 22606a18be
			
		
	
	
	22606a18be
	
	
	
		
			
			2 pieces of code need to read out the DDI clock: the DDI encoder and the MST encoder .get_config() vfuncs. Until now the SKL read out code was only in the former, so let's move the pre and post SKL logic in intel_ddi_clock_get() and this this one everywhere. Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Reviewed-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
		
			
				
	
	
		
			2244 lines
		
	
	
	
		
			60 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2244 lines
		
	
	
	
		
			60 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright © 2012 Intel Corporation
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a
 | |
|  * copy of this software and associated documentation files (the "Software"),
 | |
|  * to deal in the Software without restriction, including without limitation
 | |
|  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 | |
|  * and/or sell copies of the Software, and to permit persons to whom the
 | |
|  * Software is furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice (including the next
 | |
|  * paragraph) shall be included in all copies or substantial portions of the
 | |
|  * Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 | |
|  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 | |
|  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 | |
|  * IN THE SOFTWARE.
 | |
|  *
 | |
|  * Authors:
 | |
|  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "i915_drv.h"
 | |
| #include "intel_drv.h"
 | |
| 
 | |
| struct ddi_buf_trans {
 | |
| 	u32 trans1;	/* balance leg enable, de-emph level */
 | |
| 	u32 trans2;	/* vref sel, vswing */
 | |
| };
 | |
| 
 | |
| /* HDMI/DVI modes ignore everything but the last 2 items. So we share
 | |
|  * them for both DP and FDI transports, allowing those ports to
 | |
|  * automatically adapt to HDMI connections as well
 | |
|  */
 | |
| static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
 | |
| 	{ 0x00FFFFFF, 0x0006000E },
 | |
| 	{ 0x00D75FFF, 0x0005000A },
 | |
| 	{ 0x00C30FFF, 0x00040006 },
 | |
| 	{ 0x80AAAFFF, 0x000B0000 },
 | |
| 	{ 0x00FFFFFF, 0x0005000A },
 | |
| 	{ 0x00D75FFF, 0x000C0004 },
 | |
| 	{ 0x80C30FFF, 0x000B0000 },
 | |
| 	{ 0x00FFFFFF, 0x00040006 },
 | |
| 	{ 0x80D75FFF, 0x000B0000 },
 | |
| };
 | |
| 
 | |
| static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
 | |
| 	{ 0x00FFFFFF, 0x0007000E },
 | |
| 	{ 0x00D75FFF, 0x000F000A },
 | |
| 	{ 0x00C30FFF, 0x00060006 },
 | |
| 	{ 0x00AAAFFF, 0x001E0000 },
 | |
| 	{ 0x00FFFFFF, 0x000F000A },
 | |
| 	{ 0x00D75FFF, 0x00160004 },
 | |
| 	{ 0x00C30FFF, 0x001E0000 },
 | |
| 	{ 0x00FFFFFF, 0x00060006 },
 | |
| 	{ 0x00D75FFF, 0x001E0000 },
 | |
| };
 | |
| 
 | |
| static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
 | |
| 					/* Idx	NT mV d	T mV d	db	*/
 | |
| 	{ 0x00FFFFFF, 0x0006000E },	/* 0:	400	400	0	*/
 | |
| 	{ 0x00E79FFF, 0x000E000C },	/* 1:	400	500	2	*/
 | |
| 	{ 0x00D75FFF, 0x0005000A },	/* 2:	400	600	3.5	*/
 | |
| 	{ 0x00FFFFFF, 0x0005000A },	/* 3:	600	600	0	*/
 | |
| 	{ 0x00E79FFF, 0x001D0007 },	/* 4:	600	750	2	*/
 | |
| 	{ 0x00D75FFF, 0x000C0004 },	/* 5:	600	900	3.5	*/
 | |
| 	{ 0x00FFFFFF, 0x00040006 },	/* 6:	800	800	0	*/
 | |
| 	{ 0x80E79FFF, 0x00030002 },	/* 7:	800	1000	2	*/
 | |
| 	{ 0x00FFFFFF, 0x00140005 },	/* 8:	850	850	0	*/
 | |
| 	{ 0x00FFFFFF, 0x000C0004 },	/* 9:	900	900	0	*/
 | |
| 	{ 0x00FFFFFF, 0x001C0003 },	/* 10:	950	950	0	*/
 | |
| 	{ 0x80FFFFFF, 0x00030002 },	/* 11:	1000	1000	0	*/
 | |
| };
 | |
| 
 | |
| static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
 | |
| 	{ 0x00FFFFFF, 0x00000012 },
 | |
| 	{ 0x00EBAFFF, 0x00020011 },
 | |
| 	{ 0x00C71FFF, 0x0006000F },
 | |
| 	{ 0x00AAAFFF, 0x000E000A },
 | |
| 	{ 0x00FFFFFF, 0x00020011 },
 | |
| 	{ 0x00DB6FFF, 0x0005000F },
 | |
| 	{ 0x00BEEFFF, 0x000A000C },
 | |
| 	{ 0x00FFFFFF, 0x0005000F },
 | |
| 	{ 0x00DB6FFF, 0x000A000C },
 | |
| };
 | |
| 
 | |
| static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
 | |
| 	{ 0x00FFFFFF, 0x0007000E },
 | |
| 	{ 0x00D75FFF, 0x000E000A },
 | |
| 	{ 0x00BEFFFF, 0x00140006 },
 | |
| 	{ 0x80B2CFFF, 0x001B0002 },
 | |
| 	{ 0x00FFFFFF, 0x000E000A },
 | |
| 	{ 0x00DB6FFF, 0x00160005 },
 | |
| 	{ 0x80C71FFF, 0x001A0002 },
 | |
| 	{ 0x00F7DFFF, 0x00180004 },
 | |
| 	{ 0x80D75FFF, 0x001B0002 },
 | |
| };
 | |
| 
 | |
| static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
 | |
| 	{ 0x00FFFFFF, 0x0001000E },
 | |
| 	{ 0x00D75FFF, 0x0004000A },
 | |
| 	{ 0x00C30FFF, 0x00070006 },
 | |
| 	{ 0x00AAAFFF, 0x000C0000 },
 | |
| 	{ 0x00FFFFFF, 0x0004000A },
 | |
| 	{ 0x00D75FFF, 0x00090004 },
 | |
| 	{ 0x00C30FFF, 0x000C0000 },
 | |
| 	{ 0x00FFFFFF, 0x00070006 },
 | |
| 	{ 0x00D75FFF, 0x000C0000 },
 | |
| };
 | |
| 
 | |
| static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
 | |
| 					/* Idx	NT mV d	T mV df	db	*/
 | |
| 	{ 0x00FFFFFF, 0x0007000E },	/* 0:	400	400	0	*/
 | |
| 	{ 0x00D75FFF, 0x000E000A },	/* 1:	400	600	3.5	*/
 | |
| 	{ 0x00BEFFFF, 0x00140006 },	/* 2:	400	800	6	*/
 | |
| 	{ 0x00FFFFFF, 0x0009000D },	/* 3:	450	450	0	*/
 | |
| 	{ 0x00FFFFFF, 0x000E000A },	/* 4:	600	600	0	*/
 | |
| 	{ 0x00D7FFFF, 0x00140006 },	/* 5:	600	800	2.5	*/
 | |
| 	{ 0x80CB2FFF, 0x001B0002 },	/* 6:	600	1000	4.5	*/
 | |
| 	{ 0x00FFFFFF, 0x00140006 },	/* 7:	800	800	0	*/
 | |
| 	{ 0x80E79FFF, 0x001B0002 },	/* 8:	800	1000	2	*/
 | |
| 	{ 0x80FFFFFF, 0x001B0002 },	/* 9:	1000	1000	0	*/
 | |
| };
 | |
| 
 | |
| static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
 | |
| 	{ 0x00000018, 0x000000a2 },
 | |
| 	{ 0x00004014, 0x0000009B },
 | |
| 	{ 0x00006012, 0x00000088 },
 | |
| 	{ 0x00008010, 0x00000087 },
 | |
| 	{ 0x00000018, 0x0000009B },
 | |
| 	{ 0x00004014, 0x00000088 },
 | |
| 	{ 0x00006012, 0x00000087 },
 | |
| 	{ 0x00000018, 0x00000088 },
 | |
| 	{ 0x00004014, 0x00000087 },
 | |
| };
 | |
| 
 | |
| static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
 | |
| 					/* Idx	NT mV   T mV    db  */
 | |
| 	{ 0x00000018, 0x000000a0 },	/* 0:	400	400	0   */
 | |
| 	{ 0x00004014, 0x00000098 },	/* 1:	400	600	3.5 */
 | |
| 	{ 0x00006012, 0x00000088 },	/* 2:	400	800	6   */
 | |
| 	{ 0x00000018, 0x0000003c },	/* 3:	450	450	0   */
 | |
| 	{ 0x00000018, 0x00000098 },	/* 4:	600	600	0   */
 | |
| 	{ 0x00003015, 0x00000088 },	/* 5:	600	800	2.5 */
 | |
| 	{ 0x00005013, 0x00000080 },	/* 6:	600	1000	4.5 */
 | |
| 	{ 0x00000018, 0x00000088 },	/* 7:	800	800	0   */
 | |
| 	{ 0x00000096, 0x00000080 },	/* 8:	800	1000	2   */
 | |
| 	{ 0x00000018, 0x00000080 },	/* 9:	1200	1200	0   */
 | |
| };
 | |
| 
 | |
| enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
 | |
| {
 | |
| 	struct drm_encoder *encoder = &intel_encoder->base;
 | |
| 	int type = intel_encoder->type;
 | |
| 
 | |
| 	if (type == INTEL_OUTPUT_DP_MST) {
 | |
| 		struct intel_digital_port *intel_dig_port = enc_to_mst(encoder)->primary;
 | |
| 		return intel_dig_port->port;
 | |
| 	} else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
 | |
| 	    type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
 | |
| 		struct intel_digital_port *intel_dig_port =
 | |
| 			enc_to_dig_port(encoder);
 | |
| 		return intel_dig_port->port;
 | |
| 
 | |
| 	} else if (type == INTEL_OUTPUT_ANALOG) {
 | |
| 		return PORT_E;
 | |
| 
 | |
| 	} else {
 | |
| 		DRM_ERROR("Invalid DDI encoder type %d\n", type);
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Starting with Haswell, DDI port buffers must be programmed with correct
 | |
|  * values in advance. The buffer values are different for FDI and DP modes,
 | |
|  * but the HDMI/DVI fields are shared among those. So we program the DDI
 | |
|  * in either FDI or DP modes only, as HDMI connections will work with both
 | |
|  * of those
 | |
|  */
 | |
| static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port)
 | |
| {
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 	u32 reg;
 | |
| 	int i, n_hdmi_entries, hdmi_800mV_0dB;
 | |
| 	int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
 | |
| 	const struct ddi_buf_trans *ddi_translations_fdi;
 | |
| 	const struct ddi_buf_trans *ddi_translations_dp;
 | |
| 	const struct ddi_buf_trans *ddi_translations_edp;
 | |
| 	const struct ddi_buf_trans *ddi_translations_hdmi;
 | |
| 	const struct ddi_buf_trans *ddi_translations;
 | |
| 
 | |
| 	if (IS_SKYLAKE(dev)) {
 | |
| 		ddi_translations_fdi = NULL;
 | |
| 		ddi_translations_dp = skl_ddi_translations_dp;
 | |
| 		ddi_translations_edp = skl_ddi_translations_dp;
 | |
| 		ddi_translations_hdmi = skl_ddi_translations_hdmi;
 | |
| 		n_hdmi_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
 | |
| 		hdmi_800mV_0dB = 7;
 | |
| 	} else if (IS_BROADWELL(dev)) {
 | |
| 		ddi_translations_fdi = bdw_ddi_translations_fdi;
 | |
| 		ddi_translations_dp = bdw_ddi_translations_dp;
 | |
| 		ddi_translations_edp = bdw_ddi_translations_edp;
 | |
| 		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
 | |
| 		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
 | |
| 		hdmi_800mV_0dB = 7;
 | |
| 	} else if (IS_HASWELL(dev)) {
 | |
| 		ddi_translations_fdi = hsw_ddi_translations_fdi;
 | |
| 		ddi_translations_dp = hsw_ddi_translations_dp;
 | |
| 		ddi_translations_edp = hsw_ddi_translations_dp;
 | |
| 		ddi_translations_hdmi = hsw_ddi_translations_hdmi;
 | |
| 		n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
 | |
| 		hdmi_800mV_0dB = 6;
 | |
| 	} else {
 | |
| 		WARN(1, "ddi translation table missing\n");
 | |
| 		ddi_translations_edp = bdw_ddi_translations_dp;
 | |
| 		ddi_translations_fdi = bdw_ddi_translations_fdi;
 | |
| 		ddi_translations_dp = bdw_ddi_translations_dp;
 | |
| 		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
 | |
| 		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
 | |
| 		hdmi_800mV_0dB = 7;
 | |
| 	}
 | |
| 
 | |
| 	switch (port) {
 | |
| 	case PORT_A:
 | |
| 		ddi_translations = ddi_translations_edp;
 | |
| 		break;
 | |
| 	case PORT_B:
 | |
| 	case PORT_C:
 | |
| 		ddi_translations = ddi_translations_dp;
 | |
| 		break;
 | |
| 	case PORT_D:
 | |
| 		if (intel_dp_is_edp(dev, PORT_D))
 | |
| 			ddi_translations = ddi_translations_edp;
 | |
| 		else
 | |
| 			ddi_translations = ddi_translations_dp;
 | |
| 		break;
 | |
| 	case PORT_E:
 | |
| 		if (ddi_translations_fdi)
 | |
| 			ddi_translations = ddi_translations_fdi;
 | |
| 		else
 | |
| 			ddi_translations = ddi_translations_dp;
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0, reg = DDI_BUF_TRANS(port);
 | |
| 	     i < ARRAY_SIZE(hsw_ddi_translations_fdi); i++) {
 | |
| 		I915_WRITE(reg, ddi_translations[i].trans1);
 | |
| 		reg += 4;
 | |
| 		I915_WRITE(reg, ddi_translations[i].trans2);
 | |
| 		reg += 4;
 | |
| 	}
 | |
| 
 | |
| 	/* Choose a good default if VBT is badly populated */
 | |
| 	if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
 | |
| 	    hdmi_level >= n_hdmi_entries)
 | |
| 		hdmi_level = hdmi_800mV_0dB;
 | |
| 
 | |
| 	/* Entry 9 is for HDMI: */
 | |
| 	I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1);
 | |
| 	reg += 4;
 | |
| 	I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2);
 | |
| 	reg += 4;
 | |
| }
 | |
| 
 | |
| /* Program DDI buffers translations for DP. By default, program ports A-D in DP
 | |
|  * mode and port E for FDI.
 | |
|  */
 | |
| void intel_prepare_ddi(struct drm_device *dev)
 | |
| {
 | |
| 	int port;
 | |
| 
 | |
| 	if (!HAS_DDI(dev))
 | |
| 		return;
 | |
| 
 | |
| 	for (port = PORT_A; port <= PORT_E; port++)
 | |
| 		intel_prepare_ddi_buffers(dev, port);
 | |
| }
 | |
| 
 | |
| static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
 | |
| 				    enum port port)
 | |
| {
 | |
| 	uint32_t reg = DDI_BUF_CTL(port);
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		udelay(1);
 | |
| 		if (I915_READ(reg) & DDI_BUF_IS_IDLE)
 | |
| 			return;
 | |
| 	}
 | |
| 	DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
 | |
| }
 | |
| 
 | |
| /* Starting with Haswell, different DDI ports can work in FDI mode for
 | |
|  * connection to the PCH-located connectors. For this, it is necessary to train
 | |
|  * both the DDI port and PCH receiver for the desired DDI buffer settings.
 | |
|  *
 | |
|  * The recommended port to work in FDI mode is DDI E, which we use here. Also,
 | |
|  * please note that when FDI mode is active on DDI E, it shares 2 lines with
 | |
|  * DDI A (which is used for eDP)
 | |
|  */
 | |
| 
 | |
| void hsw_fdi_link_train(struct drm_crtc *crtc)
 | |
| {
 | |
| 	struct drm_device *dev = crtc->dev;
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 | |
| 	u32 temp, i, rx_ctl_val;
 | |
| 
 | |
| 	/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
 | |
| 	 * mode set "sequence for CRT port" document:
 | |
| 	 * - TP1 to TP2 time with the default value
 | |
| 	 * - FDI delay to 90h
 | |
| 	 *
 | |
| 	 * WaFDIAutoLinkSetTimingOverrride:hsw
 | |
| 	 */
 | |
| 	I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
 | |
| 				  FDI_RX_PWRDN_LANE0_VAL(2) |
 | |
| 				  FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
 | |
| 
 | |
| 	/* Enable the PCH Receiver FDI PLL */
 | |
| 	rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
 | |
| 		     FDI_RX_PLL_ENABLE |
 | |
| 		     FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
 | |
| 	I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
 | |
| 	POSTING_READ(_FDI_RXA_CTL);
 | |
| 	udelay(220);
 | |
| 
 | |
| 	/* Switch from Rawclk to PCDclk */
 | |
| 	rx_ctl_val |= FDI_PCDCLK;
 | |
| 	I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
 | |
| 
 | |
| 	/* Configure Port Clock Select */
 | |
| 	I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config.ddi_pll_sel);
 | |
| 	WARN_ON(intel_crtc->config.ddi_pll_sel != PORT_CLK_SEL_SPLL);
 | |
| 
 | |
| 	/* Start the training iterating through available voltages and emphasis,
 | |
| 	 * testing each value twice. */
 | |
| 	for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
 | |
| 		/* Configure DP_TP_CTL with auto-training */
 | |
| 		I915_WRITE(DP_TP_CTL(PORT_E),
 | |
| 					DP_TP_CTL_FDI_AUTOTRAIN |
 | |
| 					DP_TP_CTL_ENHANCED_FRAME_ENABLE |
 | |
| 					DP_TP_CTL_LINK_TRAIN_PAT1 |
 | |
| 					DP_TP_CTL_ENABLE);
 | |
| 
 | |
| 		/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
 | |
| 		 * DDI E does not support port reversal, the functionality is
 | |
| 		 * achieved on the PCH side in FDI_RX_CTL, so no need to set the
 | |
| 		 * port reversal bit */
 | |
| 		I915_WRITE(DDI_BUF_CTL(PORT_E),
 | |
| 			   DDI_BUF_CTL_ENABLE |
 | |
| 			   ((intel_crtc->config.fdi_lanes - 1) << 1) |
 | |
| 			   DDI_BUF_TRANS_SELECT(i / 2));
 | |
| 		POSTING_READ(DDI_BUF_CTL(PORT_E));
 | |
| 
 | |
| 		udelay(600);
 | |
| 
 | |
| 		/* Program PCH FDI Receiver TU */
 | |
| 		I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
 | |
| 
 | |
| 		/* Enable PCH FDI Receiver with auto-training */
 | |
| 		rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
 | |
| 		I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
 | |
| 		POSTING_READ(_FDI_RXA_CTL);
 | |
| 
 | |
| 		/* Wait for FDI receiver lane calibration */
 | |
| 		udelay(30);
 | |
| 
 | |
| 		/* Unset FDI_RX_MISC pwrdn lanes */
 | |
| 		temp = I915_READ(_FDI_RXA_MISC);
 | |
| 		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
 | |
| 		I915_WRITE(_FDI_RXA_MISC, temp);
 | |
| 		POSTING_READ(_FDI_RXA_MISC);
 | |
| 
 | |
| 		/* Wait for FDI auto training time */
 | |
| 		udelay(5);
 | |
| 
 | |
| 		temp = I915_READ(DP_TP_STATUS(PORT_E));
 | |
| 		if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
 | |
| 			DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
 | |
| 
 | |
| 			/* Enable normal pixel sending for FDI */
 | |
| 			I915_WRITE(DP_TP_CTL(PORT_E),
 | |
| 				   DP_TP_CTL_FDI_AUTOTRAIN |
 | |
| 				   DP_TP_CTL_LINK_TRAIN_NORMAL |
 | |
| 				   DP_TP_CTL_ENHANCED_FRAME_ENABLE |
 | |
| 				   DP_TP_CTL_ENABLE);
 | |
| 
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		temp = I915_READ(DDI_BUF_CTL(PORT_E));
 | |
| 		temp &= ~DDI_BUF_CTL_ENABLE;
 | |
| 		I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
 | |
| 		POSTING_READ(DDI_BUF_CTL(PORT_E));
 | |
| 
 | |
| 		/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
 | |
| 		temp = I915_READ(DP_TP_CTL(PORT_E));
 | |
| 		temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
 | |
| 		temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
 | |
| 		I915_WRITE(DP_TP_CTL(PORT_E), temp);
 | |
| 		POSTING_READ(DP_TP_CTL(PORT_E));
 | |
| 
 | |
| 		intel_wait_ddi_buf_idle(dev_priv, PORT_E);
 | |
| 
 | |
| 		rx_ctl_val &= ~FDI_RX_ENABLE;
 | |
| 		I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
 | |
| 		POSTING_READ(_FDI_RXA_CTL);
 | |
| 
 | |
| 		/* Reset FDI_RX_MISC pwrdn lanes */
 | |
| 		temp = I915_READ(_FDI_RXA_MISC);
 | |
| 		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
 | |
| 		temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
 | |
| 		I915_WRITE(_FDI_RXA_MISC, temp);
 | |
| 		POSTING_READ(_FDI_RXA_MISC);
 | |
| 	}
 | |
| 
 | |
| 	DRM_ERROR("FDI link training failed!\n");
 | |
| }
 | |
| 
 | |
| void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
 | |
| {
 | |
| 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
 | |
| 	struct intel_digital_port *intel_dig_port =
 | |
| 		enc_to_dig_port(&encoder->base);
 | |
| 
 | |
| 	intel_dp->DP = intel_dig_port->saved_port_bits |
 | |
| 		DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
 | |
| 	intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
 | |
| 
 | |
| }
 | |
| 
 | |
| static struct intel_encoder *
 | |
| intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
 | |
| {
 | |
| 	struct drm_device *dev = crtc->dev;
 | |
| 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 | |
| 	struct intel_encoder *intel_encoder, *ret = NULL;
 | |
| 	int num_encoders = 0;
 | |
| 
 | |
| 	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
 | |
| 		ret = intel_encoder;
 | |
| 		num_encoders++;
 | |
| 	}
 | |
| 
 | |
| 	if (num_encoders != 1)
 | |
| 		WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
 | |
| 		     pipe_name(intel_crtc->pipe));
 | |
| 
 | |
| 	BUG_ON(ret == NULL);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct intel_encoder *
 | |
| intel_ddi_get_crtc_new_encoder(struct intel_crtc *crtc)
 | |
| {
 | |
| 	struct drm_device *dev = crtc->base.dev;
 | |
| 	struct intel_encoder *intel_encoder, *ret = NULL;
 | |
| 	int num_encoders = 0;
 | |
| 
 | |
| 	for_each_intel_encoder(dev, intel_encoder) {
 | |
| 		if (intel_encoder->new_crtc == crtc) {
 | |
| 			ret = intel_encoder;
 | |
| 			num_encoders++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
 | |
| 	     pipe_name(crtc->pipe));
 | |
| 
 | |
| 	BUG_ON(ret == NULL);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define LC_FREQ 2700
 | |
| #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
 | |
| 
 | |
| #define P_MIN 2
 | |
| #define P_MAX 64
 | |
| #define P_INC 2
 | |
| 
 | |
| /* Constraints for PLL good behavior */
 | |
| #define REF_MIN 48
 | |
| #define REF_MAX 400
 | |
| #define VCO_MIN 2400
 | |
| #define VCO_MAX 4800
 | |
| 
 | |
| #define abs_diff(a, b) ({			\
 | |
| 	typeof(a) __a = (a);			\
 | |
| 	typeof(b) __b = (b);			\
 | |
| 	(void) (&__a == &__b);			\
 | |
| 	__a > __b ? (__a - __b) : (__b - __a); })
 | |
| 
 | |
| struct wrpll_rnp {
 | |
| 	unsigned p, n2, r2;
 | |
| };
 | |
| 
 | |
| static unsigned wrpll_get_budget_for_freq(int clock)
 | |
| {
 | |
| 	unsigned budget;
 | |
| 
 | |
| 	switch (clock) {
 | |
| 	case 25175000:
 | |
| 	case 25200000:
 | |
| 	case 27000000:
 | |
| 	case 27027000:
 | |
| 	case 37762500:
 | |
| 	case 37800000:
 | |
| 	case 40500000:
 | |
| 	case 40541000:
 | |
| 	case 54000000:
 | |
| 	case 54054000:
 | |
| 	case 59341000:
 | |
| 	case 59400000:
 | |
| 	case 72000000:
 | |
| 	case 74176000:
 | |
| 	case 74250000:
 | |
| 	case 81000000:
 | |
| 	case 81081000:
 | |
| 	case 89012000:
 | |
| 	case 89100000:
 | |
| 	case 108000000:
 | |
| 	case 108108000:
 | |
| 	case 111264000:
 | |
| 	case 111375000:
 | |
| 	case 148352000:
 | |
| 	case 148500000:
 | |
| 	case 162000000:
 | |
| 	case 162162000:
 | |
| 	case 222525000:
 | |
| 	case 222750000:
 | |
| 	case 296703000:
 | |
| 	case 297000000:
 | |
| 		budget = 0;
 | |
| 		break;
 | |
| 	case 233500000:
 | |
| 	case 245250000:
 | |
| 	case 247750000:
 | |
| 	case 253250000:
 | |
| 	case 298000000:
 | |
| 		budget = 1500;
 | |
| 		break;
 | |
| 	case 169128000:
 | |
| 	case 169500000:
 | |
| 	case 179500000:
 | |
| 	case 202000000:
 | |
| 		budget = 2000;
 | |
| 		break;
 | |
| 	case 256250000:
 | |
| 	case 262500000:
 | |
| 	case 270000000:
 | |
| 	case 272500000:
 | |
| 	case 273750000:
 | |
| 	case 280750000:
 | |
| 	case 281250000:
 | |
| 	case 286000000:
 | |
| 	case 291750000:
 | |
| 		budget = 4000;
 | |
| 		break;
 | |
| 	case 267250000:
 | |
| 	case 268500000:
 | |
| 		budget = 5000;
 | |
| 		break;
 | |
| 	default:
 | |
| 		budget = 1000;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return budget;
 | |
| }
 | |
| 
 | |
| static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
 | |
| 			     unsigned r2, unsigned n2, unsigned p,
 | |
| 			     struct wrpll_rnp *best)
 | |
| {
 | |
| 	uint64_t a, b, c, d, diff, diff_best;
 | |
| 
 | |
| 	/* No best (r,n,p) yet */
 | |
| 	if (best->p == 0) {
 | |
| 		best->p = p;
 | |
| 		best->n2 = n2;
 | |
| 		best->r2 = r2;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
 | |
| 	 * freq2k.
 | |
| 	 *
 | |
| 	 * delta = 1e6 *
 | |
| 	 *	   abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
 | |
| 	 *	   freq2k;
 | |
| 	 *
 | |
| 	 * and we would like delta <= budget.
 | |
| 	 *
 | |
| 	 * If the discrepancy is above the PPM-based budget, always prefer to
 | |
| 	 * improve upon the previous solution.  However, if you're within the
 | |
| 	 * budget, try to maximize Ref * VCO, that is N / (P * R^2).
 | |
| 	 */
 | |
| 	a = freq2k * budget * p * r2;
 | |
| 	b = freq2k * budget * best->p * best->r2;
 | |
| 	diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
 | |
| 	diff_best = abs_diff(freq2k * best->p * best->r2,
 | |
| 			     LC_FREQ_2K * best->n2);
 | |
| 	c = 1000000 * diff;
 | |
| 	d = 1000000 * diff_best;
 | |
| 
 | |
| 	if (a < c && b < d) {
 | |
| 		/* If both are above the budget, pick the closer */
 | |
| 		if (best->p * best->r2 * diff < p * r2 * diff_best) {
 | |
| 			best->p = p;
 | |
| 			best->n2 = n2;
 | |
| 			best->r2 = r2;
 | |
| 		}
 | |
| 	} else if (a >= c && b < d) {
 | |
| 		/* If A is below the threshold but B is above it?  Update. */
 | |
| 		best->p = p;
 | |
| 		best->n2 = n2;
 | |
| 		best->r2 = r2;
 | |
| 	} else if (a >= c && b >= d) {
 | |
| 		/* Both are below the limit, so pick the higher n2/(r2*r2) */
 | |
| 		if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
 | |
| 			best->p = p;
 | |
| 			best->n2 = n2;
 | |
| 			best->r2 = r2;
 | |
| 		}
 | |
| 	}
 | |
| 	/* Otherwise a < c && b >= d, do nothing */
 | |
| }
 | |
| 
 | |
| static int intel_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
 | |
| 				     int reg)
 | |
| {
 | |
| 	int refclk = LC_FREQ;
 | |
| 	int n, p, r;
 | |
| 	u32 wrpll;
 | |
| 
 | |
| 	wrpll = I915_READ(reg);
 | |
| 	switch (wrpll & WRPLL_PLL_REF_MASK) {
 | |
| 	case WRPLL_PLL_SSC:
 | |
| 	case WRPLL_PLL_NON_SSC:
 | |
| 		/*
 | |
| 		 * We could calculate spread here, but our checking
 | |
| 		 * code only cares about 5% accuracy, and spread is a max of
 | |
| 		 * 0.5% downspread.
 | |
| 		 */
 | |
| 		refclk = 135;
 | |
| 		break;
 | |
| 	case WRPLL_PLL_LCPLL:
 | |
| 		refclk = LC_FREQ;
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARN(1, "bad wrpll refclk\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	r = wrpll & WRPLL_DIVIDER_REF_MASK;
 | |
| 	p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
 | |
| 	n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
 | |
| 
 | |
| 	/* Convert to KHz, p & r have a fixed point portion */
 | |
| 	return (refclk * n * 100) / (p * r);
 | |
| }
 | |
| 
 | |
| static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
 | |
| 			       uint32_t dpll)
 | |
| {
 | |
| 	uint32_t cfgcr1_reg, cfgcr2_reg;
 | |
| 	uint32_t cfgcr1_val, cfgcr2_val;
 | |
| 	uint32_t p0, p1, p2, dco_freq;
 | |
| 
 | |
| 	cfgcr1_reg = GET_CFG_CR1_REG(dpll);
 | |
| 	cfgcr2_reg = GET_CFG_CR2_REG(dpll);
 | |
| 
 | |
| 	cfgcr1_val = I915_READ(cfgcr1_reg);
 | |
| 	cfgcr2_val = I915_READ(cfgcr2_reg);
 | |
| 
 | |
| 	p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
 | |
| 	p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
 | |
| 
 | |
| 	if (cfgcr2_val &  DPLL_CFGCR2_QDIV_MODE(1))
 | |
| 		p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
 | |
| 	else
 | |
| 		p1 = 1;
 | |
| 
 | |
| 
 | |
| 	switch (p0) {
 | |
| 	case DPLL_CFGCR2_PDIV_1:
 | |
| 		p0 = 1;
 | |
| 		break;
 | |
| 	case DPLL_CFGCR2_PDIV_2:
 | |
| 		p0 = 2;
 | |
| 		break;
 | |
| 	case DPLL_CFGCR2_PDIV_3:
 | |
| 		p0 = 3;
 | |
| 		break;
 | |
| 	case DPLL_CFGCR2_PDIV_7:
 | |
| 		p0 = 7;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	switch (p2) {
 | |
| 	case DPLL_CFGCR2_KDIV_5:
 | |
| 		p2 = 5;
 | |
| 		break;
 | |
| 	case DPLL_CFGCR2_KDIV_2:
 | |
| 		p2 = 2;
 | |
| 		break;
 | |
| 	case DPLL_CFGCR2_KDIV_3:
 | |
| 		p2 = 3;
 | |
| 		break;
 | |
| 	case DPLL_CFGCR2_KDIV_1:
 | |
| 		p2 = 1;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
 | |
| 
 | |
| 	dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
 | |
| 		1000) / 0x8000;
 | |
| 
 | |
| 	return dco_freq / (p0 * p1 * p2 * 5);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void skl_ddi_clock_get(struct intel_encoder *encoder,
 | |
| 				struct intel_crtc_config *pipe_config)
 | |
| {
 | |
| 	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
 | |
| 	int link_clock = 0;
 | |
| 	uint32_t dpll_ctl1, dpll;
 | |
| 
 | |
| 	dpll = pipe_config->ddi_pll_sel;
 | |
| 
 | |
| 	dpll_ctl1 = I915_READ(DPLL_CTRL1);
 | |
| 
 | |
| 	if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
 | |
| 		link_clock = skl_calc_wrpll_link(dev_priv, dpll);
 | |
| 	} else {
 | |
| 		link_clock = dpll_ctl1 & DPLL_CRTL1_LINK_RATE_MASK(dpll);
 | |
| 		link_clock >>= DPLL_CRTL1_LINK_RATE_SHIFT(dpll);
 | |
| 
 | |
| 		switch (link_clock) {
 | |
| 		case DPLL_CRTL1_LINK_RATE_810:
 | |
| 			link_clock = 81000;
 | |
| 			break;
 | |
| 		case DPLL_CRTL1_LINK_RATE_1350:
 | |
| 			link_clock = 135000;
 | |
| 			break;
 | |
| 		case DPLL_CRTL1_LINK_RATE_2700:
 | |
| 			link_clock = 270000;
 | |
| 			break;
 | |
| 		default:
 | |
| 			WARN(1, "Unsupported link rate\n");
 | |
| 			break;
 | |
| 		}
 | |
| 		link_clock *= 2;
 | |
| 	}
 | |
| 
 | |
| 	pipe_config->port_clock = link_clock;
 | |
| 
 | |
| 	if (pipe_config->has_dp_encoder)
 | |
| 		pipe_config->adjusted_mode.crtc_clock =
 | |
| 			intel_dotclock_calculate(pipe_config->port_clock,
 | |
| 						 &pipe_config->dp_m_n);
 | |
| 	else
 | |
| 		pipe_config->adjusted_mode.crtc_clock = pipe_config->port_clock;
 | |
| }
 | |
| 
 | |
| static void hsw_ddi_clock_get(struct intel_encoder *encoder,
 | |
| 			      struct intel_crtc_config *pipe_config)
 | |
| {
 | |
| 	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
 | |
| 	int link_clock = 0;
 | |
| 	u32 val, pll;
 | |
| 
 | |
| 	val = pipe_config->ddi_pll_sel;
 | |
| 	switch (val & PORT_CLK_SEL_MASK) {
 | |
| 	case PORT_CLK_SEL_LCPLL_810:
 | |
| 		link_clock = 81000;
 | |
| 		break;
 | |
| 	case PORT_CLK_SEL_LCPLL_1350:
 | |
| 		link_clock = 135000;
 | |
| 		break;
 | |
| 	case PORT_CLK_SEL_LCPLL_2700:
 | |
| 		link_clock = 270000;
 | |
| 		break;
 | |
| 	case PORT_CLK_SEL_WRPLL1:
 | |
| 		link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1);
 | |
| 		break;
 | |
| 	case PORT_CLK_SEL_WRPLL2:
 | |
| 		link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2);
 | |
| 		break;
 | |
| 	case PORT_CLK_SEL_SPLL:
 | |
| 		pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
 | |
| 		if (pll == SPLL_PLL_FREQ_810MHz)
 | |
| 			link_clock = 81000;
 | |
| 		else if (pll == SPLL_PLL_FREQ_1350MHz)
 | |
| 			link_clock = 135000;
 | |
| 		else if (pll == SPLL_PLL_FREQ_2700MHz)
 | |
| 			link_clock = 270000;
 | |
| 		else {
 | |
| 			WARN(1, "bad spll freq\n");
 | |
| 			return;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARN(1, "bad port clock sel\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pipe_config->port_clock = link_clock * 2;
 | |
| 
 | |
| 	if (pipe_config->has_pch_encoder)
 | |
| 		pipe_config->adjusted_mode.crtc_clock =
 | |
| 			intel_dotclock_calculate(pipe_config->port_clock,
 | |
| 						 &pipe_config->fdi_m_n);
 | |
| 	else if (pipe_config->has_dp_encoder)
 | |
| 		pipe_config->adjusted_mode.crtc_clock =
 | |
| 			intel_dotclock_calculate(pipe_config->port_clock,
 | |
| 						 &pipe_config->dp_m_n);
 | |
| 	else
 | |
| 		pipe_config->adjusted_mode.crtc_clock = pipe_config->port_clock;
 | |
| }
 | |
| 
 | |
| void intel_ddi_clock_get(struct intel_encoder *encoder,
 | |
| 			 struct intel_crtc_config *pipe_config)
 | |
| {
 | |
| 	struct drm_device *dev = encoder->base.dev;
 | |
| 
 | |
| 	if (INTEL_INFO(dev)->gen <= 8)
 | |
| 		hsw_ddi_clock_get(encoder, pipe_config);
 | |
| 	else
 | |
| 		skl_ddi_clock_get(encoder, pipe_config);
 | |
| }
 | |
| 
 | |
| static void
 | |
| hsw_ddi_calculate_wrpll(int clock /* in Hz */,
 | |
| 			unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
 | |
| {
 | |
| 	uint64_t freq2k;
 | |
| 	unsigned p, n2, r2;
 | |
| 	struct wrpll_rnp best = { 0, 0, 0 };
 | |
| 	unsigned budget;
 | |
| 
 | |
| 	freq2k = clock / 100;
 | |
| 
 | |
| 	budget = wrpll_get_budget_for_freq(clock);
 | |
| 
 | |
| 	/* Special case handling for 540 pixel clock: bypass WR PLL entirely
 | |
| 	 * and directly pass the LC PLL to it. */
 | |
| 	if (freq2k == 5400000) {
 | |
| 		*n2_out = 2;
 | |
| 		*p_out = 1;
 | |
| 		*r2_out = 2;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
 | |
| 	 * the WR PLL.
 | |
| 	 *
 | |
| 	 * We want R so that REF_MIN <= Ref <= REF_MAX.
 | |
| 	 * Injecting R2 = 2 * R gives:
 | |
| 	 *   REF_MAX * r2 > LC_FREQ * 2 and
 | |
| 	 *   REF_MIN * r2 < LC_FREQ * 2
 | |
| 	 *
 | |
| 	 * Which means the desired boundaries for r2 are:
 | |
| 	 *  LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
 | |
| 	 *
 | |
| 	 */
 | |
| 	for (r2 = LC_FREQ * 2 / REF_MAX + 1;
 | |
| 	     r2 <= LC_FREQ * 2 / REF_MIN;
 | |
| 	     r2++) {
 | |
| 
 | |
| 		/*
 | |
| 		 * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
 | |
| 		 *
 | |
| 		 * Once again we want VCO_MIN <= VCO <= VCO_MAX.
 | |
| 		 * Injecting R2 = 2 * R and N2 = 2 * N, we get:
 | |
| 		 *   VCO_MAX * r2 > n2 * LC_FREQ and
 | |
| 		 *   VCO_MIN * r2 < n2 * LC_FREQ)
 | |
| 		 *
 | |
| 		 * Which means the desired boundaries for n2 are:
 | |
| 		 * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
 | |
| 		 */
 | |
| 		for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
 | |
| 		     n2 <= VCO_MAX * r2 / LC_FREQ;
 | |
| 		     n2++) {
 | |
| 
 | |
| 			for (p = P_MIN; p <= P_MAX; p += P_INC)
 | |
| 				wrpll_update_rnp(freq2k, budget,
 | |
| 						 r2, n2, p, &best);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	*n2_out = best.n2;
 | |
| 	*p_out = best.p;
 | |
| 	*r2_out = best.r2;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
 | |
| 		   struct intel_encoder *intel_encoder,
 | |
| 		   int clock)
 | |
| {
 | |
| 	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
 | |
| 		struct intel_shared_dpll *pll;
 | |
| 		uint32_t val;
 | |
| 		unsigned p, n2, r2;
 | |
| 
 | |
| 		hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
 | |
| 
 | |
| 		val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
 | |
| 		      WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
 | |
| 		      WRPLL_DIVIDER_POST(p);
 | |
| 
 | |
| 		intel_crtc->new_config->dpll_hw_state.wrpll = val;
 | |
| 
 | |
| 		pll = intel_get_shared_dpll(intel_crtc);
 | |
| 		if (pll == NULL) {
 | |
| 			DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
 | |
| 					 pipe_name(intel_crtc->pipe));
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		intel_crtc->new_config->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| struct skl_wrpll_params {
 | |
| 	uint32_t        dco_fraction;
 | |
| 	uint32_t        dco_integer;
 | |
| 	uint32_t        qdiv_ratio;
 | |
| 	uint32_t        qdiv_mode;
 | |
| 	uint32_t        kdiv;
 | |
| 	uint32_t        pdiv;
 | |
| 	uint32_t        central_freq;
 | |
| };
 | |
| 
 | |
| static void
 | |
| skl_ddi_calculate_wrpll(int clock /* in Hz */,
 | |
| 			struct skl_wrpll_params *wrpll_params)
 | |
| {
 | |
| 	uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
 | |
| 	uint64_t dco_central_freq[3] = {8400000000ULL,
 | |
| 					9000000000ULL,
 | |
| 					9600000000ULL};
 | |
| 	uint32_t min_dco_deviation = 400;
 | |
| 	uint32_t min_dco_index = 3;
 | |
| 	uint32_t P0[4] = {1, 2, 3, 7};
 | |
| 	uint32_t P2[4] = {1, 2, 3, 5};
 | |
| 	bool found = false;
 | |
| 	uint32_t candidate_p = 0;
 | |
| 	uint32_t candidate_p0[3] = {0}, candidate_p1[3] = {0};
 | |
| 	uint32_t candidate_p2[3] = {0};
 | |
| 	uint32_t dco_central_freq_deviation[3];
 | |
| 	uint32_t i, P1, k, dco_count;
 | |
| 	bool retry_with_odd = false;
 | |
| 	uint64_t dco_freq;
 | |
| 
 | |
| 	/* Determine P0, P1 or P2 */
 | |
| 	for (dco_count = 0; dco_count < 3; dco_count++) {
 | |
| 		found = false;
 | |
| 		candidate_p =
 | |
| 			div64_u64(dco_central_freq[dco_count], afe_clock);
 | |
| 		if (retry_with_odd == false)
 | |
| 			candidate_p = (candidate_p % 2 == 0 ?
 | |
| 				candidate_p : candidate_p + 1);
 | |
| 
 | |
| 		for (P1 = 1; P1 < candidate_p; P1++) {
 | |
| 			for (i = 0; i < 4; i++) {
 | |
| 				if (!(P0[i] != 1 || P1 == 1))
 | |
| 					continue;
 | |
| 
 | |
| 				for (k = 0; k < 4; k++) {
 | |
| 					if (P1 != 1 && P2[k] != 2)
 | |
| 						continue;
 | |
| 
 | |
| 					if (candidate_p == P0[i] * P1 * P2[k]) {
 | |
| 						/* Found possible P0, P1, P2 */
 | |
| 						found = true;
 | |
| 						candidate_p0[dco_count] = P0[i];
 | |
| 						candidate_p1[dco_count] = P1;
 | |
| 						candidate_p2[dco_count] = P2[k];
 | |
| 						goto found;
 | |
| 					}
 | |
| 
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| found:
 | |
| 		if (found) {
 | |
| 			dco_central_freq_deviation[dco_count] =
 | |
| 				div64_u64(10000 *
 | |
| 					  abs_diff((candidate_p * afe_clock),
 | |
| 						   dco_central_freq[dco_count]),
 | |
| 					  dco_central_freq[dco_count]);
 | |
| 
 | |
| 			if (dco_central_freq_deviation[dco_count] <
 | |
| 				min_dco_deviation) {
 | |
| 				min_dco_deviation =
 | |
| 					dco_central_freq_deviation[dco_count];
 | |
| 				min_dco_index = dco_count;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (min_dco_index > 2 && dco_count == 2) {
 | |
| 			retry_with_odd = true;
 | |
| 			dco_count = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (min_dco_index > 2) {
 | |
| 		WARN(1, "No valid values found for the given pixel clock\n");
 | |
| 	} else {
 | |
| 		 wrpll_params->central_freq = dco_central_freq[min_dco_index];
 | |
| 
 | |
| 		 switch (dco_central_freq[min_dco_index]) {
 | |
| 		 case 9600000000ULL:
 | |
| 			wrpll_params->central_freq = 0;
 | |
| 			break;
 | |
| 		 case 9000000000ULL:
 | |
| 			wrpll_params->central_freq = 1;
 | |
| 			break;
 | |
| 		 case 8400000000ULL:
 | |
| 			wrpll_params->central_freq = 3;
 | |
| 		 }
 | |
| 
 | |
| 		 switch (candidate_p0[min_dco_index]) {
 | |
| 		 case 1:
 | |
| 			wrpll_params->pdiv = 0;
 | |
| 			break;
 | |
| 		 case 2:
 | |
| 			wrpll_params->pdiv = 1;
 | |
| 			break;
 | |
| 		 case 3:
 | |
| 			wrpll_params->pdiv = 2;
 | |
| 			break;
 | |
| 		 case 7:
 | |
| 			wrpll_params->pdiv = 4;
 | |
| 			break;
 | |
| 		 default:
 | |
| 			WARN(1, "Incorrect PDiv\n");
 | |
| 		 }
 | |
| 
 | |
| 		 switch (candidate_p2[min_dco_index]) {
 | |
| 		 case 5:
 | |
| 			wrpll_params->kdiv = 0;
 | |
| 			break;
 | |
| 		 case 2:
 | |
| 			wrpll_params->kdiv = 1;
 | |
| 			break;
 | |
| 		 case 3:
 | |
| 			wrpll_params->kdiv = 2;
 | |
| 			break;
 | |
| 		 case 1:
 | |
| 			wrpll_params->kdiv = 3;
 | |
| 			break;
 | |
| 		 default:
 | |
| 			WARN(1, "Incorrect KDiv\n");
 | |
| 		 }
 | |
| 
 | |
| 		 wrpll_params->qdiv_ratio = candidate_p1[min_dco_index];
 | |
| 		 wrpll_params->qdiv_mode =
 | |
| 			(wrpll_params->qdiv_ratio == 1) ? 0 : 1;
 | |
| 
 | |
| 		 dco_freq = candidate_p0[min_dco_index] *
 | |
| 			 candidate_p1[min_dco_index] *
 | |
| 			 candidate_p2[min_dco_index] * afe_clock;
 | |
| 
 | |
| 		/*
 | |
| 		* Intermediate values are in Hz.
 | |
| 		* Divide by MHz to match bsepc
 | |
| 		*/
 | |
| 		 wrpll_params->dco_integer = div_u64(dco_freq, (24 * MHz(1)));
 | |
| 		 wrpll_params->dco_fraction =
 | |
| 			 div_u64(((div_u64(dco_freq, 24) -
 | |
| 				   wrpll_params->dco_integer * MHz(1)) * 0x8000), MHz(1));
 | |
| 
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool
 | |
| skl_ddi_pll_select(struct intel_crtc *intel_crtc,
 | |
| 		   struct intel_encoder *intel_encoder,
 | |
| 		   int clock)
 | |
| {
 | |
| 	struct intel_shared_dpll *pll;
 | |
| 	uint32_t ctrl1, cfgcr1, cfgcr2;
 | |
| 
 | |
| 	/*
 | |
| 	 * See comment in intel_dpll_hw_state to understand why we always use 0
 | |
| 	 * as the DPLL id in this function.
 | |
| 	 */
 | |
| 
 | |
| 	ctrl1 = DPLL_CTRL1_OVERRIDE(0);
 | |
| 
 | |
| 	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
 | |
| 		struct skl_wrpll_params wrpll_params = { 0, };
 | |
| 
 | |
| 		ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
 | |
| 
 | |
| 		skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params);
 | |
| 
 | |
| 		cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
 | |
| 			 DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
 | |
| 			 wrpll_params.dco_integer;
 | |
| 
 | |
| 		cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
 | |
| 			 DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
 | |
| 			 DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
 | |
| 			 DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
 | |
| 			 wrpll_params.central_freq;
 | |
| 	} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
 | |
| 		struct drm_encoder *encoder = &intel_encoder->base;
 | |
| 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 | |
| 
 | |
| 		switch (intel_dp->link_bw) {
 | |
| 		case DP_LINK_BW_1_62:
 | |
| 			ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_810, 0);
 | |
| 			break;
 | |
| 		case DP_LINK_BW_2_7:
 | |
| 			ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1350, 0);
 | |
| 			break;
 | |
| 		case DP_LINK_BW_5_4:
 | |
| 			ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_2700, 0);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		cfgcr1 = cfgcr2 = 0;
 | |
| 	} else /* eDP */
 | |
| 		return true;
 | |
| 
 | |
| 	intel_crtc->new_config->dpll_hw_state.ctrl1 = ctrl1;
 | |
| 	intel_crtc->new_config->dpll_hw_state.cfgcr1 = cfgcr1;
 | |
| 	intel_crtc->new_config->dpll_hw_state.cfgcr2 = cfgcr2;
 | |
| 
 | |
| 	pll = intel_get_shared_dpll(intel_crtc);
 | |
| 	if (pll == NULL) {
 | |
| 		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
 | |
| 				 pipe_name(intel_crtc->pipe));
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* shared DPLL id 0 is DPLL 1 */
 | |
| 	intel_crtc->new_config->ddi_pll_sel = pll->id + 1;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tries to find a *shared* PLL for the CRTC and store it in
 | |
|  * intel_crtc->ddi_pll_sel.
 | |
|  *
 | |
|  * For private DPLLs, compute_config() should do the selection for us. This
 | |
|  * function should be folded into compute_config() eventually.
 | |
|  */
 | |
| bool intel_ddi_pll_select(struct intel_crtc *intel_crtc)
 | |
| {
 | |
| 	struct drm_device *dev = intel_crtc->base.dev;
 | |
| 	struct intel_encoder *intel_encoder =
 | |
| 		intel_ddi_get_crtc_new_encoder(intel_crtc);
 | |
| 	int clock = intel_crtc->new_config->port_clock;
 | |
| 
 | |
| 	if (IS_SKYLAKE(dev))
 | |
| 		return skl_ddi_pll_select(intel_crtc, intel_encoder, clock);
 | |
| 	else
 | |
| 		return hsw_ddi_pll_select(intel_crtc, intel_encoder, clock);
 | |
| }
 | |
| 
 | |
| void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
 | |
| {
 | |
| 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
 | |
| 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 | |
| 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
 | |
| 	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
 | |
| 	int type = intel_encoder->type;
 | |
| 	uint32_t temp;
 | |
| 
 | |
| 	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
 | |
| 		temp = TRANS_MSA_SYNC_CLK;
 | |
| 		switch (intel_crtc->config.pipe_bpp) {
 | |
| 		case 18:
 | |
| 			temp |= TRANS_MSA_6_BPC;
 | |
| 			break;
 | |
| 		case 24:
 | |
| 			temp |= TRANS_MSA_8_BPC;
 | |
| 			break;
 | |
| 		case 30:
 | |
| 			temp |= TRANS_MSA_10_BPC;
 | |
| 			break;
 | |
| 		case 36:
 | |
| 			temp |= TRANS_MSA_12_BPC;
 | |
| 			break;
 | |
| 		default:
 | |
| 			BUG();
 | |
| 		}
 | |
| 		I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
 | |
| {
 | |
| 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 | |
| 	struct drm_device *dev = crtc->dev;
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
 | |
| 	uint32_t temp;
 | |
| 	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
 | |
| 	if (state == true)
 | |
| 		temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
 | |
| 	else
 | |
| 		temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
 | |
| 	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
 | |
| }
 | |
| 
 | |
| void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
 | |
| {
 | |
| 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 | |
| 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
 | |
| 	struct drm_encoder *encoder = &intel_encoder->base;
 | |
| 	struct drm_device *dev = crtc->dev;
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 	enum pipe pipe = intel_crtc->pipe;
 | |
| 	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
 | |
| 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
 | |
| 	int type = intel_encoder->type;
 | |
| 	uint32_t temp;
 | |
| 
 | |
| 	/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
 | |
| 	temp = TRANS_DDI_FUNC_ENABLE;
 | |
| 	temp |= TRANS_DDI_SELECT_PORT(port);
 | |
| 
 | |
| 	switch (intel_crtc->config.pipe_bpp) {
 | |
| 	case 18:
 | |
| 		temp |= TRANS_DDI_BPC_6;
 | |
| 		break;
 | |
| 	case 24:
 | |
| 		temp |= TRANS_DDI_BPC_8;
 | |
| 		break;
 | |
| 	case 30:
 | |
| 		temp |= TRANS_DDI_BPC_10;
 | |
| 		break;
 | |
| 	case 36:
 | |
| 		temp |= TRANS_DDI_BPC_12;
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
 | |
| 		temp |= TRANS_DDI_PVSYNC;
 | |
| 	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
 | |
| 		temp |= TRANS_DDI_PHSYNC;
 | |
| 
 | |
| 	if (cpu_transcoder == TRANSCODER_EDP) {
 | |
| 		switch (pipe) {
 | |
| 		case PIPE_A:
 | |
| 			/* On Haswell, can only use the always-on power well for
 | |
| 			 * eDP when not using the panel fitter, and when not
 | |
| 			 * using motion blur mitigation (which we don't
 | |
| 			 * support). */
 | |
| 			if (IS_HASWELL(dev) &&
 | |
| 			    (intel_crtc->config.pch_pfit.enabled ||
 | |
| 			     intel_crtc->config.pch_pfit.force_thru))
 | |
| 				temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
 | |
| 			else
 | |
| 				temp |= TRANS_DDI_EDP_INPUT_A_ON;
 | |
| 			break;
 | |
| 		case PIPE_B:
 | |
| 			temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
 | |
| 			break;
 | |
| 		case PIPE_C:
 | |
| 			temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
 | |
| 			break;
 | |
| 		default:
 | |
| 			BUG();
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (type == INTEL_OUTPUT_HDMI) {
 | |
| 		if (intel_crtc->config.has_hdmi_sink)
 | |
| 			temp |= TRANS_DDI_MODE_SELECT_HDMI;
 | |
| 		else
 | |
| 			temp |= TRANS_DDI_MODE_SELECT_DVI;
 | |
| 
 | |
| 	} else if (type == INTEL_OUTPUT_ANALOG) {
 | |
| 		temp |= TRANS_DDI_MODE_SELECT_FDI;
 | |
| 		temp |= (intel_crtc->config.fdi_lanes - 1) << 1;
 | |
| 
 | |
| 	} else if (type == INTEL_OUTPUT_DISPLAYPORT ||
 | |
| 		   type == INTEL_OUTPUT_EDP) {
 | |
| 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 | |
| 
 | |
| 		if (intel_dp->is_mst) {
 | |
| 			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
 | |
| 		} else
 | |
| 			temp |= TRANS_DDI_MODE_SELECT_DP_SST;
 | |
| 
 | |
| 		temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
 | |
| 	} else if (type == INTEL_OUTPUT_DP_MST) {
 | |
| 		struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
 | |
| 
 | |
| 		if (intel_dp->is_mst) {
 | |
| 			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
 | |
| 		} else
 | |
| 			temp |= TRANS_DDI_MODE_SELECT_DP_SST;
 | |
| 
 | |
| 		temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
 | |
| 	} else {
 | |
| 		WARN(1, "Invalid encoder type %d for pipe %c\n",
 | |
| 		     intel_encoder->type, pipe_name(pipe));
 | |
| 	}
 | |
| 
 | |
| 	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
 | |
| }
 | |
| 
 | |
| void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
 | |
| 				       enum transcoder cpu_transcoder)
 | |
| {
 | |
| 	uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
 | |
| 	uint32_t val = I915_READ(reg);
 | |
| 
 | |
| 	val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
 | |
| 	val |= TRANS_DDI_PORT_NONE;
 | |
| 	I915_WRITE(reg, val);
 | |
| }
 | |
| 
 | |
| bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
 | |
| {
 | |
| 	struct drm_device *dev = intel_connector->base.dev;
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 	struct intel_encoder *intel_encoder = intel_connector->encoder;
 | |
| 	int type = intel_connector->base.connector_type;
 | |
| 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
 | |
| 	enum pipe pipe = 0;
 | |
| 	enum transcoder cpu_transcoder;
 | |
| 	enum intel_display_power_domain power_domain;
 | |
| 	uint32_t tmp;
 | |
| 
 | |
| 	power_domain = intel_display_port_power_domain(intel_encoder);
 | |
| 	if (!intel_display_power_is_enabled(dev_priv, power_domain))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
 | |
| 		return false;
 | |
| 
 | |
| 	if (port == PORT_A)
 | |
| 		cpu_transcoder = TRANSCODER_EDP;
 | |
| 	else
 | |
| 		cpu_transcoder = (enum transcoder) pipe;
 | |
| 
 | |
| 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
 | |
| 
 | |
| 	switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
 | |
| 	case TRANS_DDI_MODE_SELECT_HDMI:
 | |
| 	case TRANS_DDI_MODE_SELECT_DVI:
 | |
| 		return (type == DRM_MODE_CONNECTOR_HDMIA);
 | |
| 
 | |
| 	case TRANS_DDI_MODE_SELECT_DP_SST:
 | |
| 		if (type == DRM_MODE_CONNECTOR_eDP)
 | |
| 			return true;
 | |
| 		return (type == DRM_MODE_CONNECTOR_DisplayPort);
 | |
| 	case TRANS_DDI_MODE_SELECT_DP_MST:
 | |
| 		/* if the transcoder is in MST state then
 | |
| 		 * connector isn't connected */
 | |
| 		return false;
 | |
| 
 | |
| 	case TRANS_DDI_MODE_SELECT_FDI:
 | |
| 		return (type == DRM_MODE_CONNECTOR_VGA);
 | |
| 
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
 | |
| 			    enum pipe *pipe)
 | |
| {
 | |
| 	struct drm_device *dev = encoder->base.dev;
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 	enum port port = intel_ddi_get_encoder_port(encoder);
 | |
| 	enum intel_display_power_domain power_domain;
 | |
| 	u32 tmp;
 | |
| 	int i;
 | |
| 
 | |
| 	power_domain = intel_display_port_power_domain(encoder);
 | |
| 	if (!intel_display_power_is_enabled(dev_priv, power_domain))
 | |
| 		return false;
 | |
| 
 | |
| 	tmp = I915_READ(DDI_BUF_CTL(port));
 | |
| 
 | |
| 	if (!(tmp & DDI_BUF_CTL_ENABLE))
 | |
| 		return false;
 | |
| 
 | |
| 	if (port == PORT_A) {
 | |
| 		tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
 | |
| 
 | |
| 		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
 | |
| 		case TRANS_DDI_EDP_INPUT_A_ON:
 | |
| 		case TRANS_DDI_EDP_INPUT_A_ONOFF:
 | |
| 			*pipe = PIPE_A;
 | |
| 			break;
 | |
| 		case TRANS_DDI_EDP_INPUT_B_ONOFF:
 | |
| 			*pipe = PIPE_B;
 | |
| 			break;
 | |
| 		case TRANS_DDI_EDP_INPUT_C_ONOFF:
 | |
| 			*pipe = PIPE_C;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		return true;
 | |
| 	} else {
 | |
| 		for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
 | |
| 			tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
 | |
| 
 | |
| 			if ((tmp & TRANS_DDI_PORT_MASK)
 | |
| 			    == TRANS_DDI_SELECT_PORT(port)) {
 | |
| 				if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
 | |
| 					return false;
 | |
| 
 | |
| 				*pipe = i;
 | |
| 				return true;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
 | |
| {
 | |
| 	struct drm_crtc *crtc = &intel_crtc->base;
 | |
| 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
 | |
| 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
 | |
| 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
 | |
| 	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
 | |
| 
 | |
| 	if (cpu_transcoder != TRANSCODER_EDP)
 | |
| 		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
 | |
| 			   TRANS_CLK_SEL_PORT(port));
 | |
| }
 | |
| 
 | |
| void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
 | |
| {
 | |
| 	struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
 | |
| 	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
 | |
| 
 | |
| 	if (cpu_transcoder != TRANSCODER_EDP)
 | |
| 		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
 | |
| 			   TRANS_CLK_SEL_DISABLED);
 | |
| }
 | |
| 
 | |
| static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
 | |
| {
 | |
| 	struct drm_encoder *encoder = &intel_encoder->base;
 | |
| 	struct drm_device *dev = encoder->dev;
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 	struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
 | |
| 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
 | |
| 	int type = intel_encoder->type;
 | |
| 
 | |
| 	if (type == INTEL_OUTPUT_EDP) {
 | |
| 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 | |
| 		intel_edp_panel_on(intel_dp);
 | |
| 	}
 | |
| 
 | |
| 	if (IS_SKYLAKE(dev)) {
 | |
| 		uint32_t dpll = crtc->config.ddi_pll_sel;
 | |
| 		uint32_t val;
 | |
| 
 | |
| 		/*
 | |
| 		 * DPLL0 is used for eDP and is the only "private" DPLL (as
 | |
| 		 * opposed to shared) on SKL
 | |
| 		 */
 | |
| 		if (type == INTEL_OUTPUT_EDP) {
 | |
| 			WARN_ON(dpll != SKL_DPLL0);
 | |
| 
 | |
| 			val = I915_READ(DPLL_CTRL1);
 | |
| 
 | |
| 			val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
 | |
| 				 DPLL_CTRL1_SSC(dpll) |
 | |
| 				 DPLL_CRTL1_LINK_RATE_MASK(dpll));
 | |
| 			val |= crtc->config.dpll_hw_state.ctrl1 << (dpll * 6);
 | |
| 
 | |
| 			I915_WRITE(DPLL_CTRL1, val);
 | |
| 			POSTING_READ(DPLL_CTRL1);
 | |
| 		}
 | |
| 
 | |
| 		/* DDI -> PLL mapping  */
 | |
| 		val = I915_READ(DPLL_CTRL2);
 | |
| 
 | |
| 		val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
 | |
| 			DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
 | |
| 		val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
 | |
| 			DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
 | |
| 
 | |
| 		I915_WRITE(DPLL_CTRL2, val);
 | |
| 
 | |
| 	} else {
 | |
| 		WARN_ON(crtc->config.ddi_pll_sel == PORT_CLK_SEL_NONE);
 | |
| 		I915_WRITE(PORT_CLK_SEL(port), crtc->config.ddi_pll_sel);
 | |
| 	}
 | |
| 
 | |
| 	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
 | |
| 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 | |
| 
 | |
| 		intel_ddi_init_dp_buf_reg(intel_encoder);
 | |
| 
 | |
| 		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
 | |
| 		intel_dp_start_link_train(intel_dp);
 | |
| 		intel_dp_complete_link_train(intel_dp);
 | |
| 		if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
 | |
| 			intel_dp_stop_link_train(intel_dp);
 | |
| 	} else if (type == INTEL_OUTPUT_HDMI) {
 | |
| 		struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
 | |
| 
 | |
| 		intel_hdmi->set_infoframes(encoder,
 | |
| 					   crtc->config.has_hdmi_sink,
 | |
| 					   &crtc->config.adjusted_mode);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
 | |
| {
 | |
| 	struct drm_encoder *encoder = &intel_encoder->base;
 | |
| 	struct drm_device *dev = encoder->dev;
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
 | |
| 	int type = intel_encoder->type;
 | |
| 	uint32_t val;
 | |
| 	bool wait = false;
 | |
| 
 | |
| 	val = I915_READ(DDI_BUF_CTL(port));
 | |
| 	if (val & DDI_BUF_CTL_ENABLE) {
 | |
| 		val &= ~DDI_BUF_CTL_ENABLE;
 | |
| 		I915_WRITE(DDI_BUF_CTL(port), val);
 | |
| 		wait = true;
 | |
| 	}
 | |
| 
 | |
| 	val = I915_READ(DP_TP_CTL(port));
 | |
| 	val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
 | |
| 	val |= DP_TP_CTL_LINK_TRAIN_PAT1;
 | |
| 	I915_WRITE(DP_TP_CTL(port), val);
 | |
| 
 | |
| 	if (wait)
 | |
| 		intel_wait_ddi_buf_idle(dev_priv, port);
 | |
| 
 | |
| 	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
 | |
| 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 | |
| 		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
 | |
| 		intel_edp_panel_vdd_on(intel_dp);
 | |
| 		intel_edp_panel_off(intel_dp);
 | |
| 	}
 | |
| 
 | |
| 	if (IS_SKYLAKE(dev))
 | |
| 		I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
 | |
| 					DPLL_CTRL2_DDI_CLK_OFF(port)));
 | |
| 	else
 | |
| 		I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
 | |
| }
 | |
| 
 | |
| static void intel_enable_ddi(struct intel_encoder *intel_encoder)
 | |
| {
 | |
| 	struct drm_encoder *encoder = &intel_encoder->base;
 | |
| 	struct drm_crtc *crtc = encoder->crtc;
 | |
| 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 | |
| 	struct drm_device *dev = encoder->dev;
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
 | |
| 	int type = intel_encoder->type;
 | |
| 
 | |
| 	if (type == INTEL_OUTPUT_HDMI) {
 | |
| 		struct intel_digital_port *intel_dig_port =
 | |
| 			enc_to_dig_port(encoder);
 | |
| 
 | |
| 		/* In HDMI/DVI mode, the port width, and swing/emphasis values
 | |
| 		 * are ignored so nothing special needs to be done besides
 | |
| 		 * enabling the port.
 | |
| 		 */
 | |
| 		I915_WRITE(DDI_BUF_CTL(port),
 | |
| 			   intel_dig_port->saved_port_bits |
 | |
| 			   DDI_BUF_CTL_ENABLE);
 | |
| 	} else if (type == INTEL_OUTPUT_EDP) {
 | |
| 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 | |
| 
 | |
| 		if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
 | |
| 			intel_dp_stop_link_train(intel_dp);
 | |
| 
 | |
| 		intel_edp_backlight_on(intel_dp);
 | |
| 		intel_psr_enable(intel_dp);
 | |
| 	}
 | |
| 
 | |
| 	if (intel_crtc->config.has_audio) {
 | |
| 		intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
 | |
| 		intel_audio_codec_enable(intel_encoder);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void intel_disable_ddi(struct intel_encoder *intel_encoder)
 | |
| {
 | |
| 	struct drm_encoder *encoder = &intel_encoder->base;
 | |
| 	struct drm_crtc *crtc = encoder->crtc;
 | |
| 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 | |
| 	int type = intel_encoder->type;
 | |
| 	struct drm_device *dev = encoder->dev;
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 
 | |
| 	if (intel_crtc->config.has_audio) {
 | |
| 		intel_audio_codec_disable(intel_encoder);
 | |
| 		intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
 | |
| 	}
 | |
| 
 | |
| 	if (type == INTEL_OUTPUT_EDP) {
 | |
| 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 | |
| 
 | |
| 		intel_psr_disable(intel_dp);
 | |
| 		intel_edp_backlight_off(intel_dp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int skl_get_cdclk_freq(struct drm_i915_private *dev_priv)
 | |
| {
 | |
| 	uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
 | |
| 	uint32_t cdctl = I915_READ(CDCLK_CTL);
 | |
| 	uint32_t linkrate;
 | |
| 
 | |
| 	if (!(lcpll1 & LCPLL_PLL_ENABLE)) {
 | |
| 		WARN(1, "LCPLL1 not enabled\n");
 | |
| 		return 24000; /* 24MHz is the cd freq with NSSC ref */
 | |
| 	}
 | |
| 
 | |
| 	if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
 | |
| 		return 540000;
 | |
| 
 | |
| 	linkrate = (I915_READ(DPLL_CTRL1) &
 | |
| 		    DPLL_CRTL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
 | |
| 
 | |
| 	if (linkrate == DPLL_CRTL1_LINK_RATE_2160 ||
 | |
| 	    linkrate == DPLL_CRTL1_LINK_RATE_1080) {
 | |
| 		/* vco 8640 */
 | |
| 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
 | |
| 		case CDCLK_FREQ_450_432:
 | |
| 			return 432000;
 | |
| 		case CDCLK_FREQ_337_308:
 | |
| 			return 308570;
 | |
| 		case CDCLK_FREQ_675_617:
 | |
| 			return 617140;
 | |
| 		default:
 | |
| 			WARN(1, "Unknown cd freq selection\n");
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* vco 8100 */
 | |
| 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
 | |
| 		case CDCLK_FREQ_450_432:
 | |
| 			return 450000;
 | |
| 		case CDCLK_FREQ_337_308:
 | |
| 			return 337500;
 | |
| 		case CDCLK_FREQ_675_617:
 | |
| 			return 675000;
 | |
| 		default:
 | |
| 			WARN(1, "Unknown cd freq selection\n");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* error case, do as if DPLL0 isn't enabled */
 | |
| 	return 24000;
 | |
| }
 | |
| 
 | |
| static int bdw_get_cdclk_freq(struct drm_i915_private *dev_priv)
 | |
| {
 | |
| 	uint32_t lcpll = I915_READ(LCPLL_CTL);
 | |
| 	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
 | |
| 
 | |
| 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
 | |
| 		return 800000;
 | |
| 	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
 | |
| 		return 450000;
 | |
| 	else if (freq == LCPLL_CLK_FREQ_450)
 | |
| 		return 450000;
 | |
| 	else if (freq == LCPLL_CLK_FREQ_54O_BDW)
 | |
| 		return 540000;
 | |
| 	else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
 | |
| 		return 337500;
 | |
| 	else
 | |
| 		return 675000;
 | |
| }
 | |
| 
 | |
| static int hsw_get_cdclk_freq(struct drm_i915_private *dev_priv)
 | |
| {
 | |
| 	struct drm_device *dev = dev_priv->dev;
 | |
| 	uint32_t lcpll = I915_READ(LCPLL_CTL);
 | |
| 	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
 | |
| 
 | |
| 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
 | |
| 		return 800000;
 | |
| 	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
 | |
| 		return 450000;
 | |
| 	else if (freq == LCPLL_CLK_FREQ_450)
 | |
| 		return 450000;
 | |
| 	else if (IS_HSW_ULT(dev))
 | |
| 		return 337500;
 | |
| 	else
 | |
| 		return 540000;
 | |
| }
 | |
| 
 | |
| int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv)
 | |
| {
 | |
| 	struct drm_device *dev = dev_priv->dev;
 | |
| 
 | |
| 	if (IS_SKYLAKE(dev))
 | |
| 		return skl_get_cdclk_freq(dev_priv);
 | |
| 
 | |
| 	if (IS_BROADWELL(dev))
 | |
| 		return bdw_get_cdclk_freq(dev_priv);
 | |
| 
 | |
| 	/* Haswell */
 | |
| 	return hsw_get_cdclk_freq(dev_priv);
 | |
| }
 | |
| 
 | |
| static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
 | |
| 			       struct intel_shared_dpll *pll)
 | |
| {
 | |
| 	I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
 | |
| 	POSTING_READ(WRPLL_CTL(pll->id));
 | |
| 	udelay(20);
 | |
| }
 | |
| 
 | |
| static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
 | |
| 				struct intel_shared_dpll *pll)
 | |
| {
 | |
| 	uint32_t val;
 | |
| 
 | |
| 	val = I915_READ(WRPLL_CTL(pll->id));
 | |
| 	I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
 | |
| 	POSTING_READ(WRPLL_CTL(pll->id));
 | |
| }
 | |
| 
 | |
| static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
 | |
| 				     struct intel_shared_dpll *pll,
 | |
| 				     struct intel_dpll_hw_state *hw_state)
 | |
| {
 | |
| 	uint32_t val;
 | |
| 
 | |
| 	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
 | |
| 		return false;
 | |
| 
 | |
| 	val = I915_READ(WRPLL_CTL(pll->id));
 | |
| 	hw_state->wrpll = val;
 | |
| 
 | |
| 	return val & WRPLL_PLL_ENABLE;
 | |
| }
 | |
| 
 | |
| static const char * const hsw_ddi_pll_names[] = {
 | |
| 	"WRPLL 1",
 | |
| 	"WRPLL 2",
 | |
| };
 | |
| 
 | |
| static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	dev_priv->num_shared_dpll = 2;
 | |
| 
 | |
| 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
 | |
| 		dev_priv->shared_dplls[i].id = i;
 | |
| 		dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
 | |
| 		dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
 | |
| 		dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
 | |
| 		dev_priv->shared_dplls[i].get_hw_state =
 | |
| 			hsw_ddi_pll_get_hw_state;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const char * const skl_ddi_pll_names[] = {
 | |
| 	"DPLL 1",
 | |
| 	"DPLL 2",
 | |
| 	"DPLL 3",
 | |
| };
 | |
| 
 | |
| struct skl_dpll_regs {
 | |
| 	u32 ctl, cfgcr1, cfgcr2;
 | |
| };
 | |
| 
 | |
| /* this array is indexed by the *shared* pll id */
 | |
| static const struct skl_dpll_regs skl_dpll_regs[3] = {
 | |
| 	{
 | |
| 		/* DPLL 1 */
 | |
| 		.ctl = LCPLL2_CTL,
 | |
| 		.cfgcr1 = DPLL1_CFGCR1,
 | |
| 		.cfgcr2 = DPLL1_CFGCR2,
 | |
| 	},
 | |
| 	{
 | |
| 		/* DPLL 2 */
 | |
| 		.ctl = WRPLL_CTL1,
 | |
| 		.cfgcr1 = DPLL2_CFGCR1,
 | |
| 		.cfgcr2 = DPLL2_CFGCR2,
 | |
| 	},
 | |
| 	{
 | |
| 		/* DPLL 3 */
 | |
| 		.ctl = WRPLL_CTL2,
 | |
| 		.cfgcr1 = DPLL3_CFGCR1,
 | |
| 		.cfgcr2 = DPLL3_CFGCR2,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
 | |
| 			       struct intel_shared_dpll *pll)
 | |
| {
 | |
| 	uint32_t val;
 | |
| 	unsigned int dpll;
 | |
| 	const struct skl_dpll_regs *regs = skl_dpll_regs;
 | |
| 
 | |
| 	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
 | |
| 	dpll = pll->id + 1;
 | |
| 
 | |
| 	val = I915_READ(DPLL_CTRL1);
 | |
| 
 | |
| 	val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
 | |
| 		 DPLL_CRTL1_LINK_RATE_MASK(dpll));
 | |
| 	val |= pll->config.hw_state.ctrl1 << (dpll * 6);
 | |
| 
 | |
| 	I915_WRITE(DPLL_CTRL1, val);
 | |
| 	POSTING_READ(DPLL_CTRL1);
 | |
| 
 | |
| 	I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
 | |
| 	I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
 | |
| 	POSTING_READ(regs[pll->id].cfgcr1);
 | |
| 	POSTING_READ(regs[pll->id].cfgcr2);
 | |
| 
 | |
| 	/* the enable bit is always bit 31 */
 | |
| 	I915_WRITE(regs[pll->id].ctl,
 | |
| 		   I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
 | |
| 
 | |
| 	if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
 | |
| 		DRM_ERROR("DPLL %d not locked\n", dpll);
 | |
| }
 | |
| 
 | |
| static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
 | |
| 				struct intel_shared_dpll *pll)
 | |
| {
 | |
| 	const struct skl_dpll_regs *regs = skl_dpll_regs;
 | |
| 
 | |
| 	/* the enable bit is always bit 31 */
 | |
| 	I915_WRITE(regs[pll->id].ctl,
 | |
| 		   I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
 | |
| 	POSTING_READ(regs[pll->id].ctl);
 | |
| }
 | |
| 
 | |
| static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
 | |
| 				     struct intel_shared_dpll *pll,
 | |
| 				     struct intel_dpll_hw_state *hw_state)
 | |
| {
 | |
| 	uint32_t val;
 | |
| 	unsigned int dpll;
 | |
| 	const struct skl_dpll_regs *regs = skl_dpll_regs;
 | |
| 
 | |
| 	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
 | |
| 		return false;
 | |
| 
 | |
| 	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
 | |
| 	dpll = pll->id + 1;
 | |
| 
 | |
| 	val = I915_READ(regs[pll->id].ctl);
 | |
| 	if (!(val & LCPLL_PLL_ENABLE))
 | |
| 		return false;
 | |
| 
 | |
| 	val = I915_READ(DPLL_CTRL1);
 | |
| 	hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;
 | |
| 
 | |
| 	/* avoid reading back stale values if HDMI mode is not enabled */
 | |
| 	if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
 | |
| 		hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
 | |
| 		hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	dev_priv->num_shared_dpll = 3;
 | |
| 
 | |
| 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
 | |
| 		dev_priv->shared_dplls[i].id = i;
 | |
| 		dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
 | |
| 		dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
 | |
| 		dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
 | |
| 		dev_priv->shared_dplls[i].get_hw_state =
 | |
| 			skl_ddi_pll_get_hw_state;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void intel_ddi_pll_init(struct drm_device *dev)
 | |
| {
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 	uint32_t val = I915_READ(LCPLL_CTL);
 | |
| 
 | |
| 	if (IS_SKYLAKE(dev))
 | |
| 		skl_shared_dplls_init(dev_priv);
 | |
| 	else
 | |
| 		hsw_shared_dplls_init(dev_priv);
 | |
| 
 | |
| 	DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
 | |
| 		      intel_ddi_get_cdclk_freq(dev_priv));
 | |
| 
 | |
| 	if (IS_SKYLAKE(dev)) {
 | |
| 		if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
 | |
| 			DRM_ERROR("LCPLL1 is disabled\n");
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The LCPLL register should be turned on by the BIOS. For now
 | |
| 		 * let's just check its state and print errors in case
 | |
| 		 * something is wrong.  Don't even try to turn it on.
 | |
| 		 */
 | |
| 
 | |
| 		if (val & LCPLL_CD_SOURCE_FCLK)
 | |
| 			DRM_ERROR("CDCLK source is not LCPLL\n");
 | |
| 
 | |
| 		if (val & LCPLL_PLL_DISABLE)
 | |
| 			DRM_ERROR("LCPLL is disabled\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
 | |
| {
 | |
| 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
 | |
| 	struct intel_dp *intel_dp = &intel_dig_port->dp;
 | |
| 	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
 | |
| 	enum port port = intel_dig_port->port;
 | |
| 	uint32_t val;
 | |
| 	bool wait = false;
 | |
| 
 | |
| 	if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
 | |
| 		val = I915_READ(DDI_BUF_CTL(port));
 | |
| 		if (val & DDI_BUF_CTL_ENABLE) {
 | |
| 			val &= ~DDI_BUF_CTL_ENABLE;
 | |
| 			I915_WRITE(DDI_BUF_CTL(port), val);
 | |
| 			wait = true;
 | |
| 		}
 | |
| 
 | |
| 		val = I915_READ(DP_TP_CTL(port));
 | |
| 		val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
 | |
| 		val |= DP_TP_CTL_LINK_TRAIN_PAT1;
 | |
| 		I915_WRITE(DP_TP_CTL(port), val);
 | |
| 		POSTING_READ(DP_TP_CTL(port));
 | |
| 
 | |
| 		if (wait)
 | |
| 			intel_wait_ddi_buf_idle(dev_priv, port);
 | |
| 	}
 | |
| 
 | |
| 	val = DP_TP_CTL_ENABLE |
 | |
| 	      DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
 | |
| 	if (intel_dp->is_mst)
 | |
| 		val |= DP_TP_CTL_MODE_MST;
 | |
| 	else {
 | |
| 		val |= DP_TP_CTL_MODE_SST;
 | |
| 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
 | |
| 			val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
 | |
| 	}
 | |
| 	I915_WRITE(DP_TP_CTL(port), val);
 | |
| 	POSTING_READ(DP_TP_CTL(port));
 | |
| 
 | |
| 	intel_dp->DP |= DDI_BUF_CTL_ENABLE;
 | |
| 	I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
 | |
| 	POSTING_READ(DDI_BUF_CTL(port));
 | |
| 
 | |
| 	udelay(600);
 | |
| }
 | |
| 
 | |
| void intel_ddi_fdi_disable(struct drm_crtc *crtc)
 | |
| {
 | |
| 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
 | |
| 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
 | |
| 	uint32_t val;
 | |
| 
 | |
| 	intel_ddi_post_disable(intel_encoder);
 | |
| 
 | |
| 	val = I915_READ(_FDI_RXA_CTL);
 | |
| 	val &= ~FDI_RX_ENABLE;
 | |
| 	I915_WRITE(_FDI_RXA_CTL, val);
 | |
| 
 | |
| 	val = I915_READ(_FDI_RXA_MISC);
 | |
| 	val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
 | |
| 	val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
 | |
| 	I915_WRITE(_FDI_RXA_MISC, val);
 | |
| 
 | |
| 	val = I915_READ(_FDI_RXA_CTL);
 | |
| 	val &= ~FDI_PCDCLK;
 | |
| 	I915_WRITE(_FDI_RXA_CTL, val);
 | |
| 
 | |
| 	val = I915_READ(_FDI_RXA_CTL);
 | |
| 	val &= ~FDI_RX_PLL_ENABLE;
 | |
| 	I915_WRITE(_FDI_RXA_CTL, val);
 | |
| }
 | |
| 
 | |
| static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
 | |
| {
 | |
| 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(&intel_encoder->base);
 | |
| 	int type = intel_dig_port->base.type;
 | |
| 
 | |
| 	if (type != INTEL_OUTPUT_DISPLAYPORT &&
 | |
| 	    type != INTEL_OUTPUT_EDP &&
 | |
| 	    type != INTEL_OUTPUT_UNKNOWN) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	intel_dp_hot_plug(intel_encoder);
 | |
| }
 | |
| 
 | |
| void intel_ddi_get_config(struct intel_encoder *encoder,
 | |
| 			  struct intel_crtc_config *pipe_config)
 | |
| {
 | |
| 	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
 | |
| 	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
 | |
| 	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
 | |
| 	struct intel_hdmi *intel_hdmi;
 | |
| 	u32 temp, flags = 0;
 | |
| 
 | |
| 	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
 | |
| 	if (temp & TRANS_DDI_PHSYNC)
 | |
| 		flags |= DRM_MODE_FLAG_PHSYNC;
 | |
| 	else
 | |
| 		flags |= DRM_MODE_FLAG_NHSYNC;
 | |
| 	if (temp & TRANS_DDI_PVSYNC)
 | |
| 		flags |= DRM_MODE_FLAG_PVSYNC;
 | |
| 	else
 | |
| 		flags |= DRM_MODE_FLAG_NVSYNC;
 | |
| 
 | |
| 	pipe_config->adjusted_mode.flags |= flags;
 | |
| 
 | |
| 	switch (temp & TRANS_DDI_BPC_MASK) {
 | |
| 	case TRANS_DDI_BPC_6:
 | |
| 		pipe_config->pipe_bpp = 18;
 | |
| 		break;
 | |
| 	case TRANS_DDI_BPC_8:
 | |
| 		pipe_config->pipe_bpp = 24;
 | |
| 		break;
 | |
| 	case TRANS_DDI_BPC_10:
 | |
| 		pipe_config->pipe_bpp = 30;
 | |
| 		break;
 | |
| 	case TRANS_DDI_BPC_12:
 | |
| 		pipe_config->pipe_bpp = 36;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
 | |
| 	case TRANS_DDI_MODE_SELECT_HDMI:
 | |
| 		pipe_config->has_hdmi_sink = true;
 | |
| 		intel_hdmi = enc_to_intel_hdmi(&encoder->base);
 | |
| 
 | |
| 		if (intel_hdmi->infoframe_enabled(&encoder->base))
 | |
| 			pipe_config->has_infoframe = true;
 | |
| 		break;
 | |
| 	case TRANS_DDI_MODE_SELECT_DVI:
 | |
| 	case TRANS_DDI_MODE_SELECT_FDI:
 | |
| 		break;
 | |
| 	case TRANS_DDI_MODE_SELECT_DP_SST:
 | |
| 	case TRANS_DDI_MODE_SELECT_DP_MST:
 | |
| 		pipe_config->has_dp_encoder = true;
 | |
| 		intel_dp_get_m_n(intel_crtc, pipe_config);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
 | |
| 		temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
 | |
| 		if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
 | |
| 			pipe_config->has_audio = true;
 | |
| 	}
 | |
| 
 | |
| 	if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
 | |
| 	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
 | |
| 		/*
 | |
| 		 * This is a big fat ugly hack.
 | |
| 		 *
 | |
| 		 * Some machines in UEFI boot mode provide us a VBT that has 18
 | |
| 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
 | |
| 		 * unknown we fail to light up. Yet the same BIOS boots up with
 | |
| 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
 | |
| 		 * max, not what it tells us to use.
 | |
| 		 *
 | |
| 		 * Note: This will still be broken if the eDP panel is not lit
 | |
| 		 * up by the BIOS, and thus we can't get the mode at module
 | |
| 		 * load.
 | |
| 		 */
 | |
| 		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
 | |
| 			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
 | |
| 		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
 | |
| 	}
 | |
| 
 | |
| 	intel_ddi_clock_get(encoder, pipe_config);
 | |
| }
 | |
| 
 | |
| static void intel_ddi_destroy(struct drm_encoder *encoder)
 | |
| {
 | |
| 	/* HDMI has nothing special to destroy, so we can go with this. */
 | |
| 	intel_dp_encoder_destroy(encoder);
 | |
| }
 | |
| 
 | |
| static bool intel_ddi_compute_config(struct intel_encoder *encoder,
 | |
| 				     struct intel_crtc_config *pipe_config)
 | |
| {
 | |
| 	int type = encoder->type;
 | |
| 	int port = intel_ddi_get_encoder_port(encoder);
 | |
| 
 | |
| 	WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
 | |
| 
 | |
| 	if (port == PORT_A)
 | |
| 		pipe_config->cpu_transcoder = TRANSCODER_EDP;
 | |
| 
 | |
| 	if (type == INTEL_OUTPUT_HDMI)
 | |
| 		return intel_hdmi_compute_config(encoder, pipe_config);
 | |
| 	else
 | |
| 		return intel_dp_compute_config(encoder, pipe_config);
 | |
| }
 | |
| 
 | |
| static const struct drm_encoder_funcs intel_ddi_funcs = {
 | |
| 	.destroy = intel_ddi_destroy,
 | |
| };
 | |
| 
 | |
| static struct intel_connector *
 | |
| intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
 | |
| {
 | |
| 	struct intel_connector *connector;
 | |
| 	enum port port = intel_dig_port->port;
 | |
| 
 | |
| 	connector = kzalloc(sizeof(*connector), GFP_KERNEL);
 | |
| 	if (!connector)
 | |
| 		return NULL;
 | |
| 
 | |
| 	intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
 | |
| 	if (!intel_dp_init_connector(intel_dig_port, connector)) {
 | |
| 		kfree(connector);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return connector;
 | |
| }
 | |
| 
 | |
| static struct intel_connector *
 | |
| intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
 | |
| {
 | |
| 	struct intel_connector *connector;
 | |
| 	enum port port = intel_dig_port->port;
 | |
| 
 | |
| 	connector = kzalloc(sizeof(*connector), GFP_KERNEL);
 | |
| 	if (!connector)
 | |
| 		return NULL;
 | |
| 
 | |
| 	intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
 | |
| 	intel_hdmi_init_connector(intel_dig_port, connector);
 | |
| 
 | |
| 	return connector;
 | |
| }
 | |
| 
 | |
| void intel_ddi_init(struct drm_device *dev, enum port port)
 | |
| {
 | |
| 	struct drm_i915_private *dev_priv = dev->dev_private;
 | |
| 	struct intel_digital_port *intel_dig_port;
 | |
| 	struct intel_encoder *intel_encoder;
 | |
| 	struct drm_encoder *encoder;
 | |
| 	bool init_hdmi, init_dp;
 | |
| 
 | |
| 	init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
 | |
| 		     dev_priv->vbt.ddi_port_info[port].supports_hdmi);
 | |
| 	init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
 | |
| 	if (!init_dp && !init_hdmi) {
 | |
| 		DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n",
 | |
| 			      port_name(port));
 | |
| 		init_hdmi = true;
 | |
| 		init_dp = true;
 | |
| 	}
 | |
| 
 | |
| 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
 | |
| 	if (!intel_dig_port)
 | |
| 		return;
 | |
| 
 | |
| 	intel_encoder = &intel_dig_port->base;
 | |
| 	encoder = &intel_encoder->base;
 | |
| 
 | |
| 	drm_encoder_init(dev, encoder, &intel_ddi_funcs,
 | |
| 			 DRM_MODE_ENCODER_TMDS);
 | |
| 
 | |
| 	intel_encoder->compute_config = intel_ddi_compute_config;
 | |
| 	intel_encoder->enable = intel_enable_ddi;
 | |
| 	intel_encoder->pre_enable = intel_ddi_pre_enable;
 | |
| 	intel_encoder->disable = intel_disable_ddi;
 | |
| 	intel_encoder->post_disable = intel_ddi_post_disable;
 | |
| 	intel_encoder->get_hw_state = intel_ddi_get_hw_state;
 | |
| 	intel_encoder->get_config = intel_ddi_get_config;
 | |
| 
 | |
| 	intel_dig_port->port = port;
 | |
| 	intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
 | |
| 					  (DDI_BUF_PORT_REVERSAL |
 | |
| 					   DDI_A_4_LANES);
 | |
| 
 | |
| 	intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
 | |
| 	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
 | |
| 	intel_encoder->cloneable = 0;
 | |
| 	intel_encoder->hot_plug = intel_ddi_hot_plug;
 | |
| 
 | |
| 	if (init_dp) {
 | |
| 		if (!intel_ddi_init_dp_connector(intel_dig_port))
 | |
| 			goto err;
 | |
| 
 | |
| 		intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
 | |
| 		dev_priv->hpd_irq_port[port] = intel_dig_port;
 | |
| 	}
 | |
| 
 | |
| 	/* In theory we don't need the encoder->type check, but leave it just in
 | |
| 	 * case we have some really bad VBTs... */
 | |
| 	if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
 | |
| 		if (!intel_ddi_init_hdmi_connector(intel_dig_port))
 | |
| 			goto err;
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| err:
 | |
| 	drm_encoder_cleanup(encoder);
 | |
| 	kfree(intel_dig_port);
 | |
| }
 |