 1aff525629
			
		
	
	
	1aff525629
	
	
	
		
			
			Now that nfs_release_page() doesn't block indefinitely, other deadlock avoidance mechanisms aren't needed. - it doesn't hurt for kswapd to block occasionally. If it doesn't want to block it would clear __GFP_WAIT. The current_is_kswapd() was only added to avoid deadlocks and we have a new approach for that. - memory allocation in the SUNRPC layer can very rarely try to ->releasepage() a page it is trying to handle. The deadlock is removed as nfs_release_page() doesn't block indefinitely. So we don't need to set PF_FSTRANS for sunrpc network operations any more. Signed-off-by: NeilBrown <neilb@suse.de> Acked-by: Jeff Layton <jlayton@primarydata.com> Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
		
			
				
	
	
		
			1140 lines
		
	
	
	
		
			29 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1140 lines
		
	
	
	
		
			29 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * linux/net/sunrpc/sched.c
 | |
|  *
 | |
|  * Scheduling for synchronous and asynchronous RPC requests.
 | |
|  *
 | |
|  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
 | |
|  *
 | |
|  * TCP NFS related read + write fixes
 | |
|  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/mempool.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/freezer.h>
 | |
| 
 | |
| #include <linux/sunrpc/clnt.h>
 | |
| 
 | |
| #include "sunrpc.h"
 | |
| 
 | |
| #ifdef RPC_DEBUG
 | |
| #define RPCDBG_FACILITY		RPCDBG_SCHED
 | |
| #endif
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/sunrpc.h>
 | |
| 
 | |
| /*
 | |
|  * RPC slabs and memory pools
 | |
|  */
 | |
| #define RPC_BUFFER_MAXSIZE	(2048)
 | |
| #define RPC_BUFFER_POOLSIZE	(8)
 | |
| #define RPC_TASK_POOLSIZE	(8)
 | |
| static struct kmem_cache	*rpc_task_slabp __read_mostly;
 | |
| static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
 | |
| static mempool_t	*rpc_task_mempool __read_mostly;
 | |
| static mempool_t	*rpc_buffer_mempool __read_mostly;
 | |
| 
 | |
| static void			rpc_async_schedule(struct work_struct *);
 | |
| static void			 rpc_release_task(struct rpc_task *task);
 | |
| static void __rpc_queue_timer_fn(unsigned long ptr);
 | |
| 
 | |
| /*
 | |
|  * RPC tasks sit here while waiting for conditions to improve.
 | |
|  */
 | |
| static struct rpc_wait_queue delay_queue;
 | |
| 
 | |
| /*
 | |
|  * rpciod-related stuff
 | |
|  */
 | |
| struct workqueue_struct *rpciod_workqueue;
 | |
| 
 | |
| /*
 | |
|  * Disable the timer for a given RPC task. Should be called with
 | |
|  * queue->lock and bh_disabled in order to avoid races within
 | |
|  * rpc_run_timer().
 | |
|  */
 | |
| static void
 | |
| __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
 | |
| {
 | |
| 	if (task->tk_timeout == 0)
 | |
| 		return;
 | |
| 	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
 | |
| 	task->tk_timeout = 0;
 | |
| 	list_del(&task->u.tk_wait.timer_list);
 | |
| 	if (list_empty(&queue->timer_list.list))
 | |
| 		del_timer(&queue->timer_list.timer);
 | |
| }
 | |
| 
 | |
| static void
 | |
| rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
 | |
| {
 | |
| 	queue->timer_list.expires = expires;
 | |
| 	mod_timer(&queue->timer_list.timer, expires);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set up a timer for the current task.
 | |
|  */
 | |
| static void
 | |
| __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
 | |
| {
 | |
| 	if (!task->tk_timeout)
 | |
| 		return;
 | |
| 
 | |
| 	dprintk("RPC: %5u setting alarm for %lu ms\n",
 | |
| 			task->tk_pid, task->tk_timeout * 1000 / HZ);
 | |
| 
 | |
| 	task->u.tk_wait.expires = jiffies + task->tk_timeout;
 | |
| 	if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
 | |
| 		rpc_set_queue_timer(queue, task->u.tk_wait.expires);
 | |
| 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
 | |
| }
 | |
| 
 | |
| static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue)
 | |
| {
 | |
| 	struct list_head *q = &queue->tasks[queue->priority];
 | |
| 	struct rpc_task *task;
 | |
| 
 | |
| 	if (!list_empty(q)) {
 | |
| 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 | |
| 		if (task->tk_owner == queue->owner)
 | |
| 			list_move_tail(&task->u.tk_wait.list, q);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
 | |
| {
 | |
| 	if (queue->priority != priority) {
 | |
| 		/* Fairness: rotate the list when changing priority */
 | |
| 		rpc_rotate_queue_owner(queue);
 | |
| 		queue->priority = priority;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
 | |
| {
 | |
| 	queue->owner = pid;
 | |
| 	queue->nr = RPC_BATCH_COUNT;
 | |
| }
 | |
| 
 | |
| static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
 | |
| {
 | |
| 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
 | |
| 	rpc_set_waitqueue_owner(queue, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add new request to a priority queue.
 | |
|  */
 | |
| static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
 | |
| 		struct rpc_task *task,
 | |
| 		unsigned char queue_priority)
 | |
| {
 | |
| 	struct list_head *q;
 | |
| 	struct rpc_task *t;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&task->u.tk_wait.links);
 | |
| 	if (unlikely(queue_priority > queue->maxpriority))
 | |
| 		queue_priority = queue->maxpriority;
 | |
| 	if (queue_priority > queue->priority)
 | |
| 		rpc_set_waitqueue_priority(queue, queue_priority);
 | |
| 	q = &queue->tasks[queue_priority];
 | |
| 	list_for_each_entry(t, q, u.tk_wait.list) {
 | |
| 		if (t->tk_owner == task->tk_owner) {
 | |
| 			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	list_add_tail(&task->u.tk_wait.list, q);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add new request to wait queue.
 | |
|  *
 | |
|  * Swapper tasks always get inserted at the head of the queue.
 | |
|  * This should avoid many nasty memory deadlocks and hopefully
 | |
|  * improve overall performance.
 | |
|  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
 | |
|  */
 | |
| static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
 | |
| 		struct rpc_task *task,
 | |
| 		unsigned char queue_priority)
 | |
| {
 | |
| 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
 | |
| 	if (RPC_IS_QUEUED(task))
 | |
| 		return;
 | |
| 
 | |
| 	if (RPC_IS_PRIORITY(queue))
 | |
| 		__rpc_add_wait_queue_priority(queue, task, queue_priority);
 | |
| 	else if (RPC_IS_SWAPPER(task))
 | |
| 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
 | |
| 	else
 | |
| 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
 | |
| 	task->tk_waitqueue = queue;
 | |
| 	queue->qlen++;
 | |
| 	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
 | |
| 	smp_wmb();
 | |
| 	rpc_set_queued(task);
 | |
| 
 | |
| 	dprintk("RPC: %5u added to queue %p \"%s\"\n",
 | |
| 			task->tk_pid, queue, rpc_qname(queue));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove request from a priority queue.
 | |
|  */
 | |
| static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
 | |
| {
 | |
| 	struct rpc_task *t;
 | |
| 
 | |
| 	if (!list_empty(&task->u.tk_wait.links)) {
 | |
| 		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
 | |
| 		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
 | |
| 		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove request from queue.
 | |
|  * Note: must be called with spin lock held.
 | |
|  */
 | |
| static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
 | |
| {
 | |
| 	__rpc_disable_timer(queue, task);
 | |
| 	if (RPC_IS_PRIORITY(queue))
 | |
| 		__rpc_remove_wait_queue_priority(task);
 | |
| 	list_del(&task->u.tk_wait.list);
 | |
| 	queue->qlen--;
 | |
| 	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
 | |
| 			task->tk_pid, queue, rpc_qname(queue));
 | |
| }
 | |
| 
 | |
| static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock_init(&queue->lock);
 | |
| 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
 | |
| 		INIT_LIST_HEAD(&queue->tasks[i]);
 | |
| 	queue->maxpriority = nr_queues - 1;
 | |
| 	rpc_reset_waitqueue_priority(queue);
 | |
| 	queue->qlen = 0;
 | |
| 	setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
 | |
| 	INIT_LIST_HEAD(&queue->timer_list.list);
 | |
| 	rpc_assign_waitqueue_name(queue, qname);
 | |
| }
 | |
| 
 | |
| void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 | |
| {
 | |
| 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
 | |
| 
 | |
| void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 | |
| {
 | |
| 	__rpc_init_priority_wait_queue(queue, qname, 1);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
 | |
| 
 | |
| void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
 | |
| {
 | |
| 	del_timer_sync(&queue->timer_list.timer);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
 | |
| 
 | |
| static int rpc_wait_bit_killable(struct wait_bit_key *key)
 | |
| {
 | |
| 	if (fatal_signal_pending(current))
 | |
| 		return -ERESTARTSYS;
 | |
| 	freezable_schedule_unsafe();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #if defined(RPC_DEBUG) || defined(RPC_TRACEPOINTS)
 | |
| static void rpc_task_set_debuginfo(struct rpc_task *task)
 | |
| {
 | |
| 	static atomic_t rpc_pid;
 | |
| 
 | |
| 	task->tk_pid = atomic_inc_return(&rpc_pid);
 | |
| }
 | |
| #else
 | |
| static inline void rpc_task_set_debuginfo(struct rpc_task *task)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void rpc_set_active(struct rpc_task *task)
 | |
| {
 | |
| 	trace_rpc_task_begin(task->tk_client, task, NULL);
 | |
| 
 | |
| 	rpc_task_set_debuginfo(task);
 | |
| 	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark an RPC call as having completed by clearing the 'active' bit
 | |
|  * and then waking up all tasks that were sleeping.
 | |
|  */
 | |
| static int rpc_complete_task(struct rpc_task *task)
 | |
| {
 | |
| 	void *m = &task->tk_runstate;
 | |
| 	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
 | |
| 	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	trace_rpc_task_complete(task->tk_client, task, NULL);
 | |
| 
 | |
| 	spin_lock_irqsave(&wq->lock, flags);
 | |
| 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 | |
| 	ret = atomic_dec_and_test(&task->tk_count);
 | |
| 	if (waitqueue_active(wq))
 | |
| 		__wake_up_locked_key(wq, TASK_NORMAL, &k);
 | |
| 	spin_unlock_irqrestore(&wq->lock, flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allow callers to wait for completion of an RPC call
 | |
|  *
 | |
|  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
 | |
|  * to enforce taking of the wq->lock and hence avoid races with
 | |
|  * rpc_complete_task().
 | |
|  */
 | |
| int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
 | |
| {
 | |
| 	if (action == NULL)
 | |
| 		action = rpc_wait_bit_killable;
 | |
| 	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
 | |
| 			action, TASK_KILLABLE);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
 | |
| 
 | |
| /*
 | |
|  * Make an RPC task runnable.
 | |
|  *
 | |
|  * Note: If the task is ASYNC, and is being made runnable after sitting on an
 | |
|  * rpc_wait_queue, this must be called with the queue spinlock held to protect
 | |
|  * the wait queue operation.
 | |
|  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
 | |
|  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
 | |
|  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
 | |
|  * the RPC_TASK_RUNNING flag.
 | |
|  */
 | |
| static void rpc_make_runnable(struct rpc_task *task)
 | |
| {
 | |
| 	bool need_wakeup = !rpc_test_and_set_running(task);
 | |
| 
 | |
| 	rpc_clear_queued(task);
 | |
| 	if (!need_wakeup)
 | |
| 		return;
 | |
| 	if (RPC_IS_ASYNC(task)) {
 | |
| 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
 | |
| 		queue_work(rpciod_workqueue, &task->u.tk_work);
 | |
| 	} else
 | |
| 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prepare for sleeping on a wait queue.
 | |
|  * By always appending tasks to the list we ensure FIFO behavior.
 | |
|  * NB: An RPC task will only receive interrupt-driven events as long
 | |
|  * as it's on a wait queue.
 | |
|  */
 | |
| static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
 | |
| 		struct rpc_task *task,
 | |
| 		rpc_action action,
 | |
| 		unsigned char queue_priority)
 | |
| {
 | |
| 	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
 | |
| 			task->tk_pid, rpc_qname(q), jiffies);
 | |
| 
 | |
| 	trace_rpc_task_sleep(task->tk_client, task, q);
 | |
| 
 | |
| 	__rpc_add_wait_queue(q, task, queue_priority);
 | |
| 
 | |
| 	WARN_ON_ONCE(task->tk_callback != NULL);
 | |
| 	task->tk_callback = action;
 | |
| 	__rpc_add_timer(q, task);
 | |
| }
 | |
| 
 | |
| void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
 | |
| 				rpc_action action)
 | |
| {
 | |
| 	/* We shouldn't ever put an inactive task to sleep */
 | |
| 	WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
 | |
| 	if (!RPC_IS_ACTIVATED(task)) {
 | |
| 		task->tk_status = -EIO;
 | |
| 		rpc_put_task_async(task);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Protect the queue operations.
 | |
| 	 */
 | |
| 	spin_lock_bh(&q->lock);
 | |
| 	__rpc_sleep_on_priority(q, task, action, task->tk_priority);
 | |
| 	spin_unlock_bh(&q->lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rpc_sleep_on);
 | |
| 
 | |
| void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
 | |
| 		rpc_action action, int priority)
 | |
| {
 | |
| 	/* We shouldn't ever put an inactive task to sleep */
 | |
| 	WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
 | |
| 	if (!RPC_IS_ACTIVATED(task)) {
 | |
| 		task->tk_status = -EIO;
 | |
| 		rpc_put_task_async(task);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Protect the queue operations.
 | |
| 	 */
 | |
| 	spin_lock_bh(&q->lock);
 | |
| 	__rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
 | |
| 	spin_unlock_bh(&q->lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
 | |
| 
 | |
| /**
 | |
|  * __rpc_do_wake_up_task - wake up a single rpc_task
 | |
|  * @queue: wait queue
 | |
|  * @task: task to be woken up
 | |
|  *
 | |
|  * Caller must hold queue->lock, and have cleared the task queued flag.
 | |
|  */
 | |
| static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 | |
| {
 | |
| 	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
 | |
| 			task->tk_pid, jiffies);
 | |
| 
 | |
| 	/* Has the task been executed yet? If not, we cannot wake it up! */
 | |
| 	if (!RPC_IS_ACTIVATED(task)) {
 | |
| 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	trace_rpc_task_wakeup(task->tk_client, task, queue);
 | |
| 
 | |
| 	__rpc_remove_wait_queue(queue, task);
 | |
| 
 | |
| 	rpc_make_runnable(task);
 | |
| 
 | |
| 	dprintk("RPC:       __rpc_wake_up_task done\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wake up a queued task while the queue lock is being held
 | |
|  */
 | |
| static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
 | |
| {
 | |
| 	if (RPC_IS_QUEUED(task)) {
 | |
| 		smp_rmb();
 | |
| 		if (task->tk_waitqueue == queue)
 | |
| 			__rpc_do_wake_up_task(queue, task);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wake up a task on a specific queue
 | |
|  */
 | |
| void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 | |
| {
 | |
| 	spin_lock_bh(&queue->lock);
 | |
| 	rpc_wake_up_task_queue_locked(queue, task);
 | |
| 	spin_unlock_bh(&queue->lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
 | |
| 
 | |
| /*
 | |
|  * Wake up the next task on a priority queue.
 | |
|  */
 | |
| static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
 | |
| {
 | |
| 	struct list_head *q;
 | |
| 	struct rpc_task *task;
 | |
| 
 | |
| 	/*
 | |
| 	 * Service a batch of tasks from a single owner.
 | |
| 	 */
 | |
| 	q = &queue->tasks[queue->priority];
 | |
| 	if (!list_empty(q)) {
 | |
| 		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
 | |
| 		if (queue->owner == task->tk_owner) {
 | |
| 			if (--queue->nr)
 | |
| 				goto out;
 | |
| 			list_move_tail(&task->u.tk_wait.list, q);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Check if we need to switch queues.
 | |
| 		 */
 | |
| 		goto new_owner;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Service the next queue.
 | |
| 	 */
 | |
| 	do {
 | |
| 		if (q == &queue->tasks[0])
 | |
| 			q = &queue->tasks[queue->maxpriority];
 | |
| 		else
 | |
| 			q = q - 1;
 | |
| 		if (!list_empty(q)) {
 | |
| 			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
 | |
| 			goto new_queue;
 | |
| 		}
 | |
| 	} while (q != &queue->tasks[queue->priority]);
 | |
| 
 | |
| 	rpc_reset_waitqueue_priority(queue);
 | |
| 	return NULL;
 | |
| 
 | |
| new_queue:
 | |
| 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
 | |
| new_owner:
 | |
| 	rpc_set_waitqueue_owner(queue, task->tk_owner);
 | |
| out:
 | |
| 	return task;
 | |
| }
 | |
| 
 | |
| static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
 | |
| {
 | |
| 	if (RPC_IS_PRIORITY(queue))
 | |
| 		return __rpc_find_next_queued_priority(queue);
 | |
| 	if (!list_empty(&queue->tasks[0]))
 | |
| 		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wake up the first task on the wait queue.
 | |
|  */
 | |
| struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
 | |
| 		bool (*func)(struct rpc_task *, void *), void *data)
 | |
| {
 | |
| 	struct rpc_task	*task = NULL;
 | |
| 
 | |
| 	dprintk("RPC:       wake_up_first(%p \"%s\")\n",
 | |
| 			queue, rpc_qname(queue));
 | |
| 	spin_lock_bh(&queue->lock);
 | |
| 	task = __rpc_find_next_queued(queue);
 | |
| 	if (task != NULL) {
 | |
| 		if (func(task, data))
 | |
| 			rpc_wake_up_task_queue_locked(queue, task);
 | |
| 		else
 | |
| 			task = NULL;
 | |
| 	}
 | |
| 	spin_unlock_bh(&queue->lock);
 | |
| 
 | |
| 	return task;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rpc_wake_up_first);
 | |
| 
 | |
| static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wake up the next task on the wait queue.
 | |
| */
 | |
| struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
 | |
| {
 | |
| 	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rpc_wake_up_next);
 | |
| 
 | |
| /**
 | |
|  * rpc_wake_up - wake up all rpc_tasks
 | |
|  * @queue: rpc_wait_queue on which the tasks are sleeping
 | |
|  *
 | |
|  * Grabs queue->lock
 | |
|  */
 | |
| void rpc_wake_up(struct rpc_wait_queue *queue)
 | |
| {
 | |
| 	struct list_head *head;
 | |
| 
 | |
| 	spin_lock_bh(&queue->lock);
 | |
| 	head = &queue->tasks[queue->maxpriority];
 | |
| 	for (;;) {
 | |
| 		while (!list_empty(head)) {
 | |
| 			struct rpc_task *task;
 | |
| 			task = list_first_entry(head,
 | |
| 					struct rpc_task,
 | |
| 					u.tk_wait.list);
 | |
| 			rpc_wake_up_task_queue_locked(queue, task);
 | |
| 		}
 | |
| 		if (head == &queue->tasks[0])
 | |
| 			break;
 | |
| 		head--;
 | |
| 	}
 | |
| 	spin_unlock_bh(&queue->lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rpc_wake_up);
 | |
| 
 | |
| /**
 | |
|  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
 | |
|  * @queue: rpc_wait_queue on which the tasks are sleeping
 | |
|  * @status: status value to set
 | |
|  *
 | |
|  * Grabs queue->lock
 | |
|  */
 | |
| void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
 | |
| {
 | |
| 	struct list_head *head;
 | |
| 
 | |
| 	spin_lock_bh(&queue->lock);
 | |
| 	head = &queue->tasks[queue->maxpriority];
 | |
| 	for (;;) {
 | |
| 		while (!list_empty(head)) {
 | |
| 			struct rpc_task *task;
 | |
| 			task = list_first_entry(head,
 | |
| 					struct rpc_task,
 | |
| 					u.tk_wait.list);
 | |
| 			task->tk_status = status;
 | |
| 			rpc_wake_up_task_queue_locked(queue, task);
 | |
| 		}
 | |
| 		if (head == &queue->tasks[0])
 | |
| 			break;
 | |
| 		head--;
 | |
| 	}
 | |
| 	spin_unlock_bh(&queue->lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rpc_wake_up_status);
 | |
| 
 | |
| static void __rpc_queue_timer_fn(unsigned long ptr)
 | |
| {
 | |
| 	struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
 | |
| 	struct rpc_task *task, *n;
 | |
| 	unsigned long expires, now, timeo;
 | |
| 
 | |
| 	spin_lock(&queue->lock);
 | |
| 	expires = now = jiffies;
 | |
| 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
 | |
| 		timeo = task->u.tk_wait.expires;
 | |
| 		if (time_after_eq(now, timeo)) {
 | |
| 			dprintk("RPC: %5u timeout\n", task->tk_pid);
 | |
| 			task->tk_status = -ETIMEDOUT;
 | |
| 			rpc_wake_up_task_queue_locked(queue, task);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (expires == now || time_after(expires, timeo))
 | |
| 			expires = timeo;
 | |
| 	}
 | |
| 	if (!list_empty(&queue->timer_list.list))
 | |
| 		rpc_set_queue_timer(queue, expires);
 | |
| 	spin_unlock(&queue->lock);
 | |
| }
 | |
| 
 | |
| static void __rpc_atrun(struct rpc_task *task)
 | |
| {
 | |
| 	if (task->tk_status == -ETIMEDOUT)
 | |
| 		task->tk_status = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Run a task at a later time
 | |
|  */
 | |
| void rpc_delay(struct rpc_task *task, unsigned long delay)
 | |
| {
 | |
| 	task->tk_timeout = delay;
 | |
| 	rpc_sleep_on(&delay_queue, task, __rpc_atrun);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rpc_delay);
 | |
| 
 | |
| /*
 | |
|  * Helper to call task->tk_ops->rpc_call_prepare
 | |
|  */
 | |
| void rpc_prepare_task(struct rpc_task *task)
 | |
| {
 | |
| 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
 | |
| }
 | |
| 
 | |
| static void
 | |
| rpc_init_task_statistics(struct rpc_task *task)
 | |
| {
 | |
| 	/* Initialize retry counters */
 | |
| 	task->tk_garb_retry = 2;
 | |
| 	task->tk_cred_retry = 2;
 | |
| 	task->tk_rebind_retry = 2;
 | |
| 
 | |
| 	/* starting timestamp */
 | |
| 	task->tk_start = ktime_get();
 | |
| }
 | |
| 
 | |
| static void
 | |
| rpc_reset_task_statistics(struct rpc_task *task)
 | |
| {
 | |
| 	task->tk_timeouts = 0;
 | |
| 	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
 | |
| 
 | |
| 	rpc_init_task_statistics(task);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper that calls task->tk_ops->rpc_call_done if it exists
 | |
|  */
 | |
| void rpc_exit_task(struct rpc_task *task)
 | |
| {
 | |
| 	task->tk_action = NULL;
 | |
| 	if (task->tk_ops->rpc_call_done != NULL) {
 | |
| 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
 | |
| 		if (task->tk_action != NULL) {
 | |
| 			WARN_ON(RPC_ASSASSINATED(task));
 | |
| 			/* Always release the RPC slot and buffer memory */
 | |
| 			xprt_release(task);
 | |
| 			rpc_reset_task_statistics(task);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void rpc_exit(struct rpc_task *task, int status)
 | |
| {
 | |
| 	task->tk_status = status;
 | |
| 	task->tk_action = rpc_exit_task;
 | |
| 	if (RPC_IS_QUEUED(task))
 | |
| 		rpc_wake_up_queued_task(task->tk_waitqueue, task);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rpc_exit);
 | |
| 
 | |
| void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
 | |
| {
 | |
| 	if (ops->rpc_release != NULL)
 | |
| 		ops->rpc_release(calldata);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the RPC `scheduler' (or rather, the finite state machine).
 | |
|  */
 | |
| static void __rpc_execute(struct rpc_task *task)
 | |
| {
 | |
| 	struct rpc_wait_queue *queue;
 | |
| 	int task_is_async = RPC_IS_ASYNC(task);
 | |
| 	int status = 0;
 | |
| 
 | |
| 	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
 | |
| 			task->tk_pid, task->tk_flags);
 | |
| 
 | |
| 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
 | |
| 	if (RPC_IS_QUEUED(task))
 | |
| 		return;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		void (*do_action)(struct rpc_task *);
 | |
| 
 | |
| 		/*
 | |
| 		 * Execute any pending callback first.
 | |
| 		 */
 | |
| 		do_action = task->tk_callback;
 | |
| 		task->tk_callback = NULL;
 | |
| 		if (do_action == NULL) {
 | |
| 			/*
 | |
| 			 * Perform the next FSM step.
 | |
| 			 * tk_action may be NULL if the task has been killed.
 | |
| 			 * In particular, note that rpc_killall_tasks may
 | |
| 			 * do this at any time, so beware when dereferencing.
 | |
| 			 */
 | |
| 			do_action = task->tk_action;
 | |
| 			if (do_action == NULL)
 | |
| 				break;
 | |
| 		}
 | |
| 		trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
 | |
| 		do_action(task);
 | |
| 
 | |
| 		/*
 | |
| 		 * Lockless check for whether task is sleeping or not.
 | |
| 		 */
 | |
| 		if (!RPC_IS_QUEUED(task))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * The queue->lock protects against races with
 | |
| 		 * rpc_make_runnable().
 | |
| 		 *
 | |
| 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
 | |
| 		 * rpc_task, rpc_make_runnable() can assign it to a
 | |
| 		 * different workqueue. We therefore cannot assume that the
 | |
| 		 * rpc_task pointer may still be dereferenced.
 | |
| 		 */
 | |
| 		queue = task->tk_waitqueue;
 | |
| 		spin_lock_bh(&queue->lock);
 | |
| 		if (!RPC_IS_QUEUED(task)) {
 | |
| 			spin_unlock_bh(&queue->lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 		rpc_clear_running(task);
 | |
| 		spin_unlock_bh(&queue->lock);
 | |
| 		if (task_is_async)
 | |
| 			return;
 | |
| 
 | |
| 		/* sync task: sleep here */
 | |
| 		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
 | |
| 		status = out_of_line_wait_on_bit(&task->tk_runstate,
 | |
| 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
 | |
| 				TASK_KILLABLE);
 | |
| 		if (status == -ERESTARTSYS) {
 | |
| 			/*
 | |
| 			 * When a sync task receives a signal, it exits with
 | |
| 			 * -ERESTARTSYS. In order to catch any callbacks that
 | |
| 			 * clean up after sleeping on some queue, we don't
 | |
| 			 * break the loop here, but go around once more.
 | |
| 			 */
 | |
| 			dprintk("RPC: %5u got signal\n", task->tk_pid);
 | |
| 			task->tk_flags |= RPC_TASK_KILLED;
 | |
| 			rpc_exit(task, -ERESTARTSYS);
 | |
| 		}
 | |
| 		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
 | |
| 	}
 | |
| 
 | |
| 	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
 | |
| 			task->tk_status);
 | |
| 	/* Release all resources associated with the task */
 | |
| 	rpc_release_task(task);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * User-visible entry point to the scheduler.
 | |
|  *
 | |
|  * This may be called recursively if e.g. an async NFS task updates
 | |
|  * the attributes and finds that dirty pages must be flushed.
 | |
|  * NOTE: Upon exit of this function the task is guaranteed to be
 | |
|  *	 released. In particular note that tk_release() will have
 | |
|  *	 been called, so your task memory may have been freed.
 | |
|  */
 | |
| void rpc_execute(struct rpc_task *task)
 | |
| {
 | |
| 	bool is_async = RPC_IS_ASYNC(task);
 | |
| 
 | |
| 	rpc_set_active(task);
 | |
| 	rpc_make_runnable(task);
 | |
| 	if (!is_async)
 | |
| 		__rpc_execute(task);
 | |
| }
 | |
| 
 | |
| static void rpc_async_schedule(struct work_struct *work)
 | |
| {
 | |
| 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rpc_malloc - allocate an RPC buffer
 | |
|  * @task: RPC task that will use this buffer
 | |
|  * @size: requested byte size
 | |
|  *
 | |
|  * To prevent rpciod from hanging, this allocator never sleeps,
 | |
|  * returning NULL and suppressing warning if the request cannot be serviced
 | |
|  * immediately.
 | |
|  * The caller can arrange to sleep in a way that is safe for rpciod.
 | |
|  *
 | |
|  * Most requests are 'small' (under 2KiB) and can be serviced from a
 | |
|  * mempool, ensuring that NFS reads and writes can always proceed,
 | |
|  * and that there is good locality of reference for these buffers.
 | |
|  *
 | |
|  * In order to avoid memory starvation triggering more writebacks of
 | |
|  * NFS requests, we avoid using GFP_KERNEL.
 | |
|  */
 | |
| void *rpc_malloc(struct rpc_task *task, size_t size)
 | |
| {
 | |
| 	struct rpc_buffer *buf;
 | |
| 	gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
 | |
| 
 | |
| 	if (RPC_IS_SWAPPER(task))
 | |
| 		gfp |= __GFP_MEMALLOC;
 | |
| 
 | |
| 	size += sizeof(struct rpc_buffer);
 | |
| 	if (size <= RPC_BUFFER_MAXSIZE)
 | |
| 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
 | |
| 	else
 | |
| 		buf = kmalloc(size, gfp);
 | |
| 
 | |
| 	if (!buf)
 | |
| 		return NULL;
 | |
| 
 | |
| 	buf->len = size;
 | |
| 	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
 | |
| 			task->tk_pid, size, buf);
 | |
| 	return &buf->data;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rpc_malloc);
 | |
| 
 | |
| /**
 | |
|  * rpc_free - free buffer allocated via rpc_malloc
 | |
|  * @buffer: buffer to free
 | |
|  *
 | |
|  */
 | |
| void rpc_free(void *buffer)
 | |
| {
 | |
| 	size_t size;
 | |
| 	struct rpc_buffer *buf;
 | |
| 
 | |
| 	if (!buffer)
 | |
| 		return;
 | |
| 
 | |
| 	buf = container_of(buffer, struct rpc_buffer, data);
 | |
| 	size = buf->len;
 | |
| 
 | |
| 	dprintk("RPC:       freeing buffer of size %zu at %p\n",
 | |
| 			size, buf);
 | |
| 
 | |
| 	if (size <= RPC_BUFFER_MAXSIZE)
 | |
| 		mempool_free(buf, rpc_buffer_mempool);
 | |
| 	else
 | |
| 		kfree(buf);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rpc_free);
 | |
| 
 | |
| /*
 | |
|  * Creation and deletion of RPC task structures
 | |
|  */
 | |
| static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
 | |
| {
 | |
| 	memset(task, 0, sizeof(*task));
 | |
| 	atomic_set(&task->tk_count, 1);
 | |
| 	task->tk_flags  = task_setup_data->flags;
 | |
| 	task->tk_ops = task_setup_data->callback_ops;
 | |
| 	task->tk_calldata = task_setup_data->callback_data;
 | |
| 	INIT_LIST_HEAD(&task->tk_task);
 | |
| 
 | |
| 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
 | |
| 	task->tk_owner = current->tgid;
 | |
| 
 | |
| 	/* Initialize workqueue for async tasks */
 | |
| 	task->tk_workqueue = task_setup_data->workqueue;
 | |
| 
 | |
| 	if (task->tk_ops->rpc_call_prepare != NULL)
 | |
| 		task->tk_action = rpc_prepare_task;
 | |
| 
 | |
| 	rpc_init_task_statistics(task);
 | |
| 
 | |
| 	dprintk("RPC:       new task initialized, procpid %u\n",
 | |
| 				task_pid_nr(current));
 | |
| }
 | |
| 
 | |
| static struct rpc_task *
 | |
| rpc_alloc_task(void)
 | |
| {
 | |
| 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create a new task for the specified client.
 | |
|  */
 | |
| struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
 | |
| {
 | |
| 	struct rpc_task	*task = setup_data->task;
 | |
| 	unsigned short flags = 0;
 | |
| 
 | |
| 	if (task == NULL) {
 | |
| 		task = rpc_alloc_task();
 | |
| 		if (task == NULL) {
 | |
| 			rpc_release_calldata(setup_data->callback_ops,
 | |
| 					setup_data->callback_data);
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 		}
 | |
| 		flags = RPC_TASK_DYNAMIC;
 | |
| 	}
 | |
| 
 | |
| 	rpc_init_task(task, setup_data);
 | |
| 	task->tk_flags |= flags;
 | |
| 	dprintk("RPC:       allocated task %p\n", task);
 | |
| 	return task;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * rpc_free_task - release rpc task and perform cleanups
 | |
|  *
 | |
|  * Note that we free up the rpc_task _after_ rpc_release_calldata()
 | |
|  * in order to work around a workqueue dependency issue.
 | |
|  *
 | |
|  * Tejun Heo states:
 | |
|  * "Workqueue currently considers two work items to be the same if they're
 | |
|  * on the same address and won't execute them concurrently - ie. it
 | |
|  * makes a work item which is queued again while being executed wait
 | |
|  * for the previous execution to complete.
 | |
|  *
 | |
|  * If a work function frees the work item, and then waits for an event
 | |
|  * which should be performed by another work item and *that* work item
 | |
|  * recycles the freed work item, it can create a false dependency loop.
 | |
|  * There really is no reliable way to detect this short of verifying
 | |
|  * every memory free."
 | |
|  *
 | |
|  */
 | |
| static void rpc_free_task(struct rpc_task *task)
 | |
| {
 | |
| 	unsigned short tk_flags = task->tk_flags;
 | |
| 
 | |
| 	rpc_release_calldata(task->tk_ops, task->tk_calldata);
 | |
| 
 | |
| 	if (tk_flags & RPC_TASK_DYNAMIC) {
 | |
| 		dprintk("RPC: %5u freeing task\n", task->tk_pid);
 | |
| 		mempool_free(task, rpc_task_mempool);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rpc_async_release(struct work_struct *work)
 | |
| {
 | |
| 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
 | |
| }
 | |
| 
 | |
| static void rpc_release_resources_task(struct rpc_task *task)
 | |
| {
 | |
| 	xprt_release(task);
 | |
| 	if (task->tk_msg.rpc_cred) {
 | |
| 		put_rpccred(task->tk_msg.rpc_cred);
 | |
| 		task->tk_msg.rpc_cred = NULL;
 | |
| 	}
 | |
| 	rpc_task_release_client(task);
 | |
| }
 | |
| 
 | |
| static void rpc_final_put_task(struct rpc_task *task,
 | |
| 		struct workqueue_struct *q)
 | |
| {
 | |
| 	if (q != NULL) {
 | |
| 		INIT_WORK(&task->u.tk_work, rpc_async_release);
 | |
| 		queue_work(q, &task->u.tk_work);
 | |
| 	} else
 | |
| 		rpc_free_task(task);
 | |
| }
 | |
| 
 | |
| static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&task->tk_count)) {
 | |
| 		rpc_release_resources_task(task);
 | |
| 		rpc_final_put_task(task, q);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void rpc_put_task(struct rpc_task *task)
 | |
| {
 | |
| 	rpc_do_put_task(task, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rpc_put_task);
 | |
| 
 | |
| void rpc_put_task_async(struct rpc_task *task)
 | |
| {
 | |
| 	rpc_do_put_task(task, task->tk_workqueue);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rpc_put_task_async);
 | |
| 
 | |
| static void rpc_release_task(struct rpc_task *task)
 | |
| {
 | |
| 	dprintk("RPC: %5u release task\n", task->tk_pid);
 | |
| 
 | |
| 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
 | |
| 
 | |
| 	rpc_release_resources_task(task);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
 | |
| 	 * so it should be safe to use task->tk_count as a test for whether
 | |
| 	 * or not any other processes still hold references to our rpc_task.
 | |
| 	 */
 | |
| 	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
 | |
| 		/* Wake up anyone who may be waiting for task completion */
 | |
| 		if (!rpc_complete_task(task))
 | |
| 			return;
 | |
| 	} else {
 | |
| 		if (!atomic_dec_and_test(&task->tk_count))
 | |
| 			return;
 | |
| 	}
 | |
| 	rpc_final_put_task(task, task->tk_workqueue);
 | |
| }
 | |
| 
 | |
| int rpciod_up(void)
 | |
| {
 | |
| 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
 | |
| }
 | |
| 
 | |
| void rpciod_down(void)
 | |
| {
 | |
| 	module_put(THIS_MODULE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Start up the rpciod workqueue.
 | |
|  */
 | |
| static int rpciod_start(void)
 | |
| {
 | |
| 	struct workqueue_struct *wq;
 | |
| 
 | |
| 	/*
 | |
| 	 * Create the rpciod thread and wait for it to start.
 | |
| 	 */
 | |
| 	dprintk("RPC:       creating workqueue rpciod\n");
 | |
| 	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 1);
 | |
| 	rpciod_workqueue = wq;
 | |
| 	return rpciod_workqueue != NULL;
 | |
| }
 | |
| 
 | |
| static void rpciod_stop(void)
 | |
| {
 | |
| 	struct workqueue_struct *wq = NULL;
 | |
| 
 | |
| 	if (rpciod_workqueue == NULL)
 | |
| 		return;
 | |
| 	dprintk("RPC:       destroying workqueue rpciod\n");
 | |
| 
 | |
| 	wq = rpciod_workqueue;
 | |
| 	rpciod_workqueue = NULL;
 | |
| 	destroy_workqueue(wq);
 | |
| }
 | |
| 
 | |
| void
 | |
| rpc_destroy_mempool(void)
 | |
| {
 | |
| 	rpciod_stop();
 | |
| 	if (rpc_buffer_mempool)
 | |
| 		mempool_destroy(rpc_buffer_mempool);
 | |
| 	if (rpc_task_mempool)
 | |
| 		mempool_destroy(rpc_task_mempool);
 | |
| 	if (rpc_task_slabp)
 | |
| 		kmem_cache_destroy(rpc_task_slabp);
 | |
| 	if (rpc_buffer_slabp)
 | |
| 		kmem_cache_destroy(rpc_buffer_slabp);
 | |
| 	rpc_destroy_wait_queue(&delay_queue);
 | |
| }
 | |
| 
 | |
| int
 | |
| rpc_init_mempool(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * The following is not strictly a mempool initialisation,
 | |
| 	 * but there is no harm in doing it here
 | |
| 	 */
 | |
| 	rpc_init_wait_queue(&delay_queue, "delayq");
 | |
| 	if (!rpciod_start())
 | |
| 		goto err_nomem;
 | |
| 
 | |
| 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
 | |
| 					     sizeof(struct rpc_task),
 | |
| 					     0, SLAB_HWCACHE_ALIGN,
 | |
| 					     NULL);
 | |
| 	if (!rpc_task_slabp)
 | |
| 		goto err_nomem;
 | |
| 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
 | |
| 					     RPC_BUFFER_MAXSIZE,
 | |
| 					     0, SLAB_HWCACHE_ALIGN,
 | |
| 					     NULL);
 | |
| 	if (!rpc_buffer_slabp)
 | |
| 		goto err_nomem;
 | |
| 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
 | |
| 						    rpc_task_slabp);
 | |
| 	if (!rpc_task_mempool)
 | |
| 		goto err_nomem;
 | |
| 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
 | |
| 						      rpc_buffer_slabp);
 | |
| 	if (!rpc_buffer_mempool)
 | |
| 		goto err_nomem;
 | |
| 	return 0;
 | |
| err_nomem:
 | |
| 	rpc_destroy_mempool();
 | |
| 	return -ENOMEM;
 | |
| }
 |