 593cbb3ec6
			
		
	
	
	593cbb3ec6
	
	
	
		
			
			I got a report of a double free happening at RDS slab cache. One
suspicion was that may be somewhere we were doing a sock_hold/sock_put
on an already freed sock. Thus after providing a kernel with the
following change:
 static inline void sock_hold(struct sock *sk)
 {
-       atomic_inc(&sk->sk_refcnt);
+       if (!atomic_inc_not_zero(&sk->sk_refcnt))
+               WARN(1, "Trying to hold sock already gone: %p (family: %hd)\n",
+                       sk, sk->sk_family);
 }
The warning successfuly triggered:
Trying to hold sock already gone: ffff81f6dda61280 (family: 21)
WARNING: at include/net/sock.h:350 sock_hold()
Call Trace:
<IRQ>  [<ffffffff8adac135>] :rds:rds_send_remove_from_sock+0xf0/0x21b
[<ffffffff8adad35c>] :rds:rds_send_drop_acked+0xbf/0xcf
[<ffffffff8addf546>] :rds_rdma:rds_ib_recv_tasklet_fn+0x256/0x2dc
[<ffffffff8009899a>] tasklet_action+0x8f/0x12b
[<ffffffff800125a2>] __do_softirq+0x89/0x133
[<ffffffff8005f30c>] call_softirq+0x1c/0x28
[<ffffffff8006e644>] do_softirq+0x2c/0x7d
[<ffffffff8006e4d4>] do_IRQ+0xee/0xf7
[<ffffffff8005e625>] ret_from_intr+0x0/0xa
<EOI>
Looking at the call chain above, the only way I think this would be
possible is if somewhere we already released the same socket->sock which
is assigned to the rds_message at rds_send_remove_from_sock. Which seems
only possible to happen after the tear down done on rds_release.
rds_release properly calls rds_send_drop_to to drop the socket from any
rds_message, and some proper synchronization is in place to avoid race
with rds_send_drop_acked/rds_send_remove_from_sock. However, I still see
a very narrow window where it may be possible we touch a sock already
released: when rds_release races with rds_send_drop_acked, we check
RDS_MSG_ON_CONN to avoid cleanup on the same rds_message, but in this
specific case we don't clear rm->m_rs. In this case, it seems we could
then go on at rds_send_drop_to and after it returns, the sock is freed
by last sock_put on rds_release, with concurrently we being at
rds_send_remove_from_sock; then at some point in the loop at
rds_send_remove_from_sock we process an rds_message which didn't have
rm->m_rs unset for a freed sock, and a possible sock_hold on an sock
already gone at rds_release happens.
This hopefully address the described condition above and avoids a double
free on "second last" sock_put. In addition, I removed the comment about
socket destruction on top of rds_send_drop_acked: we call rds_send_drop_to
in rds_release and we should have things properly serialized there, thus
I can't see the comment being accurate there.
Signed-off-by: Herton R. Krzesinski <herton@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
		
	
			
		
			
				
	
	
		
			1137 lines
		
	
	
	
		
			30 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1137 lines
		
	
	
	
		
			30 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2006 Oracle.  All rights reserved.
 | |
|  *
 | |
|  * This software is available to you under a choice of one of two
 | |
|  * licenses.  You may choose to be licensed under the terms of the GNU
 | |
|  * General Public License (GPL) Version 2, available from the file
 | |
|  * COPYING in the main directory of this source tree, or the
 | |
|  * OpenIB.org BSD license below:
 | |
|  *
 | |
|  *     Redistribution and use in source and binary forms, with or
 | |
|  *     without modification, are permitted provided that the following
 | |
|  *     conditions are met:
 | |
|  *
 | |
|  *      - Redistributions of source code must retain the above
 | |
|  *        copyright notice, this list of conditions and the following
 | |
|  *        disclaimer.
 | |
|  *
 | |
|  *      - Redistributions in binary form must reproduce the above
 | |
|  *        copyright notice, this list of conditions and the following
 | |
|  *        disclaimer in the documentation and/or other materials
 | |
|  *        provided with the distribution.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 | |
|  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | |
|  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 | |
|  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 | |
|  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 | |
|  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | |
|  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | |
|  * SOFTWARE.
 | |
|  *
 | |
|  */
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <net/sock.h>
 | |
| #include <linux/in.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/export.h>
 | |
| 
 | |
| #include "rds.h"
 | |
| 
 | |
| /* When transmitting messages in rds_send_xmit, we need to emerge from
 | |
|  * time to time and briefly release the CPU. Otherwise the softlock watchdog
 | |
|  * will kick our shin.
 | |
|  * Also, it seems fairer to not let one busy connection stall all the
 | |
|  * others.
 | |
|  *
 | |
|  * send_batch_count is the number of times we'll loop in send_xmit. Setting
 | |
|  * it to 0 will restore the old behavior (where we looped until we had
 | |
|  * drained the queue).
 | |
|  */
 | |
| static int send_batch_count = 64;
 | |
| module_param(send_batch_count, int, 0444);
 | |
| MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
 | |
| 
 | |
| static void rds_send_remove_from_sock(struct list_head *messages, int status);
 | |
| 
 | |
| /*
 | |
|  * Reset the send state.  Callers must ensure that this doesn't race with
 | |
|  * rds_send_xmit().
 | |
|  */
 | |
| void rds_send_reset(struct rds_connection *conn)
 | |
| {
 | |
| 	struct rds_message *rm, *tmp;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (conn->c_xmit_rm) {
 | |
| 		rm = conn->c_xmit_rm;
 | |
| 		conn->c_xmit_rm = NULL;
 | |
| 		/* Tell the user the RDMA op is no longer mapped by the
 | |
| 		 * transport. This isn't entirely true (it's flushed out
 | |
| 		 * independently) but as the connection is down, there's
 | |
| 		 * no ongoing RDMA to/from that memory */
 | |
| 		rds_message_unmapped(rm);
 | |
| 		rds_message_put(rm);
 | |
| 	}
 | |
| 
 | |
| 	conn->c_xmit_sg = 0;
 | |
| 	conn->c_xmit_hdr_off = 0;
 | |
| 	conn->c_xmit_data_off = 0;
 | |
| 	conn->c_xmit_atomic_sent = 0;
 | |
| 	conn->c_xmit_rdma_sent = 0;
 | |
| 	conn->c_xmit_data_sent = 0;
 | |
| 
 | |
| 	conn->c_map_queued = 0;
 | |
| 
 | |
| 	conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
 | |
| 	conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
 | |
| 
 | |
| 	/* Mark messages as retransmissions, and move them to the send q */
 | |
| 	spin_lock_irqsave(&conn->c_lock, flags);
 | |
| 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
 | |
| 		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
 | |
| 		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
 | |
| 	}
 | |
| 	list_splice_init(&conn->c_retrans, &conn->c_send_queue);
 | |
| 	spin_unlock_irqrestore(&conn->c_lock, flags);
 | |
| }
 | |
| 
 | |
| static int acquire_in_xmit(struct rds_connection *conn)
 | |
| {
 | |
| 	return test_and_set_bit(RDS_IN_XMIT, &conn->c_flags) == 0;
 | |
| }
 | |
| 
 | |
| static void release_in_xmit(struct rds_connection *conn)
 | |
| {
 | |
| 	clear_bit(RDS_IN_XMIT, &conn->c_flags);
 | |
| 	smp_mb__after_atomic();
 | |
| 	/*
 | |
| 	 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
 | |
| 	 * hot path and finding waiters is very rare.  We don't want to walk
 | |
| 	 * the system-wide hashed waitqueue buckets in the fast path only to
 | |
| 	 * almost never find waiters.
 | |
| 	 */
 | |
| 	if (waitqueue_active(&conn->c_waitq))
 | |
| 		wake_up_all(&conn->c_waitq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We're making the conscious trade-off here to only send one message
 | |
|  * down the connection at a time.
 | |
|  *   Pro:
 | |
|  *      - tx queueing is a simple fifo list
 | |
|  *   	- reassembly is optional and easily done by transports per conn
 | |
|  *      - no per flow rx lookup at all, straight to the socket
 | |
|  *   	- less per-frag memory and wire overhead
 | |
|  *   Con:
 | |
|  *      - queued acks can be delayed behind large messages
 | |
|  *   Depends:
 | |
|  *      - small message latency is higher behind queued large messages
 | |
|  *      - large message latency isn't starved by intervening small sends
 | |
|  */
 | |
| int rds_send_xmit(struct rds_connection *conn)
 | |
| {
 | |
| 	struct rds_message *rm;
 | |
| 	unsigned long flags;
 | |
| 	unsigned int tmp;
 | |
| 	struct scatterlist *sg;
 | |
| 	int ret = 0;
 | |
| 	LIST_HEAD(to_be_dropped);
 | |
| 
 | |
| restart:
 | |
| 
 | |
| 	/*
 | |
| 	 * sendmsg calls here after having queued its message on the send
 | |
| 	 * queue.  We only have one task feeding the connection at a time.  If
 | |
| 	 * another thread is already feeding the queue then we back off.  This
 | |
| 	 * avoids blocking the caller and trading per-connection data between
 | |
| 	 * caches per message.
 | |
| 	 */
 | |
| 	if (!acquire_in_xmit(conn)) {
 | |
| 		rds_stats_inc(s_send_lock_contention);
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
 | |
| 	 * we do the opposite to avoid races.
 | |
| 	 */
 | |
| 	if (!rds_conn_up(conn)) {
 | |
| 		release_in_xmit(conn);
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (conn->c_trans->xmit_prepare)
 | |
| 		conn->c_trans->xmit_prepare(conn);
 | |
| 
 | |
| 	/*
 | |
| 	 * spin trying to push headers and data down the connection until
 | |
| 	 * the connection doesn't make forward progress.
 | |
| 	 */
 | |
| 	while (1) {
 | |
| 
 | |
| 		rm = conn->c_xmit_rm;
 | |
| 
 | |
| 		/*
 | |
| 		 * If between sending messages, we can send a pending congestion
 | |
| 		 * map update.
 | |
| 		 */
 | |
| 		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
 | |
| 			rm = rds_cong_update_alloc(conn);
 | |
| 			if (IS_ERR(rm)) {
 | |
| 				ret = PTR_ERR(rm);
 | |
| 				break;
 | |
| 			}
 | |
| 			rm->data.op_active = 1;
 | |
| 
 | |
| 			conn->c_xmit_rm = rm;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If not already working on one, grab the next message.
 | |
| 		 *
 | |
| 		 * c_xmit_rm holds a ref while we're sending this message down
 | |
| 		 * the connction.  We can use this ref while holding the
 | |
| 		 * send_sem.. rds_send_reset() is serialized with it.
 | |
| 		 */
 | |
| 		if (!rm) {
 | |
| 			unsigned int len;
 | |
| 
 | |
| 			spin_lock_irqsave(&conn->c_lock, flags);
 | |
| 
 | |
| 			if (!list_empty(&conn->c_send_queue)) {
 | |
| 				rm = list_entry(conn->c_send_queue.next,
 | |
| 						struct rds_message,
 | |
| 						m_conn_item);
 | |
| 				rds_message_addref(rm);
 | |
| 
 | |
| 				/*
 | |
| 				 * Move the message from the send queue to the retransmit
 | |
| 				 * list right away.
 | |
| 				 */
 | |
| 				list_move_tail(&rm->m_conn_item, &conn->c_retrans);
 | |
| 			}
 | |
| 
 | |
| 			spin_unlock_irqrestore(&conn->c_lock, flags);
 | |
| 
 | |
| 			if (!rm)
 | |
| 				break;
 | |
| 
 | |
| 			/* Unfortunately, the way Infiniband deals with
 | |
| 			 * RDMA to a bad MR key is by moving the entire
 | |
| 			 * queue pair to error state. We cold possibly
 | |
| 			 * recover from that, but right now we drop the
 | |
| 			 * connection.
 | |
| 			 * Therefore, we never retransmit messages with RDMA ops.
 | |
| 			 */
 | |
| 			if (rm->rdma.op_active &&
 | |
| 			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
 | |
| 				spin_lock_irqsave(&conn->c_lock, flags);
 | |
| 				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
 | |
| 					list_move(&rm->m_conn_item, &to_be_dropped);
 | |
| 				spin_unlock_irqrestore(&conn->c_lock, flags);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/* Require an ACK every once in a while */
 | |
| 			len = ntohl(rm->m_inc.i_hdr.h_len);
 | |
| 			if (conn->c_unacked_packets == 0 ||
 | |
| 			    conn->c_unacked_bytes < len) {
 | |
| 				__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
 | |
| 
 | |
| 				conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
 | |
| 				conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
 | |
| 				rds_stats_inc(s_send_ack_required);
 | |
| 			} else {
 | |
| 				conn->c_unacked_bytes -= len;
 | |
| 				conn->c_unacked_packets--;
 | |
| 			}
 | |
| 
 | |
| 			conn->c_xmit_rm = rm;
 | |
| 		}
 | |
| 
 | |
| 		/* The transport either sends the whole rdma or none of it */
 | |
| 		if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) {
 | |
| 			rm->m_final_op = &rm->rdma;
 | |
| 			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 			conn->c_xmit_rdma_sent = 1;
 | |
| 
 | |
| 			/* The transport owns the mapped memory for now.
 | |
| 			 * You can't unmap it while it's on the send queue */
 | |
| 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
 | |
| 		}
 | |
| 
 | |
| 		if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) {
 | |
| 			rm->m_final_op = &rm->atomic;
 | |
| 			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 			conn->c_xmit_atomic_sent = 1;
 | |
| 
 | |
| 			/* The transport owns the mapped memory for now.
 | |
| 			 * You can't unmap it while it's on the send queue */
 | |
| 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * A number of cases require an RDS header to be sent
 | |
| 		 * even if there is no data.
 | |
| 		 * We permit 0-byte sends; rds-ping depends on this.
 | |
| 		 * However, if there are exclusively attached silent ops,
 | |
| 		 * we skip the hdr/data send, to enable silent operation.
 | |
| 		 */
 | |
| 		if (rm->data.op_nents == 0) {
 | |
| 			int ops_present;
 | |
| 			int all_ops_are_silent = 1;
 | |
| 
 | |
| 			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
 | |
| 			if (rm->atomic.op_active && !rm->atomic.op_silent)
 | |
| 				all_ops_are_silent = 0;
 | |
| 			if (rm->rdma.op_active && !rm->rdma.op_silent)
 | |
| 				all_ops_are_silent = 0;
 | |
| 
 | |
| 			if (ops_present && all_ops_are_silent
 | |
| 			    && !rm->m_rdma_cookie)
 | |
| 				rm->data.op_active = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (rm->data.op_active && !conn->c_xmit_data_sent) {
 | |
| 			rm->m_final_op = &rm->data;
 | |
| 			ret = conn->c_trans->xmit(conn, rm,
 | |
| 						  conn->c_xmit_hdr_off,
 | |
| 						  conn->c_xmit_sg,
 | |
| 						  conn->c_xmit_data_off);
 | |
| 			if (ret <= 0)
 | |
| 				break;
 | |
| 
 | |
| 			if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
 | |
| 				tmp = min_t(int, ret,
 | |
| 					    sizeof(struct rds_header) -
 | |
| 					    conn->c_xmit_hdr_off);
 | |
| 				conn->c_xmit_hdr_off += tmp;
 | |
| 				ret -= tmp;
 | |
| 			}
 | |
| 
 | |
| 			sg = &rm->data.op_sg[conn->c_xmit_sg];
 | |
| 			while (ret) {
 | |
| 				tmp = min_t(int, ret, sg->length -
 | |
| 						      conn->c_xmit_data_off);
 | |
| 				conn->c_xmit_data_off += tmp;
 | |
| 				ret -= tmp;
 | |
| 				if (conn->c_xmit_data_off == sg->length) {
 | |
| 					conn->c_xmit_data_off = 0;
 | |
| 					sg++;
 | |
| 					conn->c_xmit_sg++;
 | |
| 					BUG_ON(ret != 0 &&
 | |
| 					       conn->c_xmit_sg == rm->data.op_nents);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
 | |
| 			    (conn->c_xmit_sg == rm->data.op_nents))
 | |
| 				conn->c_xmit_data_sent = 1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * A rm will only take multiple times through this loop
 | |
| 		 * if there is a data op. Thus, if the data is sent (or there was
 | |
| 		 * none), then we're done with the rm.
 | |
| 		 */
 | |
| 		if (!rm->data.op_active || conn->c_xmit_data_sent) {
 | |
| 			conn->c_xmit_rm = NULL;
 | |
| 			conn->c_xmit_sg = 0;
 | |
| 			conn->c_xmit_hdr_off = 0;
 | |
| 			conn->c_xmit_data_off = 0;
 | |
| 			conn->c_xmit_rdma_sent = 0;
 | |
| 			conn->c_xmit_atomic_sent = 0;
 | |
| 			conn->c_xmit_data_sent = 0;
 | |
| 
 | |
| 			rds_message_put(rm);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (conn->c_trans->xmit_complete)
 | |
| 		conn->c_trans->xmit_complete(conn);
 | |
| 
 | |
| 	release_in_xmit(conn);
 | |
| 
 | |
| 	/* Nuke any messages we decided not to retransmit. */
 | |
| 	if (!list_empty(&to_be_dropped)) {
 | |
| 		/* irqs on here, so we can put(), unlike above */
 | |
| 		list_for_each_entry(rm, &to_be_dropped, m_conn_item)
 | |
| 			rds_message_put(rm);
 | |
| 		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Other senders can queue a message after we last test the send queue
 | |
| 	 * but before we clear RDS_IN_XMIT.  In that case they'd back off and
 | |
| 	 * not try and send their newly queued message.  We need to check the
 | |
| 	 * send queue after having cleared RDS_IN_XMIT so that their message
 | |
| 	 * doesn't get stuck on the send queue.
 | |
| 	 *
 | |
| 	 * If the transport cannot continue (i.e ret != 0), then it must
 | |
| 	 * call us when more room is available, such as from the tx
 | |
| 	 * completion handler.
 | |
| 	 */
 | |
| 	if (ret == 0) {
 | |
| 		smp_mb();
 | |
| 		if (!list_empty(&conn->c_send_queue)) {
 | |
| 			rds_stats_inc(s_send_lock_queue_raced);
 | |
| 			goto restart;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
 | |
| {
 | |
| 	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
 | |
| 
 | |
| 	assert_spin_locked(&rs->rs_lock);
 | |
| 
 | |
| 	BUG_ON(rs->rs_snd_bytes < len);
 | |
| 	rs->rs_snd_bytes -= len;
 | |
| 
 | |
| 	if (rs->rs_snd_bytes == 0)
 | |
| 		rds_stats_inc(s_send_queue_empty);
 | |
| }
 | |
| 
 | |
| static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
 | |
| 				    is_acked_func is_acked)
 | |
| {
 | |
| 	if (is_acked)
 | |
| 		return is_acked(rm, ack);
 | |
| 	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is pretty similar to what happens below in the ACK
 | |
|  * handling code - except that we call here as soon as we get
 | |
|  * the IB send completion on the RDMA op and the accompanying
 | |
|  * message.
 | |
|  */
 | |
| void rds_rdma_send_complete(struct rds_message *rm, int status)
 | |
| {
 | |
| 	struct rds_sock *rs = NULL;
 | |
| 	struct rm_rdma_op *ro;
 | |
| 	struct rds_notifier *notifier;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&rm->m_rs_lock, flags);
 | |
| 
 | |
| 	ro = &rm->rdma;
 | |
| 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
 | |
| 	    ro->op_active && ro->op_notify && ro->op_notifier) {
 | |
| 		notifier = ro->op_notifier;
 | |
| 		rs = rm->m_rs;
 | |
| 		sock_hold(rds_rs_to_sk(rs));
 | |
| 
 | |
| 		notifier->n_status = status;
 | |
| 		spin_lock(&rs->rs_lock);
 | |
| 		list_add_tail(¬ifier->n_list, &rs->rs_notify_queue);
 | |
| 		spin_unlock(&rs->rs_lock);
 | |
| 
 | |
| 		ro->op_notifier = NULL;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
 | |
| 
 | |
| 	if (rs) {
 | |
| 		rds_wake_sk_sleep(rs);
 | |
| 		sock_put(rds_rs_to_sk(rs));
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
 | |
| 
 | |
| /*
 | |
|  * Just like above, except looks at atomic op
 | |
|  */
 | |
| void rds_atomic_send_complete(struct rds_message *rm, int status)
 | |
| {
 | |
| 	struct rds_sock *rs = NULL;
 | |
| 	struct rm_atomic_op *ao;
 | |
| 	struct rds_notifier *notifier;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&rm->m_rs_lock, flags);
 | |
| 
 | |
| 	ao = &rm->atomic;
 | |
| 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
 | |
| 	    && ao->op_active && ao->op_notify && ao->op_notifier) {
 | |
| 		notifier = ao->op_notifier;
 | |
| 		rs = rm->m_rs;
 | |
| 		sock_hold(rds_rs_to_sk(rs));
 | |
| 
 | |
| 		notifier->n_status = status;
 | |
| 		spin_lock(&rs->rs_lock);
 | |
| 		list_add_tail(¬ifier->n_list, &rs->rs_notify_queue);
 | |
| 		spin_unlock(&rs->rs_lock);
 | |
| 
 | |
| 		ao->op_notifier = NULL;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
 | |
| 
 | |
| 	if (rs) {
 | |
| 		rds_wake_sk_sleep(rs);
 | |
| 		sock_put(rds_rs_to_sk(rs));
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
 | |
| 
 | |
| /*
 | |
|  * This is the same as rds_rdma_send_complete except we
 | |
|  * don't do any locking - we have all the ingredients (message,
 | |
|  * socket, socket lock) and can just move the notifier.
 | |
|  */
 | |
| static inline void
 | |
| __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
 | |
| {
 | |
| 	struct rm_rdma_op *ro;
 | |
| 	struct rm_atomic_op *ao;
 | |
| 
 | |
| 	ro = &rm->rdma;
 | |
| 	if (ro->op_active && ro->op_notify && ro->op_notifier) {
 | |
| 		ro->op_notifier->n_status = status;
 | |
| 		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
 | |
| 		ro->op_notifier = NULL;
 | |
| 	}
 | |
| 
 | |
| 	ao = &rm->atomic;
 | |
| 	if (ao->op_active && ao->op_notify && ao->op_notifier) {
 | |
| 		ao->op_notifier->n_status = status;
 | |
| 		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
 | |
| 		ao->op_notifier = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* No need to wake the app - caller does this */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called from the IB send completion when we detect
 | |
|  * a RDMA operation that failed with remote access error.
 | |
|  * So speed is not an issue here.
 | |
|  */
 | |
| struct rds_message *rds_send_get_message(struct rds_connection *conn,
 | |
| 					 struct rm_rdma_op *op)
 | |
| {
 | |
| 	struct rds_message *rm, *tmp, *found = NULL;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&conn->c_lock, flags);
 | |
| 
 | |
| 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
 | |
| 		if (&rm->rdma == op) {
 | |
| 			atomic_inc(&rm->m_refcount);
 | |
| 			found = rm;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
 | |
| 		if (&rm->rdma == op) {
 | |
| 			atomic_inc(&rm->m_refcount);
 | |
| 			found = rm;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&conn->c_lock, flags);
 | |
| 
 | |
| 	return found;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rds_send_get_message);
 | |
| 
 | |
| /*
 | |
|  * This removes messages from the socket's list if they're on it.  The list
 | |
|  * argument must be private to the caller, we must be able to modify it
 | |
|  * without locks.  The messages must have a reference held for their
 | |
|  * position on the list.  This function will drop that reference after
 | |
|  * removing the messages from the 'messages' list regardless of if it found
 | |
|  * the messages on the socket list or not.
 | |
|  */
 | |
| static void rds_send_remove_from_sock(struct list_head *messages, int status)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rds_sock *rs = NULL;
 | |
| 	struct rds_message *rm;
 | |
| 
 | |
| 	while (!list_empty(messages)) {
 | |
| 		int was_on_sock = 0;
 | |
| 
 | |
| 		rm = list_entry(messages->next, struct rds_message,
 | |
| 				m_conn_item);
 | |
| 		list_del_init(&rm->m_conn_item);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we see this flag cleared then we're *sure* that someone
 | |
| 		 * else beat us to removing it from the sock.  If we race
 | |
| 		 * with their flag update we'll get the lock and then really
 | |
| 		 * see that the flag has been cleared.
 | |
| 		 *
 | |
| 		 * The message spinlock makes sure nobody clears rm->m_rs
 | |
| 		 * while we're messing with it. It does not prevent the
 | |
| 		 * message from being removed from the socket, though.
 | |
| 		 */
 | |
| 		spin_lock_irqsave(&rm->m_rs_lock, flags);
 | |
| 		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
 | |
| 			goto unlock_and_drop;
 | |
| 
 | |
| 		if (rs != rm->m_rs) {
 | |
| 			if (rs) {
 | |
| 				rds_wake_sk_sleep(rs);
 | |
| 				sock_put(rds_rs_to_sk(rs));
 | |
| 			}
 | |
| 			rs = rm->m_rs;
 | |
| 			if (rs)
 | |
| 				sock_hold(rds_rs_to_sk(rs));
 | |
| 		}
 | |
| 		if (!rs)
 | |
| 			goto unlock_and_drop;
 | |
| 		spin_lock(&rs->rs_lock);
 | |
| 
 | |
| 		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
 | |
| 			struct rm_rdma_op *ro = &rm->rdma;
 | |
| 			struct rds_notifier *notifier;
 | |
| 
 | |
| 			list_del_init(&rm->m_sock_item);
 | |
| 			rds_send_sndbuf_remove(rs, rm);
 | |
| 
 | |
| 			if (ro->op_active && ro->op_notifier &&
 | |
| 			       (ro->op_notify || (ro->op_recverr && status))) {
 | |
| 				notifier = ro->op_notifier;
 | |
| 				list_add_tail(¬ifier->n_list,
 | |
| 						&rs->rs_notify_queue);
 | |
| 				if (!notifier->n_status)
 | |
| 					notifier->n_status = status;
 | |
| 				rm->rdma.op_notifier = NULL;
 | |
| 			}
 | |
| 			was_on_sock = 1;
 | |
| 			rm->m_rs = NULL;
 | |
| 		}
 | |
| 		spin_unlock(&rs->rs_lock);
 | |
| 
 | |
| unlock_and_drop:
 | |
| 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
 | |
| 		rds_message_put(rm);
 | |
| 		if (was_on_sock)
 | |
| 			rds_message_put(rm);
 | |
| 	}
 | |
| 
 | |
| 	if (rs) {
 | |
| 		rds_wake_sk_sleep(rs);
 | |
| 		sock_put(rds_rs_to_sk(rs));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Transports call here when they've determined that the receiver queued
 | |
|  * messages up to, and including, the given sequence number.  Messages are
 | |
|  * moved to the retrans queue when rds_send_xmit picks them off the send
 | |
|  * queue. This means that in the TCP case, the message may not have been
 | |
|  * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
 | |
|  * checks the RDS_MSG_HAS_ACK_SEQ bit.
 | |
|  */
 | |
| void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
 | |
| 			 is_acked_func is_acked)
 | |
| {
 | |
| 	struct rds_message *rm, *tmp;
 | |
| 	unsigned long flags;
 | |
| 	LIST_HEAD(list);
 | |
| 
 | |
| 	spin_lock_irqsave(&conn->c_lock, flags);
 | |
| 
 | |
| 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
 | |
| 		if (!rds_send_is_acked(rm, ack, is_acked))
 | |
| 			break;
 | |
| 
 | |
| 		list_move(&rm->m_conn_item, &list);
 | |
| 		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
 | |
| 	}
 | |
| 
 | |
| 	/* order flag updates with spin locks */
 | |
| 	if (!list_empty(&list))
 | |
| 		smp_mb__after_atomic();
 | |
| 
 | |
| 	spin_unlock_irqrestore(&conn->c_lock, flags);
 | |
| 
 | |
| 	/* now remove the messages from the sock list as needed */
 | |
| 	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rds_send_drop_acked);
 | |
| 
 | |
| void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
 | |
| {
 | |
| 	struct rds_message *rm, *tmp;
 | |
| 	struct rds_connection *conn;
 | |
| 	unsigned long flags;
 | |
| 	LIST_HEAD(list);
 | |
| 
 | |
| 	/* get all the messages we're dropping under the rs lock */
 | |
| 	spin_lock_irqsave(&rs->rs_lock, flags);
 | |
| 
 | |
| 	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
 | |
| 		if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
 | |
| 			     dest->sin_port != rm->m_inc.i_hdr.h_dport))
 | |
| 			continue;
 | |
| 
 | |
| 		list_move(&rm->m_sock_item, &list);
 | |
| 		rds_send_sndbuf_remove(rs, rm);
 | |
| 		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
 | |
| 	}
 | |
| 
 | |
| 	/* order flag updates with the rs lock */
 | |
| 	smp_mb__after_atomic();
 | |
| 
 | |
| 	spin_unlock_irqrestore(&rs->rs_lock, flags);
 | |
| 
 | |
| 	if (list_empty(&list))
 | |
| 		return;
 | |
| 
 | |
| 	/* Remove the messages from the conn */
 | |
| 	list_for_each_entry(rm, &list, m_sock_item) {
 | |
| 
 | |
| 		conn = rm->m_inc.i_conn;
 | |
| 
 | |
| 		spin_lock_irqsave(&conn->c_lock, flags);
 | |
| 		/*
 | |
| 		 * Maybe someone else beat us to removing rm from the conn.
 | |
| 		 * If we race with their flag update we'll get the lock and
 | |
| 		 * then really see that the flag has been cleared.
 | |
| 		 */
 | |
| 		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
 | |
| 			spin_unlock_irqrestore(&conn->c_lock, flags);
 | |
| 			spin_lock_irqsave(&rm->m_rs_lock, flags);
 | |
| 			rm->m_rs = NULL;
 | |
| 			spin_unlock_irqrestore(&rm->m_rs_lock, flags);
 | |
| 			continue;
 | |
| 		}
 | |
| 		list_del_init(&rm->m_conn_item);
 | |
| 		spin_unlock_irqrestore(&conn->c_lock, flags);
 | |
| 
 | |
| 		/*
 | |
| 		 * Couldn't grab m_rs_lock in top loop (lock ordering),
 | |
| 		 * but we can now.
 | |
| 		 */
 | |
| 		spin_lock_irqsave(&rm->m_rs_lock, flags);
 | |
| 
 | |
| 		spin_lock(&rs->rs_lock);
 | |
| 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
 | |
| 		spin_unlock(&rs->rs_lock);
 | |
| 
 | |
| 		rm->m_rs = NULL;
 | |
| 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
 | |
| 
 | |
| 		rds_message_put(rm);
 | |
| 	}
 | |
| 
 | |
| 	rds_wake_sk_sleep(rs);
 | |
| 
 | |
| 	while (!list_empty(&list)) {
 | |
| 		rm = list_entry(list.next, struct rds_message, m_sock_item);
 | |
| 		list_del_init(&rm->m_sock_item);
 | |
| 
 | |
| 		rds_message_wait(rm);
 | |
| 		rds_message_put(rm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * we only want this to fire once so we use the callers 'queued'.  It's
 | |
|  * possible that another thread can race with us and remove the
 | |
|  * message from the flow with RDS_CANCEL_SENT_TO.
 | |
|  */
 | |
| static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
 | |
| 			     struct rds_message *rm, __be16 sport,
 | |
| 			     __be16 dport, int *queued)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	u32 len;
 | |
| 
 | |
| 	if (*queued)
 | |
| 		goto out;
 | |
| 
 | |
| 	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
 | |
| 
 | |
| 	/* this is the only place which holds both the socket's rs_lock
 | |
| 	 * and the connection's c_lock */
 | |
| 	spin_lock_irqsave(&rs->rs_lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is a little space in sndbuf, we don't queue anything,
 | |
| 	 * and userspace gets -EAGAIN. But poll() indicates there's send
 | |
| 	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
 | |
| 	 * freed up by incoming acks. So we check the *old* value of
 | |
| 	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
 | |
| 	 * and poll() now knows no more data can be sent.
 | |
| 	 */
 | |
| 	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
 | |
| 		rs->rs_snd_bytes += len;
 | |
| 
 | |
| 		/* let recv side know we are close to send space exhaustion.
 | |
| 		 * This is probably not the optimal way to do it, as this
 | |
| 		 * means we set the flag on *all* messages as soon as our
 | |
| 		 * throughput hits a certain threshold.
 | |
| 		 */
 | |
| 		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
 | |
| 			__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
 | |
| 
 | |
| 		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
 | |
| 		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
 | |
| 		rds_message_addref(rm);
 | |
| 		rm->m_rs = rs;
 | |
| 
 | |
| 		/* The code ordering is a little weird, but we're
 | |
| 		   trying to minimize the time we hold c_lock */
 | |
| 		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
 | |
| 		rm->m_inc.i_conn = conn;
 | |
| 		rds_message_addref(rm);
 | |
| 
 | |
| 		spin_lock(&conn->c_lock);
 | |
| 		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
 | |
| 		list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
 | |
| 		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
 | |
| 		spin_unlock(&conn->c_lock);
 | |
| 
 | |
| 		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
 | |
| 			 rm, len, rs, rs->rs_snd_bytes,
 | |
| 			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
 | |
| 
 | |
| 		*queued = 1;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&rs->rs_lock, flags);
 | |
| out:
 | |
| 	return *queued;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * rds_message is getting to be quite complicated, and we'd like to allocate
 | |
|  * it all in one go. This figures out how big it needs to be up front.
 | |
|  */
 | |
| static int rds_rm_size(struct msghdr *msg, int data_len)
 | |
| {
 | |
| 	struct cmsghdr *cmsg;
 | |
| 	int size = 0;
 | |
| 	int cmsg_groups = 0;
 | |
| 	int retval;
 | |
| 
 | |
| 	for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
 | |
| 		if (!CMSG_OK(msg, cmsg))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (cmsg->cmsg_level != SOL_RDS)
 | |
| 			continue;
 | |
| 
 | |
| 		switch (cmsg->cmsg_type) {
 | |
| 		case RDS_CMSG_RDMA_ARGS:
 | |
| 			cmsg_groups |= 1;
 | |
| 			retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
 | |
| 			if (retval < 0)
 | |
| 				return retval;
 | |
| 			size += retval;
 | |
| 
 | |
| 			break;
 | |
| 
 | |
| 		case RDS_CMSG_RDMA_DEST:
 | |
| 		case RDS_CMSG_RDMA_MAP:
 | |
| 			cmsg_groups |= 2;
 | |
| 			/* these are valid but do no add any size */
 | |
| 			break;
 | |
| 
 | |
| 		case RDS_CMSG_ATOMIC_CSWP:
 | |
| 		case RDS_CMSG_ATOMIC_FADD:
 | |
| 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
 | |
| 		case RDS_CMSG_MASKED_ATOMIC_FADD:
 | |
| 			cmsg_groups |= 1;
 | |
| 			size += sizeof(struct scatterlist);
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
 | |
| 
 | |
| 	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
 | |
| 	if (cmsg_groups == 3)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
 | |
| 			 struct msghdr *msg, int *allocated_mr)
 | |
| {
 | |
| 	struct cmsghdr *cmsg;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
 | |
| 		if (!CMSG_OK(msg, cmsg))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (cmsg->cmsg_level != SOL_RDS)
 | |
| 			continue;
 | |
| 
 | |
| 		/* As a side effect, RDMA_DEST and RDMA_MAP will set
 | |
| 		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
 | |
| 		 */
 | |
| 		switch (cmsg->cmsg_type) {
 | |
| 		case RDS_CMSG_RDMA_ARGS:
 | |
| 			ret = rds_cmsg_rdma_args(rs, rm, cmsg);
 | |
| 			break;
 | |
| 
 | |
| 		case RDS_CMSG_RDMA_DEST:
 | |
| 			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
 | |
| 			break;
 | |
| 
 | |
| 		case RDS_CMSG_RDMA_MAP:
 | |
| 			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
 | |
| 			if (!ret)
 | |
| 				*allocated_mr = 1;
 | |
| 			break;
 | |
| 		case RDS_CMSG_ATOMIC_CSWP:
 | |
| 		case RDS_CMSG_ATOMIC_FADD:
 | |
| 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
 | |
| 		case RDS_CMSG_MASKED_ATOMIC_FADD:
 | |
| 			ret = rds_cmsg_atomic(rs, rm, cmsg);
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int rds_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
 | |
| 		size_t payload_len)
 | |
| {
 | |
| 	struct sock *sk = sock->sk;
 | |
| 	struct rds_sock *rs = rds_sk_to_rs(sk);
 | |
| 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
 | |
| 	__be32 daddr;
 | |
| 	__be16 dport;
 | |
| 	struct rds_message *rm = NULL;
 | |
| 	struct rds_connection *conn;
 | |
| 	int ret = 0;
 | |
| 	int queued = 0, allocated_mr = 0;
 | |
| 	int nonblock = msg->msg_flags & MSG_DONTWAIT;
 | |
| 	long timeo = sock_sndtimeo(sk, nonblock);
 | |
| 
 | |
| 	/* Mirror Linux UDP mirror of BSD error message compatibility */
 | |
| 	/* XXX: Perhaps MSG_MORE someday */
 | |
| 	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
 | |
| 		ret = -EOPNOTSUPP;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (msg->msg_namelen) {
 | |
| 		/* XXX fail non-unicast destination IPs? */
 | |
| 		if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		daddr = usin->sin_addr.s_addr;
 | |
| 		dport = usin->sin_port;
 | |
| 	} else {
 | |
| 		/* We only care about consistency with ->connect() */
 | |
| 		lock_sock(sk);
 | |
| 		daddr = rs->rs_conn_addr;
 | |
| 		dport = rs->rs_conn_port;
 | |
| 		release_sock(sk);
 | |
| 	}
 | |
| 
 | |
| 	/* racing with another thread binding seems ok here */
 | |
| 	if (daddr == 0 || rs->rs_bound_addr == 0) {
 | |
| 		ret = -ENOTCONN; /* XXX not a great errno */
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* size of rm including all sgs */
 | |
| 	ret = rds_rm_size(msg, payload_len);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	rm = rds_message_alloc(ret, GFP_KERNEL);
 | |
| 	if (!rm) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Attach data to the rm */
 | |
| 	if (payload_len) {
 | |
| 		rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
 | |
| 		if (!rm->data.op_sg) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		ret = rds_message_copy_from_user(rm, msg->msg_iov, payload_len);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 	}
 | |
| 	rm->data.op_active = 1;
 | |
| 
 | |
| 	rm->m_daddr = daddr;
 | |
| 
 | |
| 	/* rds_conn_create has a spinlock that runs with IRQ off.
 | |
| 	 * Caching the conn in the socket helps a lot. */
 | |
| 	if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
 | |
| 		conn = rs->rs_conn;
 | |
| 	else {
 | |
| 		conn = rds_conn_create_outgoing(rs->rs_bound_addr, daddr,
 | |
| 					rs->rs_transport,
 | |
| 					sock->sk->sk_allocation);
 | |
| 		if (IS_ERR(conn)) {
 | |
| 			ret = PTR_ERR(conn);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		rs->rs_conn = conn;
 | |
| 	}
 | |
| 
 | |
| 	/* Parse any control messages the user may have included. */
 | |
| 	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
 | |
| 		printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
 | |
| 			       &rm->rdma, conn->c_trans->xmit_rdma);
 | |
| 		ret = -EOPNOTSUPP;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
 | |
| 		printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
 | |
| 			       &rm->atomic, conn->c_trans->xmit_atomic);
 | |
| 		ret = -EOPNOTSUPP;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	rds_conn_connect_if_down(conn);
 | |
| 
 | |
| 	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
 | |
| 	if (ret) {
 | |
| 		rs->rs_seen_congestion = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
 | |
| 				  dport, &queued)) {
 | |
| 		rds_stats_inc(s_send_queue_full);
 | |
| 		/* XXX make sure this is reasonable */
 | |
| 		if (payload_len > rds_sk_sndbuf(rs)) {
 | |
| 			ret = -EMSGSIZE;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (nonblock) {
 | |
| 			ret = -EAGAIN;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
 | |
| 					rds_send_queue_rm(rs, conn, rm,
 | |
| 							  rs->rs_bound_port,
 | |
| 							  dport,
 | |
| 							  &queued),
 | |
| 					timeo);
 | |
| 		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
 | |
| 		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = timeo;
 | |
| 		if (ret == 0)
 | |
| 			ret = -ETIMEDOUT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * By now we've committed to the send.  We reuse rds_send_worker()
 | |
| 	 * to retry sends in the rds thread if the transport asks us to.
 | |
| 	 */
 | |
| 	rds_stats_inc(s_send_queued);
 | |
| 
 | |
| 	if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
 | |
| 		rds_send_xmit(conn);
 | |
| 
 | |
| 	rds_message_put(rm);
 | |
| 	return payload_len;
 | |
| 
 | |
| out:
 | |
| 	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
 | |
| 	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
 | |
| 	 * or in any other way, we need to destroy the MR again */
 | |
| 	if (allocated_mr)
 | |
| 		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
 | |
| 
 | |
| 	if (rm)
 | |
| 		rds_message_put(rm);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reply to a ping packet.
 | |
|  */
 | |
| int
 | |
| rds_send_pong(struct rds_connection *conn, __be16 dport)
 | |
| {
 | |
| 	struct rds_message *rm;
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	rm = rds_message_alloc(0, GFP_ATOMIC);
 | |
| 	if (!rm) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	rm->m_daddr = conn->c_faddr;
 | |
| 	rm->data.op_active = 1;
 | |
| 
 | |
| 	rds_conn_connect_if_down(conn);
 | |
| 
 | |
| 	ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	spin_lock_irqsave(&conn->c_lock, flags);
 | |
| 	list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
 | |
| 	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
 | |
| 	rds_message_addref(rm);
 | |
| 	rm->m_inc.i_conn = conn;
 | |
| 
 | |
| 	rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
 | |
| 				    conn->c_next_tx_seq);
 | |
| 	conn->c_next_tx_seq++;
 | |
| 	spin_unlock_irqrestore(&conn->c_lock, flags);
 | |
| 
 | |
| 	rds_stats_inc(s_send_queued);
 | |
| 	rds_stats_inc(s_send_pong);
 | |
| 
 | |
| 	if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
 | |
| 		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
 | |
| 
 | |
| 	rds_message_put(rm);
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	if (rm)
 | |
| 		rds_message_put(rm);
 | |
| 	return ret;
 | |
| }
 |