 94b8395755
			
		
	
	
	94b8395755
	
	
	
		
			
			No functional changes.
v2 (Paulo): Rebase.
v3: Accept Daniel's suggestions:
    * remove unclear and duplicated explanation.
    * remove marketing like doc and replace by a simple one.
    * remove bdw_fbc_sw_flush documentation.
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Signed-off-by: Paulo Zanoni <paulo.r.zanoni@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
		
	
			
		
			
				
	
	
		
			701 lines
		
	
	
	
		
			20 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			701 lines
		
	
	
	
		
			20 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright © 2014 Intel Corporation
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a
 | |
|  * copy of this software and associated documentation files (the "Software"),
 | |
|  * to deal in the Software without restriction, including without limitation
 | |
|  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 | |
|  * and/or sell copies of the Software, and to permit persons to whom the
 | |
|  * Software is furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice (including the next
 | |
|  * paragraph) shall be included in all copies or substantial portions of the
 | |
|  * Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 | |
|  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 | |
|  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 | |
|  * DEALINGS IN THE SOFTWARE.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * DOC: Frame Buffer Compression (FBC)
 | |
|  *
 | |
|  * FBC tries to save memory bandwidth (and so power consumption) by
 | |
|  * compressing the amount of memory used by the display. It is total
 | |
|  * transparent to user space and completely handled in the kernel.
 | |
|  *
 | |
|  * The benefits of FBC are mostly visible with solid backgrounds and
 | |
|  * variation-less patterns. It comes from keeping the memory footprint small
 | |
|  * and having fewer memory pages opened and accessed for refreshing the display.
 | |
|  *
 | |
|  * i915 is responsible to reserve stolen memory for FBC and configure its
 | |
|  * offset on proper registers. The hardware takes care of all
 | |
|  * compress/decompress. However there are many known cases where we have to
 | |
|  * forcibly disable it to allow proper screen updates.
 | |
|  */
 | |
| 
 | |
| #include "intel_drv.h"
 | |
| #include "i915_drv.h"
 | |
| 
 | |
| static void i8xx_fbc_disable(struct drm_device *dev)
 | |
| {
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 	u32 fbc_ctl;
 | |
| 
 | |
| 	dev_priv->fbc.enabled = false;
 | |
| 
 | |
| 	/* Disable compression */
 | |
| 	fbc_ctl = I915_READ(FBC_CONTROL);
 | |
| 	if ((fbc_ctl & FBC_CTL_EN) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	fbc_ctl &= ~FBC_CTL_EN;
 | |
| 	I915_WRITE(FBC_CONTROL, fbc_ctl);
 | |
| 
 | |
| 	/* Wait for compressing bit to clear */
 | |
| 	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
 | |
| 		DRM_DEBUG_KMS("FBC idle timed out\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	DRM_DEBUG_KMS("disabled FBC\n");
 | |
| }
 | |
| 
 | |
| static void i8xx_fbc_enable(struct drm_crtc *crtc)
 | |
| {
 | |
| 	struct drm_device *dev = crtc->dev;
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 	struct drm_framebuffer *fb = crtc->primary->fb;
 | |
| 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
 | |
| 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 | |
| 	int cfb_pitch;
 | |
| 	int i;
 | |
| 	u32 fbc_ctl;
 | |
| 
 | |
| 	dev_priv->fbc.enabled = true;
 | |
| 
 | |
| 	cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
 | |
| 	if (fb->pitches[0] < cfb_pitch)
 | |
| 		cfb_pitch = fb->pitches[0];
 | |
| 
 | |
| 	/* FBC_CTL wants 32B or 64B units */
 | |
| 	if (IS_GEN2(dev))
 | |
| 		cfb_pitch = (cfb_pitch / 32) - 1;
 | |
| 	else
 | |
| 		cfb_pitch = (cfb_pitch / 64) - 1;
 | |
| 
 | |
| 	/* Clear old tags */
 | |
| 	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
 | |
| 		I915_WRITE(FBC_TAG + (i * 4), 0);
 | |
| 
 | |
| 	if (IS_GEN4(dev)) {
 | |
| 		u32 fbc_ctl2;
 | |
| 
 | |
| 		/* Set it up... */
 | |
| 		fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
 | |
| 		fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
 | |
| 		I915_WRITE(FBC_CONTROL2, fbc_ctl2);
 | |
| 		I915_WRITE(FBC_FENCE_OFF, crtc->y);
 | |
| 	}
 | |
| 
 | |
| 	/* enable it... */
 | |
| 	fbc_ctl = I915_READ(FBC_CONTROL);
 | |
| 	fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
 | |
| 	fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
 | |
| 	if (IS_I945GM(dev))
 | |
| 		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
 | |
| 	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
 | |
| 	fbc_ctl |= obj->fence_reg;
 | |
| 	I915_WRITE(FBC_CONTROL, fbc_ctl);
 | |
| 
 | |
| 	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
 | |
| 		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
 | |
| }
 | |
| 
 | |
| static bool i8xx_fbc_enabled(struct drm_device *dev)
 | |
| {
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 
 | |
| 	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
 | |
| }
 | |
| 
 | |
| static void g4x_fbc_enable(struct drm_crtc *crtc)
 | |
| {
 | |
| 	struct drm_device *dev = crtc->dev;
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 	struct drm_framebuffer *fb = crtc->primary->fb;
 | |
| 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
 | |
| 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 | |
| 	u32 dpfc_ctl;
 | |
| 
 | |
| 	dev_priv->fbc.enabled = true;
 | |
| 
 | |
| 	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
 | |
| 	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
 | |
| 		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
 | |
| 	else
 | |
| 		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
 | |
| 	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
 | |
| 
 | |
| 	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
 | |
| 
 | |
| 	/* enable it... */
 | |
| 	I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
 | |
| 
 | |
| 	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
 | |
| }
 | |
| 
 | |
| static void g4x_fbc_disable(struct drm_device *dev)
 | |
| {
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 	u32 dpfc_ctl;
 | |
| 
 | |
| 	dev_priv->fbc.enabled = false;
 | |
| 
 | |
| 	/* Disable compression */
 | |
| 	dpfc_ctl = I915_READ(DPFC_CONTROL);
 | |
| 	if (dpfc_ctl & DPFC_CTL_EN) {
 | |
| 		dpfc_ctl &= ~DPFC_CTL_EN;
 | |
| 		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
 | |
| 
 | |
| 		DRM_DEBUG_KMS("disabled FBC\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool g4x_fbc_enabled(struct drm_device *dev)
 | |
| {
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 
 | |
| 	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
 | |
| }
 | |
| 
 | |
| static void snb_fbc_blit_update(struct drm_device *dev)
 | |
| {
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 	u32 blt_ecoskpd;
 | |
| 
 | |
| 	/* Make sure blitter notifies FBC of writes */
 | |
| 
 | |
| 	/* Blitter is part of Media powerwell on VLV. No impact of
 | |
| 	 * his param in other platforms for now */
 | |
| 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
 | |
| 
 | |
| 	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
 | |
| 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
 | |
| 		GEN6_BLITTER_LOCK_SHIFT;
 | |
| 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
 | |
| 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
 | |
| 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
 | |
| 	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
 | |
| 			 GEN6_BLITTER_LOCK_SHIFT);
 | |
| 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
 | |
| 	POSTING_READ(GEN6_BLITTER_ECOSKPD);
 | |
| 
 | |
| 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
 | |
| }
 | |
| 
 | |
| static void ilk_fbc_enable(struct drm_crtc *crtc)
 | |
| {
 | |
| 	struct drm_device *dev = crtc->dev;
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 	struct drm_framebuffer *fb = crtc->primary->fb;
 | |
| 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
 | |
| 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 | |
| 	u32 dpfc_ctl;
 | |
| 
 | |
| 	dev_priv->fbc.enabled = true;
 | |
| 
 | |
| 	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
 | |
| 	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
 | |
| 		dev_priv->fbc.threshold++;
 | |
| 
 | |
| 	switch (dev_priv->fbc.threshold) {
 | |
| 	case 4:
 | |
| 	case 3:
 | |
| 		dpfc_ctl |= DPFC_CTL_LIMIT_4X;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
 | |
| 		break;
 | |
| 	}
 | |
| 	dpfc_ctl |= DPFC_CTL_FENCE_EN;
 | |
| 	if (IS_GEN5(dev))
 | |
| 		dpfc_ctl |= obj->fence_reg;
 | |
| 
 | |
| 	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
 | |
| 	I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
 | |
| 	/* enable it... */
 | |
| 	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
 | |
| 
 | |
| 	if (IS_GEN6(dev)) {
 | |
| 		I915_WRITE(SNB_DPFC_CTL_SA,
 | |
| 			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
 | |
| 		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
 | |
| 		snb_fbc_blit_update(dev);
 | |
| 	}
 | |
| 
 | |
| 	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
 | |
| }
 | |
| 
 | |
| static void ilk_fbc_disable(struct drm_device *dev)
 | |
| {
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 	u32 dpfc_ctl;
 | |
| 
 | |
| 	dev_priv->fbc.enabled = false;
 | |
| 
 | |
| 	/* Disable compression */
 | |
| 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
 | |
| 	if (dpfc_ctl & DPFC_CTL_EN) {
 | |
| 		dpfc_ctl &= ~DPFC_CTL_EN;
 | |
| 		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
 | |
| 
 | |
| 		DRM_DEBUG_KMS("disabled FBC\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool ilk_fbc_enabled(struct drm_device *dev)
 | |
| {
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 
 | |
| 	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
 | |
| }
 | |
| 
 | |
| static void gen7_fbc_enable(struct drm_crtc *crtc)
 | |
| {
 | |
| 	struct drm_device *dev = crtc->dev;
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 	struct drm_framebuffer *fb = crtc->primary->fb;
 | |
| 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
 | |
| 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 | |
| 	u32 dpfc_ctl;
 | |
| 
 | |
| 	dev_priv->fbc.enabled = true;
 | |
| 
 | |
| 	dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
 | |
| 	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
 | |
| 		dev_priv->fbc.threshold++;
 | |
| 
 | |
| 	switch (dev_priv->fbc.threshold) {
 | |
| 	case 4:
 | |
| 	case 3:
 | |
| 		dpfc_ctl |= DPFC_CTL_LIMIT_4X;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
 | |
| 
 | |
| 	if (dev_priv->fbc.false_color)
 | |
| 		dpfc_ctl |= FBC_CTL_FALSE_COLOR;
 | |
| 
 | |
| 	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
 | |
| 
 | |
| 	if (IS_IVYBRIDGE(dev)) {
 | |
| 		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
 | |
| 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
 | |
| 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
 | |
| 			   ILK_FBCQ_DIS);
 | |
| 	} else {
 | |
| 		/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
 | |
| 		I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
 | |
| 			   I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
 | |
| 			   HSW_FBCQ_DIS);
 | |
| 	}
 | |
| 
 | |
| 	I915_WRITE(SNB_DPFC_CTL_SA,
 | |
| 		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
 | |
| 	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
 | |
| 
 | |
| 	snb_fbc_blit_update(dev);
 | |
| 
 | |
| 	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * intel_fbc_enabled - Is FBC enabled?
 | |
|  * @dev: the drm_device
 | |
|  *
 | |
|  * This function is used to verify the current state of FBC.
 | |
|  * FIXME: This should be tracked in the plane config eventually
 | |
|  *        instead of queried at runtime for most callers.
 | |
|  */
 | |
| bool intel_fbc_enabled(struct drm_device *dev)
 | |
| {
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 
 | |
| 	return dev_priv->fbc.enabled;
 | |
| }
 | |
| 
 | |
| void bdw_fbc_sw_flush(struct drm_device *dev, u32 value)
 | |
| {
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 
 | |
| 	if (!IS_GEN8(dev))
 | |
| 		return;
 | |
| 
 | |
| 	if (!intel_fbc_enabled(dev))
 | |
| 		return;
 | |
| 
 | |
| 	I915_WRITE(MSG_FBC_REND_STATE, value);
 | |
| }
 | |
| 
 | |
| static void intel_fbc_work_fn(struct work_struct *__work)
 | |
| {
 | |
| 	struct intel_fbc_work *work =
 | |
| 		container_of(to_delayed_work(__work),
 | |
| 			     struct intel_fbc_work, work);
 | |
| 	struct drm_device *dev = work->crtc->dev;
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 
 | |
| 	mutex_lock(&dev->struct_mutex);
 | |
| 	if (work == dev_priv->fbc.fbc_work) {
 | |
| 		/* Double check that we haven't switched fb without cancelling
 | |
| 		 * the prior work.
 | |
| 		 */
 | |
| 		if (work->crtc->primary->fb == work->fb) {
 | |
| 			dev_priv->display.enable_fbc(work->crtc);
 | |
| 
 | |
| 			dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
 | |
| 			dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
 | |
| 			dev_priv->fbc.y = work->crtc->y;
 | |
| 		}
 | |
| 
 | |
| 		dev_priv->fbc.fbc_work = NULL;
 | |
| 	}
 | |
| 	mutex_unlock(&dev->struct_mutex);
 | |
| 
 | |
| 	kfree(work);
 | |
| }
 | |
| 
 | |
| static void intel_fbc_cancel_work(struct drm_i915_private *dev_priv)
 | |
| {
 | |
| 	if (dev_priv->fbc.fbc_work == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
 | |
| 
 | |
| 	/* Synchronisation is provided by struct_mutex and checking of
 | |
| 	 * dev_priv->fbc.fbc_work, so we can perform the cancellation
 | |
| 	 * entirely asynchronously.
 | |
| 	 */
 | |
| 	if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
 | |
| 		/* tasklet was killed before being run, clean up */
 | |
| 		kfree(dev_priv->fbc.fbc_work);
 | |
| 
 | |
| 	/* Mark the work as no longer wanted so that if it does
 | |
| 	 * wake-up (because the work was already running and waiting
 | |
| 	 * for our mutex), it will discover that is no longer
 | |
| 	 * necessary to run.
 | |
| 	 */
 | |
| 	dev_priv->fbc.fbc_work = NULL;
 | |
| }
 | |
| 
 | |
| static void intel_fbc_enable(struct drm_crtc *crtc)
 | |
| {
 | |
| 	struct intel_fbc_work *work;
 | |
| 	struct drm_device *dev = crtc->dev;
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 
 | |
| 	if (!dev_priv->display.enable_fbc)
 | |
| 		return;
 | |
| 
 | |
| 	intel_fbc_cancel_work(dev_priv);
 | |
| 
 | |
| 	work = kzalloc(sizeof(*work), GFP_KERNEL);
 | |
| 	if (work == NULL) {
 | |
| 		DRM_ERROR("Failed to allocate FBC work structure\n");
 | |
| 		dev_priv->display.enable_fbc(crtc);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	work->crtc = crtc;
 | |
| 	work->fb = crtc->primary->fb;
 | |
| 	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
 | |
| 
 | |
| 	dev_priv->fbc.fbc_work = work;
 | |
| 
 | |
| 	/* Delay the actual enabling to let pageflipping cease and the
 | |
| 	 * display to settle before starting the compression. Note that
 | |
| 	 * this delay also serves a second purpose: it allows for a
 | |
| 	 * vblank to pass after disabling the FBC before we attempt
 | |
| 	 * to modify the control registers.
 | |
| 	 *
 | |
| 	 * A more complicated solution would involve tracking vblanks
 | |
| 	 * following the termination of the page-flipping sequence
 | |
| 	 * and indeed performing the enable as a co-routine and not
 | |
| 	 * waiting synchronously upon the vblank.
 | |
| 	 *
 | |
| 	 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
 | |
| 	 */
 | |
| 	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * intel_fbc_disable - disable FBC
 | |
|  * @dev: the drm_device
 | |
|  *
 | |
|  * This function disables FBC.
 | |
|  */
 | |
| void intel_fbc_disable(struct drm_device *dev)
 | |
| {
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 
 | |
| 	intel_fbc_cancel_work(dev_priv);
 | |
| 
 | |
| 	if (!dev_priv->display.disable_fbc)
 | |
| 		return;
 | |
| 
 | |
| 	dev_priv->display.disable_fbc(dev);
 | |
| 	dev_priv->fbc.plane = -1;
 | |
| }
 | |
| 
 | |
| static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
 | |
| 			      enum no_fbc_reason reason)
 | |
| {
 | |
| 	if (dev_priv->fbc.no_fbc_reason == reason)
 | |
| 		return false;
 | |
| 
 | |
| 	dev_priv->fbc.no_fbc_reason = reason;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * intel_fbc_update - enable/disable FBC as needed
 | |
|  * @dev: the drm_device
 | |
|  *
 | |
|  * Set up the framebuffer compression hardware at mode set time.  We
 | |
|  * enable it if possible:
 | |
|  *   - plane A only (on pre-965)
 | |
|  *   - no pixel mulitply/line duplication
 | |
|  *   - no alpha buffer discard
 | |
|  *   - no dual wide
 | |
|  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
 | |
|  *
 | |
|  * We can't assume that any compression will take place (worst case),
 | |
|  * so the compressed buffer has to be the same size as the uncompressed
 | |
|  * one.  It also must reside (along with the line length buffer) in
 | |
|  * stolen memory.
 | |
|  *
 | |
|  * We need to enable/disable FBC on a global basis.
 | |
|  */
 | |
| void intel_fbc_update(struct drm_device *dev)
 | |
| {
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 	struct drm_crtc *crtc = NULL, *tmp_crtc;
 | |
| 	struct intel_crtc *intel_crtc;
 | |
| 	struct drm_framebuffer *fb;
 | |
| 	struct drm_i915_gem_object *obj;
 | |
| 	const struct drm_display_mode *adjusted_mode;
 | |
| 	unsigned int max_width, max_height;
 | |
| 
 | |
| 	if (!HAS_FBC(dev)) {
 | |
| 		set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!i915.powersave) {
 | |
| 		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
 | |
| 			DRM_DEBUG_KMS("fbc disabled per module param\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If FBC is already on, we just have to verify that we can
 | |
| 	 * keep it that way...
 | |
| 	 * Need to disable if:
 | |
| 	 *   - more than one pipe is active
 | |
| 	 *   - changing FBC params (stride, fence, mode)
 | |
| 	 *   - new fb is too large to fit in compressed buffer
 | |
| 	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
 | |
| 	 */
 | |
| 	for_each_crtc(dev, tmp_crtc) {
 | |
| 		if (intel_crtc_active(tmp_crtc) &&
 | |
| 		    to_intel_crtc(tmp_crtc)->primary_enabled) {
 | |
| 			if (crtc) {
 | |
| 				if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
 | |
| 					DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
 | |
| 				goto out_disable;
 | |
| 			}
 | |
| 			crtc = tmp_crtc;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!crtc || crtc->primary->fb == NULL) {
 | |
| 		if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
 | |
| 			DRM_DEBUG_KMS("no output, disabling\n");
 | |
| 		goto out_disable;
 | |
| 	}
 | |
| 
 | |
| 	intel_crtc = to_intel_crtc(crtc);
 | |
| 	fb = crtc->primary->fb;
 | |
| 	obj = intel_fb_obj(fb);
 | |
| 	adjusted_mode = &intel_crtc->config.adjusted_mode;
 | |
| 
 | |
| 	if (i915.enable_fbc < 0) {
 | |
| 		if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
 | |
| 			DRM_DEBUG_KMS("disabled per chip default\n");
 | |
| 		goto out_disable;
 | |
| 	}
 | |
| 	if (!i915.enable_fbc) {
 | |
| 		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
 | |
| 			DRM_DEBUG_KMS("fbc disabled per module param\n");
 | |
| 		goto out_disable;
 | |
| 	}
 | |
| 	if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
 | |
| 	    (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
 | |
| 		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
 | |
| 			DRM_DEBUG_KMS("mode incompatible with compression, "
 | |
| 				      "disabling\n");
 | |
| 		goto out_disable;
 | |
| 	}
 | |
| 
 | |
| 	if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
 | |
| 		max_width = 4096;
 | |
| 		max_height = 4096;
 | |
| 	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
 | |
| 		max_width = 4096;
 | |
| 		max_height = 2048;
 | |
| 	} else {
 | |
| 		max_width = 2048;
 | |
| 		max_height = 1536;
 | |
| 	}
 | |
| 	if (intel_crtc->config.pipe_src_w > max_width ||
 | |
| 	    intel_crtc->config.pipe_src_h > max_height) {
 | |
| 		if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
 | |
| 			DRM_DEBUG_KMS("mode too large for compression, disabling\n");
 | |
| 		goto out_disable;
 | |
| 	}
 | |
| 	if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
 | |
| 	    intel_crtc->plane != PLANE_A) {
 | |
| 		if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
 | |
| 			DRM_DEBUG_KMS("plane not A, disabling compression\n");
 | |
| 		goto out_disable;
 | |
| 	}
 | |
| 
 | |
| 	/* The use of a CPU fence is mandatory in order to detect writes
 | |
| 	 * by the CPU to the scanout and trigger updates to the FBC.
 | |
| 	 */
 | |
| 	if (obj->tiling_mode != I915_TILING_X ||
 | |
| 	    obj->fence_reg == I915_FENCE_REG_NONE) {
 | |
| 		if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
 | |
| 			DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
 | |
| 		goto out_disable;
 | |
| 	}
 | |
| 	if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
 | |
| 	    to_intel_plane(crtc->primary)->rotation != BIT(DRM_ROTATE_0)) {
 | |
| 		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
 | |
| 			DRM_DEBUG_KMS("Rotation unsupported, disabling\n");
 | |
| 		goto out_disable;
 | |
| 	}
 | |
| 
 | |
| 	/* If the kernel debugger is active, always disable compression */
 | |
| 	if (in_dbg_master())
 | |
| 		goto out_disable;
 | |
| 
 | |
| 	if (i915_gem_stolen_setup_compression(dev, obj->base.size,
 | |
| 					      drm_format_plane_cpp(fb->pixel_format, 0))) {
 | |
| 		if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
 | |
| 			DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
 | |
| 		goto out_disable;
 | |
| 	}
 | |
| 
 | |
| 	/* If the scanout has not changed, don't modify the FBC settings.
 | |
| 	 * Note that we make the fundamental assumption that the fb->obj
 | |
| 	 * cannot be unpinned (and have its GTT offset and fence revoked)
 | |
| 	 * without first being decoupled from the scanout and FBC disabled.
 | |
| 	 */
 | |
| 	if (dev_priv->fbc.plane == intel_crtc->plane &&
 | |
| 	    dev_priv->fbc.fb_id == fb->base.id &&
 | |
| 	    dev_priv->fbc.y == crtc->y)
 | |
| 		return;
 | |
| 
 | |
| 	if (intel_fbc_enabled(dev)) {
 | |
| 		/* We update FBC along two paths, after changing fb/crtc
 | |
| 		 * configuration (modeswitching) and after page-flipping
 | |
| 		 * finishes. For the latter, we know that not only did
 | |
| 		 * we disable the FBC at the start of the page-flip
 | |
| 		 * sequence, but also more than one vblank has passed.
 | |
| 		 *
 | |
| 		 * For the former case of modeswitching, it is possible
 | |
| 		 * to switch between two FBC valid configurations
 | |
| 		 * instantaneously so we do need to disable the FBC
 | |
| 		 * before we can modify its control registers. We also
 | |
| 		 * have to wait for the next vblank for that to take
 | |
| 		 * effect. However, since we delay enabling FBC we can
 | |
| 		 * assume that a vblank has passed since disabling and
 | |
| 		 * that we can safely alter the registers in the deferred
 | |
| 		 * callback.
 | |
| 		 *
 | |
| 		 * In the scenario that we go from a valid to invalid
 | |
| 		 * and then back to valid FBC configuration we have
 | |
| 		 * no strict enforcement that a vblank occurred since
 | |
| 		 * disabling the FBC. However, along all current pipe
 | |
| 		 * disabling paths we do need to wait for a vblank at
 | |
| 		 * some point. And we wait before enabling FBC anyway.
 | |
| 		 */
 | |
| 		DRM_DEBUG_KMS("disabling active FBC for update\n");
 | |
| 		intel_fbc_disable(dev);
 | |
| 	}
 | |
| 
 | |
| 	intel_fbc_enable(crtc);
 | |
| 	dev_priv->fbc.no_fbc_reason = FBC_OK;
 | |
| 	return;
 | |
| 
 | |
| out_disable:
 | |
| 	/* Multiple disables should be harmless */
 | |
| 	if (intel_fbc_enabled(dev)) {
 | |
| 		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
 | |
| 		intel_fbc_disable(dev);
 | |
| 	}
 | |
| 	i915_gem_stolen_cleanup_compression(dev);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * intel_fbc_init - Initialize FBC
 | |
|  * @dev_priv: the i915 device
 | |
|  *
 | |
|  * This function might be called during PM init process.
 | |
|  */
 | |
| void intel_fbc_init(struct drm_i915_private *dev_priv)
 | |
| {
 | |
| 	if (!HAS_FBC(dev_priv)) {
 | |
| 		dev_priv->fbc.enabled = false;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (INTEL_INFO(dev_priv)->gen >= 7) {
 | |
| 		dev_priv->display.fbc_enabled = ilk_fbc_enabled;
 | |
| 		dev_priv->display.enable_fbc = gen7_fbc_enable;
 | |
| 		dev_priv->display.disable_fbc = ilk_fbc_disable;
 | |
| 	} else if (INTEL_INFO(dev_priv)->gen >= 5) {
 | |
| 		dev_priv->display.fbc_enabled = ilk_fbc_enabled;
 | |
| 		dev_priv->display.enable_fbc = ilk_fbc_enable;
 | |
| 		dev_priv->display.disable_fbc = ilk_fbc_disable;
 | |
| 	} else if (IS_GM45(dev_priv)) {
 | |
| 		dev_priv->display.fbc_enabled = g4x_fbc_enabled;
 | |
| 		dev_priv->display.enable_fbc = g4x_fbc_enable;
 | |
| 		dev_priv->display.disable_fbc = g4x_fbc_disable;
 | |
| 	} else {
 | |
| 		dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
 | |
| 		dev_priv->display.enable_fbc = i8xx_fbc_enable;
 | |
| 		dev_priv->display.disable_fbc = i8xx_fbc_disable;
 | |
| 
 | |
| 		/* This value was pulled out of someone's hat */
 | |
| 		I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
 | |
| 	}
 | |
| 
 | |
| 	dev_priv->fbc.enabled = dev_priv->display.fbc_enabled(dev_priv->dev);
 | |
| }
 |