When we generate the instruction for out of line execution the length of the to be copied instruction was evaluated from a not initialized memory location. Therefore we ended up with a random (2, 4 or 6) number of bytes being copied instead of taking the real instruction length into account. This works surprisingly well most of the time, but still not always. Reported-by: Ursula Braun <ursula.braun@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
		
			
				
	
	
		
			732 lines
		
	
	
	
		
			20 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			732 lines
		
	
	
	
		
			20 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  Kernel Probes (KProbes)
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 | 
						|
 *
 | 
						|
 * Copyright IBM Corp. 2002, 2006
 | 
						|
 *
 | 
						|
 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/kprobes.h>
 | 
						|
#include <linux/ptrace.h>
 | 
						|
#include <linux/preempt.h>
 | 
						|
#include <linux/stop_machine.h>
 | 
						|
#include <linux/kdebug.h>
 | 
						|
#include <linux/uaccess.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/hardirq.h>
 | 
						|
#include <linux/ftrace.h>
 | 
						|
#include <asm/cacheflush.h>
 | 
						|
#include <asm/sections.h>
 | 
						|
#include <asm/dis.h>
 | 
						|
 | 
						|
DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 | 
						|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 | 
						|
 | 
						|
struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 | 
						|
 | 
						|
DEFINE_INSN_CACHE_OPS(dmainsn);
 | 
						|
 | 
						|
static void *alloc_dmainsn_page(void)
 | 
						|
{
 | 
						|
	return (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
 | 
						|
}
 | 
						|
 | 
						|
static void free_dmainsn_page(void *page)
 | 
						|
{
 | 
						|
	free_page((unsigned long)page);
 | 
						|
}
 | 
						|
 | 
						|
struct kprobe_insn_cache kprobe_dmainsn_slots = {
 | 
						|
	.mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
 | 
						|
	.alloc = alloc_dmainsn_page,
 | 
						|
	.free = free_dmainsn_page,
 | 
						|
	.pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
 | 
						|
	.insn_size = MAX_INSN_SIZE,
 | 
						|
};
 | 
						|
 | 
						|
static void copy_instruction(struct kprobe *p)
 | 
						|
{
 | 
						|
	unsigned long ip = (unsigned long) p->addr;
 | 
						|
	s64 disp, new_disp;
 | 
						|
	u64 addr, new_addr;
 | 
						|
 | 
						|
	if (ftrace_location(ip) == ip) {
 | 
						|
		/*
 | 
						|
		 * If kprobes patches the instruction that is morphed by
 | 
						|
		 * ftrace make sure that kprobes always sees the branch
 | 
						|
		 * "jg .+24" that skips the mcount block
 | 
						|
		 */
 | 
						|
		ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
 | 
						|
		p->ainsn.is_ftrace_insn = 1;
 | 
						|
	} else
 | 
						|
		memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
 | 
						|
	p->opcode = p->ainsn.insn[0];
 | 
						|
	if (!probe_is_insn_relative_long(p->ainsn.insn))
 | 
						|
		return;
 | 
						|
	/*
 | 
						|
	 * For pc-relative instructions in RIL-b or RIL-c format patch the
 | 
						|
	 * RI2 displacement field. We have already made sure that the insn
 | 
						|
	 * slot for the patched instruction is within the same 2GB area
 | 
						|
	 * as the original instruction (either kernel image or module area).
 | 
						|
	 * Therefore the new displacement will always fit.
 | 
						|
	 */
 | 
						|
	disp = *(s32 *)&p->ainsn.insn[1];
 | 
						|
	addr = (u64)(unsigned long)p->addr;
 | 
						|
	new_addr = (u64)(unsigned long)p->ainsn.insn;
 | 
						|
	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 | 
						|
	*(s32 *)&p->ainsn.insn[1] = new_disp;
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(copy_instruction);
 | 
						|
 | 
						|
static inline int is_kernel_addr(void *addr)
 | 
						|
{
 | 
						|
	return addr < (void *)_end;
 | 
						|
}
 | 
						|
 | 
						|
static int s390_get_insn_slot(struct kprobe *p)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Get an insn slot that is within the same 2GB area like the original
 | 
						|
	 * instruction. That way instructions with a 32bit signed displacement
 | 
						|
	 * field can be patched and executed within the insn slot.
 | 
						|
	 */
 | 
						|
	p->ainsn.insn = NULL;
 | 
						|
	if (is_kernel_addr(p->addr))
 | 
						|
		p->ainsn.insn = get_dmainsn_slot();
 | 
						|
	else if (is_module_addr(p->addr))
 | 
						|
		p->ainsn.insn = get_insn_slot();
 | 
						|
	return p->ainsn.insn ? 0 : -ENOMEM;
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(s390_get_insn_slot);
 | 
						|
 | 
						|
static void s390_free_insn_slot(struct kprobe *p)
 | 
						|
{
 | 
						|
	if (!p->ainsn.insn)
 | 
						|
		return;
 | 
						|
	if (is_kernel_addr(p->addr))
 | 
						|
		free_dmainsn_slot(p->ainsn.insn, 0);
 | 
						|
	else
 | 
						|
		free_insn_slot(p->ainsn.insn, 0);
 | 
						|
	p->ainsn.insn = NULL;
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(s390_free_insn_slot);
 | 
						|
 | 
						|
int arch_prepare_kprobe(struct kprobe *p)
 | 
						|
{
 | 
						|
	if ((unsigned long) p->addr & 0x01)
 | 
						|
		return -EINVAL;
 | 
						|
	/* Make sure the probe isn't going on a difficult instruction */
 | 
						|
	if (probe_is_prohibited_opcode(p->addr))
 | 
						|
		return -EINVAL;
 | 
						|
	if (s390_get_insn_slot(p))
 | 
						|
		return -ENOMEM;
 | 
						|
	copy_instruction(p);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(arch_prepare_kprobe);
 | 
						|
 | 
						|
int arch_check_ftrace_location(struct kprobe *p)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
struct swap_insn_args {
 | 
						|
	struct kprobe *p;
 | 
						|
	unsigned int arm_kprobe : 1;
 | 
						|
};
 | 
						|
 | 
						|
static int swap_instruction(void *data)
 | 
						|
{
 | 
						|
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | 
						|
	unsigned long status = kcb->kprobe_status;
 | 
						|
	struct swap_insn_args *args = data;
 | 
						|
	struct ftrace_insn new_insn, *insn;
 | 
						|
	struct kprobe *p = args->p;
 | 
						|
	size_t len;
 | 
						|
 | 
						|
	new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
 | 
						|
	len = sizeof(new_insn.opc);
 | 
						|
	if (!p->ainsn.is_ftrace_insn)
 | 
						|
		goto skip_ftrace;
 | 
						|
	len = sizeof(new_insn);
 | 
						|
	insn = (struct ftrace_insn *) p->addr;
 | 
						|
	if (args->arm_kprobe) {
 | 
						|
		if (is_ftrace_nop(insn))
 | 
						|
			new_insn.disp = KPROBE_ON_FTRACE_NOP;
 | 
						|
		else
 | 
						|
			new_insn.disp = KPROBE_ON_FTRACE_CALL;
 | 
						|
	} else {
 | 
						|
		ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
 | 
						|
		if (insn->disp == KPROBE_ON_FTRACE_NOP)
 | 
						|
			ftrace_generate_nop_insn(&new_insn);
 | 
						|
	}
 | 
						|
skip_ftrace:
 | 
						|
	kcb->kprobe_status = KPROBE_SWAP_INST;
 | 
						|
	probe_kernel_write(p->addr, &new_insn, len);
 | 
						|
	kcb->kprobe_status = status;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(swap_instruction);
 | 
						|
 | 
						|
void arch_arm_kprobe(struct kprobe *p)
 | 
						|
{
 | 
						|
	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
 | 
						|
 | 
						|
	stop_machine(swap_instruction, &args, NULL);
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(arch_arm_kprobe);
 | 
						|
 | 
						|
void arch_disarm_kprobe(struct kprobe *p)
 | 
						|
{
 | 
						|
	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
 | 
						|
 | 
						|
	stop_machine(swap_instruction, &args, NULL);
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(arch_disarm_kprobe);
 | 
						|
 | 
						|
void arch_remove_kprobe(struct kprobe *p)
 | 
						|
{
 | 
						|
	s390_free_insn_slot(p);
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(arch_remove_kprobe);
 | 
						|
 | 
						|
static void enable_singlestep(struct kprobe_ctlblk *kcb,
 | 
						|
			      struct pt_regs *regs,
 | 
						|
			      unsigned long ip)
 | 
						|
{
 | 
						|
	struct per_regs per_kprobe;
 | 
						|
 | 
						|
	/* Set up the PER control registers %cr9-%cr11 */
 | 
						|
	per_kprobe.control = PER_EVENT_IFETCH;
 | 
						|
	per_kprobe.start = ip;
 | 
						|
	per_kprobe.end = ip;
 | 
						|
 | 
						|
	/* Save control regs and psw mask */
 | 
						|
	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
 | 
						|
	kcb->kprobe_saved_imask = regs->psw.mask &
 | 
						|
		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
 | 
						|
 | 
						|
	/* Set PER control regs, turns on single step for the given address */
 | 
						|
	__ctl_load(per_kprobe, 9, 11);
 | 
						|
	regs->psw.mask |= PSW_MASK_PER;
 | 
						|
	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
 | 
						|
	regs->psw.addr = ip | PSW_ADDR_AMODE;
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(enable_singlestep);
 | 
						|
 | 
						|
static void disable_singlestep(struct kprobe_ctlblk *kcb,
 | 
						|
			       struct pt_regs *regs,
 | 
						|
			       unsigned long ip)
 | 
						|
{
 | 
						|
	/* Restore control regs and psw mask, set new psw address */
 | 
						|
	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
 | 
						|
	regs->psw.mask &= ~PSW_MASK_PER;
 | 
						|
	regs->psw.mask |= kcb->kprobe_saved_imask;
 | 
						|
	regs->psw.addr = ip | PSW_ADDR_AMODE;
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(disable_singlestep);
 | 
						|
 | 
						|
/*
 | 
						|
 * Activate a kprobe by storing its pointer to current_kprobe. The
 | 
						|
 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
 | 
						|
 * two kprobes can be active, see KPROBE_REENTER.
 | 
						|
 */
 | 
						|
static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
 | 
						|
{
 | 
						|
	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
 | 
						|
	kcb->prev_kprobe.status = kcb->kprobe_status;
 | 
						|
	__this_cpu_write(current_kprobe, p);
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(push_kprobe);
 | 
						|
 | 
						|
/*
 | 
						|
 * Deactivate a kprobe by backing up to the previous state. If the
 | 
						|
 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
 | 
						|
 * for any other state prev_kprobe.kp will be NULL.
 | 
						|
 */
 | 
						|
static void pop_kprobe(struct kprobe_ctlblk *kcb)
 | 
						|
{
 | 
						|
	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 | 
						|
	kcb->kprobe_status = kcb->prev_kprobe.status;
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(pop_kprobe);
 | 
						|
 | 
						|
void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
 | 
						|
 | 
						|
	/* Replace the return addr with trampoline addr */
 | 
						|
	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(arch_prepare_kretprobe);
 | 
						|
 | 
						|
static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
 | 
						|
{
 | 
						|
	switch (kcb->kprobe_status) {
 | 
						|
	case KPROBE_HIT_SSDONE:
 | 
						|
	case KPROBE_HIT_ACTIVE:
 | 
						|
		kprobes_inc_nmissed_count(p);
 | 
						|
		break;
 | 
						|
	case KPROBE_HIT_SS:
 | 
						|
	case KPROBE_REENTER:
 | 
						|
	default:
 | 
						|
		/*
 | 
						|
		 * A kprobe on the code path to single step an instruction
 | 
						|
		 * is a BUG. The code path resides in the .kprobes.text
 | 
						|
		 * section and is executed with interrupts disabled.
 | 
						|
		 */
 | 
						|
		printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
 | 
						|
		dump_kprobe(p);
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(kprobe_reenter_check);
 | 
						|
 | 
						|
static int kprobe_handler(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	struct kprobe_ctlblk *kcb;
 | 
						|
	struct kprobe *p;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We want to disable preemption for the entire duration of kprobe
 | 
						|
	 * processing. That includes the calls to the pre/post handlers
 | 
						|
	 * and single stepping the kprobe instruction.
 | 
						|
	 */
 | 
						|
	preempt_disable();
 | 
						|
	kcb = get_kprobe_ctlblk();
 | 
						|
	p = get_kprobe((void *)((regs->psw.addr & PSW_ADDR_INSN) - 2));
 | 
						|
 | 
						|
	if (p) {
 | 
						|
		if (kprobe_running()) {
 | 
						|
			/*
 | 
						|
			 * We have hit a kprobe while another is still
 | 
						|
			 * active. This can happen in the pre and post
 | 
						|
			 * handler. Single step the instruction of the
 | 
						|
			 * new probe but do not call any handler function
 | 
						|
			 * of this secondary kprobe.
 | 
						|
			 * push_kprobe and pop_kprobe saves and restores
 | 
						|
			 * the currently active kprobe.
 | 
						|
			 */
 | 
						|
			kprobe_reenter_check(kcb, p);
 | 
						|
			push_kprobe(kcb, p);
 | 
						|
			kcb->kprobe_status = KPROBE_REENTER;
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * If we have no pre-handler or it returned 0, we
 | 
						|
			 * continue with single stepping. If we have a
 | 
						|
			 * pre-handler and it returned non-zero, it prepped
 | 
						|
			 * for calling the break_handler below on re-entry
 | 
						|
			 * for jprobe processing, so get out doing nothing
 | 
						|
			 * more here.
 | 
						|
			 */
 | 
						|
			push_kprobe(kcb, p);
 | 
						|
			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 | 
						|
			if (p->pre_handler && p->pre_handler(p, regs))
 | 
						|
				return 1;
 | 
						|
			kcb->kprobe_status = KPROBE_HIT_SS;
 | 
						|
		}
 | 
						|
		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
 | 
						|
		return 1;
 | 
						|
	} else if (kprobe_running()) {
 | 
						|
		p = __this_cpu_read(current_kprobe);
 | 
						|
		if (p->break_handler && p->break_handler(p, regs)) {
 | 
						|
			/*
 | 
						|
			 * Continuation after the jprobe completed and
 | 
						|
			 * caused the jprobe_return trap. The jprobe
 | 
						|
			 * break_handler "returns" to the original
 | 
						|
			 * function that still has the kprobe breakpoint
 | 
						|
			 * installed. We continue with single stepping.
 | 
						|
			 */
 | 
						|
			kcb->kprobe_status = KPROBE_HIT_SS;
 | 
						|
			enable_singlestep(kcb, regs,
 | 
						|
					  (unsigned long) p->ainsn.insn);
 | 
						|
			return 1;
 | 
						|
		} /* else:
 | 
						|
		   * No kprobe at this address and the current kprobe
 | 
						|
		   * has no break handler (no jprobe!). The kernel just
 | 
						|
		   * exploded, let the standard trap handler pick up the
 | 
						|
		   * pieces.
 | 
						|
		   */
 | 
						|
	} /* else:
 | 
						|
	   * No kprobe at this address and no active kprobe. The trap has
 | 
						|
	   * not been caused by a kprobe breakpoint. The race of breakpoint
 | 
						|
	   * vs. kprobe remove does not exist because on s390 as we use
 | 
						|
	   * stop_machine to arm/disarm the breakpoints.
 | 
						|
	   */
 | 
						|
	preempt_enable_no_resched();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(kprobe_handler);
 | 
						|
 | 
						|
/*
 | 
						|
 * Function return probe trampoline:
 | 
						|
 *	- init_kprobes() establishes a probepoint here
 | 
						|
 *	- When the probed function returns, this probe
 | 
						|
 *		causes the handlers to fire
 | 
						|
 */
 | 
						|
static void __used kretprobe_trampoline_holder(void)
 | 
						|
{
 | 
						|
	asm volatile(".global kretprobe_trampoline\n"
 | 
						|
		     "kretprobe_trampoline: bcr 0,0\n");
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called when the probe at kretprobe trampoline is hit
 | 
						|
 */
 | 
						|
static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	struct kretprobe_instance *ri;
 | 
						|
	struct hlist_head *head, empty_rp;
 | 
						|
	struct hlist_node *tmp;
 | 
						|
	unsigned long flags, orig_ret_address;
 | 
						|
	unsigned long trampoline_address;
 | 
						|
	kprobe_opcode_t *correct_ret_addr;
 | 
						|
 | 
						|
	INIT_HLIST_HEAD(&empty_rp);
 | 
						|
	kretprobe_hash_lock(current, &head, &flags);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It is possible to have multiple instances associated with a given
 | 
						|
	 * task either because an multiple functions in the call path
 | 
						|
	 * have a return probe installed on them, and/or more than one return
 | 
						|
	 * return probe was registered for a target function.
 | 
						|
	 *
 | 
						|
	 * We can handle this because:
 | 
						|
	 *     - instances are always inserted at the head of the list
 | 
						|
	 *     - when multiple return probes are registered for the same
 | 
						|
	 *	 function, the first instance's ret_addr will point to the
 | 
						|
	 *	 real return address, and all the rest will point to
 | 
						|
	 *	 kretprobe_trampoline
 | 
						|
	 */
 | 
						|
	ri = NULL;
 | 
						|
	orig_ret_address = 0;
 | 
						|
	correct_ret_addr = NULL;
 | 
						|
	trampoline_address = (unsigned long) &kretprobe_trampoline;
 | 
						|
	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 | 
						|
		if (ri->task != current)
 | 
						|
			/* another task is sharing our hash bucket */
 | 
						|
			continue;
 | 
						|
 | 
						|
		orig_ret_address = (unsigned long) ri->ret_addr;
 | 
						|
 | 
						|
		if (orig_ret_address != trampoline_address)
 | 
						|
			/*
 | 
						|
			 * This is the real return address. Any other
 | 
						|
			 * instances associated with this task are for
 | 
						|
			 * other calls deeper on the call stack
 | 
						|
			 */
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	kretprobe_assert(ri, orig_ret_address, trampoline_address);
 | 
						|
 | 
						|
	correct_ret_addr = ri->ret_addr;
 | 
						|
	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 | 
						|
		if (ri->task != current)
 | 
						|
			/* another task is sharing our hash bucket */
 | 
						|
			continue;
 | 
						|
 | 
						|
		orig_ret_address = (unsigned long) ri->ret_addr;
 | 
						|
 | 
						|
		if (ri->rp && ri->rp->handler) {
 | 
						|
			ri->ret_addr = correct_ret_addr;
 | 
						|
			ri->rp->handler(ri, regs);
 | 
						|
		}
 | 
						|
 | 
						|
		recycle_rp_inst(ri, &empty_rp);
 | 
						|
 | 
						|
		if (orig_ret_address != trampoline_address)
 | 
						|
			/*
 | 
						|
			 * This is the real return address. Any other
 | 
						|
			 * instances associated with this task are for
 | 
						|
			 * other calls deeper on the call stack
 | 
						|
			 */
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
 | 
						|
 | 
						|
	pop_kprobe(get_kprobe_ctlblk());
 | 
						|
	kretprobe_hash_unlock(current, &flags);
 | 
						|
	preempt_enable_no_resched();
 | 
						|
 | 
						|
	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 | 
						|
		hlist_del(&ri->hlist);
 | 
						|
		kfree(ri);
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * By returning a non-zero value, we are telling
 | 
						|
	 * kprobe_handler() that we don't want the post_handler
 | 
						|
	 * to run (and have re-enabled preemption)
 | 
						|
	 */
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(trampoline_probe_handler);
 | 
						|
 | 
						|
/*
 | 
						|
 * Called after single-stepping.  p->addr is the address of the
 | 
						|
 * instruction whose first byte has been replaced by the "breakpoint"
 | 
						|
 * instruction.  To avoid the SMP problems that can occur when we
 | 
						|
 * temporarily put back the original opcode to single-step, we
 | 
						|
 * single-stepped a copy of the instruction.  The address of this
 | 
						|
 * copy is p->ainsn.insn.
 | 
						|
 */
 | 
						|
static void resume_execution(struct kprobe *p, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | 
						|
	unsigned long ip = regs->psw.addr & PSW_ADDR_INSN;
 | 
						|
	int fixup = probe_get_fixup_type(p->ainsn.insn);
 | 
						|
 | 
						|
	/* Check if the kprobes location is an enabled ftrace caller */
 | 
						|
	if (p->ainsn.is_ftrace_insn) {
 | 
						|
		struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
 | 
						|
		struct ftrace_insn call_insn;
 | 
						|
 | 
						|
		ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
 | 
						|
		/*
 | 
						|
		 * A kprobe on an enabled ftrace call site actually single
 | 
						|
		 * stepped an unconditional branch (ftrace nop equivalent).
 | 
						|
		 * Now we need to fixup things and pretend that a brasl r0,...
 | 
						|
		 * was executed instead.
 | 
						|
		 */
 | 
						|
		if (insn->disp == KPROBE_ON_FTRACE_CALL) {
 | 
						|
			ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
 | 
						|
			regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (fixup & FIXUP_PSW_NORMAL)
 | 
						|
		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
 | 
						|
 | 
						|
	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
 | 
						|
		int ilen = insn_length(p->ainsn.insn[0] >> 8);
 | 
						|
		if (ip - (unsigned long) p->ainsn.insn == ilen)
 | 
						|
			ip = (unsigned long) p->addr + ilen;
 | 
						|
	}
 | 
						|
 | 
						|
	if (fixup & FIXUP_RETURN_REGISTER) {
 | 
						|
		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
 | 
						|
		regs->gprs[reg] += (unsigned long) p->addr -
 | 
						|
				   (unsigned long) p->ainsn.insn;
 | 
						|
	}
 | 
						|
 | 
						|
	disable_singlestep(kcb, regs, ip);
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(resume_execution);
 | 
						|
 | 
						|
static int post_kprobe_handler(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | 
						|
	struct kprobe *p = kprobe_running();
 | 
						|
 | 
						|
	if (!p)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
 | 
						|
		kcb->kprobe_status = KPROBE_HIT_SSDONE;
 | 
						|
		p->post_handler(p, regs, 0);
 | 
						|
	}
 | 
						|
 | 
						|
	resume_execution(p, regs);
 | 
						|
	pop_kprobe(kcb);
 | 
						|
	preempt_enable_no_resched();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * if somebody else is singlestepping across a probe point, psw mask
 | 
						|
	 * will have PER set, in which case, continue the remaining processing
 | 
						|
	 * of do_single_step, as if this is not a probe hit.
 | 
						|
	 */
 | 
						|
	if (regs->psw.mask & PSW_MASK_PER)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(post_kprobe_handler);
 | 
						|
 | 
						|
static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
 | 
						|
{
 | 
						|
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | 
						|
	struct kprobe *p = kprobe_running();
 | 
						|
	const struct exception_table_entry *entry;
 | 
						|
 | 
						|
	switch(kcb->kprobe_status) {
 | 
						|
	case KPROBE_SWAP_INST:
 | 
						|
		/* We are here because the instruction replacement failed */
 | 
						|
		return 0;
 | 
						|
	case KPROBE_HIT_SS:
 | 
						|
	case KPROBE_REENTER:
 | 
						|
		/*
 | 
						|
		 * We are here because the instruction being single
 | 
						|
		 * stepped caused a page fault. We reset the current
 | 
						|
		 * kprobe and the nip points back to the probe address
 | 
						|
		 * and allow the page fault handler to continue as a
 | 
						|
		 * normal page fault.
 | 
						|
		 */
 | 
						|
		disable_singlestep(kcb, regs, (unsigned long) p->addr);
 | 
						|
		pop_kprobe(kcb);
 | 
						|
		preempt_enable_no_resched();
 | 
						|
		break;
 | 
						|
	case KPROBE_HIT_ACTIVE:
 | 
						|
	case KPROBE_HIT_SSDONE:
 | 
						|
		/*
 | 
						|
		 * We increment the nmissed count for accounting,
 | 
						|
		 * we can also use npre/npostfault count for accounting
 | 
						|
		 * these specific fault cases.
 | 
						|
		 */
 | 
						|
		kprobes_inc_nmissed_count(p);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We come here because instructions in the pre/post
 | 
						|
		 * handler caused the page_fault, this could happen
 | 
						|
		 * if handler tries to access user space by
 | 
						|
		 * copy_from_user(), get_user() etc. Let the
 | 
						|
		 * user-specified handler try to fix it first.
 | 
						|
		 */
 | 
						|
		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
 | 
						|
			return 1;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * In case the user-specified fault handler returned
 | 
						|
		 * zero, try to fix up.
 | 
						|
		 */
 | 
						|
		entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
 | 
						|
		if (entry) {
 | 
						|
			regs->psw.addr = extable_fixup(entry) | PSW_ADDR_AMODE;
 | 
						|
			return 1;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * fixup_exception() could not handle it,
 | 
						|
		 * Let do_page_fault() fix it.
 | 
						|
		 */
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(kprobe_trap_handler);
 | 
						|
 | 
						|
int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 | 
						|
		local_irq_disable();
 | 
						|
	ret = kprobe_trap_handler(regs, trapnr);
 | 
						|
	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 | 
						|
		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(kprobe_fault_handler);
 | 
						|
 | 
						|
/*
 | 
						|
 * Wrapper routine to for handling exceptions.
 | 
						|
 */
 | 
						|
int kprobe_exceptions_notify(struct notifier_block *self,
 | 
						|
			     unsigned long val, void *data)
 | 
						|
{
 | 
						|
	struct die_args *args = (struct die_args *) data;
 | 
						|
	struct pt_regs *regs = args->regs;
 | 
						|
	int ret = NOTIFY_DONE;
 | 
						|
 | 
						|
	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 | 
						|
		local_irq_disable();
 | 
						|
 | 
						|
	switch (val) {
 | 
						|
	case DIE_BPT:
 | 
						|
		if (kprobe_handler(regs))
 | 
						|
			ret = NOTIFY_STOP;
 | 
						|
		break;
 | 
						|
	case DIE_SSTEP:
 | 
						|
		if (post_kprobe_handler(regs))
 | 
						|
			ret = NOTIFY_STOP;
 | 
						|
		break;
 | 
						|
	case DIE_TRAP:
 | 
						|
		if (!preemptible() && kprobe_running() &&
 | 
						|
		    kprobe_trap_handler(regs, args->trapnr))
 | 
						|
			ret = NOTIFY_STOP;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 | 
						|
		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(kprobe_exceptions_notify);
 | 
						|
 | 
						|
int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	struct jprobe *jp = container_of(p, struct jprobe, kp);
 | 
						|
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | 
						|
	unsigned long stack;
 | 
						|
 | 
						|
	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
 | 
						|
 | 
						|
	/* setup return addr to the jprobe handler routine */
 | 
						|
	regs->psw.addr = (unsigned long) jp->entry | PSW_ADDR_AMODE;
 | 
						|
	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
 | 
						|
 | 
						|
	/* r15 is the stack pointer */
 | 
						|
	stack = (unsigned long) regs->gprs[15];
 | 
						|
 | 
						|
	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(setjmp_pre_handler);
 | 
						|
 | 
						|
void jprobe_return(void)
 | 
						|
{
 | 
						|
	asm volatile(".word 0x0002");
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(jprobe_return);
 | 
						|
 | 
						|
int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | 
						|
	unsigned long stack;
 | 
						|
 | 
						|
	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
 | 
						|
 | 
						|
	/* Put the regs back */
 | 
						|
	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
 | 
						|
	/* put the stack back */
 | 
						|
	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
 | 
						|
	preempt_enable_no_resched();
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(longjmp_break_handler);
 | 
						|
 | 
						|
static struct kprobe trampoline = {
 | 
						|
	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
 | 
						|
	.pre_handler = trampoline_probe_handler
 | 
						|
};
 | 
						|
 | 
						|
int __init arch_init_kprobes(void)
 | 
						|
{
 | 
						|
	return register_kprobe(&trampoline);
 | 
						|
}
 | 
						|
 | 
						|
int arch_trampoline_kprobe(struct kprobe *p)
 | 
						|
{
 | 
						|
	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(arch_trampoline_kprobe);
 |