The page_address_in_vma() is not only used in unuse_vma(). Signed-off-by: Huang Shijie <shijie8@gmail.com> Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1245 lines
		
	
	
	
		
			35 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1245 lines
		
	
	
	
		
			35 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * mm/rmap.c - physical to virtual reverse mappings
 | 
						|
 *
 | 
						|
 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
 | 
						|
 * Released under the General Public License (GPL).
 | 
						|
 *
 | 
						|
 * Simple, low overhead reverse mapping scheme.
 | 
						|
 * Please try to keep this thing as modular as possible.
 | 
						|
 *
 | 
						|
 * Provides methods for unmapping each kind of mapped page:
 | 
						|
 * the anon methods track anonymous pages, and
 | 
						|
 * the file methods track pages belonging to an inode.
 | 
						|
 *
 | 
						|
 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
 | 
						|
 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
 | 
						|
 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
 | 
						|
 * Contributions by Hugh Dickins 2003, 2004
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Lock ordering in mm:
 | 
						|
 *
 | 
						|
 * inode->i_mutex	(while writing or truncating, not reading or faulting)
 | 
						|
 *   inode->i_alloc_sem (vmtruncate_range)
 | 
						|
 *   mm->mmap_sem
 | 
						|
 *     page->flags PG_locked (lock_page)
 | 
						|
 *       mapping->i_mmap_lock
 | 
						|
 *         anon_vma->lock
 | 
						|
 *           mm->page_table_lock or pte_lock
 | 
						|
 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
 | 
						|
 *             swap_lock (in swap_duplicate, swap_info_get)
 | 
						|
 *               mmlist_lock (in mmput, drain_mmlist and others)
 | 
						|
 *               mapping->private_lock (in __set_page_dirty_buffers)
 | 
						|
 *               inode_lock (in set_page_dirty's __mark_inode_dirty)
 | 
						|
 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
 | 
						|
 *                 mapping->tree_lock (widely used, in set_page_dirty,
 | 
						|
 *                           in arch-dependent flush_dcache_mmap_lock,
 | 
						|
 *                           within inode_lock in __sync_single_inode)
 | 
						|
 *
 | 
						|
 * (code doesn't rely on that order so it could be switched around)
 | 
						|
 * ->tasklist_lock
 | 
						|
 *   anon_vma->lock      (memory_failure, collect_procs_anon)
 | 
						|
 *     pte map lock
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/swapops.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/rmap.h>
 | 
						|
#include <linux/rcupdate.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/memcontrol.h>
 | 
						|
#include <linux/mmu_notifier.h>
 | 
						|
#include <linux/migrate.h>
 | 
						|
 | 
						|
#include <asm/tlbflush.h>
 | 
						|
 | 
						|
#include "internal.h"
 | 
						|
 | 
						|
static struct kmem_cache *anon_vma_cachep;
 | 
						|
 | 
						|
static inline struct anon_vma *anon_vma_alloc(void)
 | 
						|
{
 | 
						|
	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
 | 
						|
}
 | 
						|
 | 
						|
static inline void anon_vma_free(struct anon_vma *anon_vma)
 | 
						|
{
 | 
						|
	kmem_cache_free(anon_vma_cachep, anon_vma);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * anon_vma_prepare - attach an anon_vma to a memory region
 | 
						|
 * @vma: the memory region in question
 | 
						|
 *
 | 
						|
 * This makes sure the memory mapping described by 'vma' has
 | 
						|
 * an 'anon_vma' attached to it, so that we can associate the
 | 
						|
 * anonymous pages mapped into it with that anon_vma.
 | 
						|
 *
 | 
						|
 * The common case will be that we already have one, but if
 | 
						|
 * if not we either need to find an adjacent mapping that we
 | 
						|
 * can re-use the anon_vma from (very common when the only
 | 
						|
 * reason for splitting a vma has been mprotect()), or we
 | 
						|
 * allocate a new one.
 | 
						|
 *
 | 
						|
 * Anon-vma allocations are very subtle, because we may have
 | 
						|
 * optimistically looked up an anon_vma in page_lock_anon_vma()
 | 
						|
 * and that may actually touch the spinlock even in the newly
 | 
						|
 * allocated vma (it depends on RCU to make sure that the
 | 
						|
 * anon_vma isn't actually destroyed).
 | 
						|
 *
 | 
						|
 * As a result, we need to do proper anon_vma locking even
 | 
						|
 * for the new allocation. At the same time, we do not want
 | 
						|
 * to do any locking for the common case of already having
 | 
						|
 * an anon_vma.
 | 
						|
 *
 | 
						|
 * This must be called with the mmap_sem held for reading.
 | 
						|
 */
 | 
						|
int anon_vma_prepare(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	struct anon_vma *anon_vma = vma->anon_vma;
 | 
						|
 | 
						|
	might_sleep();
 | 
						|
	if (unlikely(!anon_vma)) {
 | 
						|
		struct mm_struct *mm = vma->vm_mm;
 | 
						|
		struct anon_vma *allocated;
 | 
						|
 | 
						|
		anon_vma = find_mergeable_anon_vma(vma);
 | 
						|
		allocated = NULL;
 | 
						|
		if (!anon_vma) {
 | 
						|
			anon_vma = anon_vma_alloc();
 | 
						|
			if (unlikely(!anon_vma))
 | 
						|
				return -ENOMEM;
 | 
						|
			allocated = anon_vma;
 | 
						|
		}
 | 
						|
		spin_lock(&anon_vma->lock);
 | 
						|
 | 
						|
		/* page_table_lock to protect against threads */
 | 
						|
		spin_lock(&mm->page_table_lock);
 | 
						|
		if (likely(!vma->anon_vma)) {
 | 
						|
			vma->anon_vma = anon_vma;
 | 
						|
			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
 | 
						|
			allocated = NULL;
 | 
						|
		}
 | 
						|
		spin_unlock(&mm->page_table_lock);
 | 
						|
 | 
						|
		spin_unlock(&anon_vma->lock);
 | 
						|
		if (unlikely(allocated))
 | 
						|
			anon_vma_free(allocated);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
 | 
						|
{
 | 
						|
	BUG_ON(vma->anon_vma != next->anon_vma);
 | 
						|
	list_del(&next->anon_vma_node);
 | 
						|
}
 | 
						|
 | 
						|
void __anon_vma_link(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	struct anon_vma *anon_vma = vma->anon_vma;
 | 
						|
 | 
						|
	if (anon_vma)
 | 
						|
		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
 | 
						|
}
 | 
						|
 | 
						|
void anon_vma_link(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	struct anon_vma *anon_vma = vma->anon_vma;
 | 
						|
 | 
						|
	if (anon_vma) {
 | 
						|
		spin_lock(&anon_vma->lock);
 | 
						|
		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
 | 
						|
		spin_unlock(&anon_vma->lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void anon_vma_unlink(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	struct anon_vma *anon_vma = vma->anon_vma;
 | 
						|
	int empty;
 | 
						|
 | 
						|
	if (!anon_vma)
 | 
						|
		return;
 | 
						|
 | 
						|
	spin_lock(&anon_vma->lock);
 | 
						|
	list_del(&vma->anon_vma_node);
 | 
						|
 | 
						|
	/* We must garbage collect the anon_vma if it's empty */
 | 
						|
	empty = list_empty(&anon_vma->head);
 | 
						|
	spin_unlock(&anon_vma->lock);
 | 
						|
 | 
						|
	if (empty)
 | 
						|
		anon_vma_free(anon_vma);
 | 
						|
}
 | 
						|
 | 
						|
static void anon_vma_ctor(void *data)
 | 
						|
{
 | 
						|
	struct anon_vma *anon_vma = data;
 | 
						|
 | 
						|
	spin_lock_init(&anon_vma->lock);
 | 
						|
	INIT_LIST_HEAD(&anon_vma->head);
 | 
						|
}
 | 
						|
 | 
						|
void __init anon_vma_init(void)
 | 
						|
{
 | 
						|
	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 | 
						|
			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Getting a lock on a stable anon_vma from a page off the LRU is
 | 
						|
 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
 | 
						|
 */
 | 
						|
struct anon_vma *page_lock_anon_vma(struct page *page)
 | 
						|
{
 | 
						|
	struct anon_vma *anon_vma;
 | 
						|
	unsigned long anon_mapping;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	anon_mapping = (unsigned long) page->mapping;
 | 
						|
	if (!(anon_mapping & PAGE_MAPPING_ANON))
 | 
						|
		goto out;
 | 
						|
	if (!page_mapped(page))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 | 
						|
	spin_lock(&anon_vma->lock);
 | 
						|
	return anon_vma;
 | 
						|
out:
 | 
						|
	rcu_read_unlock();
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
void page_unlock_anon_vma(struct anon_vma *anon_vma)
 | 
						|
{
 | 
						|
	spin_unlock(&anon_vma->lock);
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * At what user virtual address is page expected in @vma?
 | 
						|
 * Returns virtual address or -EFAULT if page's index/offset is not
 | 
						|
 * within the range mapped the @vma.
 | 
						|
 */
 | 
						|
static inline unsigned long
 | 
						|
vma_address(struct page *page, struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 | 
						|
	unsigned long address;
 | 
						|
 | 
						|
	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 | 
						|
	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
 | 
						|
		/* page should be within @vma mapping range */
 | 
						|
		return -EFAULT;
 | 
						|
	}
 | 
						|
	return address;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * At what user virtual address is page expected in vma?
 | 
						|
 * checking that the page matches the vma.
 | 
						|
 */
 | 
						|
unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	if (PageAnon(page)) {
 | 
						|
		if ((void *)vma->anon_vma !=
 | 
						|
		    (void *)page->mapping - PAGE_MAPPING_ANON)
 | 
						|
			return -EFAULT;
 | 
						|
	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
 | 
						|
		if (!vma->vm_file ||
 | 
						|
		    vma->vm_file->f_mapping != page->mapping)
 | 
						|
			return -EFAULT;
 | 
						|
	} else
 | 
						|
		return -EFAULT;
 | 
						|
	return vma_address(page, vma);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check that @page is mapped at @address into @mm.
 | 
						|
 *
 | 
						|
 * If @sync is false, page_check_address may perform a racy check to avoid
 | 
						|
 * the page table lock when the pte is not present (helpful when reclaiming
 | 
						|
 * highly shared pages).
 | 
						|
 *
 | 
						|
 * On success returns with pte mapped and locked.
 | 
						|
 */
 | 
						|
pte_t *page_check_address(struct page *page, struct mm_struct *mm,
 | 
						|
			  unsigned long address, spinlock_t **ptlp, int sync)
 | 
						|
{
 | 
						|
	pgd_t *pgd;
 | 
						|
	pud_t *pud;
 | 
						|
	pmd_t *pmd;
 | 
						|
	pte_t *pte;
 | 
						|
	spinlock_t *ptl;
 | 
						|
 | 
						|
	pgd = pgd_offset(mm, address);
 | 
						|
	if (!pgd_present(*pgd))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	pud = pud_offset(pgd, address);
 | 
						|
	if (!pud_present(*pud))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	pmd = pmd_offset(pud, address);
 | 
						|
	if (!pmd_present(*pmd))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	pte = pte_offset_map(pmd, address);
 | 
						|
	/* Make a quick check before getting the lock */
 | 
						|
	if (!sync && !pte_present(*pte)) {
 | 
						|
		pte_unmap(pte);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	ptl = pte_lockptr(mm, pmd);
 | 
						|
	spin_lock(ptl);
 | 
						|
	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
 | 
						|
		*ptlp = ptl;
 | 
						|
		return pte;
 | 
						|
	}
 | 
						|
	pte_unmap_unlock(pte, ptl);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * page_mapped_in_vma - check whether a page is really mapped in a VMA
 | 
						|
 * @page: the page to test
 | 
						|
 * @vma: the VMA to test
 | 
						|
 *
 | 
						|
 * Returns 1 if the page is mapped into the page tables of the VMA, 0
 | 
						|
 * if the page is not mapped into the page tables of this VMA.  Only
 | 
						|
 * valid for normal file or anonymous VMAs.
 | 
						|
 */
 | 
						|
int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	unsigned long address;
 | 
						|
	pte_t *pte;
 | 
						|
	spinlock_t *ptl;
 | 
						|
 | 
						|
	address = vma_address(page, vma);
 | 
						|
	if (address == -EFAULT)		/* out of vma range */
 | 
						|
		return 0;
 | 
						|
	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
 | 
						|
	if (!pte)			/* the page is not in this mm */
 | 
						|
		return 0;
 | 
						|
	pte_unmap_unlock(pte, ptl);
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Subfunctions of page_referenced: page_referenced_one called
 | 
						|
 * repeatedly from either page_referenced_anon or page_referenced_file.
 | 
						|
 */
 | 
						|
static int page_referenced_one(struct page *page,
 | 
						|
			       struct vm_area_struct *vma,
 | 
						|
			       unsigned int *mapcount,
 | 
						|
			       unsigned long *vm_flags)
 | 
						|
{
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
	unsigned long address;
 | 
						|
	pte_t *pte;
 | 
						|
	spinlock_t *ptl;
 | 
						|
	int referenced = 0;
 | 
						|
 | 
						|
	address = vma_address(page, vma);
 | 
						|
	if (address == -EFAULT)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	pte = page_check_address(page, mm, address, &ptl, 0);
 | 
						|
	if (!pte)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Don't want to elevate referenced for mlocked page that gets this far,
 | 
						|
	 * in order that it progresses to try_to_unmap and is moved to the
 | 
						|
	 * unevictable list.
 | 
						|
	 */
 | 
						|
	if (vma->vm_flags & VM_LOCKED) {
 | 
						|
		*mapcount = 1;	/* break early from loop */
 | 
						|
		*vm_flags |= VM_LOCKED;
 | 
						|
		goto out_unmap;
 | 
						|
	}
 | 
						|
 | 
						|
	if (ptep_clear_flush_young_notify(vma, address, pte)) {
 | 
						|
		/*
 | 
						|
		 * Don't treat a reference through a sequentially read
 | 
						|
		 * mapping as such.  If the page has been used in
 | 
						|
		 * another mapping, we will catch it; if this other
 | 
						|
		 * mapping is already gone, the unmap path will have
 | 
						|
		 * set PG_referenced or activated the page.
 | 
						|
		 */
 | 
						|
		if (likely(!VM_SequentialReadHint(vma)))
 | 
						|
			referenced++;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Pretend the page is referenced if the task has the
 | 
						|
	   swap token and is in the middle of a page fault. */
 | 
						|
	if (mm != current->mm && has_swap_token(mm) &&
 | 
						|
			rwsem_is_locked(&mm->mmap_sem))
 | 
						|
		referenced++;
 | 
						|
 | 
						|
out_unmap:
 | 
						|
	(*mapcount)--;
 | 
						|
	pte_unmap_unlock(pte, ptl);
 | 
						|
out:
 | 
						|
	if (referenced)
 | 
						|
		*vm_flags |= vma->vm_flags;
 | 
						|
	return referenced;
 | 
						|
}
 | 
						|
 | 
						|
static int page_referenced_anon(struct page *page,
 | 
						|
				struct mem_cgroup *mem_cont,
 | 
						|
				unsigned long *vm_flags)
 | 
						|
{
 | 
						|
	unsigned int mapcount;
 | 
						|
	struct anon_vma *anon_vma;
 | 
						|
	struct vm_area_struct *vma;
 | 
						|
	int referenced = 0;
 | 
						|
 | 
						|
	anon_vma = page_lock_anon_vma(page);
 | 
						|
	if (!anon_vma)
 | 
						|
		return referenced;
 | 
						|
 | 
						|
	mapcount = page_mapcount(page);
 | 
						|
	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
 | 
						|
		/*
 | 
						|
		 * If we are reclaiming on behalf of a cgroup, skip
 | 
						|
		 * counting on behalf of references from different
 | 
						|
		 * cgroups
 | 
						|
		 */
 | 
						|
		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
 | 
						|
			continue;
 | 
						|
		referenced += page_referenced_one(page, vma,
 | 
						|
						  &mapcount, vm_flags);
 | 
						|
		if (!mapcount)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	page_unlock_anon_vma(anon_vma);
 | 
						|
	return referenced;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * page_referenced_file - referenced check for object-based rmap
 | 
						|
 * @page: the page we're checking references on.
 | 
						|
 * @mem_cont: target memory controller
 | 
						|
 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 | 
						|
 *
 | 
						|
 * For an object-based mapped page, find all the places it is mapped and
 | 
						|
 * check/clear the referenced flag.  This is done by following the page->mapping
 | 
						|
 * pointer, then walking the chain of vmas it holds.  It returns the number
 | 
						|
 * of references it found.
 | 
						|
 *
 | 
						|
 * This function is only called from page_referenced for object-based pages.
 | 
						|
 */
 | 
						|
static int page_referenced_file(struct page *page,
 | 
						|
				struct mem_cgroup *mem_cont,
 | 
						|
				unsigned long *vm_flags)
 | 
						|
{
 | 
						|
	unsigned int mapcount;
 | 
						|
	struct address_space *mapping = page->mapping;
 | 
						|
	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 | 
						|
	struct vm_area_struct *vma;
 | 
						|
	struct prio_tree_iter iter;
 | 
						|
	int referenced = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The caller's checks on page->mapping and !PageAnon have made
 | 
						|
	 * sure that this is a file page: the check for page->mapping
 | 
						|
	 * excludes the case just before it gets set on an anon page.
 | 
						|
	 */
 | 
						|
	BUG_ON(PageAnon(page));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The page lock not only makes sure that page->mapping cannot
 | 
						|
	 * suddenly be NULLified by truncation, it makes sure that the
 | 
						|
	 * structure at mapping cannot be freed and reused yet,
 | 
						|
	 * so we can safely take mapping->i_mmap_lock.
 | 
						|
	 */
 | 
						|
	BUG_ON(!PageLocked(page));
 | 
						|
 | 
						|
	spin_lock(&mapping->i_mmap_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
 | 
						|
	 * is more likely to be accurate if we note it after spinning.
 | 
						|
	 */
 | 
						|
	mapcount = page_mapcount(page);
 | 
						|
 | 
						|
	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
 | 
						|
		/*
 | 
						|
		 * If we are reclaiming on behalf of a cgroup, skip
 | 
						|
		 * counting on behalf of references from different
 | 
						|
		 * cgroups
 | 
						|
		 */
 | 
						|
		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
 | 
						|
			continue;
 | 
						|
		referenced += page_referenced_one(page, vma,
 | 
						|
						  &mapcount, vm_flags);
 | 
						|
		if (!mapcount)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_unlock(&mapping->i_mmap_lock);
 | 
						|
	return referenced;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * page_referenced - test if the page was referenced
 | 
						|
 * @page: the page to test
 | 
						|
 * @is_locked: caller holds lock on the page
 | 
						|
 * @mem_cont: target memory controller
 | 
						|
 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 | 
						|
 *
 | 
						|
 * Quick test_and_clear_referenced for all mappings to a page,
 | 
						|
 * returns the number of ptes which referenced the page.
 | 
						|
 */
 | 
						|
int page_referenced(struct page *page,
 | 
						|
		    int is_locked,
 | 
						|
		    struct mem_cgroup *mem_cont,
 | 
						|
		    unsigned long *vm_flags)
 | 
						|
{
 | 
						|
	int referenced = 0;
 | 
						|
 | 
						|
	if (TestClearPageReferenced(page))
 | 
						|
		referenced++;
 | 
						|
 | 
						|
	*vm_flags = 0;
 | 
						|
	if (page_mapped(page) && page->mapping) {
 | 
						|
		if (PageAnon(page))
 | 
						|
			referenced += page_referenced_anon(page, mem_cont,
 | 
						|
								vm_flags);
 | 
						|
		else if (is_locked)
 | 
						|
			referenced += page_referenced_file(page, mem_cont,
 | 
						|
								vm_flags);
 | 
						|
		else if (!trylock_page(page))
 | 
						|
			referenced++;
 | 
						|
		else {
 | 
						|
			if (page->mapping)
 | 
						|
				referenced += page_referenced_file(page,
 | 
						|
							mem_cont, vm_flags);
 | 
						|
			unlock_page(page);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (page_test_and_clear_young(page))
 | 
						|
		referenced++;
 | 
						|
 | 
						|
	return referenced;
 | 
						|
}
 | 
						|
 | 
						|
static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
	unsigned long address;
 | 
						|
	pte_t *pte;
 | 
						|
	spinlock_t *ptl;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	address = vma_address(page, vma);
 | 
						|
	if (address == -EFAULT)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	pte = page_check_address(page, mm, address, &ptl, 1);
 | 
						|
	if (!pte)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (pte_dirty(*pte) || pte_write(*pte)) {
 | 
						|
		pte_t entry;
 | 
						|
 | 
						|
		flush_cache_page(vma, address, pte_pfn(*pte));
 | 
						|
		entry = ptep_clear_flush_notify(vma, address, pte);
 | 
						|
		entry = pte_wrprotect(entry);
 | 
						|
		entry = pte_mkclean(entry);
 | 
						|
		set_pte_at(mm, address, pte, entry);
 | 
						|
		ret = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	pte_unmap_unlock(pte, ptl);
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int page_mkclean_file(struct address_space *mapping, struct page *page)
 | 
						|
{
 | 
						|
	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 | 
						|
	struct vm_area_struct *vma;
 | 
						|
	struct prio_tree_iter iter;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	BUG_ON(PageAnon(page));
 | 
						|
 | 
						|
	spin_lock(&mapping->i_mmap_lock);
 | 
						|
	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
 | 
						|
		if (vma->vm_flags & VM_SHARED)
 | 
						|
			ret += page_mkclean_one(page, vma);
 | 
						|
	}
 | 
						|
	spin_unlock(&mapping->i_mmap_lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int page_mkclean(struct page *page)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	BUG_ON(!PageLocked(page));
 | 
						|
 | 
						|
	if (page_mapped(page)) {
 | 
						|
		struct address_space *mapping = page_mapping(page);
 | 
						|
		if (mapping) {
 | 
						|
			ret = page_mkclean_file(mapping, page);
 | 
						|
			if (page_test_dirty(page)) {
 | 
						|
				page_clear_dirty(page);
 | 
						|
				ret = 1;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(page_mkclean);
 | 
						|
 | 
						|
/**
 | 
						|
 * __page_set_anon_rmap - setup new anonymous rmap
 | 
						|
 * @page:	the page to add the mapping to
 | 
						|
 * @vma:	the vm area in which the mapping is added
 | 
						|
 * @address:	the user virtual address mapped
 | 
						|
 */
 | 
						|
static void __page_set_anon_rmap(struct page *page,
 | 
						|
	struct vm_area_struct *vma, unsigned long address)
 | 
						|
{
 | 
						|
	struct anon_vma *anon_vma = vma->anon_vma;
 | 
						|
 | 
						|
	BUG_ON(!anon_vma);
 | 
						|
	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
 | 
						|
	page->mapping = (struct address_space *) anon_vma;
 | 
						|
 | 
						|
	page->index = linear_page_index(vma, address);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * nr_mapped state can be updated without turning off
 | 
						|
	 * interrupts because it is not modified via interrupt.
 | 
						|
	 */
 | 
						|
	__inc_zone_page_state(page, NR_ANON_PAGES);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * __page_check_anon_rmap - sanity check anonymous rmap addition
 | 
						|
 * @page:	the page to add the mapping to
 | 
						|
 * @vma:	the vm area in which the mapping is added
 | 
						|
 * @address:	the user virtual address mapped
 | 
						|
 */
 | 
						|
static void __page_check_anon_rmap(struct page *page,
 | 
						|
	struct vm_area_struct *vma, unsigned long address)
 | 
						|
{
 | 
						|
#ifdef CONFIG_DEBUG_VM
 | 
						|
	/*
 | 
						|
	 * The page's anon-rmap details (mapping and index) are guaranteed to
 | 
						|
	 * be set up correctly at this point.
 | 
						|
	 *
 | 
						|
	 * We have exclusion against page_add_anon_rmap because the caller
 | 
						|
	 * always holds the page locked, except if called from page_dup_rmap,
 | 
						|
	 * in which case the page is already known to be setup.
 | 
						|
	 *
 | 
						|
	 * We have exclusion against page_add_new_anon_rmap because those pages
 | 
						|
	 * are initially only visible via the pagetables, and the pte is locked
 | 
						|
	 * over the call to page_add_new_anon_rmap.
 | 
						|
	 */
 | 
						|
	struct anon_vma *anon_vma = vma->anon_vma;
 | 
						|
	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
 | 
						|
	BUG_ON(page->mapping != (struct address_space *)anon_vma);
 | 
						|
	BUG_ON(page->index != linear_page_index(vma, address));
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * page_add_anon_rmap - add pte mapping to an anonymous page
 | 
						|
 * @page:	the page to add the mapping to
 | 
						|
 * @vma:	the vm area in which the mapping is added
 | 
						|
 * @address:	the user virtual address mapped
 | 
						|
 *
 | 
						|
 * The caller needs to hold the pte lock and the page must be locked.
 | 
						|
 */
 | 
						|
void page_add_anon_rmap(struct page *page,
 | 
						|
	struct vm_area_struct *vma, unsigned long address)
 | 
						|
{
 | 
						|
	VM_BUG_ON(!PageLocked(page));
 | 
						|
	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
 | 
						|
	if (atomic_inc_and_test(&page->_mapcount))
 | 
						|
		__page_set_anon_rmap(page, vma, address);
 | 
						|
	else
 | 
						|
		__page_check_anon_rmap(page, vma, address);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
 | 
						|
 * @page:	the page to add the mapping to
 | 
						|
 * @vma:	the vm area in which the mapping is added
 | 
						|
 * @address:	the user virtual address mapped
 | 
						|
 *
 | 
						|
 * Same as page_add_anon_rmap but must only be called on *new* pages.
 | 
						|
 * This means the inc-and-test can be bypassed.
 | 
						|
 * Page does not have to be locked.
 | 
						|
 */
 | 
						|
void page_add_new_anon_rmap(struct page *page,
 | 
						|
	struct vm_area_struct *vma, unsigned long address)
 | 
						|
{
 | 
						|
	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
 | 
						|
	SetPageSwapBacked(page);
 | 
						|
	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
 | 
						|
	__page_set_anon_rmap(page, vma, address);
 | 
						|
	if (page_evictable(page, vma))
 | 
						|
		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
 | 
						|
	else
 | 
						|
		add_page_to_unevictable_list(page);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * page_add_file_rmap - add pte mapping to a file page
 | 
						|
 * @page: the page to add the mapping to
 | 
						|
 *
 | 
						|
 * The caller needs to hold the pte lock.
 | 
						|
 */
 | 
						|
void page_add_file_rmap(struct page *page)
 | 
						|
{
 | 
						|
	if (atomic_inc_and_test(&page->_mapcount)) {
 | 
						|
		__inc_zone_page_state(page, NR_FILE_MAPPED);
 | 
						|
		mem_cgroup_update_mapped_file_stat(page, 1);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * page_remove_rmap - take down pte mapping from a page
 | 
						|
 * @page: page to remove mapping from
 | 
						|
 *
 | 
						|
 * The caller needs to hold the pte lock.
 | 
						|
 */
 | 
						|
void page_remove_rmap(struct page *page)
 | 
						|
{
 | 
						|
	/* page still mapped by someone else? */
 | 
						|
	if (!atomic_add_negative(-1, &page->_mapcount))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now that the last pte has gone, s390 must transfer dirty
 | 
						|
	 * flag from storage key to struct page.  We can usually skip
 | 
						|
	 * this if the page is anon, so about to be freed; but perhaps
 | 
						|
	 * not if it's in swapcache - there might be another pte slot
 | 
						|
	 * containing the swap entry, but page not yet written to swap.
 | 
						|
	 */
 | 
						|
	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
 | 
						|
		page_clear_dirty(page);
 | 
						|
		set_page_dirty(page);
 | 
						|
	}
 | 
						|
	if (PageAnon(page)) {
 | 
						|
		mem_cgroup_uncharge_page(page);
 | 
						|
		__dec_zone_page_state(page, NR_ANON_PAGES);
 | 
						|
	} else {
 | 
						|
		__dec_zone_page_state(page, NR_FILE_MAPPED);
 | 
						|
	}
 | 
						|
	mem_cgroup_update_mapped_file_stat(page, -1);
 | 
						|
	/*
 | 
						|
	 * It would be tidy to reset the PageAnon mapping here,
 | 
						|
	 * but that might overwrite a racing page_add_anon_rmap
 | 
						|
	 * which increments mapcount after us but sets mapping
 | 
						|
	 * before us: so leave the reset to free_hot_cold_page,
 | 
						|
	 * and remember that it's only reliable while mapped.
 | 
						|
	 * Leaving it set also helps swapoff to reinstate ptes
 | 
						|
	 * faster for those pages still in swapcache.
 | 
						|
	 */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Subfunctions of try_to_unmap: try_to_unmap_one called
 | 
						|
 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
 | 
						|
 */
 | 
						|
static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
 | 
						|
				enum ttu_flags flags)
 | 
						|
{
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
	unsigned long address;
 | 
						|
	pte_t *pte;
 | 
						|
	pte_t pteval;
 | 
						|
	spinlock_t *ptl;
 | 
						|
	int ret = SWAP_AGAIN;
 | 
						|
 | 
						|
	address = vma_address(page, vma);
 | 
						|
	if (address == -EFAULT)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	pte = page_check_address(page, mm, address, &ptl, 0);
 | 
						|
	if (!pte)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the page is mlock()d, we cannot swap it out.
 | 
						|
	 * If it's recently referenced (perhaps page_referenced
 | 
						|
	 * skipped over this mm) then we should reactivate it.
 | 
						|
	 */
 | 
						|
	if (!(flags & TTU_IGNORE_MLOCK)) {
 | 
						|
		if (vma->vm_flags & VM_LOCKED) {
 | 
						|
			ret = SWAP_MLOCK;
 | 
						|
			goto out_unmap;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (!(flags & TTU_IGNORE_ACCESS)) {
 | 
						|
		if (ptep_clear_flush_young_notify(vma, address, pte)) {
 | 
						|
			ret = SWAP_FAIL;
 | 
						|
			goto out_unmap;
 | 
						|
		}
 | 
						|
  	}
 | 
						|
 | 
						|
	/* Nuke the page table entry. */
 | 
						|
	flush_cache_page(vma, address, page_to_pfn(page));
 | 
						|
	pteval = ptep_clear_flush_notify(vma, address, pte);
 | 
						|
 | 
						|
	/* Move the dirty bit to the physical page now the pte is gone. */
 | 
						|
	if (pte_dirty(pteval))
 | 
						|
		set_page_dirty(page);
 | 
						|
 | 
						|
	/* Update high watermark before we lower rss */
 | 
						|
	update_hiwater_rss(mm);
 | 
						|
 | 
						|
	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
 | 
						|
		if (PageAnon(page))
 | 
						|
			dec_mm_counter(mm, anon_rss);
 | 
						|
		else
 | 
						|
			dec_mm_counter(mm, file_rss);
 | 
						|
		set_pte_at(mm, address, pte,
 | 
						|
				swp_entry_to_pte(make_hwpoison_entry(page)));
 | 
						|
	} else if (PageAnon(page)) {
 | 
						|
		swp_entry_t entry = { .val = page_private(page) };
 | 
						|
 | 
						|
		if (PageSwapCache(page)) {
 | 
						|
			/*
 | 
						|
			 * Store the swap location in the pte.
 | 
						|
			 * See handle_pte_fault() ...
 | 
						|
			 */
 | 
						|
			swap_duplicate(entry);
 | 
						|
			if (list_empty(&mm->mmlist)) {
 | 
						|
				spin_lock(&mmlist_lock);
 | 
						|
				if (list_empty(&mm->mmlist))
 | 
						|
					list_add(&mm->mmlist, &init_mm.mmlist);
 | 
						|
				spin_unlock(&mmlist_lock);
 | 
						|
			}
 | 
						|
			dec_mm_counter(mm, anon_rss);
 | 
						|
		} else if (PAGE_MIGRATION) {
 | 
						|
			/*
 | 
						|
			 * Store the pfn of the page in a special migration
 | 
						|
			 * pte. do_swap_page() will wait until the migration
 | 
						|
			 * pte is removed and then restart fault handling.
 | 
						|
			 */
 | 
						|
			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
 | 
						|
			entry = make_migration_entry(page, pte_write(pteval));
 | 
						|
		}
 | 
						|
		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
 | 
						|
		BUG_ON(pte_file(*pte));
 | 
						|
	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
 | 
						|
		/* Establish migration entry for a file page */
 | 
						|
		swp_entry_t entry;
 | 
						|
		entry = make_migration_entry(page, pte_write(pteval));
 | 
						|
		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
 | 
						|
	} else
 | 
						|
		dec_mm_counter(mm, file_rss);
 | 
						|
 | 
						|
 | 
						|
	page_remove_rmap(page);
 | 
						|
	page_cache_release(page);
 | 
						|
 | 
						|
out_unmap:
 | 
						|
	pte_unmap_unlock(pte, ptl);
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * objrmap doesn't work for nonlinear VMAs because the assumption that
 | 
						|
 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
 | 
						|
 * Consequently, given a particular page and its ->index, we cannot locate the
 | 
						|
 * ptes which are mapping that page without an exhaustive linear search.
 | 
						|
 *
 | 
						|
 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
 | 
						|
 * maps the file to which the target page belongs.  The ->vm_private_data field
 | 
						|
 * holds the current cursor into that scan.  Successive searches will circulate
 | 
						|
 * around the vma's virtual address space.
 | 
						|
 *
 | 
						|
 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
 | 
						|
 * more scanning pressure is placed against them as well.   Eventually pages
 | 
						|
 * will become fully unmapped and are eligible for eviction.
 | 
						|
 *
 | 
						|
 * For very sparsely populated VMAs this is a little inefficient - chances are
 | 
						|
 * there there won't be many ptes located within the scan cluster.  In this case
 | 
						|
 * maybe we could scan further - to the end of the pte page, perhaps.
 | 
						|
 *
 | 
						|
 * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
 | 
						|
 * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
 | 
						|
 * rather than unmapping them.  If we encounter the "check_page" that vmscan is
 | 
						|
 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
 | 
						|
 */
 | 
						|
#define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
 | 
						|
#define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
 | 
						|
 | 
						|
static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
 | 
						|
		struct vm_area_struct *vma, struct page *check_page)
 | 
						|
{
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
	pgd_t *pgd;
 | 
						|
	pud_t *pud;
 | 
						|
	pmd_t *pmd;
 | 
						|
	pte_t *pte;
 | 
						|
	pte_t pteval;
 | 
						|
	spinlock_t *ptl;
 | 
						|
	struct page *page;
 | 
						|
	unsigned long address;
 | 
						|
	unsigned long end;
 | 
						|
	int ret = SWAP_AGAIN;
 | 
						|
	int locked_vma = 0;
 | 
						|
 | 
						|
	address = (vma->vm_start + cursor) & CLUSTER_MASK;
 | 
						|
	end = address + CLUSTER_SIZE;
 | 
						|
	if (address < vma->vm_start)
 | 
						|
		address = vma->vm_start;
 | 
						|
	if (end > vma->vm_end)
 | 
						|
		end = vma->vm_end;
 | 
						|
 | 
						|
	pgd = pgd_offset(mm, address);
 | 
						|
	if (!pgd_present(*pgd))
 | 
						|
		return ret;
 | 
						|
 | 
						|
	pud = pud_offset(pgd, address);
 | 
						|
	if (!pud_present(*pud))
 | 
						|
		return ret;
 | 
						|
 | 
						|
	pmd = pmd_offset(pud, address);
 | 
						|
	if (!pmd_present(*pmd))
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * MLOCK_PAGES => feature is configured.
 | 
						|
	 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
 | 
						|
	 * keep the sem while scanning the cluster for mlocking pages.
 | 
						|
	 */
 | 
						|
	if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
 | 
						|
		locked_vma = (vma->vm_flags & VM_LOCKED);
 | 
						|
		if (!locked_vma)
 | 
						|
			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
 | 
						|
	}
 | 
						|
 | 
						|
	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
 | 
						|
 | 
						|
	/* Update high watermark before we lower rss */
 | 
						|
	update_hiwater_rss(mm);
 | 
						|
 | 
						|
	for (; address < end; pte++, address += PAGE_SIZE) {
 | 
						|
		if (!pte_present(*pte))
 | 
						|
			continue;
 | 
						|
		page = vm_normal_page(vma, address, *pte);
 | 
						|
		BUG_ON(!page || PageAnon(page));
 | 
						|
 | 
						|
		if (locked_vma) {
 | 
						|
			mlock_vma_page(page);   /* no-op if already mlocked */
 | 
						|
			if (page == check_page)
 | 
						|
				ret = SWAP_MLOCK;
 | 
						|
			continue;	/* don't unmap */
 | 
						|
		}
 | 
						|
 | 
						|
		if (ptep_clear_flush_young_notify(vma, address, pte))
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* Nuke the page table entry. */
 | 
						|
		flush_cache_page(vma, address, pte_pfn(*pte));
 | 
						|
		pteval = ptep_clear_flush_notify(vma, address, pte);
 | 
						|
 | 
						|
		/* If nonlinear, store the file page offset in the pte. */
 | 
						|
		if (page->index != linear_page_index(vma, address))
 | 
						|
			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
 | 
						|
 | 
						|
		/* Move the dirty bit to the physical page now the pte is gone. */
 | 
						|
		if (pte_dirty(pteval))
 | 
						|
			set_page_dirty(page);
 | 
						|
 | 
						|
		page_remove_rmap(page);
 | 
						|
		page_cache_release(page);
 | 
						|
		dec_mm_counter(mm, file_rss);
 | 
						|
		(*mapcount)--;
 | 
						|
	}
 | 
						|
	pte_unmap_unlock(pte - 1, ptl);
 | 
						|
	if (locked_vma)
 | 
						|
		up_read(&vma->vm_mm->mmap_sem);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * common handling for pages mapped in VM_LOCKED vmas
 | 
						|
 */
 | 
						|
static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	int mlocked = 0;
 | 
						|
 | 
						|
	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
 | 
						|
		if (vma->vm_flags & VM_LOCKED) {
 | 
						|
			mlock_vma_page(page);
 | 
						|
			mlocked++;	/* really mlocked the page */
 | 
						|
		}
 | 
						|
		up_read(&vma->vm_mm->mmap_sem);
 | 
						|
	}
 | 
						|
	return mlocked;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
 | 
						|
 * rmap method
 | 
						|
 * @page: the page to unmap/unlock
 | 
						|
 * @unlock:  request for unlock rather than unmap [unlikely]
 | 
						|
 * @migration:  unmapping for migration - ignored if @unlock
 | 
						|
 *
 | 
						|
 * Find all the mappings of a page using the mapping pointer and the vma chains
 | 
						|
 * contained in the anon_vma struct it points to.
 | 
						|
 *
 | 
						|
 * This function is only called from try_to_unmap/try_to_munlock for
 | 
						|
 * anonymous pages.
 | 
						|
 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
 | 
						|
 * where the page was found will be held for write.  So, we won't recheck
 | 
						|
 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
 | 
						|
 * 'LOCKED.
 | 
						|
 */
 | 
						|
static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
 | 
						|
{
 | 
						|
	struct anon_vma *anon_vma;
 | 
						|
	struct vm_area_struct *vma;
 | 
						|
	unsigned int mlocked = 0;
 | 
						|
	int ret = SWAP_AGAIN;
 | 
						|
	int unlock = TTU_ACTION(flags) == TTU_MUNLOCK;
 | 
						|
 | 
						|
	if (MLOCK_PAGES && unlikely(unlock))
 | 
						|
		ret = SWAP_SUCCESS;	/* default for try_to_munlock() */
 | 
						|
 | 
						|
	anon_vma = page_lock_anon_vma(page);
 | 
						|
	if (!anon_vma)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
 | 
						|
		if (MLOCK_PAGES && unlikely(unlock)) {
 | 
						|
			if (!((vma->vm_flags & VM_LOCKED) &&
 | 
						|
			      page_mapped_in_vma(page, vma)))
 | 
						|
				continue;  /* must visit all unlocked vmas */
 | 
						|
			ret = SWAP_MLOCK;  /* saw at least one mlocked vma */
 | 
						|
		} else {
 | 
						|
			ret = try_to_unmap_one(page, vma, flags);
 | 
						|
			if (ret == SWAP_FAIL || !page_mapped(page))
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		if (ret == SWAP_MLOCK) {
 | 
						|
			mlocked = try_to_mlock_page(page, vma);
 | 
						|
			if (mlocked)
 | 
						|
				break;	/* stop if actually mlocked page */
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	page_unlock_anon_vma(anon_vma);
 | 
						|
 | 
						|
	if (mlocked)
 | 
						|
		ret = SWAP_MLOCK;	/* actually mlocked the page */
 | 
						|
	else if (ret == SWAP_MLOCK)
 | 
						|
		ret = SWAP_AGAIN;	/* saw VM_LOCKED vma */
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
 | 
						|
 * @page: the page to unmap/unlock
 | 
						|
 * @flags: action and flags
 | 
						|
 *
 | 
						|
 * Find all the mappings of a page using the mapping pointer and the vma chains
 | 
						|
 * contained in the address_space struct it points to.
 | 
						|
 *
 | 
						|
 * This function is only called from try_to_unmap/try_to_munlock for
 | 
						|
 * object-based pages.
 | 
						|
 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
 | 
						|
 * where the page was found will be held for write.  So, we won't recheck
 | 
						|
 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
 | 
						|
 * 'LOCKED.
 | 
						|
 */
 | 
						|
static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
 | 
						|
{
 | 
						|
	struct address_space *mapping = page->mapping;
 | 
						|
	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 | 
						|
	struct vm_area_struct *vma;
 | 
						|
	struct prio_tree_iter iter;
 | 
						|
	int ret = SWAP_AGAIN;
 | 
						|
	unsigned long cursor;
 | 
						|
	unsigned long max_nl_cursor = 0;
 | 
						|
	unsigned long max_nl_size = 0;
 | 
						|
	unsigned int mapcount;
 | 
						|
	unsigned int mlocked = 0;
 | 
						|
	int unlock = TTU_ACTION(flags) == TTU_MUNLOCK;
 | 
						|
 | 
						|
	if (MLOCK_PAGES && unlikely(unlock))
 | 
						|
		ret = SWAP_SUCCESS;	/* default for try_to_munlock() */
 | 
						|
 | 
						|
	spin_lock(&mapping->i_mmap_lock);
 | 
						|
	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
 | 
						|
		if (MLOCK_PAGES && unlikely(unlock)) {
 | 
						|
			if (!((vma->vm_flags & VM_LOCKED) &&
 | 
						|
						page_mapped_in_vma(page, vma)))
 | 
						|
				continue;	/* must visit all vmas */
 | 
						|
			ret = SWAP_MLOCK;
 | 
						|
		} else {
 | 
						|
			ret = try_to_unmap_one(page, vma, flags);
 | 
						|
			if (ret == SWAP_FAIL || !page_mapped(page))
 | 
						|
				goto out;
 | 
						|
		}
 | 
						|
		if (ret == SWAP_MLOCK) {
 | 
						|
			mlocked = try_to_mlock_page(page, vma);
 | 
						|
			if (mlocked)
 | 
						|
				break;  /* stop if actually mlocked page */
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (mlocked)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (list_empty(&mapping->i_mmap_nonlinear))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
 | 
						|
						shared.vm_set.list) {
 | 
						|
		if (MLOCK_PAGES && unlikely(unlock)) {
 | 
						|
			if (!(vma->vm_flags & VM_LOCKED))
 | 
						|
				continue;	/* must visit all vmas */
 | 
						|
			ret = SWAP_MLOCK;	/* leave mlocked == 0 */
 | 
						|
			goto out;		/* no need to look further */
 | 
						|
		}
 | 
						|
		if (!MLOCK_PAGES && !(flags & TTU_IGNORE_MLOCK) &&
 | 
						|
			(vma->vm_flags & VM_LOCKED))
 | 
						|
			continue;
 | 
						|
		cursor = (unsigned long) vma->vm_private_data;
 | 
						|
		if (cursor > max_nl_cursor)
 | 
						|
			max_nl_cursor = cursor;
 | 
						|
		cursor = vma->vm_end - vma->vm_start;
 | 
						|
		if (cursor > max_nl_size)
 | 
						|
			max_nl_size = cursor;
 | 
						|
	}
 | 
						|
 | 
						|
	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
 | 
						|
		ret = SWAP_FAIL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't try to search for this page in the nonlinear vmas,
 | 
						|
	 * and page_referenced wouldn't have found it anyway.  Instead
 | 
						|
	 * just walk the nonlinear vmas trying to age and unmap some.
 | 
						|
	 * The mapcount of the page we came in with is irrelevant,
 | 
						|
	 * but even so use it as a guide to how hard we should try?
 | 
						|
	 */
 | 
						|
	mapcount = page_mapcount(page);
 | 
						|
	if (!mapcount)
 | 
						|
		goto out;
 | 
						|
	cond_resched_lock(&mapping->i_mmap_lock);
 | 
						|
 | 
						|
	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
 | 
						|
	if (max_nl_cursor == 0)
 | 
						|
		max_nl_cursor = CLUSTER_SIZE;
 | 
						|
 | 
						|
	do {
 | 
						|
		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
 | 
						|
						shared.vm_set.list) {
 | 
						|
			if (!MLOCK_PAGES && !(flags & TTU_IGNORE_MLOCK) &&
 | 
						|
			    (vma->vm_flags & VM_LOCKED))
 | 
						|
				continue;
 | 
						|
			cursor = (unsigned long) vma->vm_private_data;
 | 
						|
			while ( cursor < max_nl_cursor &&
 | 
						|
				cursor < vma->vm_end - vma->vm_start) {
 | 
						|
				ret = try_to_unmap_cluster(cursor, &mapcount,
 | 
						|
								vma, page);
 | 
						|
				if (ret == SWAP_MLOCK)
 | 
						|
					mlocked = 2;	/* to return below */
 | 
						|
				cursor += CLUSTER_SIZE;
 | 
						|
				vma->vm_private_data = (void *) cursor;
 | 
						|
				if ((int)mapcount <= 0)
 | 
						|
					goto out;
 | 
						|
			}
 | 
						|
			vma->vm_private_data = (void *) max_nl_cursor;
 | 
						|
		}
 | 
						|
		cond_resched_lock(&mapping->i_mmap_lock);
 | 
						|
		max_nl_cursor += CLUSTER_SIZE;
 | 
						|
	} while (max_nl_cursor <= max_nl_size);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Don't loop forever (perhaps all the remaining pages are
 | 
						|
	 * in locked vmas).  Reset cursor on all unreserved nonlinear
 | 
						|
	 * vmas, now forgetting on which ones it had fallen behind.
 | 
						|
	 */
 | 
						|
	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
 | 
						|
		vma->vm_private_data = NULL;
 | 
						|
out:
 | 
						|
	spin_unlock(&mapping->i_mmap_lock);
 | 
						|
	if (mlocked)
 | 
						|
		ret = SWAP_MLOCK;	/* actually mlocked the page */
 | 
						|
	else if (ret == SWAP_MLOCK)
 | 
						|
		ret = SWAP_AGAIN;	/* saw VM_LOCKED vma */
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * try_to_unmap - try to remove all page table mappings to a page
 | 
						|
 * @page: the page to get unmapped
 | 
						|
 * @flags: action and flags
 | 
						|
 *
 | 
						|
 * Tries to remove all the page table entries which are mapping this
 | 
						|
 * page, used in the pageout path.  Caller must hold the page lock.
 | 
						|
 * Return values are:
 | 
						|
 *
 | 
						|
 * SWAP_SUCCESS	- we succeeded in removing all mappings
 | 
						|
 * SWAP_AGAIN	- we missed a mapping, try again later
 | 
						|
 * SWAP_FAIL	- the page is unswappable
 | 
						|
 * SWAP_MLOCK	- page is mlocked.
 | 
						|
 */
 | 
						|
int try_to_unmap(struct page *page, enum ttu_flags flags)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	BUG_ON(!PageLocked(page));
 | 
						|
 | 
						|
	if (PageAnon(page))
 | 
						|
		ret = try_to_unmap_anon(page, flags);
 | 
						|
	else
 | 
						|
		ret = try_to_unmap_file(page, flags);
 | 
						|
	if (ret != SWAP_MLOCK && !page_mapped(page))
 | 
						|
		ret = SWAP_SUCCESS;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * try_to_munlock - try to munlock a page
 | 
						|
 * @page: the page to be munlocked
 | 
						|
 *
 | 
						|
 * Called from munlock code.  Checks all of the VMAs mapping the page
 | 
						|
 * to make sure nobody else has this page mlocked. The page will be
 | 
						|
 * returned with PG_mlocked cleared if no other vmas have it mlocked.
 | 
						|
 *
 | 
						|
 * Return values are:
 | 
						|
 *
 | 
						|
 * SWAP_SUCCESS	- no vma's holding page mlocked.
 | 
						|
 * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
 | 
						|
 * SWAP_MLOCK	- page is now mlocked.
 | 
						|
 */
 | 
						|
int try_to_munlock(struct page *page)
 | 
						|
{
 | 
						|
	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
 | 
						|
 | 
						|
	if (PageAnon(page))
 | 
						|
		return try_to_unmap_anon(page, TTU_MUNLOCK);
 | 
						|
	else
 | 
						|
		return try_to_unmap_file(page, TTU_MUNLOCK);
 | 
						|
}
 | 
						|
 |