 8c2eab9097
			
		
	
	
	8c2eab9097
	
	
	
		
			
			Don't transition to the PF state on every strike after 'Path.Max.Retrans'. Per draft-ietf-tsvwg-sctp-failover-03 Section 5.1.6: Additional (PMR - PFMR) consecutive timeouts on a PF destination confirm the path failure, upon which the destination transitions to the Inactive state. As described in [RFC4960], the sender (i) SHOULD notify ULP about this state transition, and (ii) transmit heartbeats to the Inactive destination at a lower frequency as described in Section 8.3 of [RFC4960]. This also prevents sending SCTP_ADDR_UNREACHABLE to the user as the state bounces between SCTP_INACTIVE and SCTP_PF for each subsequent strike. Signed-off-by: Karl Heiss <kheiss@gmail.com> Acked-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			1751 lines
		
	
	
	
		
			49 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1751 lines
		
	
	
	
		
			49 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SCTP kernel implementation
 | |
|  * (C) Copyright IBM Corp. 2001, 2004
 | |
|  * Copyright (c) 1999 Cisco, Inc.
 | |
|  * Copyright (c) 1999-2001 Motorola, Inc.
 | |
|  *
 | |
|  * This file is part of the SCTP kernel implementation
 | |
|  *
 | |
|  * These functions work with the state functions in sctp_sm_statefuns.c
 | |
|  * to implement that state operations.  These functions implement the
 | |
|  * steps which require modifying existing data structures.
 | |
|  *
 | |
|  * This SCTP implementation is free software;
 | |
|  * you can redistribute it and/or modify it under the terms of
 | |
|  * the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2, or (at your option)
 | |
|  * any later version.
 | |
|  *
 | |
|  * This SCTP implementation is distributed in the hope that it
 | |
|  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
 | |
|  *                 ************************
 | |
|  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 | |
|  * See the GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with GNU CC; see the file COPYING.  If not, see
 | |
|  * <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  * Please send any bug reports or fixes you make to the
 | |
|  * email address(es):
 | |
|  *    lksctp developers <linux-sctp@vger.kernel.org>
 | |
|  *
 | |
|  * Written or modified by:
 | |
|  *    La Monte H.P. Yarroll <piggy@acm.org>
 | |
|  *    Karl Knutson          <karl@athena.chicago.il.us>
 | |
|  *    Jon Grimm             <jgrimm@austin.ibm.com>
 | |
|  *    Hui Huang		    <hui.huang@nokia.com>
 | |
|  *    Dajiang Zhang	    <dajiang.zhang@nokia.com>
 | |
|  *    Daisy Chang	    <daisyc@us.ibm.com>
 | |
|  *    Sridhar Samudrala	    <sri@us.ibm.com>
 | |
|  *    Ardelle Fan	    <ardelle.fan@intel.com>
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/socket.h>
 | |
| #include <linux/ip.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <net/sock.h>
 | |
| #include <net/sctp/sctp.h>
 | |
| #include <net/sctp/sm.h>
 | |
| 
 | |
| static int sctp_cmd_interpreter(sctp_event_t event_type,
 | |
| 				sctp_subtype_t subtype,
 | |
| 				sctp_state_t state,
 | |
| 				struct sctp_endpoint *ep,
 | |
| 				struct sctp_association *asoc,
 | |
| 				void *event_arg,
 | |
| 				sctp_disposition_t status,
 | |
| 				sctp_cmd_seq_t *commands,
 | |
| 				gfp_t gfp);
 | |
| static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype,
 | |
| 			     sctp_state_t state,
 | |
| 			     struct sctp_endpoint *ep,
 | |
| 			     struct sctp_association *asoc,
 | |
| 			     void *event_arg,
 | |
| 			     sctp_disposition_t status,
 | |
| 			     sctp_cmd_seq_t *commands,
 | |
| 			     gfp_t gfp);
 | |
| 
 | |
| static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *cmds,
 | |
| 				     struct sctp_transport *t);
 | |
| /********************************************************************
 | |
|  * Helper functions
 | |
|  ********************************************************************/
 | |
| 
 | |
| /* A helper function for delayed processing of INET ECN CE bit. */
 | |
| static void sctp_do_ecn_ce_work(struct sctp_association *asoc,
 | |
| 				__u32 lowest_tsn)
 | |
| {
 | |
| 	/* Save the TSN away for comparison when we receive CWR */
 | |
| 
 | |
| 	asoc->last_ecne_tsn = lowest_tsn;
 | |
| 	asoc->need_ecne = 1;
 | |
| }
 | |
| 
 | |
| /* Helper function for delayed processing of SCTP ECNE chunk.  */
 | |
| /* RFC 2960 Appendix A
 | |
|  *
 | |
|  * RFC 2481 details a specific bit for a sender to send in
 | |
|  * the header of its next outbound TCP segment to indicate to
 | |
|  * its peer that it has reduced its congestion window.  This
 | |
|  * is termed the CWR bit.  For SCTP the same indication is made
 | |
|  * by including the CWR chunk.  This chunk contains one data
 | |
|  * element, i.e. the TSN number that was sent in the ECNE chunk.
 | |
|  * This element represents the lowest TSN number in the datagram
 | |
|  * that was originally marked with the CE bit.
 | |
|  */
 | |
| static struct sctp_chunk *sctp_do_ecn_ecne_work(struct sctp_association *asoc,
 | |
| 					   __u32 lowest_tsn,
 | |
| 					   struct sctp_chunk *chunk)
 | |
| {
 | |
| 	struct sctp_chunk *repl;
 | |
| 
 | |
| 	/* Our previously transmitted packet ran into some congestion
 | |
| 	 * so we should take action by reducing cwnd and ssthresh
 | |
| 	 * and then ACK our peer that we we've done so by
 | |
| 	 * sending a CWR.
 | |
| 	 */
 | |
| 
 | |
| 	/* First, try to determine if we want to actually lower
 | |
| 	 * our cwnd variables.  Only lower them if the ECNE looks more
 | |
| 	 * recent than the last response.
 | |
| 	 */
 | |
| 	if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) {
 | |
| 		struct sctp_transport *transport;
 | |
| 
 | |
| 		/* Find which transport's congestion variables
 | |
| 		 * need to be adjusted.
 | |
| 		 */
 | |
| 		transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn);
 | |
| 
 | |
| 		/* Update the congestion variables. */
 | |
| 		if (transport)
 | |
| 			sctp_transport_lower_cwnd(transport,
 | |
| 						  SCTP_LOWER_CWND_ECNE);
 | |
| 		asoc->last_cwr_tsn = lowest_tsn;
 | |
| 	}
 | |
| 
 | |
| 	/* Always try to quiet the other end.  In case of lost CWR,
 | |
| 	 * resend last_cwr_tsn.
 | |
| 	 */
 | |
| 	repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk);
 | |
| 
 | |
| 	/* If we run out of memory, it will look like a lost CWR.  We'll
 | |
| 	 * get back in sync eventually.
 | |
| 	 */
 | |
| 	return repl;
 | |
| }
 | |
| 
 | |
| /* Helper function to do delayed processing of ECN CWR chunk.  */
 | |
| static void sctp_do_ecn_cwr_work(struct sctp_association *asoc,
 | |
| 				 __u32 lowest_tsn)
 | |
| {
 | |
| 	/* Turn off ECNE getting auto-prepended to every outgoing
 | |
| 	 * packet
 | |
| 	 */
 | |
| 	asoc->need_ecne = 0;
 | |
| }
 | |
| 
 | |
| /* Generate SACK if necessary.  We call this at the end of a packet.  */
 | |
| static int sctp_gen_sack(struct sctp_association *asoc, int force,
 | |
| 			 sctp_cmd_seq_t *commands)
 | |
| {
 | |
| 	__u32 ctsn, max_tsn_seen;
 | |
| 	struct sctp_chunk *sack;
 | |
| 	struct sctp_transport *trans = asoc->peer.last_data_from;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	if (force ||
 | |
| 	    (!trans && (asoc->param_flags & SPP_SACKDELAY_DISABLE)) ||
 | |
| 	    (trans && (trans->param_flags & SPP_SACKDELAY_DISABLE)))
 | |
| 		asoc->peer.sack_needed = 1;
 | |
| 
 | |
| 	ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map);
 | |
| 	max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map);
 | |
| 
 | |
| 	/* From 12.2 Parameters necessary per association (i.e. the TCB):
 | |
| 	 *
 | |
| 	 * Ack State : This flag indicates if the next received packet
 | |
| 	 * 	     : is to be responded to with a SACK. ...
 | |
| 	 *	     : When DATA chunks are out of order, SACK's
 | |
| 	 *           : are not delayed (see Section 6).
 | |
| 	 *
 | |
| 	 * [This is actually not mentioned in Section 6, but we
 | |
| 	 * implement it here anyway. --piggy]
 | |
| 	 */
 | |
| 	if (max_tsn_seen != ctsn)
 | |
| 		asoc->peer.sack_needed = 1;
 | |
| 
 | |
| 	/* From 6.2  Acknowledgement on Reception of DATA Chunks:
 | |
| 	 *
 | |
| 	 * Section 4.2 of [RFC2581] SHOULD be followed. Specifically,
 | |
| 	 * an acknowledgement SHOULD be generated for at least every
 | |
| 	 * second packet (not every second DATA chunk) received, and
 | |
| 	 * SHOULD be generated within 200 ms of the arrival of any
 | |
| 	 * unacknowledged DATA chunk. ...
 | |
| 	 */
 | |
| 	if (!asoc->peer.sack_needed) {
 | |
| 		asoc->peer.sack_cnt++;
 | |
| 
 | |
| 		/* Set the SACK delay timeout based on the
 | |
| 		 * SACK delay for the last transport
 | |
| 		 * data was received from, or the default
 | |
| 		 * for the association.
 | |
| 		 */
 | |
| 		if (trans) {
 | |
| 			/* We will need a SACK for the next packet.  */
 | |
| 			if (asoc->peer.sack_cnt >= trans->sackfreq - 1)
 | |
| 				asoc->peer.sack_needed = 1;
 | |
| 
 | |
| 			asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] =
 | |
| 				trans->sackdelay;
 | |
| 		} else {
 | |
| 			/* We will need a SACK for the next packet.  */
 | |
| 			if (asoc->peer.sack_cnt >= asoc->sackfreq - 1)
 | |
| 				asoc->peer.sack_needed = 1;
 | |
| 
 | |
| 			asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] =
 | |
| 				asoc->sackdelay;
 | |
| 		}
 | |
| 
 | |
| 		/* Restart the SACK timer. */
 | |
| 		sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
 | |
| 				SCTP_TO(SCTP_EVENT_TIMEOUT_SACK));
 | |
| 	} else {
 | |
| 		asoc->a_rwnd = asoc->rwnd;
 | |
| 		sack = sctp_make_sack(asoc);
 | |
| 		if (!sack)
 | |
| 			goto nomem;
 | |
| 
 | |
| 		asoc->peer.sack_needed = 0;
 | |
| 		asoc->peer.sack_cnt = 0;
 | |
| 
 | |
| 		sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(sack));
 | |
| 
 | |
| 		/* Stop the SACK timer.  */
 | |
| 		sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
 | |
| 				SCTP_TO(SCTP_EVENT_TIMEOUT_SACK));
 | |
| 	}
 | |
| 
 | |
| 	return error;
 | |
| nomem:
 | |
| 	error = -ENOMEM;
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /* When the T3-RTX timer expires, it calls this function to create the
 | |
|  * relevant state machine event.
 | |
|  */
 | |
| void sctp_generate_t3_rtx_event(unsigned long peer)
 | |
| {
 | |
| 	int error;
 | |
| 	struct sctp_transport *transport = (struct sctp_transport *) peer;
 | |
| 	struct sctp_association *asoc = transport->asoc;
 | |
| 	struct net *net = sock_net(asoc->base.sk);
 | |
| 
 | |
| 	/* Check whether a task is in the sock.  */
 | |
| 
 | |
| 	bh_lock_sock(asoc->base.sk);
 | |
| 	if (sock_owned_by_user(asoc->base.sk)) {
 | |
| 		pr_debug("%s: sock is busy\n", __func__);
 | |
| 
 | |
| 		/* Try again later.  */
 | |
| 		if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20)))
 | |
| 			sctp_transport_hold(transport);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* Is this transport really dead and just waiting around for
 | |
| 	 * the timer to let go of the reference?
 | |
| 	 */
 | |
| 	if (transport->dead)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/* Run through the state machine.  */
 | |
| 	error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
 | |
| 			   SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX),
 | |
| 			   asoc->state,
 | |
| 			   asoc->ep, asoc,
 | |
| 			   transport, GFP_ATOMIC);
 | |
| 
 | |
| 	if (error)
 | |
| 		asoc->base.sk->sk_err = -error;
 | |
| 
 | |
| out_unlock:
 | |
| 	bh_unlock_sock(asoc->base.sk);
 | |
| 	sctp_transport_put(transport);
 | |
| }
 | |
| 
 | |
| /* This is a sa interface for producing timeout events.  It works
 | |
|  * for timeouts which use the association as their parameter.
 | |
|  */
 | |
| static void sctp_generate_timeout_event(struct sctp_association *asoc,
 | |
| 					sctp_event_timeout_t timeout_type)
 | |
| {
 | |
| 	struct net *net = sock_net(asoc->base.sk);
 | |
| 	int error = 0;
 | |
| 
 | |
| 	bh_lock_sock(asoc->base.sk);
 | |
| 	if (sock_owned_by_user(asoc->base.sk)) {
 | |
| 		pr_debug("%s: sock is busy: timer %d\n", __func__,
 | |
| 			 timeout_type);
 | |
| 
 | |
| 		/* Try again later.  */
 | |
| 		if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20)))
 | |
| 			sctp_association_hold(asoc);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* Is this association really dead and just waiting around for
 | |
| 	 * the timer to let go of the reference?
 | |
| 	 */
 | |
| 	if (asoc->base.dead)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/* Run through the state machine.  */
 | |
| 	error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
 | |
| 			   SCTP_ST_TIMEOUT(timeout_type),
 | |
| 			   asoc->state, asoc->ep, asoc,
 | |
| 			   (void *)timeout_type, GFP_ATOMIC);
 | |
| 
 | |
| 	if (error)
 | |
| 		asoc->base.sk->sk_err = -error;
 | |
| 
 | |
| out_unlock:
 | |
| 	bh_unlock_sock(asoc->base.sk);
 | |
| 	sctp_association_put(asoc);
 | |
| }
 | |
| 
 | |
| static void sctp_generate_t1_cookie_event(unsigned long data)
 | |
| {
 | |
| 	struct sctp_association *asoc = (struct sctp_association *) data;
 | |
| 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE);
 | |
| }
 | |
| 
 | |
| static void sctp_generate_t1_init_event(unsigned long data)
 | |
| {
 | |
| 	struct sctp_association *asoc = (struct sctp_association *) data;
 | |
| 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT);
 | |
| }
 | |
| 
 | |
| static void sctp_generate_t2_shutdown_event(unsigned long data)
 | |
| {
 | |
| 	struct sctp_association *asoc = (struct sctp_association *) data;
 | |
| 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN);
 | |
| }
 | |
| 
 | |
| static void sctp_generate_t4_rto_event(unsigned long data)
 | |
| {
 | |
| 	struct sctp_association *asoc = (struct sctp_association *) data;
 | |
| 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T4_RTO);
 | |
| }
 | |
| 
 | |
| static void sctp_generate_t5_shutdown_guard_event(unsigned long data)
 | |
| {
 | |
| 	struct sctp_association *asoc = (struct sctp_association *)data;
 | |
| 	sctp_generate_timeout_event(asoc,
 | |
| 				    SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD);
 | |
| 
 | |
| } /* sctp_generate_t5_shutdown_guard_event() */
 | |
| 
 | |
| static void sctp_generate_autoclose_event(unsigned long data)
 | |
| {
 | |
| 	struct sctp_association *asoc = (struct sctp_association *) data;
 | |
| 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE);
 | |
| }
 | |
| 
 | |
| /* Generate a heart beat event.  If the sock is busy, reschedule.   Make
 | |
|  * sure that the transport is still valid.
 | |
|  */
 | |
| void sctp_generate_heartbeat_event(unsigned long data)
 | |
| {
 | |
| 	int error = 0;
 | |
| 	struct sctp_transport *transport = (struct sctp_transport *) data;
 | |
| 	struct sctp_association *asoc = transport->asoc;
 | |
| 	struct net *net = sock_net(asoc->base.sk);
 | |
| 
 | |
| 	bh_lock_sock(asoc->base.sk);
 | |
| 	if (sock_owned_by_user(asoc->base.sk)) {
 | |
| 		pr_debug("%s: sock is busy\n", __func__);
 | |
| 
 | |
| 		/* Try again later.  */
 | |
| 		if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20)))
 | |
| 			sctp_transport_hold(transport);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* Is this structure just waiting around for us to actually
 | |
| 	 * get destroyed?
 | |
| 	 */
 | |
| 	if (transport->dead)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
 | |
| 			   SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT),
 | |
| 			   asoc->state, asoc->ep, asoc,
 | |
| 			   transport, GFP_ATOMIC);
 | |
| 
 | |
| 	 if (error)
 | |
| 		 asoc->base.sk->sk_err = -error;
 | |
| 
 | |
| out_unlock:
 | |
| 	bh_unlock_sock(asoc->base.sk);
 | |
| 	sctp_transport_put(transport);
 | |
| }
 | |
| 
 | |
| /* Handle the timeout of the ICMP protocol unreachable timer.  Trigger
 | |
|  * the correct state machine transition that will close the association.
 | |
|  */
 | |
| void sctp_generate_proto_unreach_event(unsigned long data)
 | |
| {
 | |
| 	struct sctp_transport *transport = (struct sctp_transport *) data;
 | |
| 	struct sctp_association *asoc = transport->asoc;
 | |
| 	struct net *net = sock_net(asoc->base.sk);
 | |
| 
 | |
| 	bh_lock_sock(asoc->base.sk);
 | |
| 	if (sock_owned_by_user(asoc->base.sk)) {
 | |
| 		pr_debug("%s: sock is busy\n", __func__);
 | |
| 
 | |
| 		/* Try again later.  */
 | |
| 		if (!mod_timer(&transport->proto_unreach_timer,
 | |
| 				jiffies + (HZ/20)))
 | |
| 			sctp_association_hold(asoc);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* Is this structure just waiting around for us to actually
 | |
| 	 * get destroyed?
 | |
| 	 */
 | |
| 	if (asoc->base.dead)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	sctp_do_sm(net, SCTP_EVENT_T_OTHER,
 | |
| 		   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
 | |
| 		   asoc->state, asoc->ep, asoc, transport, GFP_ATOMIC);
 | |
| 
 | |
| out_unlock:
 | |
| 	bh_unlock_sock(asoc->base.sk);
 | |
| 	sctp_association_put(asoc);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Inject a SACK Timeout event into the state machine.  */
 | |
| static void sctp_generate_sack_event(unsigned long data)
 | |
| {
 | |
| 	struct sctp_association *asoc = (struct sctp_association *) data;
 | |
| 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK);
 | |
| }
 | |
| 
 | |
| sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = {
 | |
| 	NULL,
 | |
| 	sctp_generate_t1_cookie_event,
 | |
| 	sctp_generate_t1_init_event,
 | |
| 	sctp_generate_t2_shutdown_event,
 | |
| 	NULL,
 | |
| 	sctp_generate_t4_rto_event,
 | |
| 	sctp_generate_t5_shutdown_guard_event,
 | |
| 	NULL,
 | |
| 	sctp_generate_sack_event,
 | |
| 	sctp_generate_autoclose_event,
 | |
| };
 | |
| 
 | |
| 
 | |
| /* RFC 2960 8.2 Path Failure Detection
 | |
|  *
 | |
|  * When its peer endpoint is multi-homed, an endpoint should keep a
 | |
|  * error counter for each of the destination transport addresses of the
 | |
|  * peer endpoint.
 | |
|  *
 | |
|  * Each time the T3-rtx timer expires on any address, or when a
 | |
|  * HEARTBEAT sent to an idle address is not acknowledged within a RTO,
 | |
|  * the error counter of that destination address will be incremented.
 | |
|  * When the value in the error counter exceeds the protocol parameter
 | |
|  * 'Path.Max.Retrans' of that destination address, the endpoint should
 | |
|  * mark the destination transport address as inactive, and a
 | |
|  * notification SHOULD be sent to the upper layer.
 | |
|  *
 | |
|  */
 | |
| static void sctp_do_8_2_transport_strike(sctp_cmd_seq_t *commands,
 | |
| 					 struct sctp_association *asoc,
 | |
| 					 struct sctp_transport *transport,
 | |
| 					 int is_hb)
 | |
| {
 | |
| 	/* The check for association's overall error counter exceeding the
 | |
| 	 * threshold is done in the state function.
 | |
| 	 */
 | |
| 	/* We are here due to a timer expiration.  If the timer was
 | |
| 	 * not a HEARTBEAT, then normal error tracking is done.
 | |
| 	 * If the timer was a heartbeat, we only increment error counts
 | |
| 	 * when we already have an outstanding HEARTBEAT that has not
 | |
| 	 * been acknowledged.
 | |
| 	 * Additionally, some tranport states inhibit error increments.
 | |
| 	 */
 | |
| 	if (!is_hb) {
 | |
| 		asoc->overall_error_count++;
 | |
| 		if (transport->state != SCTP_INACTIVE)
 | |
| 			transport->error_count++;
 | |
| 	 } else if (transport->hb_sent) {
 | |
| 		if (transport->state != SCTP_UNCONFIRMED)
 | |
| 			asoc->overall_error_count++;
 | |
| 		if (transport->state != SCTP_INACTIVE)
 | |
| 			transport->error_count++;
 | |
| 	}
 | |
| 
 | |
| 	/* If the transport error count is greater than the pf_retrans
 | |
| 	 * threshold, and less than pathmaxrtx, and if the current state
 | |
| 	 * is SCTP_ACTIVE, then mark this transport as Partially Failed,
 | |
| 	 * see SCTP Quick Failover Draft, section 5.1
 | |
| 	 */
 | |
| 	if ((transport->state == SCTP_ACTIVE) &&
 | |
| 	   (asoc->pf_retrans < transport->pathmaxrxt) &&
 | |
| 	   (transport->error_count > asoc->pf_retrans)) {
 | |
| 
 | |
| 		sctp_assoc_control_transport(asoc, transport,
 | |
| 					     SCTP_TRANSPORT_PF,
 | |
| 					     0);
 | |
| 
 | |
| 		/* Update the hb timer to resend a heartbeat every rto */
 | |
| 		sctp_cmd_hb_timer_update(commands, transport);
 | |
| 	}
 | |
| 
 | |
| 	if (transport->state != SCTP_INACTIVE &&
 | |
| 	    (transport->error_count > transport->pathmaxrxt)) {
 | |
| 		pr_debug("%s: association:%p transport addr:%pISpc failed\n",
 | |
| 			 __func__, asoc, &transport->ipaddr.sa);
 | |
| 
 | |
| 		sctp_assoc_control_transport(asoc, transport,
 | |
| 					     SCTP_TRANSPORT_DOWN,
 | |
| 					     SCTP_FAILED_THRESHOLD);
 | |
| 	}
 | |
| 
 | |
| 	/* E2) For the destination address for which the timer
 | |
| 	 * expires, set RTO <- RTO * 2 ("back off the timer").  The
 | |
| 	 * maximum value discussed in rule C7 above (RTO.max) may be
 | |
| 	 * used to provide an upper bound to this doubling operation.
 | |
| 	 *
 | |
| 	 * Special Case:  the first HB doesn't trigger exponential backoff.
 | |
| 	 * The first unacknowledged HB triggers it.  We do this with a flag
 | |
| 	 * that indicates that we have an outstanding HB.
 | |
| 	 */
 | |
| 	if (!is_hb || transport->hb_sent) {
 | |
| 		transport->rto = min((transport->rto * 2), transport->asoc->rto_max);
 | |
| 		sctp_max_rto(asoc, transport);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Worker routine to handle INIT command failure.  */
 | |
| static void sctp_cmd_init_failed(sctp_cmd_seq_t *commands,
 | |
| 				 struct sctp_association *asoc,
 | |
| 				 unsigned int error)
 | |
| {
 | |
| 	struct sctp_ulpevent *event;
 | |
| 
 | |
| 	event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_CANT_STR_ASSOC,
 | |
| 						(__u16)error, 0, 0, NULL,
 | |
| 						GFP_ATOMIC);
 | |
| 
 | |
| 	if (event)
 | |
| 		sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
 | |
| 				SCTP_ULPEVENT(event));
 | |
| 
 | |
| 	sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
 | |
| 			SCTP_STATE(SCTP_STATE_CLOSED));
 | |
| 
 | |
| 	/* SEND_FAILED sent later when cleaning up the association. */
 | |
| 	asoc->outqueue.error = error;
 | |
| 	sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
 | |
| }
 | |
| 
 | |
| /* Worker routine to handle SCTP_CMD_ASSOC_FAILED.  */
 | |
| static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *commands,
 | |
| 				  struct sctp_association *asoc,
 | |
| 				  sctp_event_t event_type,
 | |
| 				  sctp_subtype_t subtype,
 | |
| 				  struct sctp_chunk *chunk,
 | |
| 				  unsigned int error)
 | |
| {
 | |
| 	struct sctp_ulpevent *event;
 | |
| 	struct sctp_chunk *abort;
 | |
| 	/* Cancel any partial delivery in progress. */
 | |
| 	sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC);
 | |
| 
 | |
| 	if (event_type == SCTP_EVENT_T_CHUNK && subtype.chunk == SCTP_CID_ABORT)
 | |
| 		event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST,
 | |
| 						(__u16)error, 0, 0, chunk,
 | |
| 						GFP_ATOMIC);
 | |
| 	else
 | |
| 		event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST,
 | |
| 						(__u16)error, 0, 0, NULL,
 | |
| 						GFP_ATOMIC);
 | |
| 	if (event)
 | |
| 		sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
 | |
| 				SCTP_ULPEVENT(event));
 | |
| 
 | |
| 	if (asoc->overall_error_count >= asoc->max_retrans) {
 | |
| 		abort = sctp_make_violation_max_retrans(asoc, chunk);
 | |
| 		if (abort)
 | |
| 			sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
 | |
| 					SCTP_CHUNK(abort));
 | |
| 	}
 | |
| 
 | |
| 	sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
 | |
| 			SCTP_STATE(SCTP_STATE_CLOSED));
 | |
| 
 | |
| 	/* SEND_FAILED sent later when cleaning up the association. */
 | |
| 	asoc->outqueue.error = error;
 | |
| 	sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
 | |
| }
 | |
| 
 | |
| /* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT
 | |
|  * inside the cookie.  In reality, this is only used for INIT-ACK processing
 | |
|  * since all other cases use "temporary" associations and can do all
 | |
|  * their work in statefuns directly.
 | |
|  */
 | |
| static int sctp_cmd_process_init(sctp_cmd_seq_t *commands,
 | |
| 				 struct sctp_association *asoc,
 | |
| 				 struct sctp_chunk *chunk,
 | |
| 				 sctp_init_chunk_t *peer_init,
 | |
| 				 gfp_t gfp)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	/* We only process the init as a sideeffect in a single
 | |
| 	 * case.   This is when we process the INIT-ACK.   If we
 | |
| 	 * fail during INIT processing (due to malloc problems),
 | |
| 	 * just return the error and stop processing the stack.
 | |
| 	 */
 | |
| 	if (!sctp_process_init(asoc, chunk, sctp_source(chunk), peer_init, gfp))
 | |
| 		error = -ENOMEM;
 | |
| 	else
 | |
| 		error = 0;
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /* Helper function to break out starting up of heartbeat timers.  */
 | |
| static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *cmds,
 | |
| 				     struct sctp_association *asoc)
 | |
| {
 | |
| 	struct sctp_transport *t;
 | |
| 
 | |
| 	/* Start a heartbeat timer for each transport on the association.
 | |
| 	 * hold a reference on the transport to make sure none of
 | |
| 	 * the needed data structures go away.
 | |
| 	 */
 | |
| 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
 | |
| 
 | |
| 		if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t)))
 | |
| 			sctp_transport_hold(t);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *cmds,
 | |
| 				    struct sctp_association *asoc)
 | |
| {
 | |
| 	struct sctp_transport *t;
 | |
| 
 | |
| 	/* Stop all heartbeat timers. */
 | |
| 
 | |
| 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
 | |
| 			transports) {
 | |
| 		if (del_timer(&t->hb_timer))
 | |
| 			sctp_transport_put(t);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Helper function to stop any pending T3-RTX timers */
 | |
| static void sctp_cmd_t3_rtx_timers_stop(sctp_cmd_seq_t *cmds,
 | |
| 					struct sctp_association *asoc)
 | |
| {
 | |
| 	struct sctp_transport *t;
 | |
| 
 | |
| 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
 | |
| 			transports) {
 | |
| 		if (del_timer(&t->T3_rtx_timer))
 | |
| 			sctp_transport_put(t);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Helper function to update the heartbeat timer. */
 | |
| static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *cmds,
 | |
| 				     struct sctp_transport *t)
 | |
| {
 | |
| 	/* Update the heartbeat timer.  */
 | |
| 	if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t)))
 | |
| 		sctp_transport_hold(t);
 | |
| }
 | |
| 
 | |
| /* Helper function to handle the reception of an HEARTBEAT ACK.  */
 | |
| static void sctp_cmd_transport_on(sctp_cmd_seq_t *cmds,
 | |
| 				  struct sctp_association *asoc,
 | |
| 				  struct sctp_transport *t,
 | |
| 				  struct sctp_chunk *chunk)
 | |
| {
 | |
| 	sctp_sender_hb_info_t *hbinfo;
 | |
| 	int was_unconfirmed = 0;
 | |
| 
 | |
| 	/* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the
 | |
| 	 * HEARTBEAT should clear the error counter of the destination
 | |
| 	 * transport address to which the HEARTBEAT was sent.
 | |
| 	 */
 | |
| 	t->error_count = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Although RFC4960 specifies that the overall error count must
 | |
| 	 * be cleared when a HEARTBEAT ACK is received, we make an
 | |
| 	 * exception while in SHUTDOWN PENDING. If the peer keeps its
 | |
| 	 * window shut forever, we may never be able to transmit our
 | |
| 	 * outstanding data and rely on the retransmission limit be reached
 | |
| 	 * to shutdown the association.
 | |
| 	 */
 | |
| 	if (t->asoc->state != SCTP_STATE_SHUTDOWN_PENDING)
 | |
| 		t->asoc->overall_error_count = 0;
 | |
| 
 | |
| 	/* Clear the hb_sent flag to signal that we had a good
 | |
| 	 * acknowledgement.
 | |
| 	 */
 | |
| 	t->hb_sent = 0;
 | |
| 
 | |
| 	/* Mark the destination transport address as active if it is not so
 | |
| 	 * marked.
 | |
| 	 */
 | |
| 	if ((t->state == SCTP_INACTIVE) || (t->state == SCTP_UNCONFIRMED)) {
 | |
| 		was_unconfirmed = 1;
 | |
| 		sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP,
 | |
| 					     SCTP_HEARTBEAT_SUCCESS);
 | |
| 	}
 | |
| 
 | |
| 	if (t->state == SCTP_PF)
 | |
| 		sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP,
 | |
| 					     SCTP_HEARTBEAT_SUCCESS);
 | |
| 
 | |
| 	/* HB-ACK was received for a the proper HB.  Consider this
 | |
| 	 * forward progress.
 | |
| 	 */
 | |
| 	if (t->dst)
 | |
| 		dst_confirm(t->dst);
 | |
| 
 | |
| 	/* The receiver of the HEARTBEAT ACK should also perform an
 | |
| 	 * RTT measurement for that destination transport address
 | |
| 	 * using the time value carried in the HEARTBEAT ACK chunk.
 | |
| 	 * If the transport's rto_pending variable has been cleared,
 | |
| 	 * it was most likely due to a retransmit.  However, we want
 | |
| 	 * to re-enable it to properly update the rto.
 | |
| 	 */
 | |
| 	if (t->rto_pending == 0)
 | |
| 		t->rto_pending = 1;
 | |
| 
 | |
| 	hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data;
 | |
| 	sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at));
 | |
| 
 | |
| 	/* Update the heartbeat timer.  */
 | |
| 	if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t)))
 | |
| 		sctp_transport_hold(t);
 | |
| 
 | |
| 	if (was_unconfirmed && asoc->peer.transport_count == 1)
 | |
| 		sctp_transport_immediate_rtx(t);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Helper function to process the process SACK command.  */
 | |
| static int sctp_cmd_process_sack(sctp_cmd_seq_t *cmds,
 | |
| 				 struct sctp_association *asoc,
 | |
| 				 struct sctp_chunk *chunk)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (sctp_outq_sack(&asoc->outqueue, chunk)) {
 | |
| 		struct net *net = sock_net(asoc->base.sk);
 | |
| 
 | |
| 		/* There are no more TSNs awaiting SACK.  */
 | |
| 		err = sctp_do_sm(net, SCTP_EVENT_T_OTHER,
 | |
| 				 SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN),
 | |
| 				 asoc->state, asoc->ep, asoc, NULL,
 | |
| 				 GFP_ATOMIC);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* Helper function to set the timeout value for T2-SHUTDOWN timer and to set
 | |
|  * the transport for a shutdown chunk.
 | |
|  */
 | |
| static void sctp_cmd_setup_t2(sctp_cmd_seq_t *cmds,
 | |
| 			      struct sctp_association *asoc,
 | |
| 			      struct sctp_chunk *chunk)
 | |
| {
 | |
| 	struct sctp_transport *t;
 | |
| 
 | |
| 	if (chunk->transport)
 | |
| 		t = chunk->transport;
 | |
| 	else {
 | |
| 		t = sctp_assoc_choose_alter_transport(asoc,
 | |
| 					      asoc->shutdown_last_sent_to);
 | |
| 		chunk->transport = t;
 | |
| 	}
 | |
| 	asoc->shutdown_last_sent_to = t;
 | |
| 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto;
 | |
| }
 | |
| 
 | |
| /* Helper function to change the state of an association. */
 | |
| static void sctp_cmd_new_state(sctp_cmd_seq_t *cmds,
 | |
| 			       struct sctp_association *asoc,
 | |
| 			       sctp_state_t state)
 | |
| {
 | |
| 	struct sock *sk = asoc->base.sk;
 | |
| 
 | |
| 	asoc->state = state;
 | |
| 
 | |
| 	pr_debug("%s: asoc:%p[%s]\n", __func__, asoc, sctp_state_tbl[state]);
 | |
| 
 | |
| 	if (sctp_style(sk, TCP)) {
 | |
| 		/* Change the sk->sk_state of a TCP-style socket that has
 | |
| 		 * successfully completed a connect() call.
 | |
| 		 */
 | |
| 		if (sctp_state(asoc, ESTABLISHED) && sctp_sstate(sk, CLOSED))
 | |
| 			sk->sk_state = SCTP_SS_ESTABLISHED;
 | |
| 
 | |
| 		/* Set the RCV_SHUTDOWN flag when a SHUTDOWN is received. */
 | |
| 		if (sctp_state(asoc, SHUTDOWN_RECEIVED) &&
 | |
| 		    sctp_sstate(sk, ESTABLISHED))
 | |
| 			sk->sk_shutdown |= RCV_SHUTDOWN;
 | |
| 	}
 | |
| 
 | |
| 	if (sctp_state(asoc, COOKIE_WAIT)) {
 | |
| 		/* Reset init timeouts since they may have been
 | |
| 		 * increased due to timer expirations.
 | |
| 		 */
 | |
| 		asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] =
 | |
| 						asoc->rto_initial;
 | |
| 		asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] =
 | |
| 						asoc->rto_initial;
 | |
| 	}
 | |
| 
 | |
| 	if (sctp_state(asoc, ESTABLISHED) ||
 | |
| 	    sctp_state(asoc, CLOSED) ||
 | |
| 	    sctp_state(asoc, SHUTDOWN_RECEIVED)) {
 | |
| 		/* Wake up any processes waiting in the asoc's wait queue in
 | |
| 		 * sctp_wait_for_connect() or sctp_wait_for_sndbuf().
 | |
| 		 */
 | |
| 		if (waitqueue_active(&asoc->wait))
 | |
| 			wake_up_interruptible(&asoc->wait);
 | |
| 
 | |
| 		/* Wake up any processes waiting in the sk's sleep queue of
 | |
| 		 * a TCP-style or UDP-style peeled-off socket in
 | |
| 		 * sctp_wait_for_accept() or sctp_wait_for_packet().
 | |
| 		 * For a UDP-style socket, the waiters are woken up by the
 | |
| 		 * notifications.
 | |
| 		 */
 | |
| 		if (!sctp_style(sk, UDP))
 | |
| 			sk->sk_state_change(sk);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Helper function to delete an association. */
 | |
| static void sctp_cmd_delete_tcb(sctp_cmd_seq_t *cmds,
 | |
| 				struct sctp_association *asoc)
 | |
| {
 | |
| 	struct sock *sk = asoc->base.sk;
 | |
| 
 | |
| 	/* If it is a non-temporary association belonging to a TCP-style
 | |
| 	 * listening socket that is not closed, do not free it so that accept()
 | |
| 	 * can pick it up later.
 | |
| 	 */
 | |
| 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING) &&
 | |
| 	    (!asoc->temp) && (sk->sk_shutdown != SHUTDOWN_MASK))
 | |
| 		return;
 | |
| 
 | |
| 	sctp_unhash_established(asoc);
 | |
| 	sctp_association_free(asoc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ADDIP Section 4.1 ASCONF Chunk Procedures
 | |
|  * A4) Start a T-4 RTO timer, using the RTO value of the selected
 | |
|  * destination address (we use active path instead of primary path just
 | |
|  * because primary path may be inactive.
 | |
|  */
 | |
| static void sctp_cmd_setup_t4(sctp_cmd_seq_t *cmds,
 | |
| 				struct sctp_association *asoc,
 | |
| 				struct sctp_chunk *chunk)
 | |
| {
 | |
| 	struct sctp_transport *t;
 | |
| 
 | |
| 	t = sctp_assoc_choose_alter_transport(asoc, chunk->transport);
 | |
| 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = t->rto;
 | |
| 	chunk->transport = t;
 | |
| }
 | |
| 
 | |
| /* Process an incoming Operation Error Chunk. */
 | |
| static void sctp_cmd_process_operr(sctp_cmd_seq_t *cmds,
 | |
| 				   struct sctp_association *asoc,
 | |
| 				   struct sctp_chunk *chunk)
 | |
| {
 | |
| 	struct sctp_errhdr *err_hdr;
 | |
| 	struct sctp_ulpevent *ev;
 | |
| 
 | |
| 	while (chunk->chunk_end > chunk->skb->data) {
 | |
| 		err_hdr = (struct sctp_errhdr *)(chunk->skb->data);
 | |
| 
 | |
| 		ev = sctp_ulpevent_make_remote_error(asoc, chunk, 0,
 | |
| 						     GFP_ATOMIC);
 | |
| 		if (!ev)
 | |
| 			return;
 | |
| 
 | |
| 		sctp_ulpq_tail_event(&asoc->ulpq, ev);
 | |
| 
 | |
| 		switch (err_hdr->cause) {
 | |
| 		case SCTP_ERROR_UNKNOWN_CHUNK:
 | |
| 		{
 | |
| 			sctp_chunkhdr_t *unk_chunk_hdr;
 | |
| 
 | |
| 			unk_chunk_hdr = (sctp_chunkhdr_t *)err_hdr->variable;
 | |
| 			switch (unk_chunk_hdr->type) {
 | |
| 			/* ADDIP 4.1 A9) If the peer responds to an ASCONF with
 | |
| 			 * an ERROR chunk reporting that it did not recognized
 | |
| 			 * the ASCONF chunk type, the sender of the ASCONF MUST
 | |
| 			 * NOT send any further ASCONF chunks and MUST stop its
 | |
| 			 * T-4 timer.
 | |
| 			 */
 | |
| 			case SCTP_CID_ASCONF:
 | |
| 				if (asoc->peer.asconf_capable == 0)
 | |
| 					break;
 | |
| 
 | |
| 				asoc->peer.asconf_capable = 0;
 | |
| 				sctp_add_cmd_sf(cmds, SCTP_CMD_TIMER_STOP,
 | |
| 					SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO));
 | |
| 				break;
 | |
| 			default:
 | |
| 				break;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Process variable FWDTSN chunk information. */
 | |
| static void sctp_cmd_process_fwdtsn(struct sctp_ulpq *ulpq,
 | |
| 				    struct sctp_chunk *chunk)
 | |
| {
 | |
| 	struct sctp_fwdtsn_skip *skip;
 | |
| 	/* Walk through all the skipped SSNs */
 | |
| 	sctp_walk_fwdtsn(skip, chunk) {
 | |
| 		sctp_ulpq_skip(ulpq, ntohs(skip->stream), ntohs(skip->ssn));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Helper function to remove the association non-primary peer
 | |
|  * transports.
 | |
|  */
 | |
| static void sctp_cmd_del_non_primary(struct sctp_association *asoc)
 | |
| {
 | |
| 	struct sctp_transport *t;
 | |
| 	struct list_head *pos;
 | |
| 	struct list_head *temp;
 | |
| 
 | |
| 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
 | |
| 		t = list_entry(pos, struct sctp_transport, transports);
 | |
| 		if (!sctp_cmp_addr_exact(&t->ipaddr,
 | |
| 					 &asoc->peer.primary_addr)) {
 | |
| 			sctp_assoc_del_peer(asoc, &t->ipaddr);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Helper function to set sk_err on a 1-1 style socket. */
 | |
| static void sctp_cmd_set_sk_err(struct sctp_association *asoc, int error)
 | |
| {
 | |
| 	struct sock *sk = asoc->base.sk;
 | |
| 
 | |
| 	if (!sctp_style(sk, UDP))
 | |
| 		sk->sk_err = error;
 | |
| }
 | |
| 
 | |
| /* Helper function to generate an association change event */
 | |
| static void sctp_cmd_assoc_change(sctp_cmd_seq_t *commands,
 | |
| 				 struct sctp_association *asoc,
 | |
| 				 u8 state)
 | |
| {
 | |
| 	struct sctp_ulpevent *ev;
 | |
| 
 | |
| 	ev = sctp_ulpevent_make_assoc_change(asoc, 0, state, 0,
 | |
| 					    asoc->c.sinit_num_ostreams,
 | |
| 					    asoc->c.sinit_max_instreams,
 | |
| 					    NULL, GFP_ATOMIC);
 | |
| 	if (ev)
 | |
| 		sctp_ulpq_tail_event(&asoc->ulpq, ev);
 | |
| }
 | |
| 
 | |
| /* Helper function to generate an adaptation indication event */
 | |
| static void sctp_cmd_adaptation_ind(sctp_cmd_seq_t *commands,
 | |
| 				    struct sctp_association *asoc)
 | |
| {
 | |
| 	struct sctp_ulpevent *ev;
 | |
| 
 | |
| 	ev = sctp_ulpevent_make_adaptation_indication(asoc, GFP_ATOMIC);
 | |
| 
 | |
| 	if (ev)
 | |
| 		sctp_ulpq_tail_event(&asoc->ulpq, ev);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void sctp_cmd_t1_timer_update(struct sctp_association *asoc,
 | |
| 				    sctp_event_timeout_t timer,
 | |
| 				    char *name)
 | |
| {
 | |
| 	struct sctp_transport *t;
 | |
| 
 | |
| 	t = asoc->init_last_sent_to;
 | |
| 	asoc->init_err_counter++;
 | |
| 
 | |
| 	if (t->init_sent_count > (asoc->init_cycle + 1)) {
 | |
| 		asoc->timeouts[timer] *= 2;
 | |
| 		if (asoc->timeouts[timer] > asoc->max_init_timeo) {
 | |
| 			asoc->timeouts[timer] = asoc->max_init_timeo;
 | |
| 		}
 | |
| 		asoc->init_cycle++;
 | |
| 
 | |
| 		pr_debug("%s: T1[%s] timeout adjustment init_err_counter:%d"
 | |
| 			 " cycle:%d timeout:%ld\n", __func__, name,
 | |
| 			 asoc->init_err_counter, asoc->init_cycle,
 | |
| 			 asoc->timeouts[timer]);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Send the whole message, chunk by chunk, to the outqueue.
 | |
|  * This way the whole message is queued up and bundling if
 | |
|  * encouraged for small fragments.
 | |
|  */
 | |
| static int sctp_cmd_send_msg(struct sctp_association *asoc,
 | |
| 				struct sctp_datamsg *msg)
 | |
| {
 | |
| 	struct sctp_chunk *chunk;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	list_for_each_entry(chunk, &msg->chunks, frag_list) {
 | |
| 		error = sctp_outq_tail(&asoc->outqueue, chunk);
 | |
| 		if (error)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Sent the next ASCONF packet currently stored in the association.
 | |
|  * This happens after the ASCONF_ACK was succeffully processed.
 | |
|  */
 | |
| static void sctp_cmd_send_asconf(struct sctp_association *asoc)
 | |
| {
 | |
| 	struct net *net = sock_net(asoc->base.sk);
 | |
| 
 | |
| 	/* Send the next asconf chunk from the addip chunk
 | |
| 	 * queue.
 | |
| 	 */
 | |
| 	if (!list_empty(&asoc->addip_chunk_list)) {
 | |
| 		struct list_head *entry = asoc->addip_chunk_list.next;
 | |
| 		struct sctp_chunk *asconf = list_entry(entry,
 | |
| 						struct sctp_chunk, list);
 | |
| 		list_del_init(entry);
 | |
| 
 | |
| 		/* Hold the chunk until an ASCONF_ACK is received. */
 | |
| 		sctp_chunk_hold(asconf);
 | |
| 		if (sctp_primitive_ASCONF(net, asoc, asconf))
 | |
| 			sctp_chunk_free(asconf);
 | |
| 		else
 | |
| 			asoc->addip_last_asconf = asconf;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /* These three macros allow us to pull the debugging code out of the
 | |
|  * main flow of sctp_do_sm() to keep attention focused on the real
 | |
|  * functionality there.
 | |
|  */
 | |
| #define debug_pre_sfn() \
 | |
| 	pr_debug("%s[pre-fn]: ep:%p, %s, %s, asoc:%p[%s], %s\n", __func__, \
 | |
| 		 ep, sctp_evttype_tbl[event_type], (*debug_fn)(subtype),   \
 | |
| 		 asoc, sctp_state_tbl[state], state_fn->name)
 | |
| 
 | |
| #define debug_post_sfn() \
 | |
| 	pr_debug("%s[post-fn]: asoc:%p, status:%s\n", __func__, asoc, \
 | |
| 		 sctp_status_tbl[status])
 | |
| 
 | |
| #define debug_post_sfx() \
 | |
| 	pr_debug("%s[post-sfx]: error:%d, asoc:%p[%s]\n", __func__, error, \
 | |
| 		 asoc, sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \
 | |
| 		 sctp_assoc2id(asoc))) ? asoc->state : SCTP_STATE_CLOSED])
 | |
| 
 | |
| /*
 | |
|  * This is the master state machine processing function.
 | |
|  *
 | |
|  * If you want to understand all of lksctp, this is a
 | |
|  * good place to start.
 | |
|  */
 | |
| int sctp_do_sm(struct net *net, sctp_event_t event_type, sctp_subtype_t subtype,
 | |
| 	       sctp_state_t state,
 | |
| 	       struct sctp_endpoint *ep,
 | |
| 	       struct sctp_association *asoc,
 | |
| 	       void *event_arg,
 | |
| 	       gfp_t gfp)
 | |
| {
 | |
| 	sctp_cmd_seq_t commands;
 | |
| 	const sctp_sm_table_entry_t *state_fn;
 | |
| 	sctp_disposition_t status;
 | |
| 	int error = 0;
 | |
| 	typedef const char *(printfn_t)(sctp_subtype_t);
 | |
| 	static printfn_t *table[] = {
 | |
| 		NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname,
 | |
| 	};
 | |
| 	printfn_t *debug_fn  __attribute__ ((unused)) = table[event_type];
 | |
| 
 | |
| 	/* Look up the state function, run it, and then process the
 | |
| 	 * side effects.  These three steps are the heart of lksctp.
 | |
| 	 */
 | |
| 	state_fn = sctp_sm_lookup_event(net, event_type, state, subtype);
 | |
| 
 | |
| 	sctp_init_cmd_seq(&commands);
 | |
| 
 | |
| 	debug_pre_sfn();
 | |
| 	status = state_fn->fn(net, ep, asoc, subtype, event_arg, &commands);
 | |
| 	debug_post_sfn();
 | |
| 
 | |
| 	error = sctp_side_effects(event_type, subtype, state,
 | |
| 				  ep, asoc, event_arg, status,
 | |
| 				  &commands, gfp);
 | |
| 	debug_post_sfx();
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*****************************************************************
 | |
|  * This the master state function side effect processing function.
 | |
|  *****************************************************************/
 | |
| static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype,
 | |
| 			     sctp_state_t state,
 | |
| 			     struct sctp_endpoint *ep,
 | |
| 			     struct sctp_association *asoc,
 | |
| 			     void *event_arg,
 | |
| 			     sctp_disposition_t status,
 | |
| 			     sctp_cmd_seq_t *commands,
 | |
| 			     gfp_t gfp)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	/* FIXME - Most of the dispositions left today would be categorized
 | |
| 	 * as "exceptional" dispositions.  For those dispositions, it
 | |
| 	 * may not be proper to run through any of the commands at all.
 | |
| 	 * For example, the command interpreter might be run only with
 | |
| 	 * disposition SCTP_DISPOSITION_CONSUME.
 | |
| 	 */
 | |
| 	if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state,
 | |
| 					       ep, asoc,
 | |
| 					       event_arg, status,
 | |
| 					       commands, gfp)))
 | |
| 		goto bail;
 | |
| 
 | |
| 	switch (status) {
 | |
| 	case SCTP_DISPOSITION_DISCARD:
 | |
| 		pr_debug("%s: ignored sctp protocol event - state:%d, "
 | |
| 			 "event_type:%d, event_id:%d\n", __func__, state,
 | |
| 			 event_type, subtype.chunk);
 | |
| 		break;
 | |
| 
 | |
| 	case SCTP_DISPOSITION_NOMEM:
 | |
| 		/* We ran out of memory, so we need to discard this
 | |
| 		 * packet.
 | |
| 		 */
 | |
| 		/* BUG--we should now recover some memory, probably by
 | |
| 		 * reneging...
 | |
| 		 */
 | |
| 		error = -ENOMEM;
 | |
| 		break;
 | |
| 
 | |
| 	case SCTP_DISPOSITION_DELETE_TCB:
 | |
| 		/* This should now be a command. */
 | |
| 		break;
 | |
| 
 | |
| 	case SCTP_DISPOSITION_CONSUME:
 | |
| 	case SCTP_DISPOSITION_ABORT:
 | |
| 		/*
 | |
| 		 * We should no longer have much work to do here as the
 | |
| 		 * real work has been done as explicit commands above.
 | |
| 		 */
 | |
| 		break;
 | |
| 
 | |
| 	case SCTP_DISPOSITION_VIOLATION:
 | |
| 		net_err_ratelimited("protocol violation state %d chunkid %d\n",
 | |
| 				    state, subtype.chunk);
 | |
| 		break;
 | |
| 
 | |
| 	case SCTP_DISPOSITION_NOT_IMPL:
 | |
| 		pr_warn("unimplemented feature in state %d, event_type %d, event_id %d\n",
 | |
| 			state, event_type, subtype.chunk);
 | |
| 		break;
 | |
| 
 | |
| 	case SCTP_DISPOSITION_BUG:
 | |
| 		pr_err("bug in state %d, event_type %d, event_id %d\n",
 | |
| 		       state, event_type, subtype.chunk);
 | |
| 		BUG();
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		pr_err("impossible disposition %d in state %d, event_type %d, event_id %d\n",
 | |
| 		       status, state, event_type, subtype.chunk);
 | |
| 		BUG();
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| bail:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /********************************************************************
 | |
|  * 2nd Level Abstractions
 | |
|  ********************************************************************/
 | |
| 
 | |
| /* This is the side-effect interpreter.  */
 | |
| static int sctp_cmd_interpreter(sctp_event_t event_type,
 | |
| 				sctp_subtype_t subtype,
 | |
| 				sctp_state_t state,
 | |
| 				struct sctp_endpoint *ep,
 | |
| 				struct sctp_association *asoc,
 | |
| 				void *event_arg,
 | |
| 				sctp_disposition_t status,
 | |
| 				sctp_cmd_seq_t *commands,
 | |
| 				gfp_t gfp)
 | |
| {
 | |
| 	int error = 0;
 | |
| 	int force;
 | |
| 	sctp_cmd_t *cmd;
 | |
| 	struct sctp_chunk *new_obj;
 | |
| 	struct sctp_chunk *chunk = NULL;
 | |
| 	struct sctp_packet *packet;
 | |
| 	struct timer_list *timer;
 | |
| 	unsigned long timeout;
 | |
| 	struct sctp_transport *t;
 | |
| 	struct sctp_sackhdr sackh;
 | |
| 	int local_cork = 0;
 | |
| 
 | |
| 	if (SCTP_EVENT_T_TIMEOUT != event_type)
 | |
| 		chunk = event_arg;
 | |
| 
 | |
| 	/* Note:  This whole file is a huge candidate for rework.
 | |
| 	 * For example, each command could either have its own handler, so
 | |
| 	 * the loop would look like:
 | |
| 	 *     while (cmds)
 | |
| 	 *         cmd->handle(x, y, z)
 | |
| 	 * --jgrimm
 | |
| 	 */
 | |
| 	while (NULL != (cmd = sctp_next_cmd(commands))) {
 | |
| 		switch (cmd->verb) {
 | |
| 		case SCTP_CMD_NOP:
 | |
| 			/* Do nothing. */
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_NEW_ASOC:
 | |
| 			/* Register a new association.  */
 | |
| 			if (local_cork) {
 | |
| 				sctp_outq_uncork(&asoc->outqueue);
 | |
| 				local_cork = 0;
 | |
| 			}
 | |
| 
 | |
| 			/* Register with the endpoint.  */
 | |
| 			asoc = cmd->obj.asoc;
 | |
| 			BUG_ON(asoc->peer.primary_path == NULL);
 | |
| 			sctp_endpoint_add_asoc(ep, asoc);
 | |
| 			sctp_hash_established(asoc);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_UPDATE_ASSOC:
 | |
| 		       sctp_assoc_update(asoc, cmd->obj.asoc);
 | |
| 		       break;
 | |
| 
 | |
| 		case SCTP_CMD_PURGE_OUTQUEUE:
 | |
| 		       sctp_outq_teardown(&asoc->outqueue);
 | |
| 		       break;
 | |
| 
 | |
| 		case SCTP_CMD_DELETE_TCB:
 | |
| 			if (local_cork) {
 | |
| 				sctp_outq_uncork(&asoc->outqueue);
 | |
| 				local_cork = 0;
 | |
| 			}
 | |
| 			/* Delete the current association.  */
 | |
| 			sctp_cmd_delete_tcb(commands, asoc);
 | |
| 			asoc = NULL;
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_NEW_STATE:
 | |
| 			/* Enter a new state.  */
 | |
| 			sctp_cmd_new_state(commands, asoc, cmd->obj.state);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_REPORT_TSN:
 | |
| 			/* Record the arrival of a TSN.  */
 | |
| 			error = sctp_tsnmap_mark(&asoc->peer.tsn_map,
 | |
| 						 cmd->obj.u32, NULL);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_REPORT_FWDTSN:
 | |
| 			/* Move the Cumulattive TSN Ack ahead. */
 | |
| 			sctp_tsnmap_skip(&asoc->peer.tsn_map, cmd->obj.u32);
 | |
| 
 | |
| 			/* purge the fragmentation queue */
 | |
| 			sctp_ulpq_reasm_flushtsn(&asoc->ulpq, cmd->obj.u32);
 | |
| 
 | |
| 			/* Abort any in progress partial delivery. */
 | |
| 			sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_PROCESS_FWDTSN:
 | |
| 			sctp_cmd_process_fwdtsn(&asoc->ulpq, cmd->obj.chunk);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_GEN_SACK:
 | |
| 			/* Generate a Selective ACK.
 | |
| 			 * The argument tells us whether to just count
 | |
| 			 * the packet and MAYBE generate a SACK, or
 | |
| 			 * force a SACK out.
 | |
| 			 */
 | |
| 			force = cmd->obj.i32;
 | |
| 			error = sctp_gen_sack(asoc, force, commands);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_PROCESS_SACK:
 | |
| 			/* Process an inbound SACK.  */
 | |
| 			error = sctp_cmd_process_sack(commands, asoc,
 | |
| 						      cmd->obj.chunk);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_GEN_INIT_ACK:
 | |
| 			/* Generate an INIT ACK chunk.  */
 | |
| 			new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC,
 | |
| 						     0);
 | |
| 			if (!new_obj)
 | |
| 				goto nomem;
 | |
| 
 | |
| 			sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
 | |
| 					SCTP_CHUNK(new_obj));
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_PEER_INIT:
 | |
| 			/* Process a unified INIT from the peer.
 | |
| 			 * Note: Only used during INIT-ACK processing.  If
 | |
| 			 * there is an error just return to the outter
 | |
| 			 * layer which will bail.
 | |
| 			 */
 | |
| 			error = sctp_cmd_process_init(commands, asoc, chunk,
 | |
| 						      cmd->obj.init, gfp);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_GEN_COOKIE_ECHO:
 | |
| 			/* Generate a COOKIE ECHO chunk.  */
 | |
| 			new_obj = sctp_make_cookie_echo(asoc, chunk);
 | |
| 			if (!new_obj) {
 | |
| 				if (cmd->obj.chunk)
 | |
| 					sctp_chunk_free(cmd->obj.chunk);
 | |
| 				goto nomem;
 | |
| 			}
 | |
| 			sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
 | |
| 					SCTP_CHUNK(new_obj));
 | |
| 
 | |
| 			/* If there is an ERROR chunk to be sent along with
 | |
| 			 * the COOKIE_ECHO, send it, too.
 | |
| 			 */
 | |
| 			if (cmd->obj.chunk)
 | |
| 				sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
 | |
| 						SCTP_CHUNK(cmd->obj.chunk));
 | |
| 
 | |
| 			if (new_obj->transport) {
 | |
| 				new_obj->transport->init_sent_count++;
 | |
| 				asoc->init_last_sent_to = new_obj->transport;
 | |
| 			}
 | |
| 
 | |
| 			/* FIXME - Eventually come up with a cleaner way to
 | |
| 			 * enabling COOKIE-ECHO + DATA bundling during
 | |
| 			 * multihoming stale cookie scenarios, the following
 | |
| 			 * command plays with asoc->peer.retran_path to
 | |
| 			 * avoid the problem of sending the COOKIE-ECHO and
 | |
| 			 * DATA in different paths, which could result
 | |
| 			 * in the association being ABORTed if the DATA chunk
 | |
| 			 * is processed first by the server.  Checking the
 | |
| 			 * init error counter simply causes this command
 | |
| 			 * to be executed only during failed attempts of
 | |
| 			 * association establishment.
 | |
| 			 */
 | |
| 			if ((asoc->peer.retran_path !=
 | |
| 			     asoc->peer.primary_path) &&
 | |
| 			    (asoc->init_err_counter > 0)) {
 | |
| 				sctp_add_cmd_sf(commands,
 | |
| 						SCTP_CMD_FORCE_PRIM_RETRAN,
 | |
| 						SCTP_NULL());
 | |
| 			}
 | |
| 
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_GEN_SHUTDOWN:
 | |
| 			/* Generate SHUTDOWN when in SHUTDOWN_SENT state.
 | |
| 			 * Reset error counts.
 | |
| 			 */
 | |
| 			asoc->overall_error_count = 0;
 | |
| 
 | |
| 			/* Generate a SHUTDOWN chunk.  */
 | |
| 			new_obj = sctp_make_shutdown(asoc, chunk);
 | |
| 			if (!new_obj)
 | |
| 				goto nomem;
 | |
| 			sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
 | |
| 					SCTP_CHUNK(new_obj));
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_CHUNK_ULP:
 | |
| 			/* Send a chunk to the sockets layer.  */
 | |
| 			pr_debug("%s: sm_sideff: chunk_up:%p, ulpq:%p\n",
 | |
| 				 __func__, cmd->obj.chunk, &asoc->ulpq);
 | |
| 
 | |
| 			sctp_ulpq_tail_data(&asoc->ulpq, cmd->obj.chunk,
 | |
| 					    GFP_ATOMIC);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_EVENT_ULP:
 | |
| 			/* Send a notification to the sockets layer.  */
 | |
| 			pr_debug("%s: sm_sideff: event_up:%p, ulpq:%p\n",
 | |
| 				 __func__, cmd->obj.ulpevent, &asoc->ulpq);
 | |
| 
 | |
| 			sctp_ulpq_tail_event(&asoc->ulpq, cmd->obj.ulpevent);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_REPLY:
 | |
| 			/* If an caller has not already corked, do cork. */
 | |
| 			if (!asoc->outqueue.cork) {
 | |
| 				sctp_outq_cork(&asoc->outqueue);
 | |
| 				local_cork = 1;
 | |
| 			}
 | |
| 			/* Send a chunk to our peer.  */
 | |
| 			error = sctp_outq_tail(&asoc->outqueue, cmd->obj.chunk);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_SEND_PKT:
 | |
| 			/* Send a full packet to our peer.  */
 | |
| 			packet = cmd->obj.packet;
 | |
| 			sctp_packet_transmit(packet);
 | |
| 			sctp_ootb_pkt_free(packet);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_T1_RETRAN:
 | |
| 			/* Mark a transport for retransmission.  */
 | |
| 			sctp_retransmit(&asoc->outqueue, cmd->obj.transport,
 | |
| 					SCTP_RTXR_T1_RTX);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_RETRAN:
 | |
| 			/* Mark a transport for retransmission.  */
 | |
| 			sctp_retransmit(&asoc->outqueue, cmd->obj.transport,
 | |
| 					SCTP_RTXR_T3_RTX);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_ECN_CE:
 | |
| 			/* Do delayed CE processing.   */
 | |
| 			sctp_do_ecn_ce_work(asoc, cmd->obj.u32);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_ECN_ECNE:
 | |
| 			/* Do delayed ECNE processing. */
 | |
| 			new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32,
 | |
| 							chunk);
 | |
| 			if (new_obj)
 | |
| 				sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
 | |
| 						SCTP_CHUNK(new_obj));
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_ECN_CWR:
 | |
| 			/* Do delayed CWR processing.  */
 | |
| 			sctp_do_ecn_cwr_work(asoc, cmd->obj.u32);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_SETUP_T2:
 | |
| 			sctp_cmd_setup_t2(commands, asoc, cmd->obj.chunk);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_TIMER_START_ONCE:
 | |
| 			timer = &asoc->timers[cmd->obj.to];
 | |
| 
 | |
| 			if (timer_pending(timer))
 | |
| 				break;
 | |
| 			/* fall through */
 | |
| 
 | |
| 		case SCTP_CMD_TIMER_START:
 | |
| 			timer = &asoc->timers[cmd->obj.to];
 | |
| 			timeout = asoc->timeouts[cmd->obj.to];
 | |
| 			BUG_ON(!timeout);
 | |
| 
 | |
| 			timer->expires = jiffies + timeout;
 | |
| 			sctp_association_hold(asoc);
 | |
| 			add_timer(timer);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_TIMER_RESTART:
 | |
| 			timer = &asoc->timers[cmd->obj.to];
 | |
| 			timeout = asoc->timeouts[cmd->obj.to];
 | |
| 			if (!mod_timer(timer, jiffies + timeout))
 | |
| 				sctp_association_hold(asoc);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_TIMER_STOP:
 | |
| 			timer = &asoc->timers[cmd->obj.to];
 | |
| 			if (del_timer(timer))
 | |
| 				sctp_association_put(asoc);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_INIT_CHOOSE_TRANSPORT:
 | |
| 			chunk = cmd->obj.chunk;
 | |
| 			t = sctp_assoc_choose_alter_transport(asoc,
 | |
| 						asoc->init_last_sent_to);
 | |
| 			asoc->init_last_sent_to = t;
 | |
| 			chunk->transport = t;
 | |
| 			t->init_sent_count++;
 | |
| 			/* Set the new transport as primary */
 | |
| 			sctp_assoc_set_primary(asoc, t);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_INIT_RESTART:
 | |
| 			/* Do the needed accounting and updates
 | |
| 			 * associated with restarting an initialization
 | |
| 			 * timer. Only multiply the timeout by two if
 | |
| 			 * all transports have been tried at the current
 | |
| 			 * timeout.
 | |
| 			 */
 | |
| 			sctp_cmd_t1_timer_update(asoc,
 | |
| 						SCTP_EVENT_TIMEOUT_T1_INIT,
 | |
| 						"INIT");
 | |
| 
 | |
| 			sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
 | |
| 					SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_COOKIEECHO_RESTART:
 | |
| 			/* Do the needed accounting and updates
 | |
| 			 * associated with restarting an initialization
 | |
| 			 * timer. Only multiply the timeout by two if
 | |
| 			 * all transports have been tried at the current
 | |
| 			 * timeout.
 | |
| 			 */
 | |
| 			sctp_cmd_t1_timer_update(asoc,
 | |
| 						SCTP_EVENT_TIMEOUT_T1_COOKIE,
 | |
| 						"COOKIE");
 | |
| 
 | |
| 			/* If we've sent any data bundled with
 | |
| 			 * COOKIE-ECHO we need to resend.
 | |
| 			 */
 | |
| 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
 | |
| 					transports) {
 | |
| 				sctp_retransmit_mark(&asoc->outqueue, t,
 | |
| 					    SCTP_RTXR_T1_RTX);
 | |
| 			}
 | |
| 
 | |
| 			sctp_add_cmd_sf(commands,
 | |
| 					SCTP_CMD_TIMER_RESTART,
 | |
| 					SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE));
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_INIT_FAILED:
 | |
| 			sctp_cmd_init_failed(commands, asoc, cmd->obj.err);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_ASSOC_FAILED:
 | |
| 			sctp_cmd_assoc_failed(commands, asoc, event_type,
 | |
| 					      subtype, chunk, cmd->obj.err);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_INIT_COUNTER_INC:
 | |
| 			asoc->init_err_counter++;
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_INIT_COUNTER_RESET:
 | |
| 			asoc->init_err_counter = 0;
 | |
| 			asoc->init_cycle = 0;
 | |
| 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
 | |
| 					    transports) {
 | |
| 				t->init_sent_count = 0;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_REPORT_DUP:
 | |
| 			sctp_tsnmap_mark_dup(&asoc->peer.tsn_map,
 | |
| 					     cmd->obj.u32);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_REPORT_BAD_TAG:
 | |
| 			pr_debug("%s: vtag mismatch!\n", __func__);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_STRIKE:
 | |
| 			/* Mark one strike against a transport.  */
 | |
| 			sctp_do_8_2_transport_strike(commands, asoc,
 | |
| 						    cmd->obj.transport, 0);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_TRANSPORT_IDLE:
 | |
| 			t = cmd->obj.transport;
 | |
| 			sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_TRANSPORT_HB_SENT:
 | |
| 			t = cmd->obj.transport;
 | |
| 			sctp_do_8_2_transport_strike(commands, asoc,
 | |
| 						     t, 1);
 | |
| 			t->hb_sent = 1;
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_TRANSPORT_ON:
 | |
| 			t = cmd->obj.transport;
 | |
| 			sctp_cmd_transport_on(commands, asoc, t, chunk);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_HB_TIMERS_START:
 | |
| 			sctp_cmd_hb_timers_start(commands, asoc);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_HB_TIMER_UPDATE:
 | |
| 			t = cmd->obj.transport;
 | |
| 			sctp_cmd_hb_timer_update(commands, t);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_HB_TIMERS_STOP:
 | |
| 			sctp_cmd_hb_timers_stop(commands, asoc);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_REPORT_ERROR:
 | |
| 			error = cmd->obj.error;
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_PROCESS_CTSN:
 | |
| 			/* Dummy up a SACK for processing. */
 | |
| 			sackh.cum_tsn_ack = cmd->obj.be32;
 | |
| 			sackh.a_rwnd = asoc->peer.rwnd +
 | |
| 					asoc->outqueue.outstanding_bytes;
 | |
| 			sackh.num_gap_ack_blocks = 0;
 | |
| 			sackh.num_dup_tsns = 0;
 | |
| 			chunk->subh.sack_hdr = &sackh;
 | |
| 			sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK,
 | |
| 					SCTP_CHUNK(chunk));
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_DISCARD_PACKET:
 | |
| 			/* We need to discard the whole packet.
 | |
| 			 * Uncork the queue since there might be
 | |
| 			 * responses pending
 | |
| 			 */
 | |
| 			chunk->pdiscard = 1;
 | |
| 			if (asoc) {
 | |
| 				sctp_outq_uncork(&asoc->outqueue);
 | |
| 				local_cork = 0;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_RTO_PENDING:
 | |
| 			t = cmd->obj.transport;
 | |
| 			t->rto_pending = 1;
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_PART_DELIVER:
 | |
| 			sctp_ulpq_partial_delivery(&asoc->ulpq, GFP_ATOMIC);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_RENEGE:
 | |
| 			sctp_ulpq_renege(&asoc->ulpq, cmd->obj.chunk,
 | |
| 					 GFP_ATOMIC);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_SETUP_T4:
 | |
| 			sctp_cmd_setup_t4(commands, asoc, cmd->obj.chunk);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_PROCESS_OPERR:
 | |
| 			sctp_cmd_process_operr(commands, asoc, chunk);
 | |
| 			break;
 | |
| 		case SCTP_CMD_CLEAR_INIT_TAG:
 | |
| 			asoc->peer.i.init_tag = 0;
 | |
| 			break;
 | |
| 		case SCTP_CMD_DEL_NON_PRIMARY:
 | |
| 			sctp_cmd_del_non_primary(asoc);
 | |
| 			break;
 | |
| 		case SCTP_CMD_T3_RTX_TIMERS_STOP:
 | |
| 			sctp_cmd_t3_rtx_timers_stop(commands, asoc);
 | |
| 			break;
 | |
| 		case SCTP_CMD_FORCE_PRIM_RETRAN:
 | |
| 			t = asoc->peer.retran_path;
 | |
| 			asoc->peer.retran_path = asoc->peer.primary_path;
 | |
| 			error = sctp_outq_uncork(&asoc->outqueue);
 | |
| 			local_cork = 0;
 | |
| 			asoc->peer.retran_path = t;
 | |
| 			break;
 | |
| 		case SCTP_CMD_SET_SK_ERR:
 | |
| 			sctp_cmd_set_sk_err(asoc, cmd->obj.error);
 | |
| 			break;
 | |
| 		case SCTP_CMD_ASSOC_CHANGE:
 | |
| 			sctp_cmd_assoc_change(commands, asoc,
 | |
| 					      cmd->obj.u8);
 | |
| 			break;
 | |
| 		case SCTP_CMD_ADAPTATION_IND:
 | |
| 			sctp_cmd_adaptation_ind(commands, asoc);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_ASSOC_SHKEY:
 | |
| 			error = sctp_auth_asoc_init_active_key(asoc,
 | |
| 						GFP_ATOMIC);
 | |
| 			break;
 | |
| 		case SCTP_CMD_UPDATE_INITTAG:
 | |
| 			asoc->peer.i.init_tag = cmd->obj.u32;
 | |
| 			break;
 | |
| 		case SCTP_CMD_SEND_MSG:
 | |
| 			if (!asoc->outqueue.cork) {
 | |
| 				sctp_outq_cork(&asoc->outqueue);
 | |
| 				local_cork = 1;
 | |
| 			}
 | |
| 			error = sctp_cmd_send_msg(asoc, cmd->obj.msg);
 | |
| 			break;
 | |
| 		case SCTP_CMD_SEND_NEXT_ASCONF:
 | |
| 			sctp_cmd_send_asconf(asoc);
 | |
| 			break;
 | |
| 		case SCTP_CMD_PURGE_ASCONF_QUEUE:
 | |
| 			sctp_asconf_queue_teardown(asoc);
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CMD_SET_ASOC:
 | |
| 			asoc = cmd->obj.asoc;
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			pr_warn("Impossible command: %u\n",
 | |
| 				cmd->verb);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (error)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	/* If this is in response to a received chunk, wait until
 | |
| 	 * we are done with the packet to open the queue so that we don't
 | |
| 	 * send multiple packets in response to a single request.
 | |
| 	 */
 | |
| 	if (asoc && SCTP_EVENT_T_CHUNK == event_type && chunk) {
 | |
| 		if (chunk->end_of_packet || chunk->singleton)
 | |
| 			error = sctp_outq_uncork(&asoc->outqueue);
 | |
| 	} else if (local_cork)
 | |
| 		error = sctp_outq_uncork(&asoc->outqueue);
 | |
| 	return error;
 | |
| nomem:
 | |
| 	error = -ENOMEM;
 | |
| 	goto out;
 | |
| }
 | |
| 
 |