Now that nfs_release_page() doesn't block indefinitely, other deadlock avoidance mechanisms aren't needed. - it doesn't hurt for kswapd to block occasionally. If it doesn't want to block it would clear __GFP_WAIT. The current_is_kswapd() was only added to avoid deadlocks and we have a new approach for that. - memory allocation in the SUNRPC layer can very rarely try to ->releasepage() a page it is trying to handle. The deadlock is removed as nfs_release_page() doesn't block indefinitely. So we don't need to set PF_FSTRANS for sunrpc network operations any more. Signed-off-by: NeilBrown <neilb@suse.de> Acked-by: Jeff Layton <jlayton@primarydata.com> Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
		
			
				
	
	
		
			747 lines
		
	
	
	
		
			21 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			747 lines
		
	
	
	
		
			21 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
 | 
						|
 *
 | 
						|
 * This software is available to you under a choice of one of two
 | 
						|
 * licenses.  You may choose to be licensed under the terms of the GNU
 | 
						|
 * General Public License (GPL) Version 2, available from the file
 | 
						|
 * COPYING in the main directory of this source tree, or the BSD-type
 | 
						|
 * license below:
 | 
						|
 *
 | 
						|
 * Redistribution and use in source and binary forms, with or without
 | 
						|
 * modification, are permitted provided that the following conditions
 | 
						|
 * are met:
 | 
						|
 *
 | 
						|
 *      Redistributions of source code must retain the above copyright
 | 
						|
 *      notice, this list of conditions and the following disclaimer.
 | 
						|
 *
 | 
						|
 *      Redistributions in binary form must reproduce the above
 | 
						|
 *      copyright notice, this list of conditions and the following
 | 
						|
 *      disclaimer in the documentation and/or other materials provided
 | 
						|
 *      with the distribution.
 | 
						|
 *
 | 
						|
 *      Neither the name of the Network Appliance, Inc. nor the names of
 | 
						|
 *      its contributors may be used to endorse or promote products
 | 
						|
 *      derived from this software without specific prior written
 | 
						|
 *      permission.
 | 
						|
 *
 | 
						|
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
						|
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | 
						|
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | 
						|
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | 
						|
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | 
						|
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | 
						|
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | 
						|
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
						|
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * transport.c
 | 
						|
 *
 | 
						|
 * This file contains the top-level implementation of an RPC RDMA
 | 
						|
 * transport.
 | 
						|
 *
 | 
						|
 * Naming convention: functions beginning with xprt_ are part of the
 | 
						|
 * transport switch. All others are RPC RDMA internal.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/seq_file.h>
 | 
						|
#include <linux/sunrpc/addr.h>
 | 
						|
 | 
						|
#include "xprt_rdma.h"
 | 
						|
 | 
						|
#ifdef RPC_DEBUG
 | 
						|
# define RPCDBG_FACILITY	RPCDBG_TRANS
 | 
						|
#endif
 | 
						|
 | 
						|
MODULE_LICENSE("Dual BSD/GPL");
 | 
						|
 | 
						|
MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS");
 | 
						|
MODULE_AUTHOR("Network Appliance, Inc.");
 | 
						|
 | 
						|
/*
 | 
						|
 * tunables
 | 
						|
 */
 | 
						|
 | 
						|
static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
 | 
						|
static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
 | 
						|
static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
 | 
						|
static unsigned int xprt_rdma_inline_write_padding;
 | 
						|
static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR;
 | 
						|
                int xprt_rdma_pad_optimize = 0;
 | 
						|
 | 
						|
#ifdef RPC_DEBUG
 | 
						|
 | 
						|
static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
 | 
						|
static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
 | 
						|
static unsigned int zero;
 | 
						|
static unsigned int max_padding = PAGE_SIZE;
 | 
						|
static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
 | 
						|
static unsigned int max_memreg = RPCRDMA_LAST - 1;
 | 
						|
 | 
						|
static struct ctl_table_header *sunrpc_table_header;
 | 
						|
 | 
						|
static struct ctl_table xr_tunables_table[] = {
 | 
						|
	{
 | 
						|
		.procname	= "rdma_slot_table_entries",
 | 
						|
		.data		= &xprt_rdma_slot_table_entries,
 | 
						|
		.maxlen		= sizeof(unsigned int),
 | 
						|
		.mode		= 0644,
 | 
						|
		.proc_handler	= proc_dointvec_minmax,
 | 
						|
		.extra1		= &min_slot_table_size,
 | 
						|
		.extra2		= &max_slot_table_size
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.procname	= "rdma_max_inline_read",
 | 
						|
		.data		= &xprt_rdma_max_inline_read,
 | 
						|
		.maxlen		= sizeof(unsigned int),
 | 
						|
		.mode		= 0644,
 | 
						|
		.proc_handler	= proc_dointvec,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.procname	= "rdma_max_inline_write",
 | 
						|
		.data		= &xprt_rdma_max_inline_write,
 | 
						|
		.maxlen		= sizeof(unsigned int),
 | 
						|
		.mode		= 0644,
 | 
						|
		.proc_handler	= proc_dointvec,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.procname	= "rdma_inline_write_padding",
 | 
						|
		.data		= &xprt_rdma_inline_write_padding,
 | 
						|
		.maxlen		= sizeof(unsigned int),
 | 
						|
		.mode		= 0644,
 | 
						|
		.proc_handler	= proc_dointvec_minmax,
 | 
						|
		.extra1		= &zero,
 | 
						|
		.extra2		= &max_padding,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.procname	= "rdma_memreg_strategy",
 | 
						|
		.data		= &xprt_rdma_memreg_strategy,
 | 
						|
		.maxlen		= sizeof(unsigned int),
 | 
						|
		.mode		= 0644,
 | 
						|
		.proc_handler	= proc_dointvec_minmax,
 | 
						|
		.extra1		= &min_memreg,
 | 
						|
		.extra2		= &max_memreg,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.procname	= "rdma_pad_optimize",
 | 
						|
		.data		= &xprt_rdma_pad_optimize,
 | 
						|
		.maxlen		= sizeof(unsigned int),
 | 
						|
		.mode		= 0644,
 | 
						|
		.proc_handler	= proc_dointvec,
 | 
						|
	},
 | 
						|
	{ },
 | 
						|
};
 | 
						|
 | 
						|
static struct ctl_table sunrpc_table[] = {
 | 
						|
	{
 | 
						|
		.procname	= "sunrpc",
 | 
						|
		.mode		= 0555,
 | 
						|
		.child		= xr_tunables_table
 | 
						|
	},
 | 
						|
	{ },
 | 
						|
};
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#define RPCRDMA_BIND_TO		(60U * HZ)
 | 
						|
#define RPCRDMA_INIT_REEST_TO	(5U * HZ)
 | 
						|
#define RPCRDMA_MAX_REEST_TO	(30U * HZ)
 | 
						|
#define RPCRDMA_IDLE_DISC_TO	(5U * 60 * HZ)
 | 
						|
 | 
						|
static struct rpc_xprt_ops xprt_rdma_procs;	/* forward reference */
 | 
						|
 | 
						|
static void
 | 
						|
xprt_rdma_format_addresses(struct rpc_xprt *xprt)
 | 
						|
{
 | 
						|
	struct sockaddr *sap = (struct sockaddr *)
 | 
						|
					&rpcx_to_rdmad(xprt).addr;
 | 
						|
	struct sockaddr_in *sin = (struct sockaddr_in *)sap;
 | 
						|
	char buf[64];
 | 
						|
 | 
						|
	(void)rpc_ntop(sap, buf, sizeof(buf));
 | 
						|
	xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL);
 | 
						|
 | 
						|
	snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
 | 
						|
	xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
 | 
						|
 | 
						|
	xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
 | 
						|
 | 
						|
	snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr));
 | 
						|
	xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
 | 
						|
 | 
						|
	snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
 | 
						|
	xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
 | 
						|
 | 
						|
	/* netid */
 | 
						|
	xprt->address_strings[RPC_DISPLAY_NETID] = "rdma";
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
xprt_rdma_free_addresses(struct rpc_xprt *xprt)
 | 
						|
{
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	for (i = 0; i < RPC_DISPLAY_MAX; i++)
 | 
						|
		switch (i) {
 | 
						|
		case RPC_DISPLAY_PROTO:
 | 
						|
		case RPC_DISPLAY_NETID:
 | 
						|
			continue;
 | 
						|
		default:
 | 
						|
			kfree(xprt->address_strings[i]);
 | 
						|
		}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
xprt_rdma_connect_worker(struct work_struct *work)
 | 
						|
{
 | 
						|
	struct rpcrdma_xprt *r_xprt =
 | 
						|
		container_of(work, struct rpcrdma_xprt, rdma_connect.work);
 | 
						|
	struct rpc_xprt *xprt = &r_xprt->xprt;
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	xprt_clear_connected(xprt);
 | 
						|
 | 
						|
	dprintk("RPC:       %s: %sconnect\n", __func__,
 | 
						|
			r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
 | 
						|
	rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
 | 
						|
	if (rc)
 | 
						|
		xprt_wake_pending_tasks(xprt, rc);
 | 
						|
 | 
						|
	dprintk("RPC:       %s: exit\n", __func__);
 | 
						|
	xprt_clear_connecting(xprt);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * xprt_rdma_destroy
 | 
						|
 *
 | 
						|
 * Destroy the xprt.
 | 
						|
 * Free all memory associated with the object, including its own.
 | 
						|
 * NOTE: none of the *destroy methods free memory for their top-level
 | 
						|
 * objects, even though they may have allocated it (they do free
 | 
						|
 * private memory). It's up to the caller to handle it. In this
 | 
						|
 * case (RDMA transport), all structure memory is inlined with the
 | 
						|
 * struct rpcrdma_xprt.
 | 
						|
 */
 | 
						|
static void
 | 
						|
xprt_rdma_destroy(struct rpc_xprt *xprt)
 | 
						|
{
 | 
						|
	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
 | 
						|
 | 
						|
	dprintk("RPC:       %s: called\n", __func__);
 | 
						|
 | 
						|
	cancel_delayed_work_sync(&r_xprt->rdma_connect);
 | 
						|
 | 
						|
	xprt_clear_connected(xprt);
 | 
						|
 | 
						|
	rpcrdma_buffer_destroy(&r_xprt->rx_buf);
 | 
						|
	rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
 | 
						|
	rpcrdma_ia_close(&r_xprt->rx_ia);
 | 
						|
 | 
						|
	xprt_rdma_free_addresses(xprt);
 | 
						|
 | 
						|
	xprt_free(xprt);
 | 
						|
 | 
						|
	dprintk("RPC:       %s: returning\n", __func__);
 | 
						|
 | 
						|
	module_put(THIS_MODULE);
 | 
						|
}
 | 
						|
 | 
						|
static const struct rpc_timeout xprt_rdma_default_timeout = {
 | 
						|
	.to_initval = 60 * HZ,
 | 
						|
	.to_maxval = 60 * HZ,
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * xprt_setup_rdma - Set up transport to use RDMA
 | 
						|
 *
 | 
						|
 * @args: rpc transport arguments
 | 
						|
 */
 | 
						|
static struct rpc_xprt *
 | 
						|
xprt_setup_rdma(struct xprt_create *args)
 | 
						|
{
 | 
						|
	struct rpcrdma_create_data_internal cdata;
 | 
						|
	struct rpc_xprt *xprt;
 | 
						|
	struct rpcrdma_xprt *new_xprt;
 | 
						|
	struct rpcrdma_ep *new_ep;
 | 
						|
	struct sockaddr_in *sin;
 | 
						|
	int rc;
 | 
						|
 | 
						|
	if (args->addrlen > sizeof(xprt->addr)) {
 | 
						|
		dprintk("RPC:       %s: address too large\n", __func__);
 | 
						|
		return ERR_PTR(-EBADF);
 | 
						|
	}
 | 
						|
 | 
						|
	xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt),
 | 
						|
			xprt_rdma_slot_table_entries,
 | 
						|
			xprt_rdma_slot_table_entries);
 | 
						|
	if (xprt == NULL) {
 | 
						|
		dprintk("RPC:       %s: couldn't allocate rpcrdma_xprt\n",
 | 
						|
			__func__);
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
	}
 | 
						|
 | 
						|
	/* 60 second timeout, no retries */
 | 
						|
	xprt->timeout = &xprt_rdma_default_timeout;
 | 
						|
	xprt->bind_timeout = RPCRDMA_BIND_TO;
 | 
						|
	xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
 | 
						|
	xprt->idle_timeout = RPCRDMA_IDLE_DISC_TO;
 | 
						|
 | 
						|
	xprt->resvport = 0;		/* privileged port not needed */
 | 
						|
	xprt->tsh_size = 0;		/* RPC-RDMA handles framing */
 | 
						|
	xprt->ops = &xprt_rdma_procs;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set up RDMA-specific connect data.
 | 
						|
	 */
 | 
						|
 | 
						|
	/* Put server RDMA address in local cdata */
 | 
						|
	memcpy(&cdata.addr, args->dstaddr, args->addrlen);
 | 
						|
 | 
						|
	/* Ensure xprt->addr holds valid server TCP (not RDMA)
 | 
						|
	 * address, for any side protocols which peek at it */
 | 
						|
	xprt->prot = IPPROTO_TCP;
 | 
						|
	xprt->addrlen = args->addrlen;
 | 
						|
	memcpy(&xprt->addr, &cdata.addr, xprt->addrlen);
 | 
						|
 | 
						|
	sin = (struct sockaddr_in *)&cdata.addr;
 | 
						|
	if (ntohs(sin->sin_port) != 0)
 | 
						|
		xprt_set_bound(xprt);
 | 
						|
 | 
						|
	dprintk("RPC:       %s: %pI4:%u\n",
 | 
						|
		__func__, &sin->sin_addr.s_addr, ntohs(sin->sin_port));
 | 
						|
 | 
						|
	/* Set max requests */
 | 
						|
	cdata.max_requests = xprt->max_reqs;
 | 
						|
 | 
						|
	/* Set some length limits */
 | 
						|
	cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
 | 
						|
	cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
 | 
						|
 | 
						|
	cdata.inline_wsize = xprt_rdma_max_inline_write;
 | 
						|
	if (cdata.inline_wsize > cdata.wsize)
 | 
						|
		cdata.inline_wsize = cdata.wsize;
 | 
						|
 | 
						|
	cdata.inline_rsize = xprt_rdma_max_inline_read;
 | 
						|
	if (cdata.inline_rsize > cdata.rsize)
 | 
						|
		cdata.inline_rsize = cdata.rsize;
 | 
						|
 | 
						|
	cdata.padding = xprt_rdma_inline_write_padding;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Create new transport instance, which includes initialized
 | 
						|
	 *  o ia
 | 
						|
	 *  o endpoint
 | 
						|
	 *  o buffers
 | 
						|
	 */
 | 
						|
 | 
						|
	new_xprt = rpcx_to_rdmax(xprt);
 | 
						|
 | 
						|
	rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr,
 | 
						|
				xprt_rdma_memreg_strategy);
 | 
						|
	if (rc)
 | 
						|
		goto out1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * initialize and create ep
 | 
						|
	 */
 | 
						|
	new_xprt->rx_data = cdata;
 | 
						|
	new_ep = &new_xprt->rx_ep;
 | 
						|
	new_ep->rep_remote_addr = cdata.addr;
 | 
						|
 | 
						|
	rc = rpcrdma_ep_create(&new_xprt->rx_ep,
 | 
						|
				&new_xprt->rx_ia, &new_xprt->rx_data);
 | 
						|
	if (rc)
 | 
						|
		goto out2;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allocate pre-registered send and receive buffers for headers and
 | 
						|
	 * any inline data. Also specify any padding which will be provided
 | 
						|
	 * from a preregistered zero buffer.
 | 
						|
	 */
 | 
						|
	rc = rpcrdma_buffer_create(&new_xprt->rx_buf, new_ep, &new_xprt->rx_ia,
 | 
						|
				&new_xprt->rx_data);
 | 
						|
	if (rc)
 | 
						|
		goto out3;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Register a callback for connection events. This is necessary because
 | 
						|
	 * connection loss notification is async. We also catch connection loss
 | 
						|
	 * when reaping receives.
 | 
						|
	 */
 | 
						|
	INIT_DELAYED_WORK(&new_xprt->rdma_connect, xprt_rdma_connect_worker);
 | 
						|
	new_ep->rep_func = rpcrdma_conn_func;
 | 
						|
	new_ep->rep_xprt = xprt;
 | 
						|
 | 
						|
	xprt_rdma_format_addresses(xprt);
 | 
						|
	xprt->max_payload = rpcrdma_max_payload(new_xprt);
 | 
						|
	dprintk("RPC:       %s: transport data payload maximum: %zu bytes\n",
 | 
						|
		__func__, xprt->max_payload);
 | 
						|
 | 
						|
	if (!try_module_get(THIS_MODULE))
 | 
						|
		goto out4;
 | 
						|
 | 
						|
	return xprt;
 | 
						|
 | 
						|
out4:
 | 
						|
	xprt_rdma_free_addresses(xprt);
 | 
						|
	rc = -EINVAL;
 | 
						|
out3:
 | 
						|
	rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
 | 
						|
out2:
 | 
						|
	rpcrdma_ia_close(&new_xprt->rx_ia);
 | 
						|
out1:
 | 
						|
	xprt_free(xprt);
 | 
						|
	return ERR_PTR(rc);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Close a connection, during shutdown or timeout/reconnect
 | 
						|
 */
 | 
						|
static void
 | 
						|
xprt_rdma_close(struct rpc_xprt *xprt)
 | 
						|
{
 | 
						|
	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
 | 
						|
 | 
						|
	dprintk("RPC:       %s: closing\n", __func__);
 | 
						|
	if (r_xprt->rx_ep.rep_connected > 0)
 | 
						|
		xprt->reestablish_timeout = 0;
 | 
						|
	xprt_disconnect_done(xprt);
 | 
						|
	rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
 | 
						|
{
 | 
						|
	struct sockaddr_in *sap;
 | 
						|
 | 
						|
	sap = (struct sockaddr_in *)&xprt->addr;
 | 
						|
	sap->sin_port = htons(port);
 | 
						|
	sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
 | 
						|
	sap->sin_port = htons(port);
 | 
						|
	dprintk("RPC:       %s: %u\n", __func__, port);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
xprt_rdma_connect(struct rpc_xprt *xprt, struct rpc_task *task)
 | 
						|
{
 | 
						|
	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
 | 
						|
 | 
						|
	if (r_xprt->rx_ep.rep_connected != 0) {
 | 
						|
		/* Reconnect */
 | 
						|
		schedule_delayed_work(&r_xprt->rdma_connect,
 | 
						|
			xprt->reestablish_timeout);
 | 
						|
		xprt->reestablish_timeout <<= 1;
 | 
						|
		if (xprt->reestablish_timeout > RPCRDMA_MAX_REEST_TO)
 | 
						|
			xprt->reestablish_timeout = RPCRDMA_MAX_REEST_TO;
 | 
						|
		else if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
 | 
						|
			xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
 | 
						|
	} else {
 | 
						|
		schedule_delayed_work(&r_xprt->rdma_connect, 0);
 | 
						|
		if (!RPC_IS_ASYNC(task))
 | 
						|
			flush_delayed_work(&r_xprt->rdma_connect);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The RDMA allocate/free functions need the task structure as a place
 | 
						|
 * to hide the struct rpcrdma_req, which is necessary for the actual send/recv
 | 
						|
 * sequence. For this reason, the recv buffers are attached to send
 | 
						|
 * buffers for portions of the RPC. Note that the RPC layer allocates
 | 
						|
 * both send and receive buffers in the same call. We may register
 | 
						|
 * the receive buffer portion when using reply chunks.
 | 
						|
 */
 | 
						|
static void *
 | 
						|
xprt_rdma_allocate(struct rpc_task *task, size_t size)
 | 
						|
{
 | 
						|
	struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
 | 
						|
	struct rpcrdma_req *req, *nreq;
 | 
						|
 | 
						|
	req = rpcrdma_buffer_get(&rpcx_to_rdmax(xprt)->rx_buf);
 | 
						|
	if (req == NULL)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (size > req->rl_size) {
 | 
						|
		dprintk("RPC:       %s: size %zd too large for buffer[%zd]: "
 | 
						|
			"prog %d vers %d proc %d\n",
 | 
						|
			__func__, size, req->rl_size,
 | 
						|
			task->tk_client->cl_prog, task->tk_client->cl_vers,
 | 
						|
			task->tk_msg.rpc_proc->p_proc);
 | 
						|
		/*
 | 
						|
		 * Outgoing length shortage. Our inline write max must have
 | 
						|
		 * been configured to perform direct i/o.
 | 
						|
		 *
 | 
						|
		 * This is therefore a large metadata operation, and the
 | 
						|
		 * allocate call was made on the maximum possible message,
 | 
						|
		 * e.g. containing long filename(s) or symlink data. In
 | 
						|
		 * fact, while these metadata operations *might* carry
 | 
						|
		 * large outgoing payloads, they rarely *do*. However, we
 | 
						|
		 * have to commit to the request here, so reallocate and
 | 
						|
		 * register it now. The data path will never require this
 | 
						|
		 * reallocation.
 | 
						|
		 *
 | 
						|
		 * If the allocation or registration fails, the RPC framework
 | 
						|
		 * will (doggedly) retry.
 | 
						|
		 */
 | 
						|
		if (task->tk_flags & RPC_TASK_SWAPPER)
 | 
						|
			nreq = kmalloc(sizeof *req + size, GFP_ATOMIC);
 | 
						|
		else
 | 
						|
			nreq = kmalloc(sizeof *req + size, GFP_NOFS);
 | 
						|
		if (nreq == NULL)
 | 
						|
			goto outfail;
 | 
						|
 | 
						|
		if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt)->rx_ia,
 | 
						|
				nreq->rl_base, size + sizeof(struct rpcrdma_req)
 | 
						|
				- offsetof(struct rpcrdma_req, rl_base),
 | 
						|
				&nreq->rl_handle, &nreq->rl_iov)) {
 | 
						|
			kfree(nreq);
 | 
						|
			goto outfail;
 | 
						|
		}
 | 
						|
		rpcx_to_rdmax(xprt)->rx_stats.hardway_register_count += size;
 | 
						|
		nreq->rl_size = size;
 | 
						|
		nreq->rl_niovs = 0;
 | 
						|
		nreq->rl_nchunks = 0;
 | 
						|
		nreq->rl_buffer = (struct rpcrdma_buffer *)req;
 | 
						|
		nreq->rl_reply = req->rl_reply;
 | 
						|
		memcpy(nreq->rl_segments,
 | 
						|
			req->rl_segments, sizeof nreq->rl_segments);
 | 
						|
		/* flag the swap with an unused field */
 | 
						|
		nreq->rl_iov.length = 0;
 | 
						|
		req->rl_reply = NULL;
 | 
						|
		req = nreq;
 | 
						|
	}
 | 
						|
	dprintk("RPC:       %s: size %zd, request 0x%p\n", __func__, size, req);
 | 
						|
	req->rl_connect_cookie = 0;	/* our reserved value */
 | 
						|
	return req->rl_xdr_buf;
 | 
						|
 | 
						|
outfail:
 | 
						|
	rpcrdma_buffer_put(req);
 | 
						|
	rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function returns all RDMA resources to the pool.
 | 
						|
 */
 | 
						|
static void
 | 
						|
xprt_rdma_free(void *buffer)
 | 
						|
{
 | 
						|
	struct rpcrdma_req *req;
 | 
						|
	struct rpcrdma_xprt *r_xprt;
 | 
						|
	struct rpcrdma_rep *rep;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (buffer == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	req = container_of(buffer, struct rpcrdma_req, rl_xdr_buf[0]);
 | 
						|
	if (req->rl_iov.length == 0) {	/* see allocate above */
 | 
						|
		r_xprt = container_of(((struct rpcrdma_req *) req->rl_buffer)->rl_buffer,
 | 
						|
				      struct rpcrdma_xprt, rx_buf);
 | 
						|
	} else
 | 
						|
		r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf);
 | 
						|
	rep = req->rl_reply;
 | 
						|
 | 
						|
	dprintk("RPC:       %s: called on 0x%p%s\n",
 | 
						|
		__func__, rep, (rep && rep->rr_func) ? " (with waiter)" : "");
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Finish the deregistration.  The process is considered
 | 
						|
	 * complete when the rr_func vector becomes NULL - this
 | 
						|
	 * was put in place during rpcrdma_reply_handler() - the wait
 | 
						|
	 * call below will not block if the dereg is "done". If
 | 
						|
	 * interrupted, our framework will clean up.
 | 
						|
	 */
 | 
						|
	for (i = 0; req->rl_nchunks;) {
 | 
						|
		--req->rl_nchunks;
 | 
						|
		i += rpcrdma_deregister_external(
 | 
						|
			&req->rl_segments[i], r_xprt);
 | 
						|
	}
 | 
						|
 | 
						|
	if (req->rl_iov.length == 0) {	/* see allocate above */
 | 
						|
		struct rpcrdma_req *oreq = (struct rpcrdma_req *)req->rl_buffer;
 | 
						|
		oreq->rl_reply = req->rl_reply;
 | 
						|
		(void) rpcrdma_deregister_internal(&r_xprt->rx_ia,
 | 
						|
						   req->rl_handle,
 | 
						|
						   &req->rl_iov);
 | 
						|
		kfree(req);
 | 
						|
		req = oreq;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Put back request+reply buffers */
 | 
						|
	rpcrdma_buffer_put(req);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * send_request invokes the meat of RPC RDMA. It must do the following:
 | 
						|
 *  1.  Marshal the RPC request into an RPC RDMA request, which means
 | 
						|
 *	putting a header in front of data, and creating IOVs for RDMA
 | 
						|
 *	from those in the request.
 | 
						|
 *  2.  In marshaling, detect opportunities for RDMA, and use them.
 | 
						|
 *  3.  Post a recv message to set up asynch completion, then send
 | 
						|
 *	the request (rpcrdma_ep_post).
 | 
						|
 *  4.  No partial sends are possible in the RPC-RDMA protocol (as in UDP).
 | 
						|
 */
 | 
						|
 | 
						|
static int
 | 
						|
xprt_rdma_send_request(struct rpc_task *task)
 | 
						|
{
 | 
						|
	struct rpc_rqst *rqst = task->tk_rqstp;
 | 
						|
	struct rpc_xprt *xprt = rqst->rq_xprt;
 | 
						|
	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
 | 
						|
	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	if (req->rl_niovs == 0)
 | 
						|
		rc = rpcrdma_marshal_req(rqst);
 | 
						|
	else if (r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_FRMR)
 | 
						|
		rc = rpcrdma_marshal_chunks(rqst, 0);
 | 
						|
	if (rc < 0)
 | 
						|
		goto failed_marshal;
 | 
						|
 | 
						|
	if (req->rl_reply == NULL) 		/* e.g. reconnection */
 | 
						|
		rpcrdma_recv_buffer_get(req);
 | 
						|
 | 
						|
	if (req->rl_reply) {
 | 
						|
		req->rl_reply->rr_func = rpcrdma_reply_handler;
 | 
						|
		/* this need only be done once, but... */
 | 
						|
		req->rl_reply->rr_xprt = xprt;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Must suppress retransmit to maintain credits */
 | 
						|
	if (req->rl_connect_cookie == xprt->connect_cookie)
 | 
						|
		goto drop_connection;
 | 
						|
	req->rl_connect_cookie = xprt->connect_cookie;
 | 
						|
 | 
						|
	if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
 | 
						|
		goto drop_connection;
 | 
						|
 | 
						|
	rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len;
 | 
						|
	rqst->rq_bytes_sent = 0;
 | 
						|
	return 0;
 | 
						|
 | 
						|
failed_marshal:
 | 
						|
	r_xprt->rx_stats.failed_marshal_count++;
 | 
						|
	dprintk("RPC:       %s: rpcrdma_marshal_req failed, status %i\n",
 | 
						|
		__func__, rc);
 | 
						|
	if (rc == -EIO)
 | 
						|
		return -EIO;
 | 
						|
drop_connection:
 | 
						|
	xprt_disconnect_done(xprt);
 | 
						|
	return -ENOTCONN;	/* implies disconnect */
 | 
						|
}
 | 
						|
 | 
						|
static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
 | 
						|
{
 | 
						|
	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
 | 
						|
	long idle_time = 0;
 | 
						|
 | 
						|
	if (xprt_connected(xprt))
 | 
						|
		idle_time = (long)(jiffies - xprt->last_used) / HZ;
 | 
						|
 | 
						|
	seq_printf(seq,
 | 
						|
	  "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu "
 | 
						|
	  "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n",
 | 
						|
 | 
						|
	   0,	/* need a local port? */
 | 
						|
	   xprt->stat.bind_count,
 | 
						|
	   xprt->stat.connect_count,
 | 
						|
	   xprt->stat.connect_time,
 | 
						|
	   idle_time,
 | 
						|
	   xprt->stat.sends,
 | 
						|
	   xprt->stat.recvs,
 | 
						|
	   xprt->stat.bad_xids,
 | 
						|
	   xprt->stat.req_u,
 | 
						|
	   xprt->stat.bklog_u,
 | 
						|
 | 
						|
	   r_xprt->rx_stats.read_chunk_count,
 | 
						|
	   r_xprt->rx_stats.write_chunk_count,
 | 
						|
	   r_xprt->rx_stats.reply_chunk_count,
 | 
						|
	   r_xprt->rx_stats.total_rdma_request,
 | 
						|
	   r_xprt->rx_stats.total_rdma_reply,
 | 
						|
	   r_xprt->rx_stats.pullup_copy_count,
 | 
						|
	   r_xprt->rx_stats.fixup_copy_count,
 | 
						|
	   r_xprt->rx_stats.hardway_register_count,
 | 
						|
	   r_xprt->rx_stats.failed_marshal_count,
 | 
						|
	   r_xprt->rx_stats.bad_reply_count);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Plumbing for rpc transport switch and kernel module
 | 
						|
 */
 | 
						|
 | 
						|
static struct rpc_xprt_ops xprt_rdma_procs = {
 | 
						|
	.reserve_xprt		= xprt_reserve_xprt_cong,
 | 
						|
	.release_xprt		= xprt_release_xprt_cong, /* sunrpc/xprt.c */
 | 
						|
	.alloc_slot		= xprt_alloc_slot,
 | 
						|
	.release_request	= xprt_release_rqst_cong,       /* ditto */
 | 
						|
	.set_retrans_timeout	= xprt_set_retrans_timeout_def, /* ditto */
 | 
						|
	.rpcbind		= rpcb_getport_async,	/* sunrpc/rpcb_clnt.c */
 | 
						|
	.set_port		= xprt_rdma_set_port,
 | 
						|
	.connect		= xprt_rdma_connect,
 | 
						|
	.buf_alloc		= xprt_rdma_allocate,
 | 
						|
	.buf_free		= xprt_rdma_free,
 | 
						|
	.send_request		= xprt_rdma_send_request,
 | 
						|
	.close			= xprt_rdma_close,
 | 
						|
	.destroy		= xprt_rdma_destroy,
 | 
						|
	.print_stats		= xprt_rdma_print_stats
 | 
						|
};
 | 
						|
 | 
						|
static struct xprt_class xprt_rdma = {
 | 
						|
	.list			= LIST_HEAD_INIT(xprt_rdma.list),
 | 
						|
	.name			= "rdma",
 | 
						|
	.owner			= THIS_MODULE,
 | 
						|
	.ident			= XPRT_TRANSPORT_RDMA,
 | 
						|
	.setup			= xprt_setup_rdma,
 | 
						|
};
 | 
						|
 | 
						|
static void __exit xprt_rdma_cleanup(void)
 | 
						|
{
 | 
						|
	int rc;
 | 
						|
 | 
						|
	dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n");
 | 
						|
#ifdef RPC_DEBUG
 | 
						|
	if (sunrpc_table_header) {
 | 
						|
		unregister_sysctl_table(sunrpc_table_header);
 | 
						|
		sunrpc_table_header = NULL;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	rc = xprt_unregister_transport(&xprt_rdma);
 | 
						|
	if (rc)
 | 
						|
		dprintk("RPC:       %s: xprt_unregister returned %i\n",
 | 
						|
			__func__, rc);
 | 
						|
}
 | 
						|
 | 
						|
static int __init xprt_rdma_init(void)
 | 
						|
{
 | 
						|
	int rc;
 | 
						|
 | 
						|
	rc = xprt_register_transport(&xprt_rdma);
 | 
						|
 | 
						|
	if (rc)
 | 
						|
		return rc;
 | 
						|
 | 
						|
	dprintk("RPCRDMA Module Init, register RPC RDMA transport\n");
 | 
						|
 | 
						|
	dprintk("Defaults:\n");
 | 
						|
	dprintk("\tSlots %d\n"
 | 
						|
		"\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
 | 
						|
		xprt_rdma_slot_table_entries,
 | 
						|
		xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
 | 
						|
	dprintk("\tPadding %d\n\tMemreg %d\n",
 | 
						|
		xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);
 | 
						|
 | 
						|
#ifdef RPC_DEBUG
 | 
						|
	if (!sunrpc_table_header)
 | 
						|
		sunrpc_table_header = register_sysctl_table(sunrpc_table);
 | 
						|
#endif
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
module_init(xprt_rdma_init);
 | 
						|
module_exit(xprt_rdma_cleanup);
 |