_auth_tok;
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	mutex_lock(&crypt_stat->keysig_list_mutex);
 | 
						|
	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 | 
						|
 | 
						|
	list_for_each_entry(global_auth_tok,
 | 
						|
			    &mount_crypt_stat->global_auth_tok_list,
 | 
						|
			    mount_crypt_stat_list) {
 | 
						|
		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
 | 
						|
			continue;
 | 
						|
		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
 | 
						|
		if (rc) {
 | 
						|
			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 | 
						|
	mutex_unlock(&crypt_stat->keysig_list_mutex);
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_set_default_crypt_stat_vals
 | 
						|
 * @crypt_stat: The inode's cryptographic context
 | 
						|
 * @mount_crypt_stat: The mount point's cryptographic context
 | 
						|
 *
 | 
						|
 * Default values in the event that policy does not override them.
 | 
						|
 */
 | 
						|
static void ecryptfs_set_default_crypt_stat_vals(
 | 
						|
	struct ecryptfs_crypt_stat *crypt_stat,
 | 
						|
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 | 
						|
{
 | 
						|
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 | 
						|
						      mount_crypt_stat);
 | 
						|
	ecryptfs_set_default_sizes(crypt_stat);
 | 
						|
	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
 | 
						|
	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
 | 
						|
	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
 | 
						|
	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
 | 
						|
	crypt_stat->mount_crypt_stat = mount_crypt_stat;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_new_file_context
 | 
						|
 * @ecryptfs_inode: The eCryptfs inode
 | 
						|
 *
 | 
						|
 * If the crypto context for the file has not yet been established,
 | 
						|
 * this is where we do that.  Establishing a new crypto context
 | 
						|
 * involves the following decisions:
 | 
						|
 *  - What cipher to use?
 | 
						|
 *  - What set of authentication tokens to use?
 | 
						|
 * Here we just worry about getting enough information into the
 | 
						|
 * authentication tokens so that we know that they are available.
 | 
						|
 * We associate the available authentication tokens with the new file
 | 
						|
 * via the set of signatures in the crypt_stat struct.  Later, when
 | 
						|
 * the headers are actually written out, we may again defer to
 | 
						|
 * userspace to perform the encryption of the session key; for the
 | 
						|
 * foreseeable future, this will be the case with public key packets.
 | 
						|
 *
 | 
						|
 * Returns zero on success; non-zero otherwise
 | 
						|
 */
 | 
						|
int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
 | 
						|
{
 | 
						|
	struct ecryptfs_crypt_stat *crypt_stat =
 | 
						|
	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
 | 
						|
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
 | 
						|
	    &ecryptfs_superblock_to_private(
 | 
						|
		    ecryptfs_inode->i_sb)->mount_crypt_stat;
 | 
						|
	int cipher_name_len;
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
 | 
						|
	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
 | 
						|
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 | 
						|
						      mount_crypt_stat);
 | 
						|
	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
 | 
						|
							 mount_crypt_stat);
 | 
						|
	if (rc) {
 | 
						|
		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
 | 
						|
		       "to the inode key sigs; rc = [%d]\n", rc);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	cipher_name_len =
 | 
						|
		strlen(mount_crypt_stat->global_default_cipher_name);
 | 
						|
	memcpy(crypt_stat->cipher,
 | 
						|
	       mount_crypt_stat->global_default_cipher_name,
 | 
						|
	       cipher_name_len);
 | 
						|
	crypt_stat->cipher[cipher_name_len] = '\0';
 | 
						|
	crypt_stat->key_size =
 | 
						|
		mount_crypt_stat->global_default_cipher_key_size;
 | 
						|
	ecryptfs_generate_new_key(crypt_stat);
 | 
						|
	rc = ecryptfs_init_crypt_ctx(crypt_stat);
 | 
						|
	if (rc)
 | 
						|
		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
 | 
						|
				"context for cipher [%s]: rc = [%d]\n",
 | 
						|
				crypt_stat->cipher, rc);
 | 
						|
out:
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_validate_marker - check for the ecryptfs marker
 | 
						|
 * @data: The data block in which to check
 | 
						|
 *
 | 
						|
 * Returns zero if marker found; -EINVAL if not found
 | 
						|
 */
 | 
						|
static int ecryptfs_validate_marker(char *data)
 | 
						|
{
 | 
						|
	u32 m_1, m_2;
 | 
						|
 | 
						|
	m_1 = get_unaligned_be32(data);
 | 
						|
	m_2 = get_unaligned_be32(data + 4);
 | 
						|
	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
 | 
						|
		return 0;
 | 
						|
	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
 | 
						|
			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
 | 
						|
			MAGIC_ECRYPTFS_MARKER);
 | 
						|
	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
 | 
						|
			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
 | 
						|
	return -EINVAL;
 | 
						|
}
 | 
						|
 | 
						|
struct ecryptfs_flag_map_elem {
 | 
						|
	u32 file_flag;
 | 
						|
	u32 local_flag;
 | 
						|
};
 | 
						|
 | 
						|
/* Add support for additional flags by adding elements here. */
 | 
						|
static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
 | 
						|
	{0x00000001, ECRYPTFS_ENABLE_HMAC},
 | 
						|
	{0x00000002, ECRYPTFS_ENCRYPTED},
 | 
						|
	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
 | 
						|
	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_process_flags
 | 
						|
 * @crypt_stat: The cryptographic context
 | 
						|
 * @page_virt: Source data to be parsed
 | 
						|
 * @bytes_read: Updated with the number of bytes read
 | 
						|
 *
 | 
						|
 * Returns zero on success; non-zero if the flag set is invalid
 | 
						|
 */
 | 
						|
static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
 | 
						|
				  char *page_virt, int *bytes_read)
 | 
						|
{
 | 
						|
	int rc = 0;
 | 
						|
	int i;
 | 
						|
	u32 flags;
 | 
						|
 | 
						|
	flags = get_unaligned_be32(page_virt);
 | 
						|
	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
 | 
						|
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
 | 
						|
		if (flags & ecryptfs_flag_map[i].file_flag) {
 | 
						|
			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
 | 
						|
		} else
 | 
						|
			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
 | 
						|
	/* Version is in top 8 bits of the 32-bit flag vector */
 | 
						|
	crypt_stat->file_version = ((flags >> 24) & 0xFF);
 | 
						|
	(*bytes_read) = 4;
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * write_ecryptfs_marker
 | 
						|
 * @page_virt: The pointer to in a page to begin writing the marker
 | 
						|
 * @written: Number of bytes written
 | 
						|
 *
 | 
						|
 * Marker = 0x3c81b7f5
 | 
						|
 */
 | 
						|
static void write_ecryptfs_marker(char *page_virt, size_t *written)
 | 
						|
{
 | 
						|
	u32 m_1, m_2;
 | 
						|
 | 
						|
	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
 | 
						|
	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
 | 
						|
	put_unaligned_be32(m_1, page_virt);
 | 
						|
	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
 | 
						|
	put_unaligned_be32(m_2, page_virt);
 | 
						|
	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
 | 
						|
}
 | 
						|
 | 
						|
void ecryptfs_write_crypt_stat_flags(char *page_virt,
 | 
						|
				     struct ecryptfs_crypt_stat *crypt_stat,
 | 
						|
				     size_t *written)
 | 
						|
{
 | 
						|
	u32 flags = 0;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
 | 
						|
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
 | 
						|
		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
 | 
						|
			flags |= ecryptfs_flag_map[i].file_flag;
 | 
						|
	/* Version is in top 8 bits of the 32-bit flag vector */
 | 
						|
	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
 | 
						|
	put_unaligned_be32(flags, page_virt);
 | 
						|
	(*written) = 4;
 | 
						|
}
 | 
						|
 | 
						|
struct ecryptfs_cipher_code_str_map_elem {
 | 
						|
	char cipher_str[16];
 | 
						|
	u8 cipher_code;
 | 
						|
};
 | 
						|
 | 
						|
/* Add support for additional ciphers by adding elements here. The
 | 
						|
 * cipher_code is whatever OpenPGP applicatoins use to identify the
 | 
						|
 * ciphers. List in order of probability. */
 | 
						|
static struct ecryptfs_cipher_code_str_map_elem
 | 
						|
ecryptfs_cipher_code_str_map[] = {
 | 
						|
	{"aes",RFC2440_CIPHER_AES_128 },
 | 
						|
	{"blowfish", RFC2440_CIPHER_BLOWFISH},
 | 
						|
	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
 | 
						|
	{"cast5", RFC2440_CIPHER_CAST_5},
 | 
						|
	{"twofish", RFC2440_CIPHER_TWOFISH},
 | 
						|
	{"cast6", RFC2440_CIPHER_CAST_6},
 | 
						|
	{"aes", RFC2440_CIPHER_AES_192},
 | 
						|
	{"aes", RFC2440_CIPHER_AES_256}
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_code_for_cipher_string
 | 
						|
 * @cipher_name: The string alias for the cipher
 | 
						|
 * @key_bytes: Length of key in bytes; used for AES code selection
 | 
						|
 *
 | 
						|
 * Returns zero on no match, or the cipher code on match
 | 
						|
 */
 | 
						|
u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	u8 code = 0;
 | 
						|
	struct ecryptfs_cipher_code_str_map_elem *map =
 | 
						|
		ecryptfs_cipher_code_str_map;
 | 
						|
 | 
						|
	if (strcmp(cipher_name, "aes") == 0) {
 | 
						|
		switch (key_bytes) {
 | 
						|
		case 16:
 | 
						|
			code = RFC2440_CIPHER_AES_128;
 | 
						|
			break;
 | 
						|
		case 24:
 | 
						|
			code = RFC2440_CIPHER_AES_192;
 | 
						|
			break;
 | 
						|
		case 32:
 | 
						|
			code = RFC2440_CIPHER_AES_256;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
 | 
						|
			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
 | 
						|
				code = map[i].cipher_code;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
	}
 | 
						|
	return code;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_cipher_code_to_string
 | 
						|
 * @str: Destination to write out the cipher name
 | 
						|
 * @cipher_code: The code to convert to cipher name string
 | 
						|
 *
 | 
						|
 * Returns zero on success
 | 
						|
 */
 | 
						|
int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
 | 
						|
{
 | 
						|
	int rc = 0;
 | 
						|
	int i;
 | 
						|
 | 
						|
	str[0] = '\0';
 | 
						|
	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
 | 
						|
		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
 | 
						|
			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
 | 
						|
	if (str[0] == '\0') {
 | 
						|
		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
 | 
						|
				"[%d]\n", cipher_code);
 | 
						|
		rc = -EINVAL;
 | 
						|
	}
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
int ecryptfs_read_and_validate_header_region(struct inode *inode)
 | 
						|
{
 | 
						|
	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
 | 
						|
	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
 | 
						|
	int rc;
 | 
						|
 | 
						|
	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
 | 
						|
				 inode);
 | 
						|
	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
 | 
						|
		return rc >= 0 ? -EINVAL : rc;
 | 
						|
	rc = ecryptfs_validate_marker(marker);
 | 
						|
	if (!rc)
 | 
						|
		ecryptfs_i_size_init(file_size, inode);
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
ecryptfs_write_header_metadata(char *virt,
 | 
						|
			       struct ecryptfs_crypt_stat *crypt_stat,
 | 
						|
			       size_t *written)
 | 
						|
{
 | 
						|
	u32 header_extent_size;
 | 
						|
	u16 num_header_extents_at_front;
 | 
						|
 | 
						|
	header_extent_size = (u32)crypt_stat->extent_size;
 | 
						|
	num_header_extents_at_front =
 | 
						|
		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
 | 
						|
	put_unaligned_be32(header_extent_size, virt);
 | 
						|
	virt += 4;
 | 
						|
	put_unaligned_be16(num_header_extents_at_front, virt);
 | 
						|
	(*written) = 6;
 | 
						|
}
 | 
						|
 | 
						|
struct kmem_cache *ecryptfs_header_cache;
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_write_headers_virt
 | 
						|
 * @page_virt: The virtual address to write the headers to
 | 
						|
 * @max: The size of memory allocated at page_virt
 | 
						|
 * @size: Set to the number of bytes written by this function
 | 
						|
 * @crypt_stat: The cryptographic context
 | 
						|
 * @ecryptfs_dentry: The eCryptfs dentry
 | 
						|
 *
 | 
						|
 * Format version: 1
 | 
						|
 *
 | 
						|
 *   Header Extent:
 | 
						|
 *     Octets 0-7:        Unencrypted file size (big-endian)
 | 
						|
 *     Octets 8-15:       eCryptfs special marker
 | 
						|
 *     Octets 16-19:      Flags
 | 
						|
 *      Octet 16:         File format version number (between 0 and 255)
 | 
						|
 *      Octets 17-18:     Reserved
 | 
						|
 *      Octet 19:         Bit 1 (lsb): Reserved
 | 
						|
 *                        Bit 2: Encrypted?
 | 
						|
 *                        Bits 3-8: Reserved
 | 
						|
 *     Octets 20-23:      Header extent size (big-endian)
 | 
						|
 *     Octets 24-25:      Number of header extents at front of file
 | 
						|
 *                        (big-endian)
 | 
						|
 *     Octet  26:         Begin RFC 2440 authentication token packet set
 | 
						|
 *   Data Extent 0:
 | 
						|
 *     Lower data (CBC encrypted)
 | 
						|
 *   Data Extent 1:
 | 
						|
 *     Lower data (CBC encrypted)
 | 
						|
 *   ...
 | 
						|
 *
 | 
						|
 * Returns zero on success
 | 
						|
 */
 | 
						|
static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
 | 
						|
				       size_t *size,
 | 
						|
				       struct ecryptfs_crypt_stat *crypt_stat,
 | 
						|
				       struct dentry *ecryptfs_dentry)
 | 
						|
{
 | 
						|
	int rc;
 | 
						|
	size_t written;
 | 
						|
	size_t offset;
 | 
						|
 | 
						|
	offset = ECRYPTFS_FILE_SIZE_BYTES;
 | 
						|
	write_ecryptfs_marker((page_virt + offset), &written);
 | 
						|
	offset += written;
 | 
						|
	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
 | 
						|
					&written);
 | 
						|
	offset += written;
 | 
						|
	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
 | 
						|
				       &written);
 | 
						|
	offset += written;
 | 
						|
	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
 | 
						|
					      ecryptfs_dentry, &written,
 | 
						|
					      max - offset);
 | 
						|
	if (rc)
 | 
						|
		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
 | 
						|
				"set; rc = [%d]\n", rc);
 | 
						|
	if (size) {
 | 
						|
		offset += written;
 | 
						|
		*size = offset;
 | 
						|
	}
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
 | 
						|
				    char *virt, size_t virt_len)
 | 
						|
{
 | 
						|
	int rc;
 | 
						|
 | 
						|
	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
 | 
						|
				  0, virt_len);
 | 
						|
	if (rc < 0)
 | 
						|
		printk(KERN_ERR "%s: Error attempting to write header "
 | 
						|
		       "information to lower file; rc = [%d]\n", __func__, rc);
 | 
						|
	else
 | 
						|
		rc = 0;
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
 | 
						|
				 char *page_virt, size_t size)
 | 
						|
{
 | 
						|
	int rc;
 | 
						|
 | 
						|
	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
 | 
						|
			       size, 0);
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
 | 
						|
					       unsigned int order)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
 | 
						|
	if (page)
 | 
						|
		return (unsigned long) page_address(page);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_write_metadata
 | 
						|
 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
 | 
						|
 * @ecryptfs_inode: The newly created eCryptfs inode
 | 
						|
 *
 | 
						|
 * Write the file headers out.  This will likely involve a userspace
 | 
						|
 * callout, in which the session key is encrypted with one or more
 | 
						|
 * public keys and/or the passphrase necessary to do the encryption is
 | 
						|
 * retrieved via a prompt.  Exactly what happens at this point should
 | 
						|
 * be policy-dependent.
 | 
						|
 *
 | 
						|
 * Returns zero on success; non-zero on error
 | 
						|
 */
 | 
						|
int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
 | 
						|
			    struct inode *ecryptfs_inode)
 | 
						|
{
 | 
						|
	struct ecryptfs_crypt_stat *crypt_stat =
 | 
						|
		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
 | 
						|
	unsigned int order;
 | 
						|
	char *virt;
 | 
						|
	size_t virt_len;
 | 
						|
	size_t size = 0;
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
 | 
						|
		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
 | 
						|
			printk(KERN_ERR "Key is invalid; bailing out\n");
 | 
						|
			rc = -EINVAL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		printk(KERN_WARNING "%s: Encrypted flag not set\n",
 | 
						|
		       __func__);
 | 
						|
		rc = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	virt_len = crypt_stat->metadata_size;
 | 
						|
	order = get_order(virt_len);
 | 
						|
	/* Released in this function */
 | 
						|
	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
 | 
						|
	if (!virt) {
 | 
						|
		printk(KERN_ERR "%s: Out of memory\n", __func__);
 | 
						|
		rc = -ENOMEM;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
 | 
						|
	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
 | 
						|
					 ecryptfs_dentry);
 | 
						|
	if (unlikely(rc)) {
 | 
						|
		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
 | 
						|
		       __func__, rc);
 | 
						|
		goto out_free;
 | 
						|
	}
 | 
						|
	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
 | 
						|
		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
 | 
						|
						      size);
 | 
						|
	else
 | 
						|
		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
 | 
						|
							 virt_len);
 | 
						|
	if (rc) {
 | 
						|
		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
 | 
						|
		       "rc = [%d]\n", __func__, rc);
 | 
						|
		goto out_free;
 | 
						|
	}
 | 
						|
out_free:
 | 
						|
	free_pages((unsigned long)virt, order);
 | 
						|
out:
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
 | 
						|
#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
 | 
						|
static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
 | 
						|
				 char *virt, int *bytes_read,
 | 
						|
				 int validate_header_size)
 | 
						|
{
 | 
						|
	int rc = 0;
 | 
						|
	u32 header_extent_size;
 | 
						|
	u16 num_header_extents_at_front;
 | 
						|
 | 
						|
	header_extent_size = get_unaligned_be32(virt);
 | 
						|
	virt += sizeof(__be32);
 | 
						|
	num_header_extents_at_front = get_unaligned_be16(virt);
 | 
						|
	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
 | 
						|
				     * (size_t)header_extent_size));
 | 
						|
	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
 | 
						|
	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
 | 
						|
	    && (crypt_stat->metadata_size
 | 
						|
		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
 | 
						|
		rc = -EINVAL;
 | 
						|
		printk(KERN_WARNING "Invalid header size: [%zd]\n",
 | 
						|
		       crypt_stat->metadata_size);
 | 
						|
	}
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * set_default_header_data
 | 
						|
 * @crypt_stat: The cryptographic context
 | 
						|
 *
 | 
						|
 * For version 0 file format; this function is only for backwards
 | 
						|
 * compatibility for files created with the prior versions of
 | 
						|
 * eCryptfs.
 | 
						|
 */
 | 
						|
static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
 | 
						|
{
 | 
						|
	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 | 
						|
}
 | 
						|
 | 
						|
void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
 | 
						|
{
 | 
						|
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
 | 
						|
	struct ecryptfs_crypt_stat *crypt_stat;
 | 
						|
	u64 file_size;
 | 
						|
 | 
						|
	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
 | 
						|
	mount_crypt_stat =
 | 
						|
		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
 | 
						|
	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
 | 
						|
		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
 | 
						|
		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
 | 
						|
			file_size += crypt_stat->metadata_size;
 | 
						|
	} else
 | 
						|
		file_size = get_unaligned_be64(page_virt);
 | 
						|
	i_size_write(inode, (loff_t)file_size);
 | 
						|
	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_read_headers_virt
 | 
						|
 * @page_virt: The virtual address into which to read the headers
 | 
						|
 * @crypt_stat: The cryptographic context
 | 
						|
 * @ecryptfs_dentry: The eCryptfs dentry
 | 
						|
 * @validate_header_size: Whether to validate the header size while reading
 | 
						|
 *
 | 
						|
 * Read/parse the header data. The header format is detailed in the
 | 
						|
 * comment block for the ecryptfs_write_headers_virt() function.
 | 
						|
 *
 | 
						|
 * Returns zero on success
 | 
						|
 */
 | 
						|
static int ecryptfs_read_headers_virt(char *page_virt,
 | 
						|
				      struct ecryptfs_crypt_stat *crypt_stat,
 | 
						|
				      struct dentry *ecryptfs_dentry,
 | 
						|
				      int validate_header_size)
 | 
						|
{
 | 
						|
	int rc = 0;
 | 
						|
	int offset;
 | 
						|
	int bytes_read;
 | 
						|
 | 
						|
	ecryptfs_set_default_sizes(crypt_stat);
 | 
						|
	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
 | 
						|
		ecryptfs_dentry->d_sb)->mount_crypt_stat;
 | 
						|
	offset = ECRYPTFS_FILE_SIZE_BYTES;
 | 
						|
	rc = ecryptfs_validate_marker(page_virt + offset);
 | 
						|
	if (rc)
 | 
						|
		goto out;
 | 
						|
	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
 | 
						|
		ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
 | 
						|
	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
 | 
						|
	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
 | 
						|
				    &bytes_read);
 | 
						|
	if (rc) {
 | 
						|
		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
 | 
						|
		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
 | 
						|
				"file version [%d] is supported by this "
 | 
						|
				"version of eCryptfs\n",
 | 
						|
				crypt_stat->file_version,
 | 
						|
				ECRYPTFS_SUPPORTED_FILE_VERSION);
 | 
						|
		rc = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	offset += bytes_read;
 | 
						|
	if (crypt_stat->file_version >= 1) {
 | 
						|
		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
 | 
						|
					   &bytes_read, validate_header_size);
 | 
						|
		if (rc) {
 | 
						|
			ecryptfs_printk(KERN_WARNING, "Error reading header "
 | 
						|
					"metadata; rc = [%d]\n", rc);
 | 
						|
		}
 | 
						|
		offset += bytes_read;
 | 
						|
	} else
 | 
						|
		set_default_header_data(crypt_stat);
 | 
						|
	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
 | 
						|
				       ecryptfs_dentry);
 | 
						|
out:
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_read_xattr_region
 | 
						|
 * @page_virt: The vitual address into which to read the xattr data
 | 
						|
 * @ecryptfs_inode: The eCryptfs inode
 | 
						|
 *
 | 
						|
 * Attempts to read the crypto metadata from the extended attribute
 | 
						|
 * region of the lower file.
 | 
						|
 *
 | 
						|
 * Returns zero on success; non-zero on error
 | 
						|
 */
 | 
						|
int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
 | 
						|
{
 | 
						|
	struct dentry *lower_dentry =
 | 
						|
		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
 | 
						|
	ssize_t size;
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
 | 
						|
				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
 | 
						|
	if (size < 0) {
 | 
						|
		if (unlikely(ecryptfs_verbosity > 0))
 | 
						|
			printk(KERN_INFO "Error attempting to read the [%s] "
 | 
						|
			       "xattr from the lower file; return value = "
 | 
						|
			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
 | 
						|
		rc = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
 | 
						|
					    struct inode *inode)
 | 
						|
{
 | 
						|
	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
 | 
						|
	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
 | 
						|
	int rc;
 | 
						|
 | 
						|
	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
 | 
						|
				     ECRYPTFS_XATTR_NAME, file_size,
 | 
						|
				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
 | 
						|
	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
 | 
						|
		return rc >= 0 ? -EINVAL : rc;
 | 
						|
	rc = ecryptfs_validate_marker(marker);
 | 
						|
	if (!rc)
 | 
						|
		ecryptfs_i_size_init(file_size, inode);
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_read_metadata
 | 
						|
 *
 | 
						|
 * Common entry point for reading file metadata. From here, we could
 | 
						|
 * retrieve the header information from the header region of the file,
 | 
						|
 * the xattr region of the file, or some other repostory that is
 | 
						|
 * stored separately from the file itself. The current implementation
 | 
						|
 * supports retrieving the metadata information from the file contents
 | 
						|
 * and from the xattr region.
 | 
						|
 *
 | 
						|
 * Returns zero if valid headers found and parsed; non-zero otherwise
 | 
						|
 */
 | 
						|
int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
 | 
						|
{
 | 
						|
	int rc;
 | 
						|
	char *page_virt;
 | 
						|
	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
 | 
						|
	struct ecryptfs_crypt_stat *crypt_stat =
 | 
						|
	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
 | 
						|
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
 | 
						|
		&ecryptfs_superblock_to_private(
 | 
						|
			ecryptfs_dentry->d_sb)->mount_crypt_stat;
 | 
						|
 | 
						|
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 | 
						|
						      mount_crypt_stat);
 | 
						|
	/* Read the first page from the underlying file */
 | 
						|
	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
 | 
						|
	if (!page_virt) {
 | 
						|
		rc = -ENOMEM;
 | 
						|
		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
 | 
						|
		       __func__);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
 | 
						|
				 ecryptfs_inode);
 | 
						|
	if (rc >= 0)
 | 
						|
		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
 | 
						|
						ecryptfs_dentry,
 | 
						|
						ECRYPTFS_VALIDATE_HEADER_SIZE);
 | 
						|
	if (rc) {
 | 
						|
		/* metadata is not in the file header, so try xattrs */
 | 
						|
		memset(page_virt, 0, PAGE_CACHE_SIZE);
 | 
						|
		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
 | 
						|
		if (rc) {
 | 
						|
			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
 | 
						|
			       "file header region or xattr region, inode %lu\n",
 | 
						|
				ecryptfs_inode->i_ino);
 | 
						|
			rc = -EINVAL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
 | 
						|
						ecryptfs_dentry,
 | 
						|
						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
 | 
						|
		if (rc) {
 | 
						|
			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
 | 
						|
			       "file xattr region either, inode %lu\n",
 | 
						|
				ecryptfs_inode->i_ino);
 | 
						|
			rc = -EINVAL;
 | 
						|
		}
 | 
						|
		if (crypt_stat->mount_crypt_stat->flags
 | 
						|
		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
 | 
						|
			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
 | 
						|
		} else {
 | 
						|
			printk(KERN_WARNING "Attempt to access file with "
 | 
						|
			       "crypto metadata only in the extended attribute "
 | 
						|
			       "region, but eCryptfs was mounted without "
 | 
						|
			       "xattr support enabled. eCryptfs will not treat "
 | 
						|
			       "this like an encrypted file, inode %lu\n",
 | 
						|
				ecryptfs_inode->i_ino);
 | 
						|
			rc = -EINVAL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
out:
 | 
						|
	if (page_virt) {
 | 
						|
		memset(page_virt, 0, PAGE_CACHE_SIZE);
 | 
						|
		kmem_cache_free(ecryptfs_header_cache, page_virt);
 | 
						|
	}
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_encrypt_filename - encrypt filename
 | 
						|
 *
 | 
						|
 * CBC-encrypts the filename. We do not want to encrypt the same
 | 
						|
 * filename with the same key and IV, which may happen with hard
 | 
						|
 * links, so we prepend random bits to each filename.
 | 
						|
 *
 | 
						|
 * Returns zero on success; non-zero otherwise
 | 
						|
 */
 | 
						|
static int
 | 
						|
ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
 | 
						|
			  struct ecryptfs_crypt_stat *crypt_stat,
 | 
						|
			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 | 
						|
{
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	filename->encrypted_filename = NULL;
 | 
						|
	filename->encrypted_filename_size = 0;
 | 
						|
	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
 | 
						|
	    || (mount_crypt_stat && (mount_crypt_stat->flags
 | 
						|
				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
 | 
						|
		size_t packet_size;
 | 
						|
		size_t remaining_bytes;
 | 
						|
 | 
						|
		rc = ecryptfs_write_tag_70_packet(
 | 
						|
			NULL, NULL,
 | 
						|
			&filename->encrypted_filename_size,
 | 
						|
			mount_crypt_stat, NULL,
 | 
						|
			filename->filename_size);
 | 
						|
		if (rc) {
 | 
						|
			printk(KERN_ERR "%s: Error attempting to get packet "
 | 
						|
			       "size for tag 72; rc = [%d]\n", __func__,
 | 
						|
			       rc);
 | 
						|
			filename->encrypted_filename_size = 0;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		filename->encrypted_filename =
 | 
						|
			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
 | 
						|
		if (!filename->encrypted_filename) {
 | 
						|
			printk(KERN_ERR "%s: Out of memory whilst attempting "
 | 
						|
			       "to kmalloc [%zd] bytes\n", __func__,
 | 
						|
			       filename->encrypted_filename_size);
 | 
						|
			rc = -ENOMEM;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		remaining_bytes = filename->encrypted_filename_size;
 | 
						|
		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
 | 
						|
						  &remaining_bytes,
 | 
						|
						  &packet_size,
 | 
						|
						  mount_crypt_stat,
 | 
						|
						  filename->filename,
 | 
						|
						  filename->filename_size);
 | 
						|
		if (rc) {
 | 
						|
			printk(KERN_ERR "%s: Error attempting to generate "
 | 
						|
			       "tag 70 packet; rc = [%d]\n", __func__,
 | 
						|
			       rc);
 | 
						|
			kfree(filename->encrypted_filename);
 | 
						|
			filename->encrypted_filename = NULL;
 | 
						|
			filename->encrypted_filename_size = 0;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		filename->encrypted_filename_size = packet_size;
 | 
						|
	} else {
 | 
						|
		printk(KERN_ERR "%s: No support for requested filename "
 | 
						|
		       "encryption method in this release\n", __func__);
 | 
						|
		rc = -EOPNOTSUPP;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
 | 
						|
				  const char *name, size_t name_size)
 | 
						|
{
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
 | 
						|
	if (!(*copied_name)) {
 | 
						|
		rc = -ENOMEM;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	memcpy((void *)(*copied_name), (void *)name, name_size);
 | 
						|
	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
 | 
						|
						 * in printing out the
 | 
						|
						 * string in debug
 | 
						|
						 * messages */
 | 
						|
	(*copied_name_size) = name_size;
 | 
						|
out:
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_process_key_cipher - Perform key cipher initialization.
 | 
						|
 * @key_tfm: Crypto context for key material, set by this function
 | 
						|
 * @cipher_name: Name of the cipher
 | 
						|
 * @key_size: Size of the key in bytes
 | 
						|
 *
 | 
						|
 * Returns zero on success. Any crypto_tfm structs allocated here
 | 
						|
 * should be released by other functions, such as on a superblock put
 | 
						|
 * event, regardless of whether this function succeeds for fails.
 | 
						|
 */
 | 
						|
static int
 | 
						|
ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
 | 
						|
			    char *cipher_name, size_t *key_size)
 | 
						|
{
 | 
						|
	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
 | 
						|
	char *full_alg_name = NULL;
 | 
						|
	int rc;
 | 
						|
 | 
						|
	*key_tfm = NULL;
 | 
						|
	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
 | 
						|
		rc = -EINVAL;
 | 
						|
		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
 | 
						|
		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
 | 
						|
						    "ecb");
 | 
						|
	if (rc)
 | 
						|
		goto out;
 | 
						|
	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
 | 
						|
	if (IS_ERR(*key_tfm)) {
 | 
						|
		rc = PTR_ERR(*key_tfm);
 | 
						|
		printk(KERN_ERR "Unable to allocate crypto cipher with name "
 | 
						|
		       "[%s]; rc = [%d]\n", full_alg_name, rc);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
 | 
						|
	if (*key_size == 0) {
 | 
						|
		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
 | 
						|
 | 
						|
		*key_size = alg->max_keysize;
 | 
						|
	}
 | 
						|
	get_random_bytes(dummy_key, *key_size);
 | 
						|
	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
 | 
						|
	if (rc) {
 | 
						|
		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
 | 
						|
		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
 | 
						|
		       rc);
 | 
						|
		rc = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	kfree(full_alg_name);
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
struct kmem_cache *ecryptfs_key_tfm_cache;
 | 
						|
static struct list_head key_tfm_list;
 | 
						|
struct mutex key_tfm_list_mutex;
 | 
						|
 | 
						|
int __init ecryptfs_init_crypto(void)
 | 
						|
{
 | 
						|
	mutex_init(&key_tfm_list_mutex);
 | 
						|
	INIT_LIST_HEAD(&key_tfm_list);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
 | 
						|
 *
 | 
						|
 * Called only at module unload time
 | 
						|
 */
 | 
						|
int ecryptfs_destroy_crypto(void)
 | 
						|
{
 | 
						|
	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
 | 
						|
 | 
						|
	mutex_lock(&key_tfm_list_mutex);
 | 
						|
	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
 | 
						|
				 key_tfm_list) {
 | 
						|
		list_del(&key_tfm->key_tfm_list);
 | 
						|
		if (key_tfm->key_tfm)
 | 
						|
			crypto_free_blkcipher(key_tfm->key_tfm);
 | 
						|
		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
 | 
						|
	}
 | 
						|
	mutex_unlock(&key_tfm_list_mutex);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
 | 
						|
			 size_t key_size)
 | 
						|
{
 | 
						|
	struct ecryptfs_key_tfm *tmp_tfm;
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
 | 
						|
 | 
						|
	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
 | 
						|
	if (key_tfm != NULL)
 | 
						|
		(*key_tfm) = tmp_tfm;
 | 
						|
	if (!tmp_tfm) {
 | 
						|
		rc = -ENOMEM;
 | 
						|
		printk(KERN_ERR "Error attempting to allocate from "
 | 
						|
		       "ecryptfs_key_tfm_cache\n");
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	mutex_init(&tmp_tfm->key_tfm_mutex);
 | 
						|
	strncpy(tmp_tfm->cipher_name, cipher_name,
 | 
						|
		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
 | 
						|
	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
 | 
						|
	tmp_tfm->key_size = key_size;
 | 
						|
	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
 | 
						|
					 tmp_tfm->cipher_name,
 | 
						|
					 &tmp_tfm->key_size);
 | 
						|
	if (rc) {
 | 
						|
		printk(KERN_ERR "Error attempting to initialize key TFM "
 | 
						|
		       "cipher with name = [%s]; rc = [%d]\n",
 | 
						|
		       tmp_tfm->cipher_name, rc);
 | 
						|
		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
 | 
						|
		if (key_tfm != NULL)
 | 
						|
			(*key_tfm) = NULL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
 | 
						|
out:
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
 | 
						|
 * @cipher_name: the name of the cipher to search for
 | 
						|
 * @key_tfm: set to corresponding tfm if found
 | 
						|
 *
 | 
						|
 * Searches for cached key_tfm matching @cipher_name
 | 
						|
 * Must be called with &key_tfm_list_mutex held
 | 
						|
 * Returns 1 if found, with @key_tfm set
 | 
						|
 * Returns 0 if not found, with @key_tfm set to NULL
 | 
						|
 */
 | 
						|
int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
 | 
						|
{
 | 
						|
	struct ecryptfs_key_tfm *tmp_key_tfm;
 | 
						|
 | 
						|
	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
 | 
						|
 | 
						|
	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
 | 
						|
		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
 | 
						|
			if (key_tfm)
 | 
						|
				(*key_tfm) = tmp_key_tfm;
 | 
						|
			return 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (key_tfm)
 | 
						|
		(*key_tfm) = NULL;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_get_tfm_and_mutex_for_cipher_name
 | 
						|
 *
 | 
						|
 * @tfm: set to cached tfm found, or new tfm created
 | 
						|
 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
 | 
						|
 * @cipher_name: the name of the cipher to search for and/or add
 | 
						|
 *
 | 
						|
 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
 | 
						|
 * Searches for cached item first, and creates new if not found.
 | 
						|
 * Returns 0 on success, non-zero if adding new cipher failed
 | 
						|
 */
 | 
						|
int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
 | 
						|
					       struct mutex **tfm_mutex,
 | 
						|
					       char *cipher_name)
 | 
						|
{
 | 
						|
	struct ecryptfs_key_tfm *key_tfm;
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	(*tfm) = NULL;
 | 
						|
	(*tfm_mutex) = NULL;
 | 
						|
 | 
						|
	mutex_lock(&key_tfm_list_mutex);
 | 
						|
	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
 | 
						|
		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
 | 
						|
		if (rc) {
 | 
						|
			printk(KERN_ERR "Error adding new key_tfm to list; "
 | 
						|
					"rc = [%d]\n", rc);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	(*tfm) = key_tfm->key_tfm;
 | 
						|
	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
 | 
						|
out:
 | 
						|
	mutex_unlock(&key_tfm_list_mutex);
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/* 64 characters forming a 6-bit target field */
 | 
						|
static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
 | 
						|
						 "EFGHIJKLMNOPQRST"
 | 
						|
						 "UVWXYZabcdefghij"
 | 
						|
						 "klmnopqrstuvwxyz");
 | 
						|
 | 
						|
/* We could either offset on every reverse map or just pad some 0x00's
 | 
						|
 * at the front here */
 | 
						|
static const unsigned char filename_rev_map[256] = {
 | 
						|
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
 | 
						|
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
 | 
						|
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
 | 
						|
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
 | 
						|
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
 | 
						|
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
 | 
						|
	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
 | 
						|
	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
 | 
						|
	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
 | 
						|
	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
 | 
						|
	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
 | 
						|
	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
 | 
						|
	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
 | 
						|
	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
 | 
						|
	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
 | 
						|
	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_encode_for_filename
 | 
						|
 * @dst: Destination location for encoded filename
 | 
						|
 * @dst_size: Size of the encoded filename in bytes
 | 
						|
 * @src: Source location for the filename to encode
 | 
						|
 * @src_size: Size of the source in bytes
 | 
						|
 */
 | 
						|
static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
 | 
						|
				  unsigned char *src, size_t src_size)
 | 
						|
{
 | 
						|
	size_t num_blocks;
 | 
						|
	size_t block_num = 0;
 | 
						|
	size_t dst_offset = 0;
 | 
						|
	unsigned char last_block[3];
 | 
						|
 | 
						|
	if (src_size == 0) {
 | 
						|
		(*dst_size) = 0;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	num_blocks = (src_size / 3);
 | 
						|
	if ((src_size % 3) == 0) {
 | 
						|
		memcpy(last_block, (&src[src_size - 3]), 3);
 | 
						|
	} else {
 | 
						|
		num_blocks++;
 | 
						|
		last_block[2] = 0x00;
 | 
						|
		switch (src_size % 3) {
 | 
						|
		case 1:
 | 
						|
			last_block[0] = src[src_size - 1];
 | 
						|
			last_block[1] = 0x00;
 | 
						|
			break;
 | 
						|
		case 2:
 | 
						|
			last_block[0] = src[src_size - 2];
 | 
						|
			last_block[1] = src[src_size - 1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	(*dst_size) = (num_blocks * 4);
 | 
						|
	if (!dst)
 | 
						|
		goto out;
 | 
						|
	while (block_num < num_blocks) {
 | 
						|
		unsigned char *src_block;
 | 
						|
		unsigned char dst_block[4];
 | 
						|
 | 
						|
		if (block_num == (num_blocks - 1))
 | 
						|
			src_block = last_block;
 | 
						|
		else
 | 
						|
			src_block = &src[block_num * 3];
 | 
						|
		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
 | 
						|
		dst_block[1] = (((src_block[0] << 4) & 0x30)
 | 
						|
				| ((src_block[1] >> 4) & 0x0F));
 | 
						|
		dst_block[2] = (((src_block[1] << 2) & 0x3C)
 | 
						|
				| ((src_block[2] >> 6) & 0x03));
 | 
						|
		dst_block[3] = (src_block[2] & 0x3F);
 | 
						|
		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
 | 
						|
		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
 | 
						|
		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
 | 
						|
		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
 | 
						|
		block_num++;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
static size_t ecryptfs_max_decoded_size(size_t encoded_size)
 | 
						|
{
 | 
						|
	/* Not exact; conservatively long. Every block of 4
 | 
						|
	 * encoded characters decodes into a block of 3
 | 
						|
	 * decoded characters. This segment of code provides
 | 
						|
	 * the caller with the maximum amount of allocated
 | 
						|
	 * space that @dst will need to point to in a
 | 
						|
	 * subsequent call. */
 | 
						|
	return ((encoded_size + 1) * 3) / 4;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_decode_from_filename
 | 
						|
 * @dst: If NULL, this function only sets @dst_size and returns. If
 | 
						|
 *       non-NULL, this function decodes the encoded octets in @src
 | 
						|
 *       into the memory that @dst points to.
 | 
						|
 * @dst_size: Set to the size of the decoded string.
 | 
						|
 * @src: The encoded set of octets to decode.
 | 
						|
 * @src_size: The size of the encoded set of octets to decode.
 | 
						|
 */
 | 
						|
static void
 | 
						|
ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
 | 
						|
			      const unsigned char *src, size_t src_size)
 | 
						|
{
 | 
						|
	u8 current_bit_offset = 0;
 | 
						|
	size_t src_byte_offset = 0;
 | 
						|
	size_t dst_byte_offset = 0;
 | 
						|
 | 
						|
	if (dst == NULL) {
 | 
						|
		(*dst_size) = ecryptfs_max_decoded_size(src_size);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	while (src_byte_offset < src_size) {
 | 
						|
		unsigned char src_byte =
 | 
						|
				filename_rev_map[(int)src[src_byte_offset]];
 | 
						|
 | 
						|
		switch (current_bit_offset) {
 | 
						|
		case 0:
 | 
						|
			dst[dst_byte_offset] = (src_byte << 2);
 | 
						|
			current_bit_offset = 6;
 | 
						|
			break;
 | 
						|
		case 6:
 | 
						|
			dst[dst_byte_offset++] |= (src_byte >> 4);
 | 
						|
			dst[dst_byte_offset] = ((src_byte & 0xF)
 | 
						|
						 << 4);
 | 
						|
			current_bit_offset = 4;
 | 
						|
			break;
 | 
						|
		case 4:
 | 
						|
			dst[dst_byte_offset++] |= (src_byte >> 2);
 | 
						|
			dst[dst_byte_offset] = (src_byte << 6);
 | 
						|
			current_bit_offset = 2;
 | 
						|
			break;
 | 
						|
		case 2:
 | 
						|
			dst[dst_byte_offset++] |= (src_byte);
 | 
						|
			current_bit_offset = 0;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		src_byte_offset++;
 | 
						|
	}
 | 
						|
	(*dst_size) = dst_byte_offset;
 | 
						|
out:
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
 | 
						|
 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
 | 
						|
 * @name: The plaintext name
 | 
						|
 * @length: The length of the plaintext
 | 
						|
 * @encoded_name: The encypted name
 | 
						|
 *
 | 
						|
 * Encrypts and encodes a filename into something that constitutes a
 | 
						|
 * valid filename for a filesystem, with printable characters.
 | 
						|
 *
 | 
						|
 * We assume that we have a properly initialized crypto context,
 | 
						|
 * pointed to by crypt_stat->tfm.
 | 
						|
 *
 | 
						|
 * Returns zero on success; non-zero on otherwise
 | 
						|
 */
 | 
						|
int ecryptfs_encrypt_and_encode_filename(
 | 
						|
	char **encoded_name,
 | 
						|
	size_t *encoded_name_size,
 | 
						|
	struct ecryptfs_crypt_stat *crypt_stat,
 | 
						|
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
 | 
						|
	const char *name, size_t name_size)
 | 
						|
{
 | 
						|
	size_t encoded_name_no_prefix_size;
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	(*encoded_name) = NULL;
 | 
						|
	(*encoded_name_size) = 0;
 | 
						|
	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
 | 
						|
	    || (mount_crypt_stat && (mount_crypt_stat->flags
 | 
						|
				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
 | 
						|
		struct ecryptfs_filename *filename;
 | 
						|
 | 
						|
		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
 | 
						|
		if (!filename) {
 | 
						|
			printk(KERN_ERR "%s: Out of memory whilst attempting "
 | 
						|
			       "to kzalloc [%zd] bytes\n", __func__,
 | 
						|
			       sizeof(*filename));
 | 
						|
			rc = -ENOMEM;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		filename->filename = (char *)name;
 | 
						|
		filename->filename_size = name_size;
 | 
						|
		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
 | 
						|
					       mount_crypt_stat);
 | 
						|
		if (rc) {
 | 
						|
			printk(KERN_ERR "%s: Error attempting to encrypt "
 | 
						|
			       "filename; rc = [%d]\n", __func__, rc);
 | 
						|
			kfree(filename);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		ecryptfs_encode_for_filename(
 | 
						|
			NULL, &encoded_name_no_prefix_size,
 | 
						|
			filename->encrypted_filename,
 | 
						|
			filename->encrypted_filename_size);
 | 
						|
		if ((crypt_stat && (crypt_stat->flags
 | 
						|
				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
 | 
						|
		    || (mount_crypt_stat
 | 
						|
			&& (mount_crypt_stat->flags
 | 
						|
			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
 | 
						|
			(*encoded_name_size) =
 | 
						|
				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
 | 
						|
				 + encoded_name_no_prefix_size);
 | 
						|
		else
 | 
						|
			(*encoded_name_size) =
 | 
						|
				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
 | 
						|
				 + encoded_name_no_prefix_size);
 | 
						|
		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
 | 
						|
		if (!(*encoded_name)) {
 | 
						|
			printk(KERN_ERR "%s: Out of memory whilst attempting "
 | 
						|
			       "to kzalloc [%zd] bytes\n", __func__,
 | 
						|
			       (*encoded_name_size));
 | 
						|
			rc = -ENOMEM;
 | 
						|
			kfree(filename->encrypted_filename);
 | 
						|
			kfree(filename);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		if ((crypt_stat && (crypt_stat->flags
 | 
						|
				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
 | 
						|
		    || (mount_crypt_stat
 | 
						|
			&& (mount_crypt_stat->flags
 | 
						|
			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
 | 
						|
			memcpy((*encoded_name),
 | 
						|
			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
 | 
						|
			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
 | 
						|
			ecryptfs_encode_for_filename(
 | 
						|
			    ((*encoded_name)
 | 
						|
			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
 | 
						|
			    &encoded_name_no_prefix_size,
 | 
						|
			    filename->encrypted_filename,
 | 
						|
			    filename->encrypted_filename_size);
 | 
						|
			(*encoded_name_size) =
 | 
						|
				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
 | 
						|
				 + encoded_name_no_prefix_size);
 | 
						|
			(*encoded_name)[(*encoded_name_size)] = '\0';
 | 
						|
		} else {
 | 
						|
			rc = -EOPNOTSUPP;
 | 
						|
		}
 | 
						|
		if (rc) {
 | 
						|
			printk(KERN_ERR "%s: Error attempting to encode "
 | 
						|
			       "encrypted filename; rc = [%d]\n", __func__,
 | 
						|
			       rc);
 | 
						|
			kfree((*encoded_name));
 | 
						|
			(*encoded_name) = NULL;
 | 
						|
			(*encoded_name_size) = 0;
 | 
						|
		}
 | 
						|
		kfree(filename->encrypted_filename);
 | 
						|
		kfree(filename);
 | 
						|
	} else {
 | 
						|
		rc = ecryptfs_copy_filename(encoded_name,
 | 
						|
					    encoded_name_size,
 | 
						|
					    name, name_size);
 | 
						|
	}
 | 
						|
out:
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
 | 
						|
 * @plaintext_name: The plaintext name
 | 
						|
 * @plaintext_name_size: The plaintext name size
 | 
						|
 * @ecryptfs_dir_dentry: eCryptfs directory dentry
 | 
						|
 * @name: The filename in cipher text
 | 
						|
 * @name_size: The cipher text name size
 | 
						|
 *
 | 
						|
 * Decrypts and decodes the filename.
 | 
						|
 *
 | 
						|
 * Returns zero on error; non-zero otherwise
 | 
						|
 */
 | 
						|
int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
 | 
						|
					 size_t *plaintext_name_size,
 | 
						|
					 struct super_block *sb,
 | 
						|
					 const char *name, size_t name_size)
 | 
						|
{
 | 
						|
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
 | 
						|
		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
 | 
						|
	char *decoded_name;
 | 
						|
	size_t decoded_name_size;
 | 
						|
	size_t packet_size;
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
 | 
						|
	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
 | 
						|
	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
 | 
						|
	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
 | 
						|
			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
 | 
						|
		const char *orig_name = name;
 | 
						|
		size_t orig_name_size = name_size;
 | 
						|
 | 
						|
		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
 | 
						|
		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
 | 
						|
		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
 | 
						|
					      name, name_size);
 | 
						|
		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
 | 
						|
		if (!decoded_name) {
 | 
						|
			printk(KERN_ERR "%s: Out of memory whilst attempting "
 | 
						|
			       "to kmalloc [%zd] bytes\n", __func__,
 | 
						|
			       decoded_name_size);
 | 
						|
			rc = -ENOMEM;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
 | 
						|
					      name, name_size);
 | 
						|
		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
 | 
						|
						  plaintext_name_size,
 | 
						|
						  &packet_size,
 | 
						|
						  mount_crypt_stat,
 | 
						|
						  decoded_name,
 | 
						|
						  decoded_name_size);
 | 
						|
		if (rc) {
 | 
						|
			printk(KERN_INFO "%s: Could not parse tag 70 packet "
 | 
						|
			       "from filename; copying through filename "
 | 
						|
			       "as-is\n", __func__);
 | 
						|
			rc = ecryptfs_copy_filename(plaintext_name,
 | 
						|
						    plaintext_name_size,
 | 
						|
						    orig_name, orig_name_size);
 | 
						|
			goto out_free;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		rc = ecryptfs_copy_filename(plaintext_name,
 | 
						|
					    plaintext_name_size,
 | 
						|
					    name, name_size);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
out_free:
 | 
						|
	kfree(decoded_name);
 | 
						|
out:
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
#define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143
 | 
						|
 | 
						|
int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
 | 
						|
			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 | 
						|
{
 | 
						|
	struct blkcipher_desc desc;
 | 
						|
	struct mutex *tfm_mutex;
 | 
						|
	size_t cipher_blocksize;
 | 
						|
	int rc;
 | 
						|
 | 
						|
	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
 | 
						|
		(*namelen) = lower_namelen;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
 | 
						|
			mount_crypt_stat->global_default_fn_cipher_name);
 | 
						|
	if (unlikely(rc)) {
 | 
						|
		(*namelen) = 0;
 | 
						|
		return rc;
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_lock(tfm_mutex);
 | 
						|
	cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
 | 
						|
	mutex_unlock(tfm_mutex);
 | 
						|
 | 
						|
	/* Return an exact amount for the common cases */
 | 
						|
	if (lower_namelen == NAME_MAX
 | 
						|
	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
 | 
						|
		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Return a safe estimate for the uncommon cases */
 | 
						|
	(*namelen) = lower_namelen;
 | 
						|
	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
 | 
						|
	/* Since this is the max decoded size, subtract 1 "decoded block" len */
 | 
						|
	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
 | 
						|
	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
 | 
						|
	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
 | 
						|
	/* Worst case is that the filename is padded nearly a full block size */
 | 
						|
	(*namelen) -= cipher_blocksize - 1;
 | 
						|
 | 
						|
	if ((*namelen) < 0)
 | 
						|
		(*namelen) = 0;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 |