 fe3881cf7e
			
		
	
	
	fe3881cf7e
	
	
	
		
			
			Use the much more common pr_warn instead of pr_warning. Other miscellanea: o Typo fixes submiting/submitting o Coalesce formats o Realign arguments o Add missing terminating '\n' to formats Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			5292 lines
		
	
	
	
		
			139 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5292 lines
		
	
	
	
		
			139 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
 | |
|  *
 | |
|  * Copyright (C) 2004 Sun Microsystems Inc.
 | |
|  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation; either version 2 of the
 | |
|  * License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, see <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  * This driver uses the sungem driver (c) David Miller
 | |
|  * (davem@redhat.com) as its basis.
 | |
|  *
 | |
|  * The cassini chip has a number of features that distinguish it from
 | |
|  * the gem chip:
 | |
|  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
 | |
|  *      load balancing (non-VLAN mode)
 | |
|  *  batching of multiple packets
 | |
|  *  multiple CPU dispatching
 | |
|  *  page-based RX descriptor engine with separate completion rings
 | |
|  *  Gigabit support (GMII and PCS interface)
 | |
|  *  MIF link up/down detection works
 | |
|  *
 | |
|  * RX is handled by page sized buffers that are attached as fragments to
 | |
|  * the skb. here's what's done:
 | |
|  *  -- driver allocates pages at a time and keeps reference counts
 | |
|  *     on them.
 | |
|  *  -- the upper protocol layers assume that the header is in the skb
 | |
|  *     itself. as a result, cassini will copy a small amount (64 bytes)
 | |
|  *     to make them happy.
 | |
|  *  -- driver appends the rest of the data pages as frags to skbuffs
 | |
|  *     and increments the reference count
 | |
|  *  -- on page reclamation, the driver swaps the page with a spare page.
 | |
|  *     if that page is still in use, it frees its reference to that page,
 | |
|  *     and allocates a new page for use. otherwise, it just recycles the
 | |
|  *     the page.
 | |
|  *
 | |
|  * NOTE: cassini can parse the header. however, it's not worth it
 | |
|  *       as long as the network stack requires a header copy.
 | |
|  *
 | |
|  * TX has 4 queues. currently these queues are used in a round-robin
 | |
|  * fashion for load balancing. They can also be used for QoS. for that
 | |
|  * to work, however, QoS information needs to be exposed down to the driver
 | |
|  * level so that subqueues get targeted to particular transmit rings.
 | |
|  * alternatively, the queues can be configured via use of the all-purpose
 | |
|  * ioctl.
 | |
|  *
 | |
|  * RX DATA: the rx completion ring has all the info, but the rx desc
 | |
|  * ring has all of the data. RX can conceivably come in under multiple
 | |
|  * interrupts, but the INT# assignment needs to be set up properly by
 | |
|  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
 | |
|  * that. also, the two descriptor rings are designed to distinguish between
 | |
|  * encrypted and non-encrypted packets, but we use them for buffering
 | |
|  * instead.
 | |
|  *
 | |
|  * by default, the selective clear mask is set up to process rx packets.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| 
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/ethtool.h>
 | |
| #include <linux/crc32.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/mii.h>
 | |
| #include <linux/ip.h>
 | |
| #include <linux/tcp.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/firmware.h>
 | |
| 
 | |
| #include <net/checksum.h>
 | |
| 
 | |
| #include <linux/atomic.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/byteorder.h>
 | |
| #include <asm/uaccess.h>
 | |
| 
 | |
| #define cas_page_map(x)      kmap_atomic((x))
 | |
| #define cas_page_unmap(x)    kunmap_atomic((x))
 | |
| #define CAS_NCPUS            num_online_cpus()
 | |
| 
 | |
| #define cas_skb_release(x)  netif_rx(x)
 | |
| 
 | |
| /* select which firmware to use */
 | |
| #define USE_HP_WORKAROUND
 | |
| #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
 | |
| #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
 | |
| 
 | |
| #include "cassini.h"
 | |
| 
 | |
| #define USE_TX_COMPWB      /* use completion writeback registers */
 | |
| #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
 | |
| #define USE_RX_BLANK       /* hw interrupt mitigation */
 | |
| #undef USE_ENTROPY_DEV     /* don't test for entropy device */
 | |
| 
 | |
| /* NOTE: these aren't useable unless PCI interrupts can be assigned.
 | |
|  * also, we need to make cp->lock finer-grained.
 | |
|  */
 | |
| #undef  USE_PCI_INTB
 | |
| #undef  USE_PCI_INTC
 | |
| #undef  USE_PCI_INTD
 | |
| #undef  USE_QOS
 | |
| 
 | |
| #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
 | |
| 
 | |
| /* rx processing options */
 | |
| #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
 | |
| #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
 | |
| #define RX_COPY_ALWAYS 0    /* if 0, use frags */
 | |
| #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
 | |
| #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
 | |
| 
 | |
| #define DRV_MODULE_NAME		"cassini"
 | |
| #define DRV_MODULE_VERSION	"1.6"
 | |
| #define DRV_MODULE_RELDATE	"21 May 2008"
 | |
| 
 | |
| #define CAS_DEF_MSG_ENABLE	  \
 | |
| 	(NETIF_MSG_DRV		| \
 | |
| 	 NETIF_MSG_PROBE	| \
 | |
| 	 NETIF_MSG_LINK		| \
 | |
| 	 NETIF_MSG_TIMER	| \
 | |
| 	 NETIF_MSG_IFDOWN	| \
 | |
| 	 NETIF_MSG_IFUP		| \
 | |
| 	 NETIF_MSG_RX_ERR	| \
 | |
| 	 NETIF_MSG_TX_ERR)
 | |
| 
 | |
| /* length of time before we decide the hardware is borked,
 | |
|  * and dev->tx_timeout() should be called to fix the problem
 | |
|  */
 | |
| #define CAS_TX_TIMEOUT			(HZ)
 | |
| #define CAS_LINK_TIMEOUT                (22*HZ/10)
 | |
| #define CAS_LINK_FAST_TIMEOUT           (1)
 | |
| 
 | |
| /* timeout values for state changing. these specify the number
 | |
|  * of 10us delays to be used before giving up.
 | |
|  */
 | |
| #define STOP_TRIES_PHY 1000
 | |
| #define STOP_TRIES     5000
 | |
| 
 | |
| /* specify a minimum frame size to deal with some fifo issues
 | |
|  * max mtu == 2 * page size - ethernet header - 64 - swivel =
 | |
|  *            2 * page_size - 0x50
 | |
|  */
 | |
| #define CAS_MIN_FRAME			97
 | |
| #define CAS_1000MB_MIN_FRAME            255
 | |
| #define CAS_MIN_MTU                     60
 | |
| #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
 | |
| 
 | |
| #if 1
 | |
| /*
 | |
|  * Eliminate these and use separate atomic counters for each, to
 | |
|  * avoid a race condition.
 | |
|  */
 | |
| #else
 | |
| #define CAS_RESET_MTU                   1
 | |
| #define CAS_RESET_ALL                   2
 | |
| #define CAS_RESET_SPARE                 3
 | |
| #endif
 | |
| 
 | |
| static char version[] =
 | |
| 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
 | |
| 
 | |
| static int cassini_debug = -1;	/* -1 == use CAS_DEF_MSG_ENABLE as value */
 | |
| static int link_mode;
 | |
| 
 | |
| MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
 | |
| MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_FIRMWARE("sun/cassini.bin");
 | |
| module_param(cassini_debug, int, 0);
 | |
| MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
 | |
| module_param(link_mode, int, 0);
 | |
| MODULE_PARM_DESC(link_mode, "default link mode");
 | |
| 
 | |
| /*
 | |
|  * Work around for a PCS bug in which the link goes down due to the chip
 | |
|  * being confused and never showing a link status of "up."
 | |
|  */
 | |
| #define DEFAULT_LINKDOWN_TIMEOUT 5
 | |
| /*
 | |
|  * Value in seconds, for user input.
 | |
|  */
 | |
| static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
 | |
| module_param(linkdown_timeout, int, 0);
 | |
| MODULE_PARM_DESC(linkdown_timeout,
 | |
| "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
 | |
| 
 | |
| /*
 | |
|  * value in 'ticks' (units used by jiffies). Set when we init the
 | |
|  * module because 'HZ' in actually a function call on some flavors of
 | |
|  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
 | |
|  */
 | |
| static int link_transition_timeout;
 | |
| 
 | |
| 
 | |
| 
 | |
| static u16 link_modes[] = {
 | |
| 	BMCR_ANENABLE,			 /* 0 : autoneg */
 | |
| 	0,				 /* 1 : 10bt half duplex */
 | |
| 	BMCR_SPEED100,			 /* 2 : 100bt half duplex */
 | |
| 	BMCR_FULLDPLX,			 /* 3 : 10bt full duplex */
 | |
| 	BMCR_SPEED100|BMCR_FULLDPLX,	 /* 4 : 100bt full duplex */
 | |
| 	CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
 | |
| };
 | |
| 
 | |
| static const struct pci_device_id cas_pci_tbl[] = {
 | |
| 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
 | |
| 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 | |
| 	{ PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
 | |
| 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 | |
| 	{ 0, }
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
 | |
| 
 | |
| static void cas_set_link_modes(struct cas *cp);
 | |
| 
 | |
| static inline void cas_lock_tx(struct cas *cp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < N_TX_RINGS; i++)
 | |
| 		spin_lock_nested(&cp->tx_lock[i], i);
 | |
| }
 | |
| 
 | |
| static inline void cas_lock_all(struct cas *cp)
 | |
| {
 | |
| 	spin_lock_irq(&cp->lock);
 | |
| 	cas_lock_tx(cp);
 | |
| }
 | |
| 
 | |
| /* WTZ: QA was finding deadlock problems with the previous
 | |
|  * versions after long test runs with multiple cards per machine.
 | |
|  * See if replacing cas_lock_all with safer versions helps. The
 | |
|  * symptoms QA is reporting match those we'd expect if interrupts
 | |
|  * aren't being properly restored, and we fixed a previous deadlock
 | |
|  * with similar symptoms by using save/restore versions in other
 | |
|  * places.
 | |
|  */
 | |
| #define cas_lock_all_save(cp, flags) \
 | |
| do { \
 | |
| 	struct cas *xxxcp = (cp); \
 | |
| 	spin_lock_irqsave(&xxxcp->lock, flags); \
 | |
| 	cas_lock_tx(xxxcp); \
 | |
| } while (0)
 | |
| 
 | |
| static inline void cas_unlock_tx(struct cas *cp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = N_TX_RINGS; i > 0; i--)
 | |
| 		spin_unlock(&cp->tx_lock[i - 1]);
 | |
| }
 | |
| 
 | |
| static inline void cas_unlock_all(struct cas *cp)
 | |
| {
 | |
| 	cas_unlock_tx(cp);
 | |
| 	spin_unlock_irq(&cp->lock);
 | |
| }
 | |
| 
 | |
| #define cas_unlock_all_restore(cp, flags) \
 | |
| do { \
 | |
| 	struct cas *xxxcp = (cp); \
 | |
| 	cas_unlock_tx(xxxcp); \
 | |
| 	spin_unlock_irqrestore(&xxxcp->lock, flags); \
 | |
| } while (0)
 | |
| 
 | |
| static void cas_disable_irq(struct cas *cp, const int ring)
 | |
| {
 | |
| 	/* Make sure we won't get any more interrupts */
 | |
| 	if (ring == 0) {
 | |
| 		writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* disable completion interrupts and selectively mask */
 | |
| 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
 | |
| 		switch (ring) {
 | |
| #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
 | |
| #ifdef USE_PCI_INTB
 | |
| 		case 1:
 | |
| #endif
 | |
| #ifdef USE_PCI_INTC
 | |
| 		case 2:
 | |
| #endif
 | |
| #ifdef USE_PCI_INTD
 | |
| 		case 3:
 | |
| #endif
 | |
| 			writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
 | |
| 			       cp->regs + REG_PLUS_INTRN_MASK(ring));
 | |
| 			break;
 | |
| #endif
 | |
| 		default:
 | |
| 			writel(INTRN_MASK_CLEAR_ALL, cp->regs +
 | |
| 			       REG_PLUS_INTRN_MASK(ring));
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void cas_mask_intr(struct cas *cp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < N_RX_COMP_RINGS; i++)
 | |
| 		cas_disable_irq(cp, i);
 | |
| }
 | |
| 
 | |
| static void cas_enable_irq(struct cas *cp, const int ring)
 | |
| {
 | |
| 	if (ring == 0) { /* all but TX_DONE */
 | |
| 		writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
 | |
| 		switch (ring) {
 | |
| #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
 | |
| #ifdef USE_PCI_INTB
 | |
| 		case 1:
 | |
| #endif
 | |
| #ifdef USE_PCI_INTC
 | |
| 		case 2:
 | |
| #endif
 | |
| #ifdef USE_PCI_INTD
 | |
| 		case 3:
 | |
| #endif
 | |
| 			writel(INTRN_MASK_RX_EN, cp->regs +
 | |
| 			       REG_PLUS_INTRN_MASK(ring));
 | |
| 			break;
 | |
| #endif
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void cas_unmask_intr(struct cas *cp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < N_RX_COMP_RINGS; i++)
 | |
| 		cas_enable_irq(cp, i);
 | |
| }
 | |
| 
 | |
| static inline void cas_entropy_gather(struct cas *cp)
 | |
| {
 | |
| #ifdef USE_ENTROPY_DEV
 | |
| 	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
 | |
| 			    readl(cp->regs + REG_ENTROPY_IV),
 | |
| 			    sizeof(uint64_t)*8);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void cas_entropy_reset(struct cas *cp)
 | |
| {
 | |
| #ifdef USE_ENTROPY_DEV
 | |
| 	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
 | |
| 	       cp->regs + REG_BIM_LOCAL_DEV_EN);
 | |
| 	writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
 | |
| 	writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
 | |
| 
 | |
| 	/* if we read back 0x0, we don't have an entropy device */
 | |
| 	if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
 | |
| 		cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* access to the phy. the following assumes that we've initialized the MIF to
 | |
|  * be in frame rather than bit-bang mode
 | |
|  */
 | |
| static u16 cas_phy_read(struct cas *cp, int reg)
 | |
| {
 | |
| 	u32 cmd;
 | |
| 	int limit = STOP_TRIES_PHY;
 | |
| 
 | |
| 	cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
 | |
| 	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
 | |
| 	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
 | |
| 	cmd |= MIF_FRAME_TURN_AROUND_MSB;
 | |
| 	writel(cmd, cp->regs + REG_MIF_FRAME);
 | |
| 
 | |
| 	/* poll for completion */
 | |
| 	while (limit-- > 0) {
 | |
| 		udelay(10);
 | |
| 		cmd = readl(cp->regs + REG_MIF_FRAME);
 | |
| 		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
 | |
| 			return cmd & MIF_FRAME_DATA_MASK;
 | |
| 	}
 | |
| 	return 0xFFFF; /* -1 */
 | |
| }
 | |
| 
 | |
| static int cas_phy_write(struct cas *cp, int reg, u16 val)
 | |
| {
 | |
| 	int limit = STOP_TRIES_PHY;
 | |
| 	u32 cmd;
 | |
| 
 | |
| 	cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
 | |
| 	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
 | |
| 	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
 | |
| 	cmd |= MIF_FRAME_TURN_AROUND_MSB;
 | |
| 	cmd |= val & MIF_FRAME_DATA_MASK;
 | |
| 	writel(cmd, cp->regs + REG_MIF_FRAME);
 | |
| 
 | |
| 	/* poll for completion */
 | |
| 	while (limit-- > 0) {
 | |
| 		udelay(10);
 | |
| 		cmd = readl(cp->regs + REG_MIF_FRAME);
 | |
| 		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static void cas_phy_powerup(struct cas *cp)
 | |
| {
 | |
| 	u16 ctl = cas_phy_read(cp, MII_BMCR);
 | |
| 
 | |
| 	if ((ctl & BMCR_PDOWN) == 0)
 | |
| 		return;
 | |
| 	ctl &= ~BMCR_PDOWN;
 | |
| 	cas_phy_write(cp, MII_BMCR, ctl);
 | |
| }
 | |
| 
 | |
| static void cas_phy_powerdown(struct cas *cp)
 | |
| {
 | |
| 	u16 ctl = cas_phy_read(cp, MII_BMCR);
 | |
| 
 | |
| 	if (ctl & BMCR_PDOWN)
 | |
| 		return;
 | |
| 	ctl |= BMCR_PDOWN;
 | |
| 	cas_phy_write(cp, MII_BMCR, ctl);
 | |
| }
 | |
| 
 | |
| /* cp->lock held. note: the last put_page will free the buffer */
 | |
| static int cas_page_free(struct cas *cp, cas_page_t *page)
 | |
| {
 | |
| 	pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
 | |
| 		       PCI_DMA_FROMDEVICE);
 | |
| 	__free_pages(page->buffer, cp->page_order);
 | |
| 	kfree(page);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef RX_COUNT_BUFFERS
 | |
| #define RX_USED_ADD(x, y)       ((x)->used += (y))
 | |
| #define RX_USED_SET(x, y)       ((x)->used  = (y))
 | |
| #else
 | |
| #define RX_USED_ADD(x, y)
 | |
| #define RX_USED_SET(x, y)
 | |
| #endif
 | |
| 
 | |
| /* local page allocation routines for the receive buffers. jumbo pages
 | |
|  * require at least 8K contiguous and 8K aligned buffers.
 | |
|  */
 | |
| static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
 | |
| {
 | |
| 	cas_page_t *page;
 | |
| 
 | |
| 	page = kmalloc(sizeof(cas_page_t), flags);
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&page->list);
 | |
| 	RX_USED_SET(page, 0);
 | |
| 	page->buffer = alloc_pages(flags, cp->page_order);
 | |
| 	if (!page->buffer)
 | |
| 		goto page_err;
 | |
| 	page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
 | |
| 				      cp->page_size, PCI_DMA_FROMDEVICE);
 | |
| 	return page;
 | |
| 
 | |
| page_err:
 | |
| 	kfree(page);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* initialize spare pool of rx buffers, but allocate during the open */
 | |
| static void cas_spare_init(struct cas *cp)
 | |
| {
 | |
|   	spin_lock(&cp->rx_inuse_lock);
 | |
| 	INIT_LIST_HEAD(&cp->rx_inuse_list);
 | |
| 	spin_unlock(&cp->rx_inuse_lock);
 | |
| 
 | |
| 	spin_lock(&cp->rx_spare_lock);
 | |
| 	INIT_LIST_HEAD(&cp->rx_spare_list);
 | |
| 	cp->rx_spares_needed = RX_SPARE_COUNT;
 | |
| 	spin_unlock(&cp->rx_spare_lock);
 | |
| }
 | |
| 
 | |
| /* used on close. free all the spare buffers. */
 | |
| static void cas_spare_free(struct cas *cp)
 | |
| {
 | |
| 	struct list_head list, *elem, *tmp;
 | |
| 
 | |
| 	/* free spare buffers */
 | |
| 	INIT_LIST_HEAD(&list);
 | |
| 	spin_lock(&cp->rx_spare_lock);
 | |
| 	list_splice_init(&cp->rx_spare_list, &list);
 | |
| 	spin_unlock(&cp->rx_spare_lock);
 | |
| 	list_for_each_safe(elem, tmp, &list) {
 | |
| 		cas_page_free(cp, list_entry(elem, cas_page_t, list));
 | |
| 	}
 | |
| 
 | |
| 	INIT_LIST_HEAD(&list);
 | |
| #if 1
 | |
| 	/*
 | |
| 	 * Looks like Adrian had protected this with a different
 | |
| 	 * lock than used everywhere else to manipulate this list.
 | |
| 	 */
 | |
| 	spin_lock(&cp->rx_inuse_lock);
 | |
| 	list_splice_init(&cp->rx_inuse_list, &list);
 | |
| 	spin_unlock(&cp->rx_inuse_lock);
 | |
| #else
 | |
| 	spin_lock(&cp->rx_spare_lock);
 | |
| 	list_splice_init(&cp->rx_inuse_list, &list);
 | |
| 	spin_unlock(&cp->rx_spare_lock);
 | |
| #endif
 | |
| 	list_for_each_safe(elem, tmp, &list) {
 | |
| 		cas_page_free(cp, list_entry(elem, cas_page_t, list));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* replenish spares if needed */
 | |
| static void cas_spare_recover(struct cas *cp, const gfp_t flags)
 | |
| {
 | |
| 	struct list_head list, *elem, *tmp;
 | |
| 	int needed, i;
 | |
| 
 | |
| 	/* check inuse list. if we don't need any more free buffers,
 | |
| 	 * just free it
 | |
| 	 */
 | |
| 
 | |
| 	/* make a local copy of the list */
 | |
| 	INIT_LIST_HEAD(&list);
 | |
| 	spin_lock(&cp->rx_inuse_lock);
 | |
| 	list_splice_init(&cp->rx_inuse_list, &list);
 | |
| 	spin_unlock(&cp->rx_inuse_lock);
 | |
| 
 | |
| 	list_for_each_safe(elem, tmp, &list) {
 | |
| 		cas_page_t *page = list_entry(elem, cas_page_t, list);
 | |
| 
 | |
| 		/*
 | |
| 		 * With the lockless pagecache, cassini buffering scheme gets
 | |
| 		 * slightly less accurate: we might find that a page has an
 | |
| 		 * elevated reference count here, due to a speculative ref,
 | |
| 		 * and skip it as in-use. Ideally we would be able to reclaim
 | |
| 		 * it. However this would be such a rare case, it doesn't
 | |
| 		 * matter too much as we should pick it up the next time round.
 | |
| 		 *
 | |
| 		 * Importantly, if we find that the page has a refcount of 1
 | |
| 		 * here (our refcount), then we know it is definitely not inuse
 | |
| 		 * so we can reuse it.
 | |
| 		 */
 | |
| 		if (page_count(page->buffer) > 1)
 | |
| 			continue;
 | |
| 
 | |
| 		list_del(elem);
 | |
| 		spin_lock(&cp->rx_spare_lock);
 | |
| 		if (cp->rx_spares_needed > 0) {
 | |
| 			list_add(elem, &cp->rx_spare_list);
 | |
| 			cp->rx_spares_needed--;
 | |
| 			spin_unlock(&cp->rx_spare_lock);
 | |
| 		} else {
 | |
| 			spin_unlock(&cp->rx_spare_lock);
 | |
| 			cas_page_free(cp, page);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* put any inuse buffers back on the list */
 | |
| 	if (!list_empty(&list)) {
 | |
| 		spin_lock(&cp->rx_inuse_lock);
 | |
| 		list_splice(&list, &cp->rx_inuse_list);
 | |
| 		spin_unlock(&cp->rx_inuse_lock);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&cp->rx_spare_lock);
 | |
| 	needed = cp->rx_spares_needed;
 | |
| 	spin_unlock(&cp->rx_spare_lock);
 | |
| 	if (!needed)
 | |
| 		return;
 | |
| 
 | |
| 	/* we still need spares, so try to allocate some */
 | |
| 	INIT_LIST_HEAD(&list);
 | |
| 	i = 0;
 | |
| 	while (i < needed) {
 | |
| 		cas_page_t *spare = cas_page_alloc(cp, flags);
 | |
| 		if (!spare)
 | |
| 			break;
 | |
| 		list_add(&spare->list, &list);
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&cp->rx_spare_lock);
 | |
| 	list_splice(&list, &cp->rx_spare_list);
 | |
| 	cp->rx_spares_needed -= i;
 | |
| 	spin_unlock(&cp->rx_spare_lock);
 | |
| }
 | |
| 
 | |
| /* pull a page from the list. */
 | |
| static cas_page_t *cas_page_dequeue(struct cas *cp)
 | |
| {
 | |
| 	struct list_head *entry;
 | |
| 	int recover;
 | |
| 
 | |
| 	spin_lock(&cp->rx_spare_lock);
 | |
| 	if (list_empty(&cp->rx_spare_list)) {
 | |
| 		/* try to do a quick recovery */
 | |
| 		spin_unlock(&cp->rx_spare_lock);
 | |
| 		cas_spare_recover(cp, GFP_ATOMIC);
 | |
| 		spin_lock(&cp->rx_spare_lock);
 | |
| 		if (list_empty(&cp->rx_spare_list)) {
 | |
| 			netif_err(cp, rx_err, cp->dev,
 | |
| 				  "no spare buffers available\n");
 | |
| 			spin_unlock(&cp->rx_spare_lock);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	entry = cp->rx_spare_list.next;
 | |
| 	list_del(entry);
 | |
| 	recover = ++cp->rx_spares_needed;
 | |
| 	spin_unlock(&cp->rx_spare_lock);
 | |
| 
 | |
| 	/* trigger the timer to do the recovery */
 | |
| 	if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
 | |
| #if 1
 | |
| 		atomic_inc(&cp->reset_task_pending);
 | |
| 		atomic_inc(&cp->reset_task_pending_spare);
 | |
| 		schedule_work(&cp->reset_task);
 | |
| #else
 | |
| 		atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
 | |
| 		schedule_work(&cp->reset_task);
 | |
| #endif
 | |
| 	}
 | |
| 	return list_entry(entry, cas_page_t, list);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void cas_mif_poll(struct cas *cp, const int enable)
 | |
| {
 | |
| 	u32 cfg;
 | |
| 
 | |
| 	cfg  = readl(cp->regs + REG_MIF_CFG);
 | |
| 	cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
 | |
| 
 | |
| 	if (cp->phy_type & CAS_PHY_MII_MDIO1)
 | |
| 		cfg |= MIF_CFG_PHY_SELECT;
 | |
| 
 | |
| 	/* poll and interrupt on link status change. */
 | |
| 	if (enable) {
 | |
| 		cfg |= MIF_CFG_POLL_EN;
 | |
| 		cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
 | |
| 		cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
 | |
| 	}
 | |
| 	writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
 | |
| 	       cp->regs + REG_MIF_MASK);
 | |
| 	writel(cfg, cp->regs + REG_MIF_CFG);
 | |
| }
 | |
| 
 | |
| /* Must be invoked under cp->lock */
 | |
| static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
 | |
| {
 | |
| 	u16 ctl;
 | |
| #if 1
 | |
| 	int lcntl;
 | |
| 	int changed = 0;
 | |
| 	int oldstate = cp->lstate;
 | |
| 	int link_was_not_down = !(oldstate == link_down);
 | |
| #endif
 | |
| 	/* Setup link parameters */
 | |
| 	if (!ep)
 | |
| 		goto start_aneg;
 | |
| 	lcntl = cp->link_cntl;
 | |
| 	if (ep->autoneg == AUTONEG_ENABLE)
 | |
| 		cp->link_cntl = BMCR_ANENABLE;
 | |
| 	else {
 | |
| 		u32 speed = ethtool_cmd_speed(ep);
 | |
| 		cp->link_cntl = 0;
 | |
| 		if (speed == SPEED_100)
 | |
| 			cp->link_cntl |= BMCR_SPEED100;
 | |
| 		else if (speed == SPEED_1000)
 | |
| 			cp->link_cntl |= CAS_BMCR_SPEED1000;
 | |
| 		if (ep->duplex == DUPLEX_FULL)
 | |
| 			cp->link_cntl |= BMCR_FULLDPLX;
 | |
| 	}
 | |
| #if 1
 | |
| 	changed = (lcntl != cp->link_cntl);
 | |
| #endif
 | |
| start_aneg:
 | |
| 	if (cp->lstate == link_up) {
 | |
| 		netdev_info(cp->dev, "PCS link down\n");
 | |
| 	} else {
 | |
| 		if (changed) {
 | |
| 			netdev_info(cp->dev, "link configuration changed\n");
 | |
| 		}
 | |
| 	}
 | |
| 	cp->lstate = link_down;
 | |
| 	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
 | |
| 	if (!cp->hw_running)
 | |
| 		return;
 | |
| #if 1
 | |
| 	/*
 | |
| 	 * WTZ: If the old state was link_up, we turn off the carrier
 | |
| 	 * to replicate everything we do elsewhere on a link-down
 | |
| 	 * event when we were already in a link-up state..
 | |
| 	 */
 | |
| 	if (oldstate == link_up)
 | |
| 		netif_carrier_off(cp->dev);
 | |
| 	if (changed  && link_was_not_down) {
 | |
| 		/*
 | |
| 		 * WTZ: This branch will simply schedule a full reset after
 | |
| 		 * we explicitly changed link modes in an ioctl. See if this
 | |
| 		 * fixes the link-problems we were having for forced mode.
 | |
| 		 */
 | |
| 		atomic_inc(&cp->reset_task_pending);
 | |
| 		atomic_inc(&cp->reset_task_pending_all);
 | |
| 		schedule_work(&cp->reset_task);
 | |
| 		cp->timer_ticks = 0;
 | |
| 		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 	if (cp->phy_type & CAS_PHY_SERDES) {
 | |
| 		u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
 | |
| 
 | |
| 		if (cp->link_cntl & BMCR_ANENABLE) {
 | |
| 			val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
 | |
| 			cp->lstate = link_aneg;
 | |
| 		} else {
 | |
| 			if (cp->link_cntl & BMCR_FULLDPLX)
 | |
| 				val |= PCS_MII_CTRL_DUPLEX;
 | |
| 			val &= ~PCS_MII_AUTONEG_EN;
 | |
| 			cp->lstate = link_force_ok;
 | |
| 		}
 | |
| 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
 | |
| 		writel(val, cp->regs + REG_PCS_MII_CTRL);
 | |
| 
 | |
| 	} else {
 | |
| 		cas_mif_poll(cp, 0);
 | |
| 		ctl = cas_phy_read(cp, MII_BMCR);
 | |
| 		ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
 | |
| 			 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
 | |
| 		ctl |= cp->link_cntl;
 | |
| 		if (ctl & BMCR_ANENABLE) {
 | |
| 			ctl |= BMCR_ANRESTART;
 | |
| 			cp->lstate = link_aneg;
 | |
| 		} else {
 | |
| 			cp->lstate = link_force_ok;
 | |
| 		}
 | |
| 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
 | |
| 		cas_phy_write(cp, MII_BMCR, ctl);
 | |
| 		cas_mif_poll(cp, 1);
 | |
| 	}
 | |
| 
 | |
| 	cp->timer_ticks = 0;
 | |
| 	mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
 | |
| }
 | |
| 
 | |
| /* Must be invoked under cp->lock. */
 | |
| static int cas_reset_mii_phy(struct cas *cp)
 | |
| {
 | |
| 	int limit = STOP_TRIES_PHY;
 | |
| 	u16 val;
 | |
| 
 | |
| 	cas_phy_write(cp, MII_BMCR, BMCR_RESET);
 | |
| 	udelay(100);
 | |
| 	while (--limit) {
 | |
| 		val = cas_phy_read(cp, MII_BMCR);
 | |
| 		if ((val & BMCR_RESET) == 0)
 | |
| 			break;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 	return limit <= 0;
 | |
| }
 | |
| 
 | |
| static void cas_saturn_firmware_init(struct cas *cp)
 | |
| {
 | |
| 	const struct firmware *fw;
 | |
| 	const char fw_name[] = "sun/cassini.bin";
 | |
| 	int err;
 | |
| 
 | |
| 	if (PHY_NS_DP83065 != cp->phy_id)
 | |
| 		return;
 | |
| 
 | |
| 	err = request_firmware(&fw, fw_name, &cp->pdev->dev);
 | |
| 	if (err) {
 | |
| 		pr_err("Failed to load firmware \"%s\"\n",
 | |
| 		       fw_name);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (fw->size < 2) {
 | |
| 		pr_err("bogus length %zu in \"%s\"\n",
 | |
| 		       fw->size, fw_name);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
 | |
| 	cp->fw_size = fw->size - 2;
 | |
| 	cp->fw_data = vmalloc(cp->fw_size);
 | |
| 	if (!cp->fw_data)
 | |
| 		goto out;
 | |
| 	memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
 | |
| out:
 | |
| 	release_firmware(fw);
 | |
| }
 | |
| 
 | |
| static void cas_saturn_firmware_load(struct cas *cp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!cp->fw_data)
 | |
| 		return;
 | |
| 
 | |
| 	cas_phy_powerdown(cp);
 | |
| 
 | |
| 	/* expanded memory access mode */
 | |
| 	cas_phy_write(cp, DP83065_MII_MEM, 0x0);
 | |
| 
 | |
| 	/* pointer configuration for new firmware */
 | |
| 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
 | |
| 	cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
 | |
| 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
 | |
| 	cas_phy_write(cp, DP83065_MII_REGD, 0x82);
 | |
| 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
 | |
| 	cas_phy_write(cp, DP83065_MII_REGD, 0x0);
 | |
| 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
 | |
| 	cas_phy_write(cp, DP83065_MII_REGD, 0x39);
 | |
| 
 | |
| 	/* download new firmware */
 | |
| 	cas_phy_write(cp, DP83065_MII_MEM, 0x1);
 | |
| 	cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
 | |
| 	for (i = 0; i < cp->fw_size; i++)
 | |
| 		cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
 | |
| 
 | |
| 	/* enable firmware */
 | |
| 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
 | |
| 	cas_phy_write(cp, DP83065_MII_REGD, 0x1);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* phy initialization */
 | |
| static void cas_phy_init(struct cas *cp)
 | |
| {
 | |
| 	u16 val;
 | |
| 
 | |
| 	/* if we're in MII/GMII mode, set up phy */
 | |
| 	if (CAS_PHY_MII(cp->phy_type)) {
 | |
| 		writel(PCS_DATAPATH_MODE_MII,
 | |
| 		       cp->regs + REG_PCS_DATAPATH_MODE);
 | |
| 
 | |
| 		cas_mif_poll(cp, 0);
 | |
| 		cas_reset_mii_phy(cp); /* take out of isolate mode */
 | |
| 
 | |
| 		if (PHY_LUCENT_B0 == cp->phy_id) {
 | |
| 			/* workaround link up/down issue with lucent */
 | |
| 			cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
 | |
| 			cas_phy_write(cp, MII_BMCR, 0x00f1);
 | |
| 			cas_phy_write(cp, LUCENT_MII_REG, 0x0);
 | |
| 
 | |
| 		} else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
 | |
| 			/* workarounds for broadcom phy */
 | |
| 			cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
 | |
| 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
 | |
| 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
 | |
| 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
 | |
| 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
 | |
| 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
 | |
| 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
 | |
| 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
 | |
| 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
 | |
| 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
 | |
| 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
 | |
| 
 | |
| 		} else if (PHY_BROADCOM_5411 == cp->phy_id) {
 | |
| 			val = cas_phy_read(cp, BROADCOM_MII_REG4);
 | |
| 			val = cas_phy_read(cp, BROADCOM_MII_REG4);
 | |
| 			if (val & 0x0080) {
 | |
| 				/* link workaround */
 | |
| 				cas_phy_write(cp, BROADCOM_MII_REG4,
 | |
| 					      val & ~0x0080);
 | |
| 			}
 | |
| 
 | |
| 		} else if (cp->cas_flags & CAS_FLAG_SATURN) {
 | |
| 			writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
 | |
| 			       SATURN_PCFG_FSI : 0x0,
 | |
| 			       cp->regs + REG_SATURN_PCFG);
 | |
| 
 | |
| 			/* load firmware to address 10Mbps auto-negotiation
 | |
| 			 * issue. NOTE: this will need to be changed if the
 | |
| 			 * default firmware gets fixed.
 | |
| 			 */
 | |
| 			if (PHY_NS_DP83065 == cp->phy_id) {
 | |
| 				cas_saturn_firmware_load(cp);
 | |
| 			}
 | |
| 			cas_phy_powerup(cp);
 | |
| 		}
 | |
| 
 | |
| 		/* advertise capabilities */
 | |
| 		val = cas_phy_read(cp, MII_BMCR);
 | |
| 		val &= ~BMCR_ANENABLE;
 | |
| 		cas_phy_write(cp, MII_BMCR, val);
 | |
| 		udelay(10);
 | |
| 
 | |
| 		cas_phy_write(cp, MII_ADVERTISE,
 | |
| 			      cas_phy_read(cp, MII_ADVERTISE) |
 | |
| 			      (ADVERTISE_10HALF | ADVERTISE_10FULL |
 | |
| 			       ADVERTISE_100HALF | ADVERTISE_100FULL |
 | |
| 			       CAS_ADVERTISE_PAUSE |
 | |
| 			       CAS_ADVERTISE_ASYM_PAUSE));
 | |
| 
 | |
| 		if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
 | |
| 			/* make sure that we don't advertise half
 | |
| 			 * duplex to avoid a chip issue
 | |
| 			 */
 | |
| 			val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
 | |
| 			val &= ~CAS_ADVERTISE_1000HALF;
 | |
| 			val |= CAS_ADVERTISE_1000FULL;
 | |
| 			cas_phy_write(cp, CAS_MII_1000_CTRL, val);
 | |
| 		}
 | |
| 
 | |
| 	} else {
 | |
| 		/* reset pcs for serdes */
 | |
| 		u32 val;
 | |
| 		int limit;
 | |
| 
 | |
| 		writel(PCS_DATAPATH_MODE_SERDES,
 | |
| 		       cp->regs + REG_PCS_DATAPATH_MODE);
 | |
| 
 | |
| 		/* enable serdes pins on saturn */
 | |
| 		if (cp->cas_flags & CAS_FLAG_SATURN)
 | |
| 			writel(0, cp->regs + REG_SATURN_PCFG);
 | |
| 
 | |
| 		/* Reset PCS unit. */
 | |
| 		val = readl(cp->regs + REG_PCS_MII_CTRL);
 | |
| 		val |= PCS_MII_RESET;
 | |
| 		writel(val, cp->regs + REG_PCS_MII_CTRL);
 | |
| 
 | |
| 		limit = STOP_TRIES;
 | |
| 		while (--limit > 0) {
 | |
| 			udelay(10);
 | |
| 			if ((readl(cp->regs + REG_PCS_MII_CTRL) &
 | |
| 			     PCS_MII_RESET) == 0)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (limit <= 0)
 | |
| 			netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
 | |
| 				    readl(cp->regs + REG_PCS_STATE_MACHINE));
 | |
| 
 | |
| 		/* Make sure PCS is disabled while changing advertisement
 | |
| 		 * configuration.
 | |
| 		 */
 | |
| 		writel(0x0, cp->regs + REG_PCS_CFG);
 | |
| 
 | |
| 		/* Advertise all capabilities except half-duplex. */
 | |
| 		val  = readl(cp->regs + REG_PCS_MII_ADVERT);
 | |
| 		val &= ~PCS_MII_ADVERT_HD;
 | |
| 		val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
 | |
| 			PCS_MII_ADVERT_ASYM_PAUSE);
 | |
| 		writel(val, cp->regs + REG_PCS_MII_ADVERT);
 | |
| 
 | |
| 		/* enable PCS */
 | |
| 		writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
 | |
| 
 | |
| 		/* pcs workaround: enable sync detect */
 | |
| 		writel(PCS_SERDES_CTRL_SYNCD_EN,
 | |
| 		       cp->regs + REG_PCS_SERDES_CTRL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static int cas_pcs_link_check(struct cas *cp)
 | |
| {
 | |
| 	u32 stat, state_machine;
 | |
| 	int retval = 0;
 | |
| 
 | |
| 	/* The link status bit latches on zero, so you must
 | |
| 	 * read it twice in such a case to see a transition
 | |
| 	 * to the link being up.
 | |
| 	 */
 | |
| 	stat = readl(cp->regs + REG_PCS_MII_STATUS);
 | |
| 	if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
 | |
| 		stat = readl(cp->regs + REG_PCS_MII_STATUS);
 | |
| 
 | |
| 	/* The remote-fault indication is only valid
 | |
| 	 * when autoneg has completed.
 | |
| 	 */
 | |
| 	if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
 | |
| 		     PCS_MII_STATUS_REMOTE_FAULT)) ==
 | |
| 	    (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
 | |
| 		netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
 | |
| 
 | |
| 	/* work around link detection issue by querying the PCS state
 | |
| 	 * machine directly.
 | |
| 	 */
 | |
| 	state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
 | |
| 	if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
 | |
| 		stat &= ~PCS_MII_STATUS_LINK_STATUS;
 | |
| 	} else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
 | |
| 		stat |= PCS_MII_STATUS_LINK_STATUS;
 | |
| 	}
 | |
| 
 | |
| 	if (stat & PCS_MII_STATUS_LINK_STATUS) {
 | |
| 		if (cp->lstate != link_up) {
 | |
| 			if (cp->opened) {
 | |
| 				cp->lstate = link_up;
 | |
| 				cp->link_transition = LINK_TRANSITION_LINK_UP;
 | |
| 
 | |
| 				cas_set_link_modes(cp);
 | |
| 				netif_carrier_on(cp->dev);
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (cp->lstate == link_up) {
 | |
| 		cp->lstate = link_down;
 | |
| 		if (link_transition_timeout != 0 &&
 | |
| 		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
 | |
| 		    !cp->link_transition_jiffies_valid) {
 | |
| 			/*
 | |
| 			 * force a reset, as a workaround for the
 | |
| 			 * link-failure problem. May want to move this to a
 | |
| 			 * point a bit earlier in the sequence. If we had
 | |
| 			 * generated a reset a short time ago, we'll wait for
 | |
| 			 * the link timer to check the status until a
 | |
| 			 * timer expires (link_transistion_jiffies_valid is
 | |
| 			 * true when the timer is running.)  Instead of using
 | |
| 			 * a system timer, we just do a check whenever the
 | |
| 			 * link timer is running - this clears the flag after
 | |
| 			 * a suitable delay.
 | |
| 			 */
 | |
| 			retval = 1;
 | |
| 			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
 | |
| 			cp->link_transition_jiffies = jiffies;
 | |
| 			cp->link_transition_jiffies_valid = 1;
 | |
| 		} else {
 | |
| 			cp->link_transition = LINK_TRANSITION_ON_FAILURE;
 | |
| 		}
 | |
| 		netif_carrier_off(cp->dev);
 | |
| 		if (cp->opened)
 | |
| 			netif_info(cp, link, cp->dev, "PCS link down\n");
 | |
| 
 | |
| 		/* Cassini only: if you force a mode, there can be
 | |
| 		 * sync problems on link down. to fix that, the following
 | |
| 		 * things need to be checked:
 | |
| 		 * 1) read serialink state register
 | |
| 		 * 2) read pcs status register to verify link down.
 | |
| 		 * 3) if link down and serial link == 0x03, then you need
 | |
| 		 *    to global reset the chip.
 | |
| 		 */
 | |
| 		if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
 | |
| 			/* should check to see if we're in a forced mode */
 | |
| 			stat = readl(cp->regs + REG_PCS_SERDES_STATE);
 | |
| 			if (stat == 0x03)
 | |
| 				return 1;
 | |
| 		}
 | |
| 	} else if (cp->lstate == link_down) {
 | |
| 		if (link_transition_timeout != 0 &&
 | |
| 		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
 | |
| 		    !cp->link_transition_jiffies_valid) {
 | |
| 			/* force a reset, as a workaround for the
 | |
| 			 * link-failure problem.  May want to move
 | |
| 			 * this to a point a bit earlier in the
 | |
| 			 * sequence.
 | |
| 			 */
 | |
| 			retval = 1;
 | |
| 			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
 | |
| 			cp->link_transition_jiffies = jiffies;
 | |
| 			cp->link_transition_jiffies_valid = 1;
 | |
| 		} else {
 | |
| 			cp->link_transition = LINK_TRANSITION_STILL_FAILED;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static int cas_pcs_interrupt(struct net_device *dev,
 | |
| 			     struct cas *cp, u32 status)
 | |
| {
 | |
| 	u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
 | |
| 
 | |
| 	if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
 | |
| 		return 0;
 | |
| 	return cas_pcs_link_check(cp);
 | |
| }
 | |
| 
 | |
| static int cas_txmac_interrupt(struct net_device *dev,
 | |
| 			       struct cas *cp, u32 status)
 | |
| {
 | |
| 	u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
 | |
| 
 | |
| 	if (!txmac_stat)
 | |
| 		return 0;
 | |
| 
 | |
| 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
 | |
| 		     "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
 | |
| 
 | |
| 	/* Defer timer expiration is quite normal,
 | |
| 	 * don't even log the event.
 | |
| 	 */
 | |
| 	if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
 | |
| 	    !(txmac_stat & ~MAC_TX_DEFER_TIMER))
 | |
| 		return 0;
 | |
| 
 | |
| 	spin_lock(&cp->stat_lock[0]);
 | |
| 	if (txmac_stat & MAC_TX_UNDERRUN) {
 | |
| 		netdev_err(dev, "TX MAC xmit underrun\n");
 | |
| 		cp->net_stats[0].tx_fifo_errors++;
 | |
| 	}
 | |
| 
 | |
| 	if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
 | |
| 		netdev_err(dev, "TX MAC max packet size error\n");
 | |
| 		cp->net_stats[0].tx_errors++;
 | |
| 	}
 | |
| 
 | |
| 	/* The rest are all cases of one of the 16-bit TX
 | |
| 	 * counters expiring.
 | |
| 	 */
 | |
| 	if (txmac_stat & MAC_TX_COLL_NORMAL)
 | |
| 		cp->net_stats[0].collisions += 0x10000;
 | |
| 
 | |
| 	if (txmac_stat & MAC_TX_COLL_EXCESS) {
 | |
| 		cp->net_stats[0].tx_aborted_errors += 0x10000;
 | |
| 		cp->net_stats[0].collisions += 0x10000;
 | |
| 	}
 | |
| 
 | |
| 	if (txmac_stat & MAC_TX_COLL_LATE) {
 | |
| 		cp->net_stats[0].tx_aborted_errors += 0x10000;
 | |
| 		cp->net_stats[0].collisions += 0x10000;
 | |
| 	}
 | |
| 	spin_unlock(&cp->stat_lock[0]);
 | |
| 
 | |
| 	/* We do not keep track of MAC_TX_COLL_FIRST and
 | |
| 	 * MAC_TX_PEAK_ATTEMPTS events.
 | |
| 	 */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
 | |
| {
 | |
| 	cas_hp_inst_t *inst;
 | |
| 	u32 val;
 | |
| 	int i;
 | |
| 
 | |
| 	i = 0;
 | |
| 	while ((inst = firmware) && inst->note) {
 | |
| 		writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
 | |
| 
 | |
| 		val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
 | |
| 		val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
 | |
| 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
 | |
| 
 | |
| 		val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
 | |
| 		val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
 | |
| 		val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
 | |
| 		val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
 | |
| 		val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
 | |
| 		val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
 | |
| 		val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
 | |
| 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
 | |
| 
 | |
| 		val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
 | |
| 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
 | |
| 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
 | |
| 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
 | |
| 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
 | |
| 		++firmware;
 | |
| 		++i;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void cas_init_rx_dma(struct cas *cp)
 | |
| {
 | |
| 	u64 desc_dma = cp->block_dvma;
 | |
| 	u32 val;
 | |
| 	int i, size;
 | |
| 
 | |
| 	/* rx free descriptors */
 | |
| 	val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
 | |
| 	val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
 | |
| 	val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
 | |
| 	if ((N_RX_DESC_RINGS > 1) &&
 | |
| 	    (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
 | |
| 		val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
 | |
| 	writel(val, cp->regs + REG_RX_CFG);
 | |
| 
 | |
| 	val = (unsigned long) cp->init_rxds[0] -
 | |
| 		(unsigned long) cp->init_block;
 | |
| 	writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
 | |
| 	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
 | |
| 	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
 | |
| 
 | |
| 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
 | |
| 		/* rx desc 2 is for IPSEC packets. however,
 | |
| 		 * we don't it that for that purpose.
 | |
| 		 */
 | |
| 		val = (unsigned long) cp->init_rxds[1] -
 | |
| 			(unsigned long) cp->init_block;
 | |
| 		writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
 | |
| 		writel((desc_dma + val) & 0xffffffff, cp->regs +
 | |
| 		       REG_PLUS_RX_DB1_LOW);
 | |
| 		writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
 | |
| 		       REG_PLUS_RX_KICK1);
 | |
| 	}
 | |
| 
 | |
| 	/* rx completion registers */
 | |
| 	val = (unsigned long) cp->init_rxcs[0] -
 | |
| 		(unsigned long) cp->init_block;
 | |
| 	writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
 | |
| 	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
 | |
| 
 | |
| 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
 | |
| 		/* rx comp 2-4 */
 | |
| 		for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
 | |
| 			val = (unsigned long) cp->init_rxcs[i] -
 | |
| 				(unsigned long) cp->init_block;
 | |
| 			writel((desc_dma + val) >> 32, cp->regs +
 | |
| 			       REG_PLUS_RX_CBN_HI(i));
 | |
| 			writel((desc_dma + val) & 0xffffffff, cp->regs +
 | |
| 			       REG_PLUS_RX_CBN_LOW(i));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* read selective clear regs to prevent spurious interrupts
 | |
| 	 * on reset because complete == kick.
 | |
| 	 * selective clear set up to prevent interrupts on resets
 | |
| 	 */
 | |
| 	readl(cp->regs + REG_INTR_STATUS_ALIAS);
 | |
| 	writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
 | |
| 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
 | |
| 		for (i = 1; i < N_RX_COMP_RINGS; i++)
 | |
| 			readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
 | |
| 
 | |
| 		/* 2 is different from 3 and 4 */
 | |
| 		if (N_RX_COMP_RINGS > 1)
 | |
| 			writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
 | |
| 			       cp->regs + REG_PLUS_ALIASN_CLEAR(1));
 | |
| 
 | |
| 		for (i = 2; i < N_RX_COMP_RINGS; i++)
 | |
| 			writel(INTR_RX_DONE_ALT,
 | |
| 			       cp->regs + REG_PLUS_ALIASN_CLEAR(i));
 | |
| 	}
 | |
| 
 | |
| 	/* set up pause thresholds */
 | |
| 	val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
 | |
| 			cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
 | |
| 	val |= CAS_BASE(RX_PAUSE_THRESH_ON,
 | |
| 			cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
 | |
| 	writel(val, cp->regs + REG_RX_PAUSE_THRESH);
 | |
| 
 | |
| 	/* zero out dma reassembly buffers */
 | |
| 	for (i = 0; i < 64; i++) {
 | |
| 		writel(i, cp->regs + REG_RX_TABLE_ADDR);
 | |
| 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
 | |
| 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
 | |
| 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
 | |
| 	}
 | |
| 
 | |
| 	/* make sure address register is 0 for normal operation */
 | |
| 	writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
 | |
| 	writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
 | |
| 
 | |
| 	/* interrupt mitigation */
 | |
| #ifdef USE_RX_BLANK
 | |
| 	val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
 | |
| 	val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
 | |
| 	writel(val, cp->regs + REG_RX_BLANK);
 | |
| #else
 | |
| 	writel(0x0, cp->regs + REG_RX_BLANK);
 | |
| #endif
 | |
| 
 | |
| 	/* interrupt generation as a function of low water marks for
 | |
| 	 * free desc and completion entries. these are used to trigger
 | |
| 	 * housekeeping for rx descs. we don't use the free interrupt
 | |
| 	 * as it's not very useful
 | |
| 	 */
 | |
| 	/* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
 | |
| 	val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
 | |
| 	writel(val, cp->regs + REG_RX_AE_THRESH);
 | |
| 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
 | |
| 		val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
 | |
| 		writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
 | |
| 	}
 | |
| 
 | |
| 	/* Random early detect registers. useful for congestion avoidance.
 | |
| 	 * this should be tunable.
 | |
| 	 */
 | |
| 	writel(0x0, cp->regs + REG_RX_RED);
 | |
| 
 | |
| 	/* receive page sizes. default == 2K (0x800) */
 | |
| 	val = 0;
 | |
| 	if (cp->page_size == 0x1000)
 | |
| 		val = 0x1;
 | |
| 	else if (cp->page_size == 0x2000)
 | |
| 		val = 0x2;
 | |
| 	else if (cp->page_size == 0x4000)
 | |
| 		val = 0x3;
 | |
| 
 | |
| 	/* round mtu + offset. constrain to page size. */
 | |
| 	size = cp->dev->mtu + 64;
 | |
| 	if (size > cp->page_size)
 | |
| 		size = cp->page_size;
 | |
| 
 | |
| 	if (size <= 0x400)
 | |
| 		i = 0x0;
 | |
| 	else if (size <= 0x800)
 | |
| 		i = 0x1;
 | |
| 	else if (size <= 0x1000)
 | |
| 		i = 0x2;
 | |
| 	else
 | |
| 		i = 0x3;
 | |
| 
 | |
| 	cp->mtu_stride = 1 << (i + 10);
 | |
| 	val  = CAS_BASE(RX_PAGE_SIZE, val);
 | |
| 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
 | |
| 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
 | |
| 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
 | |
| 	writel(val, cp->regs + REG_RX_PAGE_SIZE);
 | |
| 
 | |
| 	/* enable the header parser if desired */
 | |
| 	if (CAS_HP_FIRMWARE == cas_prog_null)
 | |
| 		return;
 | |
| 
 | |
| 	val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
 | |
| 	val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
 | |
| 	val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
 | |
| 	writel(val, cp->regs + REG_HP_CFG);
 | |
| }
 | |
| 
 | |
| static inline void cas_rxc_init(struct cas_rx_comp *rxc)
 | |
| {
 | |
| 	memset(rxc, 0, sizeof(*rxc));
 | |
| 	rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
 | |
| }
 | |
| 
 | |
| /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
 | |
|  * flipping is protected by the fact that the chip will not
 | |
|  * hand back the same page index while it's being processed.
 | |
|  */
 | |
| static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
 | |
| {
 | |
| 	cas_page_t *page = cp->rx_pages[1][index];
 | |
| 	cas_page_t *new;
 | |
| 
 | |
| 	if (page_count(page->buffer) == 1)
 | |
| 		return page;
 | |
| 
 | |
| 	new = cas_page_dequeue(cp);
 | |
| 	if (new) {
 | |
| 		spin_lock(&cp->rx_inuse_lock);
 | |
| 		list_add(&page->list, &cp->rx_inuse_list);
 | |
| 		spin_unlock(&cp->rx_inuse_lock);
 | |
| 	}
 | |
| 	return new;
 | |
| }
 | |
| 
 | |
| /* this needs to be changed if we actually use the ENC RX DESC ring */
 | |
| static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
 | |
| 				 const int index)
 | |
| {
 | |
| 	cas_page_t **page0 = cp->rx_pages[0];
 | |
| 	cas_page_t **page1 = cp->rx_pages[1];
 | |
| 
 | |
| 	/* swap if buffer is in use */
 | |
| 	if (page_count(page0[index]->buffer) > 1) {
 | |
| 		cas_page_t *new = cas_page_spare(cp, index);
 | |
| 		if (new) {
 | |
| 			page1[index] = page0[index];
 | |
| 			page0[index] = new;
 | |
| 		}
 | |
| 	}
 | |
| 	RX_USED_SET(page0[index], 0);
 | |
| 	return page0[index];
 | |
| }
 | |
| 
 | |
| static void cas_clean_rxds(struct cas *cp)
 | |
| {
 | |
| 	/* only clean ring 0 as ring 1 is used for spare buffers */
 | |
|         struct cas_rx_desc *rxd = cp->init_rxds[0];
 | |
| 	int i, size;
 | |
| 
 | |
| 	/* release all rx flows */
 | |
| 	for (i = 0; i < N_RX_FLOWS; i++) {
 | |
| 		struct sk_buff *skb;
 | |
| 		while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
 | |
| 			cas_skb_release(skb);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* initialize descriptors */
 | |
| 	size = RX_DESC_RINGN_SIZE(0);
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		cas_page_t *page = cas_page_swap(cp, 0, i);
 | |
| 		rxd[i].buffer = cpu_to_le64(page->dma_addr);
 | |
| 		rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
 | |
| 					    CAS_BASE(RX_INDEX_RING, 0));
 | |
| 	}
 | |
| 
 | |
| 	cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
 | |
| 	cp->rx_last[0] = 0;
 | |
| 	cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
 | |
| }
 | |
| 
 | |
| static void cas_clean_rxcs(struct cas *cp)
 | |
| {
 | |
| 	int i, j;
 | |
| 
 | |
| 	/* take ownership of rx comp descriptors */
 | |
| 	memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
 | |
| 	memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
 | |
| 	for (i = 0; i < N_RX_COMP_RINGS; i++) {
 | |
| 		struct cas_rx_comp *rxc = cp->init_rxcs[i];
 | |
| 		for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
 | |
| 			cas_rxc_init(rxc + j);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| /* When we get a RX fifo overflow, the RX unit is probably hung
 | |
|  * so we do the following.
 | |
|  *
 | |
|  * If any part of the reset goes wrong, we return 1 and that causes the
 | |
|  * whole chip to be reset.
 | |
|  */
 | |
| static int cas_rxmac_reset(struct cas *cp)
 | |
| {
 | |
| 	struct net_device *dev = cp->dev;
 | |
| 	int limit;
 | |
| 	u32 val;
 | |
| 
 | |
| 	/* First, reset MAC RX. */
 | |
| 	writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
 | |
| 	for (limit = 0; limit < STOP_TRIES; limit++) {
 | |
| 		if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
 | |
| 			break;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 	if (limit == STOP_TRIES) {
 | |
| 		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Second, disable RX DMA. */
 | |
| 	writel(0, cp->regs + REG_RX_CFG);
 | |
| 	for (limit = 0; limit < STOP_TRIES; limit++) {
 | |
| 		if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
 | |
| 			break;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 	if (limit == STOP_TRIES) {
 | |
| 		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	mdelay(5);
 | |
| 
 | |
| 	/* Execute RX reset command. */
 | |
| 	writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
 | |
| 	for (limit = 0; limit < STOP_TRIES; limit++) {
 | |
| 		if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
 | |
| 			break;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 	if (limit == STOP_TRIES) {
 | |
| 		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* reset driver rx state */
 | |
| 	cas_clean_rxds(cp);
 | |
| 	cas_clean_rxcs(cp);
 | |
| 
 | |
| 	/* Now, reprogram the rest of RX unit. */
 | |
| 	cas_init_rx_dma(cp);
 | |
| 
 | |
| 	/* re-enable */
 | |
| 	val = readl(cp->regs + REG_RX_CFG);
 | |
| 	writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
 | |
| 	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
 | |
| 	val = readl(cp->regs + REG_MAC_RX_CFG);
 | |
| 	writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
 | |
| 			       u32 status)
 | |
| {
 | |
| 	u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
 | |
| 
 | |
| 	if (!stat)
 | |
| 		return 0;
 | |
| 
 | |
| 	netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
 | |
| 
 | |
| 	/* these are all rollovers */
 | |
| 	spin_lock(&cp->stat_lock[0]);
 | |
| 	if (stat & MAC_RX_ALIGN_ERR)
 | |
| 		cp->net_stats[0].rx_frame_errors += 0x10000;
 | |
| 
 | |
| 	if (stat & MAC_RX_CRC_ERR)
 | |
| 		cp->net_stats[0].rx_crc_errors += 0x10000;
 | |
| 
 | |
| 	if (stat & MAC_RX_LEN_ERR)
 | |
| 		cp->net_stats[0].rx_length_errors += 0x10000;
 | |
| 
 | |
| 	if (stat & MAC_RX_OVERFLOW) {
 | |
| 		cp->net_stats[0].rx_over_errors++;
 | |
| 		cp->net_stats[0].rx_fifo_errors++;
 | |
| 	}
 | |
| 
 | |
| 	/* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
 | |
| 	 * events.
 | |
| 	 */
 | |
| 	spin_unlock(&cp->stat_lock[0]);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
 | |
| 			     u32 status)
 | |
| {
 | |
| 	u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
 | |
| 
 | |
| 	if (!stat)
 | |
| 		return 0;
 | |
| 
 | |
| 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
 | |
| 		     "mac interrupt, stat: 0x%x\n", stat);
 | |
| 
 | |
| 	/* This interrupt is just for pause frame and pause
 | |
| 	 * tracking.  It is useful for diagnostics and debug
 | |
| 	 * but probably by default we will mask these events.
 | |
| 	 */
 | |
| 	if (stat & MAC_CTRL_PAUSE_STATE)
 | |
| 		cp->pause_entered++;
 | |
| 
 | |
| 	if (stat & MAC_CTRL_PAUSE_RECEIVED)
 | |
| 		cp->pause_last_time_recvd = (stat >> 16);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Must be invoked under cp->lock. */
 | |
| static inline int cas_mdio_link_not_up(struct cas *cp)
 | |
| {
 | |
| 	u16 val;
 | |
| 
 | |
| 	switch (cp->lstate) {
 | |
| 	case link_force_ret:
 | |
| 		netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
 | |
| 		cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
 | |
| 		cp->timer_ticks = 5;
 | |
| 		cp->lstate = link_force_ok;
 | |
| 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
 | |
| 		break;
 | |
| 
 | |
| 	case link_aneg:
 | |
| 		val = cas_phy_read(cp, MII_BMCR);
 | |
| 
 | |
| 		/* Try forced modes. we try things in the following order:
 | |
| 		 * 1000 full -> 100 full/half -> 10 half
 | |
| 		 */
 | |
| 		val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
 | |
| 		val |= BMCR_FULLDPLX;
 | |
| 		val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
 | |
| 			CAS_BMCR_SPEED1000 : BMCR_SPEED100;
 | |
| 		cas_phy_write(cp, MII_BMCR, val);
 | |
| 		cp->timer_ticks = 5;
 | |
| 		cp->lstate = link_force_try;
 | |
| 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
 | |
| 		break;
 | |
| 
 | |
| 	case link_force_try:
 | |
| 		/* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
 | |
| 		val = cas_phy_read(cp, MII_BMCR);
 | |
| 		cp->timer_ticks = 5;
 | |
| 		if (val & CAS_BMCR_SPEED1000) { /* gigabit */
 | |
| 			val &= ~CAS_BMCR_SPEED1000;
 | |
| 			val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
 | |
| 			cas_phy_write(cp, MII_BMCR, val);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (val & BMCR_SPEED100) {
 | |
| 			if (val & BMCR_FULLDPLX) /* fd failed */
 | |
| 				val &= ~BMCR_FULLDPLX;
 | |
| 			else { /* 100Mbps failed */
 | |
| 				val &= ~BMCR_SPEED100;
 | |
| 			}
 | |
| 			cas_phy_write(cp, MII_BMCR, val);
 | |
| 			break;
 | |
| 		}
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* must be invoked with cp->lock held */
 | |
| static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
 | |
| {
 | |
| 	int restart;
 | |
| 
 | |
| 	if (bmsr & BMSR_LSTATUS) {
 | |
| 		/* Ok, here we got a link. If we had it due to a forced
 | |
| 		 * fallback, and we were configured for autoneg, we
 | |
| 		 * retry a short autoneg pass. If you know your hub is
 | |
| 		 * broken, use ethtool ;)
 | |
| 		 */
 | |
| 		if ((cp->lstate == link_force_try) &&
 | |
| 		    (cp->link_cntl & BMCR_ANENABLE)) {
 | |
| 			cp->lstate = link_force_ret;
 | |
| 			cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
 | |
| 			cas_mif_poll(cp, 0);
 | |
| 			cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
 | |
| 			cp->timer_ticks = 5;
 | |
| 			if (cp->opened)
 | |
| 				netif_info(cp, link, cp->dev,
 | |
| 					   "Got link after fallback, retrying autoneg once...\n");
 | |
| 			cas_phy_write(cp, MII_BMCR,
 | |
| 				      cp->link_fcntl | BMCR_ANENABLE |
 | |
| 				      BMCR_ANRESTART);
 | |
| 			cas_mif_poll(cp, 1);
 | |
| 
 | |
| 		} else if (cp->lstate != link_up) {
 | |
| 			cp->lstate = link_up;
 | |
| 			cp->link_transition = LINK_TRANSITION_LINK_UP;
 | |
| 
 | |
| 			if (cp->opened) {
 | |
| 				cas_set_link_modes(cp);
 | |
| 				netif_carrier_on(cp->dev);
 | |
| 			}
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* link not up. if the link was previously up, we restart the
 | |
| 	 * whole process
 | |
| 	 */
 | |
| 	restart = 0;
 | |
| 	if (cp->lstate == link_up) {
 | |
| 		cp->lstate = link_down;
 | |
| 		cp->link_transition = LINK_TRANSITION_LINK_DOWN;
 | |
| 
 | |
| 		netif_carrier_off(cp->dev);
 | |
| 		if (cp->opened)
 | |
| 			netif_info(cp, link, cp->dev, "Link down\n");
 | |
| 		restart = 1;
 | |
| 
 | |
| 	} else if (++cp->timer_ticks > 10)
 | |
| 		cas_mdio_link_not_up(cp);
 | |
| 
 | |
| 	return restart;
 | |
| }
 | |
| 
 | |
| static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
 | |
| 			     u32 status)
 | |
| {
 | |
| 	u32 stat = readl(cp->regs + REG_MIF_STATUS);
 | |
| 	u16 bmsr;
 | |
| 
 | |
| 	/* check for a link change */
 | |
| 	if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
 | |
| 	return cas_mii_link_check(cp, bmsr);
 | |
| }
 | |
| 
 | |
| static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
 | |
| 			     u32 status)
 | |
| {
 | |
| 	u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
 | |
| 
 | |
| 	if (!stat)
 | |
| 		return 0;
 | |
| 
 | |
| 	netdev_err(dev, "PCI error [%04x:%04x]",
 | |
| 		   stat, readl(cp->regs + REG_BIM_DIAG));
 | |
| 
 | |
| 	/* cassini+ has this reserved */
 | |
| 	if ((stat & PCI_ERR_BADACK) &&
 | |
| 	    ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
 | |
| 		pr_cont(" <No ACK64# during ABS64 cycle>");
 | |
| 
 | |
| 	if (stat & PCI_ERR_DTRTO)
 | |
| 		pr_cont(" <Delayed transaction timeout>");
 | |
| 	if (stat & PCI_ERR_OTHER)
 | |
| 		pr_cont(" <other>");
 | |
| 	if (stat & PCI_ERR_BIM_DMA_WRITE)
 | |
| 		pr_cont(" <BIM DMA 0 write req>");
 | |
| 	if (stat & PCI_ERR_BIM_DMA_READ)
 | |
| 		pr_cont(" <BIM DMA 0 read req>");
 | |
| 	pr_cont("\n");
 | |
| 
 | |
| 	if (stat & PCI_ERR_OTHER) {
 | |
| 		u16 cfg;
 | |
| 
 | |
| 		/* Interrogate PCI config space for the
 | |
| 		 * true cause.
 | |
| 		 */
 | |
| 		pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
 | |
| 		netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
 | |
| 		if (cfg & PCI_STATUS_PARITY)
 | |
| 			netdev_err(dev, "PCI parity error detected\n");
 | |
| 		if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
 | |
| 			netdev_err(dev, "PCI target abort\n");
 | |
| 		if (cfg & PCI_STATUS_REC_TARGET_ABORT)
 | |
| 			netdev_err(dev, "PCI master acks target abort\n");
 | |
| 		if (cfg & PCI_STATUS_REC_MASTER_ABORT)
 | |
| 			netdev_err(dev, "PCI master abort\n");
 | |
| 		if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
 | |
| 			netdev_err(dev, "PCI system error SERR#\n");
 | |
| 		if (cfg & PCI_STATUS_DETECTED_PARITY)
 | |
| 			netdev_err(dev, "PCI parity error\n");
 | |
| 
 | |
| 		/* Write the error bits back to clear them. */
 | |
| 		cfg &= (PCI_STATUS_PARITY |
 | |
| 			PCI_STATUS_SIG_TARGET_ABORT |
 | |
| 			PCI_STATUS_REC_TARGET_ABORT |
 | |
| 			PCI_STATUS_REC_MASTER_ABORT |
 | |
| 			PCI_STATUS_SIG_SYSTEM_ERROR |
 | |
| 			PCI_STATUS_DETECTED_PARITY);
 | |
| 		pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
 | |
| 	}
 | |
| 
 | |
| 	/* For all PCI errors, we should reset the chip. */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* All non-normal interrupt conditions get serviced here.
 | |
|  * Returns non-zero if we should just exit the interrupt
 | |
|  * handler right now (ie. if we reset the card which invalidates
 | |
|  * all of the other original irq status bits).
 | |
|  */
 | |
| static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
 | |
| 			    u32 status)
 | |
| {
 | |
| 	if (status & INTR_RX_TAG_ERROR) {
 | |
| 		/* corrupt RX tag framing */
 | |
| 		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
 | |
| 			     "corrupt rx tag framing\n");
 | |
| 		spin_lock(&cp->stat_lock[0]);
 | |
| 		cp->net_stats[0].rx_errors++;
 | |
| 		spin_unlock(&cp->stat_lock[0]);
 | |
| 		goto do_reset;
 | |
| 	}
 | |
| 
 | |
| 	if (status & INTR_RX_LEN_MISMATCH) {
 | |
| 		/* length mismatch. */
 | |
| 		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
 | |
| 			     "length mismatch for rx frame\n");
 | |
| 		spin_lock(&cp->stat_lock[0]);
 | |
| 		cp->net_stats[0].rx_errors++;
 | |
| 		spin_unlock(&cp->stat_lock[0]);
 | |
| 		goto do_reset;
 | |
| 	}
 | |
| 
 | |
| 	if (status & INTR_PCS_STATUS) {
 | |
| 		if (cas_pcs_interrupt(dev, cp, status))
 | |
| 			goto do_reset;
 | |
| 	}
 | |
| 
 | |
| 	if (status & INTR_TX_MAC_STATUS) {
 | |
| 		if (cas_txmac_interrupt(dev, cp, status))
 | |
| 			goto do_reset;
 | |
| 	}
 | |
| 
 | |
| 	if (status & INTR_RX_MAC_STATUS) {
 | |
| 		if (cas_rxmac_interrupt(dev, cp, status))
 | |
| 			goto do_reset;
 | |
| 	}
 | |
| 
 | |
| 	if (status & INTR_MAC_CTRL_STATUS) {
 | |
| 		if (cas_mac_interrupt(dev, cp, status))
 | |
| 			goto do_reset;
 | |
| 	}
 | |
| 
 | |
| 	if (status & INTR_MIF_STATUS) {
 | |
| 		if (cas_mif_interrupt(dev, cp, status))
 | |
| 			goto do_reset;
 | |
| 	}
 | |
| 
 | |
| 	if (status & INTR_PCI_ERROR_STATUS) {
 | |
| 		if (cas_pci_interrupt(dev, cp, status))
 | |
| 			goto do_reset;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| do_reset:
 | |
| #if 1
 | |
| 	atomic_inc(&cp->reset_task_pending);
 | |
| 	atomic_inc(&cp->reset_task_pending_all);
 | |
| 	netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
 | |
| 	schedule_work(&cp->reset_task);
 | |
| #else
 | |
| 	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
 | |
| 	netdev_err(dev, "reset called in cas_abnormal_irq\n");
 | |
| 	schedule_work(&cp->reset_task);
 | |
| #endif
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
 | |
|  *       determining whether to do a netif_stop/wakeup
 | |
|  */
 | |
| #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
 | |
| #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
 | |
| static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
 | |
| 				  const int len)
 | |
| {
 | |
| 	unsigned long off = addr + len;
 | |
| 
 | |
| 	if (CAS_TABORT(cp) == 1)
 | |
| 		return 0;
 | |
| 	if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
 | |
| 		return 0;
 | |
| 	return TX_TARGET_ABORT_LEN;
 | |
| }
 | |
| 
 | |
| static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
 | |
| {
 | |
| 	struct cas_tx_desc *txds;
 | |
| 	struct sk_buff **skbs;
 | |
| 	struct net_device *dev = cp->dev;
 | |
| 	int entry, count;
 | |
| 
 | |
| 	spin_lock(&cp->tx_lock[ring]);
 | |
| 	txds = cp->init_txds[ring];
 | |
| 	skbs = cp->tx_skbs[ring];
 | |
| 	entry = cp->tx_old[ring];
 | |
| 
 | |
| 	count = TX_BUFF_COUNT(ring, entry, limit);
 | |
| 	while (entry != limit) {
 | |
| 		struct sk_buff *skb = skbs[entry];
 | |
| 		dma_addr_t daddr;
 | |
| 		u32 dlen;
 | |
| 		int frag;
 | |
| 
 | |
| 		if (!skb) {
 | |
| 			/* this should never occur */
 | |
| 			entry = TX_DESC_NEXT(ring, entry);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* however, we might get only a partial skb release. */
 | |
| 		count -= skb_shinfo(skb)->nr_frags +
 | |
| 			+ cp->tx_tiny_use[ring][entry].nbufs + 1;
 | |
| 		if (count < 0)
 | |
| 			break;
 | |
| 
 | |
| 		netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
 | |
| 			     "tx[%d] done, slot %d\n", ring, entry);
 | |
| 
 | |
| 		skbs[entry] = NULL;
 | |
| 		cp->tx_tiny_use[ring][entry].nbufs = 0;
 | |
| 
 | |
| 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
 | |
| 			struct cas_tx_desc *txd = txds + entry;
 | |
| 
 | |
| 			daddr = le64_to_cpu(txd->buffer);
 | |
| 			dlen = CAS_VAL(TX_DESC_BUFLEN,
 | |
| 				       le64_to_cpu(txd->control));
 | |
| 			pci_unmap_page(cp->pdev, daddr, dlen,
 | |
| 				       PCI_DMA_TODEVICE);
 | |
| 			entry = TX_DESC_NEXT(ring, entry);
 | |
| 
 | |
| 			/* tiny buffer may follow */
 | |
| 			if (cp->tx_tiny_use[ring][entry].used) {
 | |
| 				cp->tx_tiny_use[ring][entry].used = 0;
 | |
| 				entry = TX_DESC_NEXT(ring, entry);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		spin_lock(&cp->stat_lock[ring]);
 | |
| 		cp->net_stats[ring].tx_packets++;
 | |
| 		cp->net_stats[ring].tx_bytes += skb->len;
 | |
| 		spin_unlock(&cp->stat_lock[ring]);
 | |
| 		dev_kfree_skb_irq(skb);
 | |
| 	}
 | |
| 	cp->tx_old[ring] = entry;
 | |
| 
 | |
| 	/* this is wrong for multiple tx rings. the net device needs
 | |
| 	 * multiple queues for this to do the right thing.  we wait
 | |
| 	 * for 2*packets to be available when using tiny buffers
 | |
| 	 */
 | |
| 	if (netif_queue_stopped(dev) &&
 | |
| 	    (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
 | |
| 		netif_wake_queue(dev);
 | |
| 	spin_unlock(&cp->tx_lock[ring]);
 | |
| }
 | |
| 
 | |
| static void cas_tx(struct net_device *dev, struct cas *cp,
 | |
| 		   u32 status)
 | |
| {
 | |
|         int limit, ring;
 | |
| #ifdef USE_TX_COMPWB
 | |
| 	u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
 | |
| #endif
 | |
| 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
 | |
| 		     "tx interrupt, status: 0x%x, %llx\n",
 | |
| 		     status, (unsigned long long)compwb);
 | |
| 	/* process all the rings */
 | |
| 	for (ring = 0; ring < N_TX_RINGS; ring++) {
 | |
| #ifdef USE_TX_COMPWB
 | |
| 		/* use the completion writeback registers */
 | |
| 		limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
 | |
| 			CAS_VAL(TX_COMPWB_LSB, compwb);
 | |
| 		compwb = TX_COMPWB_NEXT(compwb);
 | |
| #else
 | |
| 		limit = readl(cp->regs + REG_TX_COMPN(ring));
 | |
| #endif
 | |
| 		if (cp->tx_old[ring] != limit)
 | |
| 			cas_tx_ringN(cp, ring, limit);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
 | |
| 			      int entry, const u64 *words,
 | |
| 			      struct sk_buff **skbref)
 | |
| {
 | |
| 	int dlen, hlen, len, i, alloclen;
 | |
| 	int off, swivel = RX_SWIVEL_OFF_VAL;
 | |
| 	struct cas_page *page;
 | |
| 	struct sk_buff *skb;
 | |
| 	void *addr, *crcaddr;
 | |
| 	__sum16 csum;
 | |
| 	char *p;
 | |
| 
 | |
| 	hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
 | |
| 	dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
 | |
| 	len  = hlen + dlen;
 | |
| 
 | |
| 	if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
 | |
| 		alloclen = len;
 | |
| 	else
 | |
| 		alloclen = max(hlen, RX_COPY_MIN);
 | |
| 
 | |
| 	skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
 | |
| 	if (skb == NULL)
 | |
| 		return -1;
 | |
| 
 | |
| 	*skbref = skb;
 | |
| 	skb_reserve(skb, swivel);
 | |
| 
 | |
| 	p = skb->data;
 | |
| 	addr = crcaddr = NULL;
 | |
| 	if (hlen) { /* always copy header pages */
 | |
| 		i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
 | |
| 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
 | |
| 		off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
 | |
| 			swivel;
 | |
| 
 | |
| 		i = hlen;
 | |
| 		if (!dlen) /* attach FCS */
 | |
| 			i += cp->crc_size;
 | |
| 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
 | |
| 				    PCI_DMA_FROMDEVICE);
 | |
| 		addr = cas_page_map(page->buffer);
 | |
| 		memcpy(p, addr + off, i);
 | |
| 		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
 | |
| 				    PCI_DMA_FROMDEVICE);
 | |
| 		cas_page_unmap(addr);
 | |
| 		RX_USED_ADD(page, 0x100);
 | |
| 		p += hlen;
 | |
| 		swivel = 0;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	if (alloclen < (hlen + dlen)) {
 | |
| 		skb_frag_t *frag = skb_shinfo(skb)->frags;
 | |
| 
 | |
| 		/* normal or jumbo packets. we use frags */
 | |
| 		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
 | |
| 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
 | |
| 		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
 | |
| 
 | |
| 		hlen = min(cp->page_size - off, dlen);
 | |
| 		if (hlen < 0) {
 | |
| 			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
 | |
| 				     "rx page overflow: %d\n", hlen);
 | |
| 			dev_kfree_skb_irq(skb);
 | |
| 			return -1;
 | |
| 		}
 | |
| 		i = hlen;
 | |
| 		if (i == dlen)  /* attach FCS */
 | |
| 			i += cp->crc_size;
 | |
| 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
 | |
| 				    PCI_DMA_FROMDEVICE);
 | |
| 
 | |
| 		/* make sure we always copy a header */
 | |
| 		swivel = 0;
 | |
| 		if (p == (char *) skb->data) { /* not split */
 | |
| 			addr = cas_page_map(page->buffer);
 | |
| 			memcpy(p, addr + off, RX_COPY_MIN);
 | |
| 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
 | |
| 					PCI_DMA_FROMDEVICE);
 | |
| 			cas_page_unmap(addr);
 | |
| 			off += RX_COPY_MIN;
 | |
| 			swivel = RX_COPY_MIN;
 | |
| 			RX_USED_ADD(page, cp->mtu_stride);
 | |
| 		} else {
 | |
| 			RX_USED_ADD(page, hlen);
 | |
| 		}
 | |
| 		skb_put(skb, alloclen);
 | |
| 
 | |
| 		skb_shinfo(skb)->nr_frags++;
 | |
| 		skb->data_len += hlen - swivel;
 | |
| 		skb->truesize += hlen - swivel;
 | |
| 		skb->len      += hlen - swivel;
 | |
| 
 | |
| 		__skb_frag_set_page(frag, page->buffer);
 | |
| 		__skb_frag_ref(frag);
 | |
| 		frag->page_offset = off;
 | |
| 		skb_frag_size_set(frag, hlen - swivel);
 | |
| 
 | |
| 		/* any more data? */
 | |
| 		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
 | |
| 			hlen = dlen;
 | |
| 			off = 0;
 | |
| 
 | |
| 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
 | |
| 			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
 | |
| 			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
 | |
| 					    hlen + cp->crc_size,
 | |
| 					    PCI_DMA_FROMDEVICE);
 | |
| 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
 | |
| 					    hlen + cp->crc_size,
 | |
| 					    PCI_DMA_FROMDEVICE);
 | |
| 
 | |
| 			skb_shinfo(skb)->nr_frags++;
 | |
| 			skb->data_len += hlen;
 | |
| 			skb->len      += hlen;
 | |
| 			frag++;
 | |
| 
 | |
| 			__skb_frag_set_page(frag, page->buffer);
 | |
| 			__skb_frag_ref(frag);
 | |
| 			frag->page_offset = 0;
 | |
| 			skb_frag_size_set(frag, hlen);
 | |
| 			RX_USED_ADD(page, hlen + cp->crc_size);
 | |
| 		}
 | |
| 
 | |
| 		if (cp->crc_size) {
 | |
| 			addr = cas_page_map(page->buffer);
 | |
| 			crcaddr  = addr + off + hlen;
 | |
| 		}
 | |
| 
 | |
| 	} else {
 | |
| 		/* copying packet */
 | |
| 		if (!dlen)
 | |
| 			goto end_copy_pkt;
 | |
| 
 | |
| 		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
 | |
| 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
 | |
| 		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
 | |
| 		hlen = min(cp->page_size - off, dlen);
 | |
| 		if (hlen < 0) {
 | |
| 			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
 | |
| 				     "rx page overflow: %d\n", hlen);
 | |
| 			dev_kfree_skb_irq(skb);
 | |
| 			return -1;
 | |
| 		}
 | |
| 		i = hlen;
 | |
| 		if (i == dlen) /* attach FCS */
 | |
| 			i += cp->crc_size;
 | |
| 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
 | |
| 				    PCI_DMA_FROMDEVICE);
 | |
| 		addr = cas_page_map(page->buffer);
 | |
| 		memcpy(p, addr + off, i);
 | |
| 		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
 | |
| 				    PCI_DMA_FROMDEVICE);
 | |
| 		cas_page_unmap(addr);
 | |
| 		if (p == (char *) skb->data) /* not split */
 | |
| 			RX_USED_ADD(page, cp->mtu_stride);
 | |
| 		else
 | |
| 			RX_USED_ADD(page, i);
 | |
| 
 | |
| 		/* any more data? */
 | |
| 		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
 | |
| 			p += hlen;
 | |
| 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
 | |
| 			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
 | |
| 			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
 | |
| 					    dlen + cp->crc_size,
 | |
| 					    PCI_DMA_FROMDEVICE);
 | |
| 			addr = cas_page_map(page->buffer);
 | |
| 			memcpy(p, addr, dlen + cp->crc_size);
 | |
| 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
 | |
| 					    dlen + cp->crc_size,
 | |
| 					    PCI_DMA_FROMDEVICE);
 | |
| 			cas_page_unmap(addr);
 | |
| 			RX_USED_ADD(page, dlen + cp->crc_size);
 | |
| 		}
 | |
| end_copy_pkt:
 | |
| 		if (cp->crc_size) {
 | |
| 			addr    = NULL;
 | |
| 			crcaddr = skb->data + alloclen;
 | |
| 		}
 | |
| 		skb_put(skb, alloclen);
 | |
| 	}
 | |
| 
 | |
| 	csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
 | |
| 	if (cp->crc_size) {
 | |
| 		/* checksum includes FCS. strip it out. */
 | |
| 		csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
 | |
| 					      csum_unfold(csum)));
 | |
| 		if (addr)
 | |
| 			cas_page_unmap(addr);
 | |
| 	}
 | |
| 	skb->protocol = eth_type_trans(skb, cp->dev);
 | |
| 	if (skb->protocol == htons(ETH_P_IP)) {
 | |
| 		skb->csum = csum_unfold(~csum);
 | |
| 		skb->ip_summed = CHECKSUM_COMPLETE;
 | |
| 	} else
 | |
| 		skb_checksum_none_assert(skb);
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* we can handle up to 64 rx flows at a time. we do the same thing
 | |
|  * as nonreassm except that we batch up the buffers.
 | |
|  * NOTE: we currently just treat each flow as a bunch of packets that
 | |
|  *       we pass up. a better way would be to coalesce the packets
 | |
|  *       into a jumbo packet. to do that, we need to do the following:
 | |
|  *       1) the first packet will have a clean split between header and
 | |
|  *          data. save both.
 | |
|  *       2) each time the next flow packet comes in, extend the
 | |
|  *          data length and merge the checksums.
 | |
|  *       3) on flow release, fix up the header.
 | |
|  *       4) make sure the higher layer doesn't care.
 | |
|  * because packets get coalesced, we shouldn't run into fragment count
 | |
|  * issues.
 | |
|  */
 | |
| static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
 | |
| 				   struct sk_buff *skb)
 | |
| {
 | |
| 	int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
 | |
| 	struct sk_buff_head *flow = &cp->rx_flows[flowid];
 | |
| 
 | |
| 	/* this is protected at a higher layer, so no need to
 | |
| 	 * do any additional locking here. stick the buffer
 | |
| 	 * at the end.
 | |
| 	 */
 | |
| 	__skb_queue_tail(flow, skb);
 | |
| 	if (words[0] & RX_COMP1_RELEASE_FLOW) {
 | |
| 		while ((skb = __skb_dequeue(flow))) {
 | |
| 			cas_skb_release(skb);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* put rx descriptor back on ring. if a buffer is in use by a higher
 | |
|  * layer, this will need to put in a replacement.
 | |
|  */
 | |
| static void cas_post_page(struct cas *cp, const int ring, const int index)
 | |
| {
 | |
| 	cas_page_t *new;
 | |
| 	int entry;
 | |
| 
 | |
| 	entry = cp->rx_old[ring];
 | |
| 
 | |
| 	new = cas_page_swap(cp, ring, index);
 | |
| 	cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
 | |
| 	cp->init_rxds[ring][entry].index  =
 | |
| 		cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
 | |
| 			    CAS_BASE(RX_INDEX_RING, ring));
 | |
| 
 | |
| 	entry = RX_DESC_ENTRY(ring, entry + 1);
 | |
| 	cp->rx_old[ring] = entry;
 | |
| 
 | |
| 	if (entry % 4)
 | |
| 		return;
 | |
| 
 | |
| 	if (ring == 0)
 | |
| 		writel(entry, cp->regs + REG_RX_KICK);
 | |
| 	else if ((N_RX_DESC_RINGS > 1) &&
 | |
| 		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
 | |
| 		writel(entry, cp->regs + REG_PLUS_RX_KICK1);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* only when things are bad */
 | |
| static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
 | |
| {
 | |
| 	unsigned int entry, last, count, released;
 | |
| 	int cluster;
 | |
| 	cas_page_t **page = cp->rx_pages[ring];
 | |
| 
 | |
| 	entry = cp->rx_old[ring];
 | |
| 
 | |
| 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
 | |
| 		     "rxd[%d] interrupt, done: %d\n", ring, entry);
 | |
| 
 | |
| 	cluster = -1;
 | |
| 	count = entry & 0x3;
 | |
| 	last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
 | |
| 	released = 0;
 | |
| 	while (entry != last) {
 | |
| 		/* make a new buffer if it's still in use */
 | |
| 		if (page_count(page[entry]->buffer) > 1) {
 | |
| 			cas_page_t *new = cas_page_dequeue(cp);
 | |
| 			if (!new) {
 | |
| 				/* let the timer know that we need to
 | |
| 				 * do this again
 | |
| 				 */
 | |
| 				cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
 | |
| 				if (!timer_pending(&cp->link_timer))
 | |
| 					mod_timer(&cp->link_timer, jiffies +
 | |
| 						  CAS_LINK_FAST_TIMEOUT);
 | |
| 				cp->rx_old[ring]  = entry;
 | |
| 				cp->rx_last[ring] = num ? num - released : 0;
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 			spin_lock(&cp->rx_inuse_lock);
 | |
| 			list_add(&page[entry]->list, &cp->rx_inuse_list);
 | |
| 			spin_unlock(&cp->rx_inuse_lock);
 | |
| 			cp->init_rxds[ring][entry].buffer =
 | |
| 				cpu_to_le64(new->dma_addr);
 | |
| 			page[entry] = new;
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		if (++count == 4) {
 | |
| 			cluster = entry;
 | |
| 			count = 0;
 | |
| 		}
 | |
| 		released++;
 | |
| 		entry = RX_DESC_ENTRY(ring, entry + 1);
 | |
| 	}
 | |
| 	cp->rx_old[ring] = entry;
 | |
| 
 | |
| 	if (cluster < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (ring == 0)
 | |
| 		writel(cluster, cp->regs + REG_RX_KICK);
 | |
| 	else if ((N_RX_DESC_RINGS > 1) &&
 | |
| 		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
 | |
| 		writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* process a completion ring. packets are set up in three basic ways:
 | |
|  * small packets: should be copied header + data in single buffer.
 | |
|  * large packets: header and data in a single buffer.
 | |
|  * split packets: header in a separate buffer from data.
 | |
|  *                data may be in multiple pages. data may be > 256
 | |
|  *                bytes but in a single page.
 | |
|  *
 | |
|  * NOTE: RX page posting is done in this routine as well. while there's
 | |
|  *       the capability of using multiple RX completion rings, it isn't
 | |
|  *       really worthwhile due to the fact that the page posting will
 | |
|  *       force serialization on the single descriptor ring.
 | |
|  */
 | |
| static int cas_rx_ringN(struct cas *cp, int ring, int budget)
 | |
| {
 | |
| 	struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
 | |
| 	int entry, drops;
 | |
| 	int npackets = 0;
 | |
| 
 | |
| 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
 | |
| 		     "rx[%d] interrupt, done: %d/%d\n",
 | |
| 		     ring,
 | |
| 		     readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
 | |
| 
 | |
| 	entry = cp->rx_new[ring];
 | |
| 	drops = 0;
 | |
| 	while (1) {
 | |
| 		struct cas_rx_comp *rxc = rxcs + entry;
 | |
| 		struct sk_buff *uninitialized_var(skb);
 | |
| 		int type, len;
 | |
| 		u64 words[4];
 | |
| 		int i, dring;
 | |
| 
 | |
| 		words[0] = le64_to_cpu(rxc->word1);
 | |
| 		words[1] = le64_to_cpu(rxc->word2);
 | |
| 		words[2] = le64_to_cpu(rxc->word3);
 | |
| 		words[3] = le64_to_cpu(rxc->word4);
 | |
| 
 | |
| 		/* don't touch if still owned by hw */
 | |
| 		type = CAS_VAL(RX_COMP1_TYPE, words[0]);
 | |
| 		if (type == 0)
 | |
| 			break;
 | |
| 
 | |
| 		/* hw hasn't cleared the zero bit yet */
 | |
| 		if (words[3] & RX_COMP4_ZERO) {
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* get info on the packet */
 | |
| 		if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
 | |
| 			spin_lock(&cp->stat_lock[ring]);
 | |
| 			cp->net_stats[ring].rx_errors++;
 | |
| 			if (words[3] & RX_COMP4_LEN_MISMATCH)
 | |
| 				cp->net_stats[ring].rx_length_errors++;
 | |
| 			if (words[3] & RX_COMP4_BAD)
 | |
| 				cp->net_stats[ring].rx_crc_errors++;
 | |
| 			spin_unlock(&cp->stat_lock[ring]);
 | |
| 
 | |
| 			/* We'll just return it to Cassini. */
 | |
| 		drop_it:
 | |
| 			spin_lock(&cp->stat_lock[ring]);
 | |
| 			++cp->net_stats[ring].rx_dropped;
 | |
| 			spin_unlock(&cp->stat_lock[ring]);
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
 | |
| 		if (len < 0) {
 | |
| 			++drops;
 | |
| 			goto drop_it;
 | |
| 		}
 | |
| 
 | |
| 		/* see if it's a flow re-assembly or not. the driver
 | |
| 		 * itself handles release back up.
 | |
| 		 */
 | |
| 		if (RX_DONT_BATCH || (type == 0x2)) {
 | |
| 			/* non-reassm: these always get released */
 | |
| 			cas_skb_release(skb);
 | |
| 		} else {
 | |
| 			cas_rx_flow_pkt(cp, words, skb);
 | |
| 		}
 | |
| 
 | |
| 		spin_lock(&cp->stat_lock[ring]);
 | |
| 		cp->net_stats[ring].rx_packets++;
 | |
| 		cp->net_stats[ring].rx_bytes += len;
 | |
| 		spin_unlock(&cp->stat_lock[ring]);
 | |
| 
 | |
| 	next:
 | |
| 		npackets++;
 | |
| 
 | |
| 		/* should it be released? */
 | |
| 		if (words[0] & RX_COMP1_RELEASE_HDR) {
 | |
| 			i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
 | |
| 			dring = CAS_VAL(RX_INDEX_RING, i);
 | |
| 			i = CAS_VAL(RX_INDEX_NUM, i);
 | |
| 			cas_post_page(cp, dring, i);
 | |
| 		}
 | |
| 
 | |
| 		if (words[0] & RX_COMP1_RELEASE_DATA) {
 | |
| 			i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
 | |
| 			dring = CAS_VAL(RX_INDEX_RING, i);
 | |
| 			i = CAS_VAL(RX_INDEX_NUM, i);
 | |
| 			cas_post_page(cp, dring, i);
 | |
| 		}
 | |
| 
 | |
| 		if (words[0] & RX_COMP1_RELEASE_NEXT) {
 | |
| 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
 | |
| 			dring = CAS_VAL(RX_INDEX_RING, i);
 | |
| 			i = CAS_VAL(RX_INDEX_NUM, i);
 | |
| 			cas_post_page(cp, dring, i);
 | |
| 		}
 | |
| 
 | |
| 		/* skip to the next entry */
 | |
| 		entry = RX_COMP_ENTRY(ring, entry + 1 +
 | |
| 				      CAS_VAL(RX_COMP1_SKIP, words[0]));
 | |
| #ifdef USE_NAPI
 | |
| 		if (budget && (npackets >= budget))
 | |
| 			break;
 | |
| #endif
 | |
| 	}
 | |
| 	cp->rx_new[ring] = entry;
 | |
| 
 | |
| 	if (drops)
 | |
| 		netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
 | |
| 	return npackets;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* put completion entries back on the ring */
 | |
| static void cas_post_rxcs_ringN(struct net_device *dev,
 | |
| 				struct cas *cp, int ring)
 | |
| {
 | |
| 	struct cas_rx_comp *rxc = cp->init_rxcs[ring];
 | |
| 	int last, entry;
 | |
| 
 | |
| 	last = cp->rx_cur[ring];
 | |
| 	entry = cp->rx_new[ring];
 | |
| 	netif_printk(cp, intr, KERN_DEBUG, dev,
 | |
| 		     "rxc[%d] interrupt, done: %d/%d\n",
 | |
| 		     ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
 | |
| 
 | |
| 	/* zero and re-mark descriptors */
 | |
| 	while (last != entry) {
 | |
| 		cas_rxc_init(rxc + last);
 | |
| 		last = RX_COMP_ENTRY(ring, last + 1);
 | |
| 	}
 | |
| 	cp->rx_cur[ring] = last;
 | |
| 
 | |
| 	if (ring == 0)
 | |
| 		writel(last, cp->regs + REG_RX_COMP_TAIL);
 | |
| 	else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
 | |
| 		writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* cassini can use all four PCI interrupts for the completion ring.
 | |
|  * rings 3 and 4 are identical
 | |
|  */
 | |
| #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
 | |
| static inline void cas_handle_irqN(struct net_device *dev,
 | |
| 				   struct cas *cp, const u32 status,
 | |
| 				   const int ring)
 | |
| {
 | |
| 	if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
 | |
| 		cas_post_rxcs_ringN(dev, cp, ring);
 | |
| }
 | |
| 
 | |
| static irqreturn_t cas_interruptN(int irq, void *dev_id)
 | |
| {
 | |
| 	struct net_device *dev = dev_id;
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 	unsigned long flags;
 | |
| 	int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
 | |
| 	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
 | |
| 
 | |
| 	/* check for shared irq */
 | |
| 	if (status == 0)
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	spin_lock_irqsave(&cp->lock, flags);
 | |
| 	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
 | |
| #ifdef USE_NAPI
 | |
| 		cas_mask_intr(cp);
 | |
| 		napi_schedule(&cp->napi);
 | |
| #else
 | |
| 		cas_rx_ringN(cp, ring, 0);
 | |
| #endif
 | |
| 		status &= ~INTR_RX_DONE_ALT;
 | |
| 	}
 | |
| 
 | |
| 	if (status)
 | |
| 		cas_handle_irqN(dev, cp, status, ring);
 | |
| 	spin_unlock_irqrestore(&cp->lock, flags);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef USE_PCI_INTB
 | |
| /* everything but rx packets */
 | |
| static inline void cas_handle_irq1(struct cas *cp, const u32 status)
 | |
| {
 | |
| 	if (status & INTR_RX_BUF_UNAVAIL_1) {
 | |
| 		/* Frame arrived, no free RX buffers available.
 | |
| 		 * NOTE: we can get this on a link transition. */
 | |
| 		cas_post_rxds_ringN(cp, 1, 0);
 | |
| 		spin_lock(&cp->stat_lock[1]);
 | |
| 		cp->net_stats[1].rx_dropped++;
 | |
| 		spin_unlock(&cp->stat_lock[1]);
 | |
| 	}
 | |
| 
 | |
| 	if (status & INTR_RX_BUF_AE_1)
 | |
| 		cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
 | |
| 				    RX_AE_FREEN_VAL(1));
 | |
| 
 | |
| 	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
 | |
| 		cas_post_rxcs_ringN(cp, 1);
 | |
| }
 | |
| 
 | |
| /* ring 2 handles a few more events than 3 and 4 */
 | |
| static irqreturn_t cas_interrupt1(int irq, void *dev_id)
 | |
| {
 | |
| 	struct net_device *dev = dev_id;
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 	unsigned long flags;
 | |
| 	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
 | |
| 
 | |
| 	/* check for shared interrupt */
 | |
| 	if (status == 0)
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	spin_lock_irqsave(&cp->lock, flags);
 | |
| 	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
 | |
| #ifdef USE_NAPI
 | |
| 		cas_mask_intr(cp);
 | |
| 		napi_schedule(&cp->napi);
 | |
| #else
 | |
| 		cas_rx_ringN(cp, 1, 0);
 | |
| #endif
 | |
| 		status &= ~INTR_RX_DONE_ALT;
 | |
| 	}
 | |
| 	if (status)
 | |
| 		cas_handle_irq1(cp, status);
 | |
| 	spin_unlock_irqrestore(&cp->lock, flags);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline void cas_handle_irq(struct net_device *dev,
 | |
| 				  struct cas *cp, const u32 status)
 | |
| {
 | |
| 	/* housekeeping interrupts */
 | |
| 	if (status & INTR_ERROR_MASK)
 | |
| 		cas_abnormal_irq(dev, cp, status);
 | |
| 
 | |
| 	if (status & INTR_RX_BUF_UNAVAIL) {
 | |
| 		/* Frame arrived, no free RX buffers available.
 | |
| 		 * NOTE: we can get this on a link transition.
 | |
| 		 */
 | |
| 		cas_post_rxds_ringN(cp, 0, 0);
 | |
| 		spin_lock(&cp->stat_lock[0]);
 | |
| 		cp->net_stats[0].rx_dropped++;
 | |
| 		spin_unlock(&cp->stat_lock[0]);
 | |
| 	} else if (status & INTR_RX_BUF_AE) {
 | |
| 		cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
 | |
| 				    RX_AE_FREEN_VAL(0));
 | |
| 	}
 | |
| 
 | |
| 	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
 | |
| 		cas_post_rxcs_ringN(dev, cp, 0);
 | |
| }
 | |
| 
 | |
| static irqreturn_t cas_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct net_device *dev = dev_id;
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 	unsigned long flags;
 | |
| 	u32 status = readl(cp->regs + REG_INTR_STATUS);
 | |
| 
 | |
| 	if (status == 0)
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	spin_lock_irqsave(&cp->lock, flags);
 | |
| 	if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
 | |
| 		cas_tx(dev, cp, status);
 | |
| 		status &= ~(INTR_TX_ALL | INTR_TX_INTME);
 | |
| 	}
 | |
| 
 | |
| 	if (status & INTR_RX_DONE) {
 | |
| #ifdef USE_NAPI
 | |
| 		cas_mask_intr(cp);
 | |
| 		napi_schedule(&cp->napi);
 | |
| #else
 | |
| 		cas_rx_ringN(cp, 0, 0);
 | |
| #endif
 | |
| 		status &= ~INTR_RX_DONE;
 | |
| 	}
 | |
| 
 | |
| 	if (status)
 | |
| 		cas_handle_irq(dev, cp, status);
 | |
| 	spin_unlock_irqrestore(&cp->lock, flags);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef USE_NAPI
 | |
| static int cas_poll(struct napi_struct *napi, int budget)
 | |
| {
 | |
| 	struct cas *cp = container_of(napi, struct cas, napi);
 | |
| 	struct net_device *dev = cp->dev;
 | |
| 	int i, enable_intr, credits;
 | |
| 	u32 status = readl(cp->regs + REG_INTR_STATUS);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&cp->lock, flags);
 | |
| 	cas_tx(dev, cp, status);
 | |
| 	spin_unlock_irqrestore(&cp->lock, flags);
 | |
| 
 | |
| 	/* NAPI rx packets. we spread the credits across all of the
 | |
| 	 * rxc rings
 | |
| 	 *
 | |
| 	 * to make sure we're fair with the work we loop through each
 | |
| 	 * ring N_RX_COMP_RING times with a request of
 | |
| 	 * budget / N_RX_COMP_RINGS
 | |
| 	 */
 | |
| 	enable_intr = 1;
 | |
| 	credits = 0;
 | |
| 	for (i = 0; i < N_RX_COMP_RINGS; i++) {
 | |
| 		int j;
 | |
| 		for (j = 0; j < N_RX_COMP_RINGS; j++) {
 | |
| 			credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
 | |
| 			if (credits >= budget) {
 | |
| 				enable_intr = 0;
 | |
| 				goto rx_comp;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| rx_comp:
 | |
| 	/* final rx completion */
 | |
| 	spin_lock_irqsave(&cp->lock, flags);
 | |
| 	if (status)
 | |
| 		cas_handle_irq(dev, cp, status);
 | |
| 
 | |
| #ifdef USE_PCI_INTB
 | |
| 	if (N_RX_COMP_RINGS > 1) {
 | |
| 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
 | |
| 		if (status)
 | |
| 			cas_handle_irq1(dev, cp, status);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #ifdef USE_PCI_INTC
 | |
| 	if (N_RX_COMP_RINGS > 2) {
 | |
| 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
 | |
| 		if (status)
 | |
| 			cas_handle_irqN(dev, cp, status, 2);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #ifdef USE_PCI_INTD
 | |
| 	if (N_RX_COMP_RINGS > 3) {
 | |
| 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
 | |
| 		if (status)
 | |
| 			cas_handle_irqN(dev, cp, status, 3);
 | |
| 	}
 | |
| #endif
 | |
| 	spin_unlock_irqrestore(&cp->lock, flags);
 | |
| 	if (enable_intr) {
 | |
| 		napi_complete(napi);
 | |
| 		cas_unmask_intr(cp);
 | |
| 	}
 | |
| 	return credits;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| static void cas_netpoll(struct net_device *dev)
 | |
| {
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 
 | |
| 	cas_disable_irq(cp, 0);
 | |
| 	cas_interrupt(cp->pdev->irq, dev);
 | |
| 	cas_enable_irq(cp, 0);
 | |
| 
 | |
| #ifdef USE_PCI_INTB
 | |
| 	if (N_RX_COMP_RINGS > 1) {
 | |
| 		/* cas_interrupt1(); */
 | |
| 	}
 | |
| #endif
 | |
| #ifdef USE_PCI_INTC
 | |
| 	if (N_RX_COMP_RINGS > 2) {
 | |
| 		/* cas_interruptN(); */
 | |
| 	}
 | |
| #endif
 | |
| #ifdef USE_PCI_INTD
 | |
| 	if (N_RX_COMP_RINGS > 3) {
 | |
| 		/* cas_interruptN(); */
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void cas_tx_timeout(struct net_device *dev)
 | |
| {
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 
 | |
| 	netdev_err(dev, "transmit timed out, resetting\n");
 | |
| 	if (!cp->hw_running) {
 | |
| 		netdev_err(dev, "hrm.. hw not running!\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	netdev_err(dev, "MIF_STATE[%08x]\n",
 | |
| 		   readl(cp->regs + REG_MIF_STATE_MACHINE));
 | |
| 
 | |
| 	netdev_err(dev, "MAC_STATE[%08x]\n",
 | |
| 		   readl(cp->regs + REG_MAC_STATE_MACHINE));
 | |
| 
 | |
| 	netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
 | |
| 		   readl(cp->regs + REG_TX_CFG),
 | |
| 		   readl(cp->regs + REG_MAC_TX_STATUS),
 | |
| 		   readl(cp->regs + REG_MAC_TX_CFG),
 | |
| 		   readl(cp->regs + REG_TX_FIFO_PKT_CNT),
 | |
| 		   readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
 | |
| 		   readl(cp->regs + REG_TX_FIFO_READ_PTR),
 | |
| 		   readl(cp->regs + REG_TX_SM_1),
 | |
| 		   readl(cp->regs + REG_TX_SM_2));
 | |
| 
 | |
| 	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
 | |
| 		   readl(cp->regs + REG_RX_CFG),
 | |
| 		   readl(cp->regs + REG_MAC_RX_STATUS),
 | |
| 		   readl(cp->regs + REG_MAC_RX_CFG));
 | |
| 
 | |
| 	netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
 | |
| 		   readl(cp->regs + REG_HP_STATE_MACHINE),
 | |
| 		   readl(cp->regs + REG_HP_STATUS0),
 | |
| 		   readl(cp->regs + REG_HP_STATUS1),
 | |
| 		   readl(cp->regs + REG_HP_STATUS2));
 | |
| 
 | |
| #if 1
 | |
| 	atomic_inc(&cp->reset_task_pending);
 | |
| 	atomic_inc(&cp->reset_task_pending_all);
 | |
| 	schedule_work(&cp->reset_task);
 | |
| #else
 | |
| 	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
 | |
| 	schedule_work(&cp->reset_task);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline int cas_intme(int ring, int entry)
 | |
| {
 | |
| 	/* Algorithm: IRQ every 1/2 of descriptors. */
 | |
| 	if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void cas_write_txd(struct cas *cp, int ring, int entry,
 | |
| 			  dma_addr_t mapping, int len, u64 ctrl, int last)
 | |
| {
 | |
| 	struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
 | |
| 
 | |
| 	ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
 | |
| 	if (cas_intme(ring, entry))
 | |
| 		ctrl |= TX_DESC_INTME;
 | |
| 	if (last)
 | |
| 		ctrl |= TX_DESC_EOF;
 | |
| 	txd->control = cpu_to_le64(ctrl);
 | |
| 	txd->buffer = cpu_to_le64(mapping);
 | |
| }
 | |
| 
 | |
| static inline void *tx_tiny_buf(struct cas *cp, const int ring,
 | |
| 				const int entry)
 | |
| {
 | |
| 	return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
 | |
| }
 | |
| 
 | |
| static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
 | |
| 				     const int entry, const int tentry)
 | |
| {
 | |
| 	cp->tx_tiny_use[ring][tentry].nbufs++;
 | |
| 	cp->tx_tiny_use[ring][entry].used = 1;
 | |
| 	return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
 | |
| }
 | |
| 
 | |
| static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
 | |
| 				    struct sk_buff *skb)
 | |
| {
 | |
| 	struct net_device *dev = cp->dev;
 | |
| 	int entry, nr_frags, frag, tabort, tentry;
 | |
| 	dma_addr_t mapping;
 | |
| 	unsigned long flags;
 | |
| 	u64 ctrl;
 | |
| 	u32 len;
 | |
| 
 | |
| 	spin_lock_irqsave(&cp->tx_lock[ring], flags);
 | |
| 
 | |
| 	/* This is a hard error, log it. */
 | |
| 	if (TX_BUFFS_AVAIL(cp, ring) <=
 | |
| 	    CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
 | |
| 		netif_stop_queue(dev);
 | |
| 		spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
 | |
| 		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	ctrl = 0;
 | |
| 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 | |
| 		const u64 csum_start_off = skb_checksum_start_offset(skb);
 | |
| 		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
 | |
| 
 | |
| 		ctrl =  TX_DESC_CSUM_EN |
 | |
| 			CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
 | |
| 			CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
 | |
| 	}
 | |
| 
 | |
| 	entry = cp->tx_new[ring];
 | |
| 	cp->tx_skbs[ring][entry] = skb;
 | |
| 
 | |
| 	nr_frags = skb_shinfo(skb)->nr_frags;
 | |
| 	len = skb_headlen(skb);
 | |
| 	mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
 | |
| 			       offset_in_page(skb->data), len,
 | |
| 			       PCI_DMA_TODEVICE);
 | |
| 
 | |
| 	tentry = entry;
 | |
| 	tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
 | |
| 	if (unlikely(tabort)) {
 | |
| 		/* NOTE: len is always >  tabort */
 | |
| 		cas_write_txd(cp, ring, entry, mapping, len - tabort,
 | |
| 			      ctrl | TX_DESC_SOF, 0);
 | |
| 		entry = TX_DESC_NEXT(ring, entry);
 | |
| 
 | |
| 		skb_copy_from_linear_data_offset(skb, len - tabort,
 | |
| 			      tx_tiny_buf(cp, ring, entry), tabort);
 | |
| 		mapping = tx_tiny_map(cp, ring, entry, tentry);
 | |
| 		cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
 | |
| 			      (nr_frags == 0));
 | |
| 	} else {
 | |
| 		cas_write_txd(cp, ring, entry, mapping, len, ctrl |
 | |
| 			      TX_DESC_SOF, (nr_frags == 0));
 | |
| 	}
 | |
| 	entry = TX_DESC_NEXT(ring, entry);
 | |
| 
 | |
| 	for (frag = 0; frag < nr_frags; frag++) {
 | |
| 		const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
 | |
| 
 | |
| 		len = skb_frag_size(fragp);
 | |
| 		mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
 | |
| 					   DMA_TO_DEVICE);
 | |
| 
 | |
| 		tabort = cas_calc_tabort(cp, fragp->page_offset, len);
 | |
| 		if (unlikely(tabort)) {
 | |
| 			void *addr;
 | |
| 
 | |
| 			/* NOTE: len is always > tabort */
 | |
| 			cas_write_txd(cp, ring, entry, mapping, len - tabort,
 | |
| 				      ctrl, 0);
 | |
| 			entry = TX_DESC_NEXT(ring, entry);
 | |
| 
 | |
| 			addr = cas_page_map(skb_frag_page(fragp));
 | |
| 			memcpy(tx_tiny_buf(cp, ring, entry),
 | |
| 			       addr + fragp->page_offset + len - tabort,
 | |
| 			       tabort);
 | |
| 			cas_page_unmap(addr);
 | |
| 			mapping = tx_tiny_map(cp, ring, entry, tentry);
 | |
| 			len     = tabort;
 | |
| 		}
 | |
| 
 | |
| 		cas_write_txd(cp, ring, entry, mapping, len, ctrl,
 | |
| 			      (frag + 1 == nr_frags));
 | |
| 		entry = TX_DESC_NEXT(ring, entry);
 | |
| 	}
 | |
| 
 | |
| 	cp->tx_new[ring] = entry;
 | |
| 	if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
 | |
| 		netif_stop_queue(dev);
 | |
| 
 | |
| 	netif_printk(cp, tx_queued, KERN_DEBUG, dev,
 | |
| 		     "tx[%d] queued, slot %d, skblen %d, avail %d\n",
 | |
| 		     ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
 | |
| 	writel(entry, cp->regs + REG_TX_KICKN(ring));
 | |
| 	spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
 | |
| {
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 
 | |
| 	/* this is only used as a load-balancing hint, so it doesn't
 | |
| 	 * need to be SMP safe
 | |
| 	 */
 | |
| 	static int ring;
 | |
| 
 | |
| 	if (skb_padto(skb, cp->min_frame_size))
 | |
| 		return NETDEV_TX_OK;
 | |
| 
 | |
| 	/* XXX: we need some higher-level QoS hooks to steer packets to
 | |
| 	 *      individual queues.
 | |
| 	 */
 | |
| 	if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| static void cas_init_tx_dma(struct cas *cp)
 | |
| {
 | |
| 	u64 desc_dma = cp->block_dvma;
 | |
| 	unsigned long off;
 | |
| 	u32 val;
 | |
| 	int i;
 | |
| 
 | |
| 	/* set up tx completion writeback registers. must be 8-byte aligned */
 | |
| #ifdef USE_TX_COMPWB
 | |
| 	off = offsetof(struct cas_init_block, tx_compwb);
 | |
| 	writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
 | |
| 	writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
 | |
| #endif
 | |
| 
 | |
| 	/* enable completion writebacks, enable paced mode,
 | |
| 	 * disable read pipe, and disable pre-interrupt compwbs
 | |
| 	 */
 | |
| 	val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
 | |
| 		TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
 | |
| 		TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
 | |
| 		TX_CFG_INTR_COMPWB_DIS;
 | |
| 
 | |
| 	/* write out tx ring info and tx desc bases */
 | |
| 	for (i = 0; i < MAX_TX_RINGS; i++) {
 | |
| 		off = (unsigned long) cp->init_txds[i] -
 | |
| 			(unsigned long) cp->init_block;
 | |
| 
 | |
| 		val |= CAS_TX_RINGN_BASE(i);
 | |
| 		writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
 | |
| 		writel((desc_dma + off) & 0xffffffff, cp->regs +
 | |
| 		       REG_TX_DBN_LOW(i));
 | |
| 		/* don't zero out the kick register here as the system
 | |
| 		 * will wedge
 | |
| 		 */
 | |
| 	}
 | |
| 	writel(val, cp->regs + REG_TX_CFG);
 | |
| 
 | |
| 	/* program max burst sizes. these numbers should be different
 | |
| 	 * if doing QoS.
 | |
| 	 */
 | |
| #ifdef USE_QOS
 | |
| 	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
 | |
| 	writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
 | |
| 	writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
 | |
| 	writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
 | |
| #else
 | |
| 	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
 | |
| 	writel(0x800, cp->regs + REG_TX_MAXBURST_1);
 | |
| 	writel(0x800, cp->regs + REG_TX_MAXBURST_2);
 | |
| 	writel(0x800, cp->regs + REG_TX_MAXBURST_3);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Must be invoked under cp->lock. */
 | |
| static inline void cas_init_dma(struct cas *cp)
 | |
| {
 | |
| 	cas_init_tx_dma(cp);
 | |
| 	cas_init_rx_dma(cp);
 | |
| }
 | |
| 
 | |
| static void cas_process_mc_list(struct cas *cp)
 | |
| {
 | |
| 	u16 hash_table[16];
 | |
| 	u32 crc;
 | |
| 	struct netdev_hw_addr *ha;
 | |
| 	int i = 1;
 | |
| 
 | |
| 	memset(hash_table, 0, sizeof(hash_table));
 | |
| 	netdev_for_each_mc_addr(ha, cp->dev) {
 | |
| 		if (i <= CAS_MC_EXACT_MATCH_SIZE) {
 | |
| 			/* use the alternate mac address registers for the
 | |
| 			 * first 15 multicast addresses
 | |
| 			 */
 | |
| 			writel((ha->addr[4] << 8) | ha->addr[5],
 | |
| 			       cp->regs + REG_MAC_ADDRN(i*3 + 0));
 | |
| 			writel((ha->addr[2] << 8) | ha->addr[3],
 | |
| 			       cp->regs + REG_MAC_ADDRN(i*3 + 1));
 | |
| 			writel((ha->addr[0] << 8) | ha->addr[1],
 | |
| 			       cp->regs + REG_MAC_ADDRN(i*3 + 2));
 | |
| 			i++;
 | |
| 		}
 | |
| 		else {
 | |
| 			/* use hw hash table for the next series of
 | |
| 			 * multicast addresses
 | |
| 			 */
 | |
| 			crc = ether_crc_le(ETH_ALEN, ha->addr);
 | |
| 			crc >>= 24;
 | |
| 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
 | |
| 		}
 | |
| 	}
 | |
| 	for (i = 0; i < 16; i++)
 | |
| 		writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
 | |
| }
 | |
| 
 | |
| /* Must be invoked under cp->lock. */
 | |
| static u32 cas_setup_multicast(struct cas *cp)
 | |
| {
 | |
| 	u32 rxcfg = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	if (cp->dev->flags & IFF_PROMISC) {
 | |
| 		rxcfg |= MAC_RX_CFG_PROMISC_EN;
 | |
| 
 | |
| 	} else if (cp->dev->flags & IFF_ALLMULTI) {
 | |
| 	    	for (i=0; i < 16; i++)
 | |
| 			writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
 | |
| 		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
 | |
| 
 | |
| 	} else {
 | |
| 		cas_process_mc_list(cp);
 | |
| 		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
 | |
| 	}
 | |
| 
 | |
| 	return rxcfg;
 | |
| }
 | |
| 
 | |
| /* must be invoked under cp->stat_lock[N_TX_RINGS] */
 | |
| static void cas_clear_mac_err(struct cas *cp)
 | |
| {
 | |
| 	writel(0, cp->regs + REG_MAC_COLL_NORMAL);
 | |
| 	writel(0, cp->regs + REG_MAC_COLL_FIRST);
 | |
| 	writel(0, cp->regs + REG_MAC_COLL_EXCESS);
 | |
| 	writel(0, cp->regs + REG_MAC_COLL_LATE);
 | |
| 	writel(0, cp->regs + REG_MAC_TIMER_DEFER);
 | |
| 	writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
 | |
| 	writel(0, cp->regs + REG_MAC_RECV_FRAME);
 | |
| 	writel(0, cp->regs + REG_MAC_LEN_ERR);
 | |
| 	writel(0, cp->regs + REG_MAC_ALIGN_ERR);
 | |
| 	writel(0, cp->regs + REG_MAC_FCS_ERR);
 | |
| 	writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void cas_mac_reset(struct cas *cp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* do both TX and RX reset */
 | |
| 	writel(0x1, cp->regs + REG_MAC_TX_RESET);
 | |
| 	writel(0x1, cp->regs + REG_MAC_RX_RESET);
 | |
| 
 | |
| 	/* wait for TX */
 | |
| 	i = STOP_TRIES;
 | |
| 	while (i-- > 0) {
 | |
| 		if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
 | |
| 			break;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 
 | |
| 	/* wait for RX */
 | |
| 	i = STOP_TRIES;
 | |
| 	while (i-- > 0) {
 | |
| 		if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
 | |
| 			break;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 
 | |
| 	if (readl(cp->regs + REG_MAC_TX_RESET) |
 | |
| 	    readl(cp->regs + REG_MAC_RX_RESET))
 | |
| 		netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
 | |
| 			   readl(cp->regs + REG_MAC_TX_RESET),
 | |
| 			   readl(cp->regs + REG_MAC_RX_RESET),
 | |
| 			   readl(cp->regs + REG_MAC_STATE_MACHINE));
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Must be invoked under cp->lock. */
 | |
| static void cas_init_mac(struct cas *cp)
 | |
| {
 | |
| 	unsigned char *e = &cp->dev->dev_addr[0];
 | |
| 	int i;
 | |
| 	cas_mac_reset(cp);
 | |
| 
 | |
| 	/* setup core arbitration weight register */
 | |
| 	writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
 | |
| 
 | |
| 	/* XXX Use pci_dma_burst_advice() */
 | |
| #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
 | |
| 	/* set the infinite burst register for chips that don't have
 | |
| 	 * pci issues.
 | |
| 	 */
 | |
| 	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
 | |
| 		writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
 | |
| #endif
 | |
| 
 | |
| 	writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
 | |
| 
 | |
| 	writel(0x00, cp->regs + REG_MAC_IPG0);
 | |
| 	writel(0x08, cp->regs + REG_MAC_IPG1);
 | |
| 	writel(0x04, cp->regs + REG_MAC_IPG2);
 | |
| 
 | |
| 	/* change later for 802.3z */
 | |
| 	writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
 | |
| 
 | |
| 	/* min frame + FCS */
 | |
| 	writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
 | |
| 
 | |
| 	/* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
 | |
| 	 * specify the maximum frame size to prevent RX tag errors on
 | |
| 	 * oversized frames.
 | |
| 	 */
 | |
| 	writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
 | |
| 	       CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
 | |
| 			(CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
 | |
| 	       cp->regs + REG_MAC_FRAMESIZE_MAX);
 | |
| 
 | |
| 	/* NOTE: crc_size is used as a surrogate for half-duplex.
 | |
| 	 * workaround saturn half-duplex issue by increasing preamble
 | |
| 	 * size to 65 bytes.
 | |
| 	 */
 | |
| 	if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
 | |
| 		writel(0x41, cp->regs + REG_MAC_PA_SIZE);
 | |
| 	else
 | |
| 		writel(0x07, cp->regs + REG_MAC_PA_SIZE);
 | |
| 	writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
 | |
| 	writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
 | |
| 	writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
 | |
| 
 | |
| 	writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
 | |
| 
 | |
| 	writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
 | |
| 	writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
 | |
| 	writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
 | |
| 	writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
 | |
| 	writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
 | |
| 
 | |
| 	/* setup mac address in perfect filter array */
 | |
| 	for (i = 0; i < 45; i++)
 | |
| 		writel(0x0, cp->regs + REG_MAC_ADDRN(i));
 | |
| 
 | |
| 	writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
 | |
| 	writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
 | |
| 	writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
 | |
| 
 | |
| 	writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
 | |
| 	writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
 | |
| 	writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
 | |
| 
 | |
| 	cp->mac_rx_cfg = cas_setup_multicast(cp);
 | |
| 
 | |
| 	spin_lock(&cp->stat_lock[N_TX_RINGS]);
 | |
| 	cas_clear_mac_err(cp);
 | |
| 	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
 | |
| 
 | |
| 	/* Setup MAC interrupts.  We want to get all of the interesting
 | |
| 	 * counter expiration events, but we do not want to hear about
 | |
| 	 * normal rx/tx as the DMA engine tells us that.
 | |
| 	 */
 | |
| 	writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
 | |
| 	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
 | |
| 
 | |
| 	/* Don't enable even the PAUSE interrupts for now, we
 | |
| 	 * make no use of those events other than to record them.
 | |
| 	 */
 | |
| 	writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
 | |
| }
 | |
| 
 | |
| /* Must be invoked under cp->lock. */
 | |
| static void cas_init_pause_thresholds(struct cas *cp)
 | |
| {
 | |
| 	/* Calculate pause thresholds.  Setting the OFF threshold to the
 | |
| 	 * full RX fifo size effectively disables PAUSE generation
 | |
| 	 */
 | |
| 	if (cp->rx_fifo_size <= (2 * 1024)) {
 | |
| 		cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
 | |
| 	} else {
 | |
| 		int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
 | |
| 		if (max_frame * 3 > cp->rx_fifo_size) {
 | |
| 			cp->rx_pause_off = 7104;
 | |
| 			cp->rx_pause_on  = 960;
 | |
| 		} else {
 | |
| 			int off = (cp->rx_fifo_size - (max_frame * 2));
 | |
| 			int on = off - max_frame;
 | |
| 			cp->rx_pause_off = off;
 | |
| 			cp->rx_pause_on = on;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int cas_vpd_match(const void __iomem *p, const char *str)
 | |
| {
 | |
| 	int len = strlen(str) + 1;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < len; i++) {
 | |
| 		if (readb(p + i) != str[i])
 | |
| 			return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* get the mac address by reading the vpd information in the rom.
 | |
|  * also get the phy type and determine if there's an entropy generator.
 | |
|  * NOTE: this is a bit convoluted for the following reasons:
 | |
|  *  1) vpd info has order-dependent mac addresses for multinic cards
 | |
|  *  2) the only way to determine the nic order is to use the slot
 | |
|  *     number.
 | |
|  *  3) fiber cards don't have bridges, so their slot numbers don't
 | |
|  *     mean anything.
 | |
|  *  4) we don't actually know we have a fiber card until after
 | |
|  *     the mac addresses are parsed.
 | |
|  */
 | |
| static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
 | |
| 			    const int offset)
 | |
| {
 | |
| 	void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
 | |
| 	void __iomem *base, *kstart;
 | |
| 	int i, len;
 | |
| 	int found = 0;
 | |
| #define VPD_FOUND_MAC        0x01
 | |
| #define VPD_FOUND_PHY        0x02
 | |
| 
 | |
| 	int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
 | |
| 	int mac_off  = 0;
 | |
| 
 | |
| #if defined(CONFIG_SPARC)
 | |
| 	const unsigned char *addr;
 | |
| #endif
 | |
| 
 | |
| 	/* give us access to the PROM */
 | |
| 	writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
 | |
| 	       cp->regs + REG_BIM_LOCAL_DEV_EN);
 | |
| 
 | |
| 	/* check for an expansion rom */
 | |
| 	if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
 | |
| 		goto use_random_mac_addr;
 | |
| 
 | |
| 	/* search for beginning of vpd */
 | |
| 	base = NULL;
 | |
| 	for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
 | |
| 		/* check for PCIR */
 | |
| 		if ((readb(p + i + 0) == 0x50) &&
 | |
| 		    (readb(p + i + 1) == 0x43) &&
 | |
| 		    (readb(p + i + 2) == 0x49) &&
 | |
| 		    (readb(p + i + 3) == 0x52)) {
 | |
| 			base = p + (readb(p + i + 8) |
 | |
| 				    (readb(p + i + 9) << 8));
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!base || (readb(base) != 0x82))
 | |
| 		goto use_random_mac_addr;
 | |
| 
 | |
| 	i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
 | |
| 	while (i < EXPANSION_ROM_SIZE) {
 | |
| 		if (readb(base + i) != 0x90) /* no vpd found */
 | |
| 			goto use_random_mac_addr;
 | |
| 
 | |
| 		/* found a vpd field */
 | |
| 		len = readb(base + i + 1) | (readb(base + i + 2) << 8);
 | |
| 
 | |
| 		/* extract keywords */
 | |
| 		kstart = base + i + 3;
 | |
| 		p = kstart;
 | |
| 		while ((p - kstart) < len) {
 | |
| 			int klen = readb(p + 2);
 | |
| 			int j;
 | |
| 			char type;
 | |
| 
 | |
| 			p += 3;
 | |
| 
 | |
| 			/* look for the following things:
 | |
| 			 * -- correct length == 29
 | |
| 			 * 3 (type) + 2 (size) +
 | |
| 			 * 18 (strlen("local-mac-address") + 1) +
 | |
| 			 * 6 (mac addr)
 | |
| 			 * -- VPD Instance 'I'
 | |
| 			 * -- VPD Type Bytes 'B'
 | |
| 			 * -- VPD data length == 6
 | |
| 			 * -- property string == local-mac-address
 | |
| 			 *
 | |
| 			 * -- correct length == 24
 | |
| 			 * 3 (type) + 2 (size) +
 | |
| 			 * 12 (strlen("entropy-dev") + 1) +
 | |
| 			 * 7 (strlen("vms110") + 1)
 | |
| 			 * -- VPD Instance 'I'
 | |
| 			 * -- VPD Type String 'B'
 | |
| 			 * -- VPD data length == 7
 | |
| 			 * -- property string == entropy-dev
 | |
| 			 *
 | |
| 			 * -- correct length == 18
 | |
| 			 * 3 (type) + 2 (size) +
 | |
| 			 * 9 (strlen("phy-type") + 1) +
 | |
| 			 * 4 (strlen("pcs") + 1)
 | |
| 			 * -- VPD Instance 'I'
 | |
| 			 * -- VPD Type String 'S'
 | |
| 			 * -- VPD data length == 4
 | |
| 			 * -- property string == phy-type
 | |
| 			 *
 | |
| 			 * -- correct length == 23
 | |
| 			 * 3 (type) + 2 (size) +
 | |
| 			 * 14 (strlen("phy-interface") + 1) +
 | |
| 			 * 4 (strlen("pcs") + 1)
 | |
| 			 * -- VPD Instance 'I'
 | |
| 			 * -- VPD Type String 'S'
 | |
| 			 * -- VPD data length == 4
 | |
| 			 * -- property string == phy-interface
 | |
| 			 */
 | |
| 			if (readb(p) != 'I')
 | |
| 				goto next;
 | |
| 
 | |
| 			/* finally, check string and length */
 | |
| 			type = readb(p + 3);
 | |
| 			if (type == 'B') {
 | |
| 				if ((klen == 29) && readb(p + 4) == 6 &&
 | |
| 				    cas_vpd_match(p + 5,
 | |
| 						  "local-mac-address")) {
 | |
| 					if (mac_off++ > offset)
 | |
| 						goto next;
 | |
| 
 | |
| 					/* set mac address */
 | |
| 					for (j = 0; j < 6; j++)
 | |
| 						dev_addr[j] =
 | |
| 							readb(p + 23 + j);
 | |
| 					goto found_mac;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (type != 'S')
 | |
| 				goto next;
 | |
| 
 | |
| #ifdef USE_ENTROPY_DEV
 | |
| 			if ((klen == 24) &&
 | |
| 			    cas_vpd_match(p + 5, "entropy-dev") &&
 | |
| 			    cas_vpd_match(p + 17, "vms110")) {
 | |
| 				cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
 | |
| 				goto next;
 | |
| 			}
 | |
| #endif
 | |
| 
 | |
| 			if (found & VPD_FOUND_PHY)
 | |
| 				goto next;
 | |
| 
 | |
| 			if ((klen == 18) && readb(p + 4) == 4 &&
 | |
| 			    cas_vpd_match(p + 5, "phy-type")) {
 | |
| 				if (cas_vpd_match(p + 14, "pcs")) {
 | |
| 					phy_type = CAS_PHY_SERDES;
 | |
| 					goto found_phy;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if ((klen == 23) && readb(p + 4) == 4 &&
 | |
| 			    cas_vpd_match(p + 5, "phy-interface")) {
 | |
| 				if (cas_vpd_match(p + 19, "pcs")) {
 | |
| 					phy_type = CAS_PHY_SERDES;
 | |
| 					goto found_phy;
 | |
| 				}
 | |
| 			}
 | |
| found_mac:
 | |
| 			found |= VPD_FOUND_MAC;
 | |
| 			goto next;
 | |
| 
 | |
| found_phy:
 | |
| 			found |= VPD_FOUND_PHY;
 | |
| 
 | |
| next:
 | |
| 			p += klen;
 | |
| 		}
 | |
| 		i += len + 3;
 | |
| 	}
 | |
| 
 | |
| use_random_mac_addr:
 | |
| 	if (found & VPD_FOUND_MAC)
 | |
| 		goto done;
 | |
| 
 | |
| #if defined(CONFIG_SPARC)
 | |
| 	addr = of_get_property(cp->of_node, "local-mac-address", NULL);
 | |
| 	if (addr != NULL) {
 | |
| 		memcpy(dev_addr, addr, ETH_ALEN);
 | |
| 		goto done;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* Sun MAC prefix then 3 random bytes. */
 | |
| 	pr_info("MAC address not found in ROM VPD\n");
 | |
| 	dev_addr[0] = 0x08;
 | |
| 	dev_addr[1] = 0x00;
 | |
| 	dev_addr[2] = 0x20;
 | |
| 	get_random_bytes(dev_addr + 3, 3);
 | |
| 
 | |
| done:
 | |
| 	writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
 | |
| 	return phy_type;
 | |
| }
 | |
| 
 | |
| /* check pci invariants */
 | |
| static void cas_check_pci_invariants(struct cas *cp)
 | |
| {
 | |
| 	struct pci_dev *pdev = cp->pdev;
 | |
| 
 | |
| 	cp->cas_flags = 0;
 | |
| 	if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
 | |
| 	    (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
 | |
| 		if (pdev->revision >= CAS_ID_REVPLUS)
 | |
| 			cp->cas_flags |= CAS_FLAG_REG_PLUS;
 | |
| 		if (pdev->revision < CAS_ID_REVPLUS02u)
 | |
| 			cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
 | |
| 
 | |
| 		/* Original Cassini supports HW CSUM, but it's not
 | |
| 		 * enabled by default as it can trigger TX hangs.
 | |
| 		 */
 | |
| 		if (pdev->revision < CAS_ID_REV2)
 | |
| 			cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
 | |
| 	} else {
 | |
| 		/* Only sun has original cassini chips.  */
 | |
| 		cp->cas_flags |= CAS_FLAG_REG_PLUS;
 | |
| 
 | |
| 		/* We use a flag because the same phy might be externally
 | |
| 		 * connected.
 | |
| 		 */
 | |
| 		if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
 | |
| 		    (pdev->device == PCI_DEVICE_ID_NS_SATURN))
 | |
| 			cp->cas_flags |= CAS_FLAG_SATURN;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static int cas_check_invariants(struct cas *cp)
 | |
| {
 | |
| 	struct pci_dev *pdev = cp->pdev;
 | |
| 	u32 cfg;
 | |
| 	int i;
 | |
| 
 | |
| 	/* get page size for rx buffers. */
 | |
| 	cp->page_order = 0;
 | |
| #ifdef USE_PAGE_ORDER
 | |
| 	if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
 | |
| 		/* see if we can allocate larger pages */
 | |
| 		struct page *page = alloc_pages(GFP_ATOMIC,
 | |
| 						CAS_JUMBO_PAGE_SHIFT -
 | |
| 						PAGE_SHIFT);
 | |
| 		if (page) {
 | |
| 			__free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
 | |
| 			cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
 | |
| 		} else {
 | |
| 			printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	cp->page_size = (PAGE_SIZE << cp->page_order);
 | |
| 
 | |
| 	/* Fetch the FIFO configurations. */
 | |
| 	cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
 | |
| 	cp->rx_fifo_size = RX_FIFO_SIZE;
 | |
| 
 | |
| 	/* finish phy determination. MDIO1 takes precedence over MDIO0 if
 | |
| 	 * they're both connected.
 | |
| 	 */
 | |
| 	cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
 | |
| 					PCI_SLOT(pdev->devfn));
 | |
| 	if (cp->phy_type & CAS_PHY_SERDES) {
 | |
| 		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
 | |
| 		return 0; /* no more checking needed */
 | |
| 	}
 | |
| 
 | |
| 	/* MII */
 | |
| 	cfg = readl(cp->regs + REG_MIF_CFG);
 | |
| 	if (cfg & MIF_CFG_MDIO_1) {
 | |
| 		cp->phy_type = CAS_PHY_MII_MDIO1;
 | |
| 	} else if (cfg & MIF_CFG_MDIO_0) {
 | |
| 		cp->phy_type = CAS_PHY_MII_MDIO0;
 | |
| 	}
 | |
| 
 | |
| 	cas_mif_poll(cp, 0);
 | |
| 	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
 | |
| 
 | |
| 	for (i = 0; i < 32; i++) {
 | |
| 		u32 phy_id;
 | |
| 		int j;
 | |
| 
 | |
| 		for (j = 0; j < 3; j++) {
 | |
| 			cp->phy_addr = i;
 | |
| 			phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
 | |
| 			phy_id |= cas_phy_read(cp, MII_PHYSID2);
 | |
| 			if (phy_id && (phy_id != 0xFFFFFFFF)) {
 | |
| 				cp->phy_id = phy_id;
 | |
| 				goto done;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	pr_err("MII phy did not respond [%08x]\n",
 | |
| 	       readl(cp->regs + REG_MIF_STATE_MACHINE));
 | |
| 	return -1;
 | |
| 
 | |
| done:
 | |
| 	/* see if we can do gigabit */
 | |
| 	cfg = cas_phy_read(cp, MII_BMSR);
 | |
| 	if ((cfg & CAS_BMSR_1000_EXTEND) &&
 | |
| 	    cas_phy_read(cp, CAS_MII_1000_EXTEND))
 | |
| 		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Must be invoked under cp->lock. */
 | |
| static inline void cas_start_dma(struct cas *cp)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 val;
 | |
| 	int txfailed = 0;
 | |
| 
 | |
| 	/* enable dma */
 | |
| 	val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
 | |
| 	writel(val, cp->regs + REG_TX_CFG);
 | |
| 	val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
 | |
| 	writel(val, cp->regs + REG_RX_CFG);
 | |
| 
 | |
| 	/* enable the mac */
 | |
| 	val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
 | |
| 	writel(val, cp->regs + REG_MAC_TX_CFG);
 | |
| 	val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
 | |
| 	writel(val, cp->regs + REG_MAC_RX_CFG);
 | |
| 
 | |
| 	i = STOP_TRIES;
 | |
| 	while (i-- > 0) {
 | |
| 		val = readl(cp->regs + REG_MAC_TX_CFG);
 | |
| 		if ((val & MAC_TX_CFG_EN))
 | |
| 			break;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 	if (i < 0) txfailed = 1;
 | |
| 	i = STOP_TRIES;
 | |
| 	while (i-- > 0) {
 | |
| 		val = readl(cp->regs + REG_MAC_RX_CFG);
 | |
| 		if ((val & MAC_RX_CFG_EN)) {
 | |
| 			if (txfailed) {
 | |
| 				netdev_err(cp->dev,
 | |
| 					   "enabling mac failed [tx:%08x:%08x]\n",
 | |
| 					   readl(cp->regs + REG_MIF_STATE_MACHINE),
 | |
| 					   readl(cp->regs + REG_MAC_STATE_MACHINE));
 | |
| 			}
 | |
| 			goto enable_rx_done;
 | |
| 		}
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 	netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
 | |
| 		   (txfailed ? "tx,rx" : "rx"),
 | |
| 		   readl(cp->regs + REG_MIF_STATE_MACHINE),
 | |
| 		   readl(cp->regs + REG_MAC_STATE_MACHINE));
 | |
| 
 | |
| enable_rx_done:
 | |
| 	cas_unmask_intr(cp); /* enable interrupts */
 | |
| 	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
 | |
| 	writel(0, cp->regs + REG_RX_COMP_TAIL);
 | |
| 
 | |
| 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
 | |
| 		if (N_RX_DESC_RINGS > 1)
 | |
| 			writel(RX_DESC_RINGN_SIZE(1) - 4,
 | |
| 			       cp->regs + REG_PLUS_RX_KICK1);
 | |
| 
 | |
| 		for (i = 1; i < N_RX_COMP_RINGS; i++)
 | |
| 			writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Must be invoked under cp->lock. */
 | |
| static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
 | |
| 				   int *pause)
 | |
| {
 | |
| 	u32 val = readl(cp->regs + REG_PCS_MII_LPA);
 | |
| 	*fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
 | |
| 	*pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
 | |
| 	if (val & PCS_MII_LPA_ASYM_PAUSE)
 | |
| 		*pause |= 0x10;
 | |
| 	*spd = 1000;
 | |
| }
 | |
| 
 | |
| /* Must be invoked under cp->lock. */
 | |
| static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
 | |
| 				   int *pause)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	*fd = 0;
 | |
| 	*spd = 10;
 | |
| 	*pause = 0;
 | |
| 
 | |
| 	/* use GMII registers */
 | |
| 	val = cas_phy_read(cp, MII_LPA);
 | |
| 	if (val & CAS_LPA_PAUSE)
 | |
| 		*pause = 0x01;
 | |
| 
 | |
| 	if (val & CAS_LPA_ASYM_PAUSE)
 | |
| 		*pause |= 0x10;
 | |
| 
 | |
| 	if (val & LPA_DUPLEX)
 | |
| 		*fd = 1;
 | |
| 	if (val & LPA_100)
 | |
| 		*spd = 100;
 | |
| 
 | |
| 	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
 | |
| 		val = cas_phy_read(cp, CAS_MII_1000_STATUS);
 | |
| 		if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
 | |
| 			*spd = 1000;
 | |
| 		if (val & CAS_LPA_1000FULL)
 | |
| 			*fd = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* A link-up condition has occurred, initialize and enable the
 | |
|  * rest of the chip.
 | |
|  *
 | |
|  * Must be invoked under cp->lock.
 | |
|  */
 | |
| static void cas_set_link_modes(struct cas *cp)
 | |
| {
 | |
| 	u32 val;
 | |
| 	int full_duplex, speed, pause;
 | |
| 
 | |
| 	full_duplex = 0;
 | |
| 	speed = 10;
 | |
| 	pause = 0;
 | |
| 
 | |
| 	if (CAS_PHY_MII(cp->phy_type)) {
 | |
| 		cas_mif_poll(cp, 0);
 | |
| 		val = cas_phy_read(cp, MII_BMCR);
 | |
| 		if (val & BMCR_ANENABLE) {
 | |
| 			cas_read_mii_link_mode(cp, &full_duplex, &speed,
 | |
| 					       &pause);
 | |
| 		} else {
 | |
| 			if (val & BMCR_FULLDPLX)
 | |
| 				full_duplex = 1;
 | |
| 
 | |
| 			if (val & BMCR_SPEED100)
 | |
| 				speed = 100;
 | |
| 			else if (val & CAS_BMCR_SPEED1000)
 | |
| 				speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
 | |
| 					1000 : 100;
 | |
| 		}
 | |
| 		cas_mif_poll(cp, 1);
 | |
| 
 | |
| 	} else {
 | |
| 		val = readl(cp->regs + REG_PCS_MII_CTRL);
 | |
| 		cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
 | |
| 		if ((val & PCS_MII_AUTONEG_EN) == 0) {
 | |
| 			if (val & PCS_MII_CTRL_DUPLEX)
 | |
| 				full_duplex = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
 | |
| 		   speed, full_duplex ? "full" : "half");
 | |
| 
 | |
| 	val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
 | |
| 	if (CAS_PHY_MII(cp->phy_type)) {
 | |
| 		val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
 | |
| 		if (!full_duplex)
 | |
| 			val |= MAC_XIF_DISABLE_ECHO;
 | |
| 	}
 | |
| 	if (full_duplex)
 | |
| 		val |= MAC_XIF_FDPLX_LED;
 | |
| 	if (speed == 1000)
 | |
| 		val |= MAC_XIF_GMII_MODE;
 | |
| 	writel(val, cp->regs + REG_MAC_XIF_CFG);
 | |
| 
 | |
| 	/* deal with carrier and collision detect. */
 | |
| 	val = MAC_TX_CFG_IPG_EN;
 | |
| 	if (full_duplex) {
 | |
| 		val |= MAC_TX_CFG_IGNORE_CARRIER;
 | |
| 		val |= MAC_TX_CFG_IGNORE_COLL;
 | |
| 	} else {
 | |
| #ifndef USE_CSMA_CD_PROTO
 | |
| 		val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
 | |
| 		val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
 | |
| #endif
 | |
| 	}
 | |
| 	/* val now set up for REG_MAC_TX_CFG */
 | |
| 
 | |
| 	/* If gigabit and half-duplex, enable carrier extension
 | |
| 	 * mode.  increase slot time to 512 bytes as well.
 | |
| 	 * else, disable it and make sure slot time is 64 bytes.
 | |
| 	 * also activate checksum bug workaround
 | |
| 	 */
 | |
| 	if ((speed == 1000) && !full_duplex) {
 | |
| 		writel(val | MAC_TX_CFG_CARRIER_EXTEND,
 | |
| 		       cp->regs + REG_MAC_TX_CFG);
 | |
| 
 | |
| 		val = readl(cp->regs + REG_MAC_RX_CFG);
 | |
| 		val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
 | |
| 		writel(val | MAC_RX_CFG_CARRIER_EXTEND,
 | |
| 		       cp->regs + REG_MAC_RX_CFG);
 | |
| 
 | |
| 		writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
 | |
| 
 | |
| 		cp->crc_size = 4;
 | |
| 		/* minimum size gigabit frame at half duplex */
 | |
| 		cp->min_frame_size = CAS_1000MB_MIN_FRAME;
 | |
| 
 | |
| 	} else {
 | |
| 		writel(val, cp->regs + REG_MAC_TX_CFG);
 | |
| 
 | |
| 		/* checksum bug workaround. don't strip FCS when in
 | |
| 		 * half-duplex mode
 | |
| 		 */
 | |
| 		val = readl(cp->regs + REG_MAC_RX_CFG);
 | |
| 		if (full_duplex) {
 | |
| 			val |= MAC_RX_CFG_STRIP_FCS;
 | |
| 			cp->crc_size = 0;
 | |
| 			cp->min_frame_size = CAS_MIN_MTU;
 | |
| 		} else {
 | |
| 			val &= ~MAC_RX_CFG_STRIP_FCS;
 | |
| 			cp->crc_size = 4;
 | |
| 			cp->min_frame_size = CAS_MIN_FRAME;
 | |
| 		}
 | |
| 		writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
 | |
| 		       cp->regs + REG_MAC_RX_CFG);
 | |
| 		writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
 | |
| 	}
 | |
| 
 | |
| 	if (netif_msg_link(cp)) {
 | |
| 		if (pause & 0x01) {
 | |
| 			netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
 | |
| 				    cp->rx_fifo_size,
 | |
| 				    cp->rx_pause_off,
 | |
| 				    cp->rx_pause_on);
 | |
| 		} else if (pause & 0x10) {
 | |
| 			netdev_info(cp->dev, "TX pause enabled\n");
 | |
| 		} else {
 | |
| 			netdev_info(cp->dev, "Pause is disabled\n");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	val = readl(cp->regs + REG_MAC_CTRL_CFG);
 | |
| 	val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
 | |
| 	if (pause) { /* symmetric or asymmetric pause */
 | |
| 		val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
 | |
| 		if (pause & 0x01) { /* symmetric pause */
 | |
| 			val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
 | |
| 		}
 | |
| 	}
 | |
| 	writel(val, cp->regs + REG_MAC_CTRL_CFG);
 | |
| 	cas_start_dma(cp);
 | |
| }
 | |
| 
 | |
| /* Must be invoked under cp->lock. */
 | |
| static void cas_init_hw(struct cas *cp, int restart_link)
 | |
| {
 | |
| 	if (restart_link)
 | |
| 		cas_phy_init(cp);
 | |
| 
 | |
| 	cas_init_pause_thresholds(cp);
 | |
| 	cas_init_mac(cp);
 | |
| 	cas_init_dma(cp);
 | |
| 
 | |
| 	if (restart_link) {
 | |
| 		/* Default aneg parameters */
 | |
| 		cp->timer_ticks = 0;
 | |
| 		cas_begin_auto_negotiation(cp, NULL);
 | |
| 	} else if (cp->lstate == link_up) {
 | |
| 		cas_set_link_modes(cp);
 | |
| 		netif_carrier_on(cp->dev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Must be invoked under cp->lock. on earlier cassini boards,
 | |
|  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
 | |
|  * let it settle out, and then restore pci state.
 | |
|  */
 | |
| static void cas_hard_reset(struct cas *cp)
 | |
| {
 | |
| 	writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
 | |
| 	udelay(20);
 | |
| 	pci_restore_state(cp->pdev);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void cas_global_reset(struct cas *cp, int blkflag)
 | |
| {
 | |
| 	int limit;
 | |
| 
 | |
| 	/* issue a global reset. don't use RSTOUT. */
 | |
| 	if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
 | |
| 		/* For PCS, when the blkflag is set, we should set the
 | |
| 		 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
 | |
| 		 * the last autonegotiation from being cleared.  We'll
 | |
| 		 * need some special handling if the chip is set into a
 | |
| 		 * loopback mode.
 | |
| 		 */
 | |
| 		writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
 | |
| 		       cp->regs + REG_SW_RESET);
 | |
| 	} else {
 | |
| 		writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
 | |
| 	}
 | |
| 
 | |
| 	/* need to wait at least 3ms before polling register */
 | |
| 	mdelay(3);
 | |
| 
 | |
| 	limit = STOP_TRIES;
 | |
| 	while (limit-- > 0) {
 | |
| 		u32 val = readl(cp->regs + REG_SW_RESET);
 | |
| 		if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
 | |
| 			goto done;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 	netdev_err(cp->dev, "sw reset failed\n");
 | |
| 
 | |
| done:
 | |
| 	/* enable various BIM interrupts */
 | |
| 	writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
 | |
| 	       BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
 | |
| 
 | |
| 	/* clear out pci error status mask for handled errors.
 | |
| 	 * we don't deal with DMA counter overflows as they happen
 | |
| 	 * all the time.
 | |
| 	 */
 | |
| 	writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
 | |
| 			       PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
 | |
| 			       PCI_ERR_BIM_DMA_READ), cp->regs +
 | |
| 	       REG_PCI_ERR_STATUS_MASK);
 | |
| 
 | |
| 	/* set up for MII by default to address mac rx reset timeout
 | |
| 	 * issue
 | |
| 	 */
 | |
| 	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
 | |
| }
 | |
| 
 | |
| static void cas_reset(struct cas *cp, int blkflag)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	cas_mask_intr(cp);
 | |
| 	cas_global_reset(cp, blkflag);
 | |
| 	cas_mac_reset(cp);
 | |
| 	cas_entropy_reset(cp);
 | |
| 
 | |
| 	/* disable dma engines. */
 | |
| 	val = readl(cp->regs + REG_TX_CFG);
 | |
| 	val &= ~TX_CFG_DMA_EN;
 | |
| 	writel(val, cp->regs + REG_TX_CFG);
 | |
| 
 | |
| 	val = readl(cp->regs + REG_RX_CFG);
 | |
| 	val &= ~RX_CFG_DMA_EN;
 | |
| 	writel(val, cp->regs + REG_RX_CFG);
 | |
| 
 | |
| 	/* program header parser */
 | |
| 	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
 | |
| 	    (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
 | |
| 		cas_load_firmware(cp, CAS_HP_FIRMWARE);
 | |
| 	} else {
 | |
| 		cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
 | |
| 	}
 | |
| 
 | |
| 	/* clear out error registers */
 | |
| 	spin_lock(&cp->stat_lock[N_TX_RINGS]);
 | |
| 	cas_clear_mac_err(cp);
 | |
| 	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
 | |
| }
 | |
| 
 | |
| /* Shut down the chip, must be called with pm_mutex held.  */
 | |
| static void cas_shutdown(struct cas *cp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* Make us not-running to avoid timers respawning */
 | |
| 	cp->hw_running = 0;
 | |
| 
 | |
| 	del_timer_sync(&cp->link_timer);
 | |
| 
 | |
| 	/* Stop the reset task */
 | |
| #if 0
 | |
| 	while (atomic_read(&cp->reset_task_pending_mtu) ||
 | |
| 	       atomic_read(&cp->reset_task_pending_spare) ||
 | |
| 	       atomic_read(&cp->reset_task_pending_all))
 | |
| 		schedule();
 | |
| 
 | |
| #else
 | |
| 	while (atomic_read(&cp->reset_task_pending))
 | |
| 		schedule();
 | |
| #endif
 | |
| 	/* Actually stop the chip */
 | |
| 	cas_lock_all_save(cp, flags);
 | |
| 	cas_reset(cp, 0);
 | |
| 	if (cp->cas_flags & CAS_FLAG_SATURN)
 | |
| 		cas_phy_powerdown(cp);
 | |
| 	cas_unlock_all_restore(cp, flags);
 | |
| }
 | |
| 
 | |
| static int cas_change_mtu(struct net_device *dev, int new_mtu)
 | |
| {
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 
 | |
| 	if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	dev->mtu = new_mtu;
 | |
| 	if (!netif_running(dev) || !netif_device_present(dev))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* let the reset task handle it */
 | |
| #if 1
 | |
| 	atomic_inc(&cp->reset_task_pending);
 | |
| 	if ((cp->phy_type & CAS_PHY_SERDES)) {
 | |
| 		atomic_inc(&cp->reset_task_pending_all);
 | |
| 	} else {
 | |
| 		atomic_inc(&cp->reset_task_pending_mtu);
 | |
| 	}
 | |
| 	schedule_work(&cp->reset_task);
 | |
| #else
 | |
| 	atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
 | |
| 		   CAS_RESET_ALL : CAS_RESET_MTU);
 | |
| 	pr_err("reset called in cas_change_mtu\n");
 | |
| 	schedule_work(&cp->reset_task);
 | |
| #endif
 | |
| 
 | |
| 	flush_work(&cp->reset_task);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cas_clean_txd(struct cas *cp, int ring)
 | |
| {
 | |
| 	struct cas_tx_desc *txd = cp->init_txds[ring];
 | |
| 	struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
 | |
| 	u64 daddr, dlen;
 | |
| 	int i, size;
 | |
| 
 | |
| 	size = TX_DESC_RINGN_SIZE(ring);
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		int frag;
 | |
| 
 | |
| 		if (skbs[i] == NULL)
 | |
| 			continue;
 | |
| 
 | |
| 		skb = skbs[i];
 | |
| 		skbs[i] = NULL;
 | |
| 
 | |
| 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
 | |
| 			int ent = i & (size - 1);
 | |
| 
 | |
| 			/* first buffer is never a tiny buffer and so
 | |
| 			 * needs to be unmapped.
 | |
| 			 */
 | |
| 			daddr = le64_to_cpu(txd[ent].buffer);
 | |
| 			dlen  =  CAS_VAL(TX_DESC_BUFLEN,
 | |
| 					 le64_to_cpu(txd[ent].control));
 | |
| 			pci_unmap_page(cp->pdev, daddr, dlen,
 | |
| 				       PCI_DMA_TODEVICE);
 | |
| 
 | |
| 			if (frag != skb_shinfo(skb)->nr_frags) {
 | |
| 				i++;
 | |
| 
 | |
| 				/* next buffer might by a tiny buffer.
 | |
| 				 * skip past it.
 | |
| 				 */
 | |
| 				ent = i & (size - 1);
 | |
| 				if (cp->tx_tiny_use[ring][ent].used)
 | |
| 					i++;
 | |
| 			}
 | |
| 		}
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 	}
 | |
| 
 | |
| 	/* zero out tiny buf usage */
 | |
| 	memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
 | |
| }
 | |
| 
 | |
| /* freed on close */
 | |
| static inline void cas_free_rx_desc(struct cas *cp, int ring)
 | |
| {
 | |
| 	cas_page_t **page = cp->rx_pages[ring];
 | |
| 	int i, size;
 | |
| 
 | |
| 	size = RX_DESC_RINGN_SIZE(ring);
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		if (page[i]) {
 | |
| 			cas_page_free(cp, page[i]);
 | |
| 			page[i] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void cas_free_rxds(struct cas *cp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < N_RX_DESC_RINGS; i++)
 | |
| 		cas_free_rx_desc(cp, i);
 | |
| }
 | |
| 
 | |
| /* Must be invoked under cp->lock. */
 | |
| static void cas_clean_rings(struct cas *cp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* need to clean all tx rings */
 | |
| 	memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
 | |
| 	memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
 | |
| 	for (i = 0; i < N_TX_RINGS; i++)
 | |
| 		cas_clean_txd(cp, i);
 | |
| 
 | |
| 	/* zero out init block */
 | |
| 	memset(cp->init_block, 0, sizeof(struct cas_init_block));
 | |
| 	cas_clean_rxds(cp);
 | |
| 	cas_clean_rxcs(cp);
 | |
| }
 | |
| 
 | |
| /* allocated on open */
 | |
| static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
 | |
| {
 | |
| 	cas_page_t **page = cp->rx_pages[ring];
 | |
| 	int size, i = 0;
 | |
| 
 | |
| 	size = RX_DESC_RINGN_SIZE(ring);
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
 | |
| 			return -1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cas_alloc_rxds(struct cas *cp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < N_RX_DESC_RINGS; i++) {
 | |
| 		if (cas_alloc_rx_desc(cp, i) < 0) {
 | |
| 			cas_free_rxds(cp);
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cas_reset_task(struct work_struct *work)
 | |
| {
 | |
| 	struct cas *cp = container_of(work, struct cas, reset_task);
 | |
| #if 0
 | |
| 	int pending = atomic_read(&cp->reset_task_pending);
 | |
| #else
 | |
| 	int pending_all = atomic_read(&cp->reset_task_pending_all);
 | |
| 	int pending_spare = atomic_read(&cp->reset_task_pending_spare);
 | |
| 	int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
 | |
| 
 | |
| 	if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
 | |
| 		/* We can have more tasks scheduled than actually
 | |
| 		 * needed.
 | |
| 		 */
 | |
| 		atomic_dec(&cp->reset_task_pending);
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 	/* The link went down, we reset the ring, but keep
 | |
| 	 * DMA stopped. Use this function for reset
 | |
| 	 * on error as well.
 | |
| 	 */
 | |
| 	if (cp->hw_running) {
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		/* Make sure we don't get interrupts or tx packets */
 | |
| 		netif_device_detach(cp->dev);
 | |
| 		cas_lock_all_save(cp, flags);
 | |
| 
 | |
| 		if (cp->opened) {
 | |
| 			/* We call cas_spare_recover when we call cas_open.
 | |
| 			 * but we do not initialize the lists cas_spare_recover
 | |
| 			 * uses until cas_open is called.
 | |
| 			 */
 | |
| 			cas_spare_recover(cp, GFP_ATOMIC);
 | |
| 		}
 | |
| #if 1
 | |
| 		/* test => only pending_spare set */
 | |
| 		if (!pending_all && !pending_mtu)
 | |
| 			goto done;
 | |
| #else
 | |
| 		if (pending == CAS_RESET_SPARE)
 | |
| 			goto done;
 | |
| #endif
 | |
| 		/* when pending == CAS_RESET_ALL, the following
 | |
| 		 * call to cas_init_hw will restart auto negotiation.
 | |
| 		 * Setting the second argument of cas_reset to
 | |
| 		 * !(pending == CAS_RESET_ALL) will set this argument
 | |
| 		 * to 1 (avoiding reinitializing the PHY for the normal
 | |
| 		 * PCS case) when auto negotiation is not restarted.
 | |
| 		 */
 | |
| #if 1
 | |
| 		cas_reset(cp, !(pending_all > 0));
 | |
| 		if (cp->opened)
 | |
| 			cas_clean_rings(cp);
 | |
| 		cas_init_hw(cp, (pending_all > 0));
 | |
| #else
 | |
| 		cas_reset(cp, !(pending == CAS_RESET_ALL));
 | |
| 		if (cp->opened)
 | |
| 			cas_clean_rings(cp);
 | |
| 		cas_init_hw(cp, pending == CAS_RESET_ALL);
 | |
| #endif
 | |
| 
 | |
| done:
 | |
| 		cas_unlock_all_restore(cp, flags);
 | |
| 		netif_device_attach(cp->dev);
 | |
| 	}
 | |
| #if 1
 | |
| 	atomic_sub(pending_all, &cp->reset_task_pending_all);
 | |
| 	atomic_sub(pending_spare, &cp->reset_task_pending_spare);
 | |
| 	atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
 | |
| 	atomic_dec(&cp->reset_task_pending);
 | |
| #else
 | |
| 	atomic_set(&cp->reset_task_pending, 0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void cas_link_timer(unsigned long data)
 | |
| {
 | |
| 	struct cas *cp = (struct cas *) data;
 | |
| 	int mask, pending = 0, reset = 0;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (link_transition_timeout != 0 &&
 | |
| 	    cp->link_transition_jiffies_valid &&
 | |
| 	    ((jiffies - cp->link_transition_jiffies) >
 | |
| 	      (link_transition_timeout))) {
 | |
| 		/* One-second counter so link-down workaround doesn't
 | |
| 		 * cause resets to occur so fast as to fool the switch
 | |
| 		 * into thinking the link is down.
 | |
| 		 */
 | |
| 		cp->link_transition_jiffies_valid = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!cp->hw_running)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irqsave(&cp->lock, flags);
 | |
| 	cas_lock_tx(cp);
 | |
| 	cas_entropy_gather(cp);
 | |
| 
 | |
| 	/* If the link task is still pending, we just
 | |
| 	 * reschedule the link timer
 | |
| 	 */
 | |
| #if 1
 | |
| 	if (atomic_read(&cp->reset_task_pending_all) ||
 | |
| 	    atomic_read(&cp->reset_task_pending_spare) ||
 | |
| 	    atomic_read(&cp->reset_task_pending_mtu))
 | |
| 		goto done;
 | |
| #else
 | |
| 	if (atomic_read(&cp->reset_task_pending))
 | |
| 		goto done;
 | |
| #endif
 | |
| 
 | |
| 	/* check for rx cleaning */
 | |
| 	if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
 | |
| 		int i, rmask;
 | |
| 
 | |
| 		for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
 | |
| 			rmask = CAS_FLAG_RXD_POST(i);
 | |
| 			if ((mask & rmask) == 0)
 | |
| 				continue;
 | |
| 
 | |
| 			/* post_rxds will do a mod_timer */
 | |
| 			if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
 | |
| 				pending = 1;
 | |
| 				continue;
 | |
| 			}
 | |
| 			cp->cas_flags &= ~rmask;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (CAS_PHY_MII(cp->phy_type)) {
 | |
| 		u16 bmsr;
 | |
| 		cas_mif_poll(cp, 0);
 | |
| 		bmsr = cas_phy_read(cp, MII_BMSR);
 | |
| 		/* WTZ: Solaris driver reads this twice, but that
 | |
| 		 * may be due to the PCS case and the use of a
 | |
| 		 * common implementation. Read it twice here to be
 | |
| 		 * safe.
 | |
| 		 */
 | |
| 		bmsr = cas_phy_read(cp, MII_BMSR);
 | |
| 		cas_mif_poll(cp, 1);
 | |
| 		readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
 | |
| 		reset = cas_mii_link_check(cp, bmsr);
 | |
| 	} else {
 | |
| 		reset = cas_pcs_link_check(cp);
 | |
| 	}
 | |
| 
 | |
| 	if (reset)
 | |
| 		goto done;
 | |
| 
 | |
| 	/* check for tx state machine confusion */
 | |
| 	if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
 | |
| 		u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
 | |
| 		u32 wptr, rptr;
 | |
| 		int tlm  = CAS_VAL(MAC_SM_TLM, val);
 | |
| 
 | |
| 		if (((tlm == 0x5) || (tlm == 0x3)) &&
 | |
| 		    (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
 | |
| 			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
 | |
| 				     "tx err: MAC_STATE[%08x]\n", val);
 | |
| 			reset = 1;
 | |
| 			goto done;
 | |
| 		}
 | |
| 
 | |
| 		val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
 | |
| 		wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
 | |
| 		rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
 | |
| 		if ((val == 0) && (wptr != rptr)) {
 | |
| 			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
 | |
| 				     "tx err: TX_FIFO[%08x:%08x:%08x]\n",
 | |
| 				     val, wptr, rptr);
 | |
| 			reset = 1;
 | |
| 		}
 | |
| 
 | |
| 		if (reset)
 | |
| 			cas_hard_reset(cp);
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	if (reset) {
 | |
| #if 1
 | |
| 		atomic_inc(&cp->reset_task_pending);
 | |
| 		atomic_inc(&cp->reset_task_pending_all);
 | |
| 		schedule_work(&cp->reset_task);
 | |
| #else
 | |
| 		atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
 | |
| 		pr_err("reset called in cas_link_timer\n");
 | |
| 		schedule_work(&cp->reset_task);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	if (!pending)
 | |
| 		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
 | |
| 	cas_unlock_tx(cp);
 | |
| 	spin_unlock_irqrestore(&cp->lock, flags);
 | |
| }
 | |
| 
 | |
| /* tiny buffers are used to avoid target abort issues with
 | |
|  * older cassini's
 | |
|  */
 | |
| static void cas_tx_tiny_free(struct cas *cp)
 | |
| {
 | |
| 	struct pci_dev *pdev = cp->pdev;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < N_TX_RINGS; i++) {
 | |
| 		if (!cp->tx_tiny_bufs[i])
 | |
| 			continue;
 | |
| 
 | |
| 		pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
 | |
| 				    cp->tx_tiny_bufs[i],
 | |
| 				    cp->tx_tiny_dvma[i]);
 | |
| 		cp->tx_tiny_bufs[i] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int cas_tx_tiny_alloc(struct cas *cp)
 | |
| {
 | |
| 	struct pci_dev *pdev = cp->pdev;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < N_TX_RINGS; i++) {
 | |
| 		cp->tx_tiny_bufs[i] =
 | |
| 			pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
 | |
| 					     &cp->tx_tiny_dvma[i]);
 | |
| 		if (!cp->tx_tiny_bufs[i]) {
 | |
| 			cas_tx_tiny_free(cp);
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int cas_open(struct net_device *dev)
 | |
| {
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 	int hw_was_up, err;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	mutex_lock(&cp->pm_mutex);
 | |
| 
 | |
| 	hw_was_up = cp->hw_running;
 | |
| 
 | |
| 	/* The power-management mutex protects the hw_running
 | |
| 	 * etc. state so it is safe to do this bit without cp->lock
 | |
| 	 */
 | |
| 	if (!cp->hw_running) {
 | |
| 		/* Reset the chip */
 | |
| 		cas_lock_all_save(cp, flags);
 | |
| 		/* We set the second arg to cas_reset to zero
 | |
| 		 * because cas_init_hw below will have its second
 | |
| 		 * argument set to non-zero, which will force
 | |
| 		 * autonegotiation to start.
 | |
| 		 */
 | |
| 		cas_reset(cp, 0);
 | |
| 		cp->hw_running = 1;
 | |
| 		cas_unlock_all_restore(cp, flags);
 | |
| 	}
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	if (cas_tx_tiny_alloc(cp) < 0)
 | |
| 		goto err_unlock;
 | |
| 
 | |
| 	/* alloc rx descriptors */
 | |
| 	if (cas_alloc_rxds(cp) < 0)
 | |
| 		goto err_tx_tiny;
 | |
| 
 | |
| 	/* allocate spares */
 | |
| 	cas_spare_init(cp);
 | |
| 	cas_spare_recover(cp, GFP_KERNEL);
 | |
| 
 | |
| 	/* We can now request the interrupt as we know it's masked
 | |
| 	 * on the controller. cassini+ has up to 4 interrupts
 | |
| 	 * that can be used, but you need to do explicit pci interrupt
 | |
| 	 * mapping to expose them
 | |
| 	 */
 | |
| 	if (request_irq(cp->pdev->irq, cas_interrupt,
 | |
| 			IRQF_SHARED, dev->name, (void *) dev)) {
 | |
| 		netdev_err(cp->dev, "failed to request irq !\n");
 | |
| 		err = -EAGAIN;
 | |
| 		goto err_spare;
 | |
| 	}
 | |
| 
 | |
| #ifdef USE_NAPI
 | |
| 	napi_enable(&cp->napi);
 | |
| #endif
 | |
| 	/* init hw */
 | |
| 	cas_lock_all_save(cp, flags);
 | |
| 	cas_clean_rings(cp);
 | |
| 	cas_init_hw(cp, !hw_was_up);
 | |
| 	cp->opened = 1;
 | |
| 	cas_unlock_all_restore(cp, flags);
 | |
| 
 | |
| 	netif_start_queue(dev);
 | |
| 	mutex_unlock(&cp->pm_mutex);
 | |
| 	return 0;
 | |
| 
 | |
| err_spare:
 | |
| 	cas_spare_free(cp);
 | |
| 	cas_free_rxds(cp);
 | |
| err_tx_tiny:
 | |
| 	cas_tx_tiny_free(cp);
 | |
| err_unlock:
 | |
| 	mutex_unlock(&cp->pm_mutex);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int cas_close(struct net_device *dev)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 
 | |
| #ifdef USE_NAPI
 | |
| 	napi_disable(&cp->napi);
 | |
| #endif
 | |
| 	/* Make sure we don't get distracted by suspend/resume */
 | |
| 	mutex_lock(&cp->pm_mutex);
 | |
| 
 | |
| 	netif_stop_queue(dev);
 | |
| 
 | |
| 	/* Stop traffic, mark us closed */
 | |
| 	cas_lock_all_save(cp, flags);
 | |
| 	cp->opened = 0;
 | |
| 	cas_reset(cp, 0);
 | |
| 	cas_phy_init(cp);
 | |
| 	cas_begin_auto_negotiation(cp, NULL);
 | |
| 	cas_clean_rings(cp);
 | |
| 	cas_unlock_all_restore(cp, flags);
 | |
| 
 | |
| 	free_irq(cp->pdev->irq, (void *) dev);
 | |
| 	cas_spare_free(cp);
 | |
| 	cas_free_rxds(cp);
 | |
| 	cas_tx_tiny_free(cp);
 | |
| 	mutex_unlock(&cp->pm_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct {
 | |
| 	const char name[ETH_GSTRING_LEN];
 | |
| } ethtool_cassini_statnames[] = {
 | |
| 	{"collisions"},
 | |
| 	{"rx_bytes"},
 | |
| 	{"rx_crc_errors"},
 | |
| 	{"rx_dropped"},
 | |
| 	{"rx_errors"},
 | |
| 	{"rx_fifo_errors"},
 | |
| 	{"rx_frame_errors"},
 | |
| 	{"rx_length_errors"},
 | |
| 	{"rx_over_errors"},
 | |
| 	{"rx_packets"},
 | |
| 	{"tx_aborted_errors"},
 | |
| 	{"tx_bytes"},
 | |
| 	{"tx_dropped"},
 | |
| 	{"tx_errors"},
 | |
| 	{"tx_fifo_errors"},
 | |
| 	{"tx_packets"}
 | |
| };
 | |
| #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
 | |
| 
 | |
| static struct {
 | |
| 	const int offsets;	/* neg. values for 2nd arg to cas_read_phy */
 | |
| } ethtool_register_table[] = {
 | |
| 	{-MII_BMSR},
 | |
| 	{-MII_BMCR},
 | |
| 	{REG_CAWR},
 | |
| 	{REG_INF_BURST},
 | |
| 	{REG_BIM_CFG},
 | |
| 	{REG_RX_CFG},
 | |
| 	{REG_HP_CFG},
 | |
| 	{REG_MAC_TX_CFG},
 | |
| 	{REG_MAC_RX_CFG},
 | |
| 	{REG_MAC_CTRL_CFG},
 | |
| 	{REG_MAC_XIF_CFG},
 | |
| 	{REG_MIF_CFG},
 | |
| 	{REG_PCS_CFG},
 | |
| 	{REG_SATURN_PCFG},
 | |
| 	{REG_PCS_MII_STATUS},
 | |
| 	{REG_PCS_STATE_MACHINE},
 | |
| 	{REG_MAC_COLL_EXCESS},
 | |
| 	{REG_MAC_COLL_LATE}
 | |
| };
 | |
| #define CAS_REG_LEN 	ARRAY_SIZE(ethtool_register_table)
 | |
| #define CAS_MAX_REGS 	(sizeof (u32)*CAS_REG_LEN)
 | |
| 
 | |
| static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
 | |
| {
 | |
| 	u8 *p;
 | |
| 	int i;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&cp->lock, flags);
 | |
| 	for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
 | |
| 		u16 hval;
 | |
| 		u32 val;
 | |
| 		if (ethtool_register_table[i].offsets < 0) {
 | |
| 			hval = cas_phy_read(cp,
 | |
| 				    -ethtool_register_table[i].offsets);
 | |
| 			val = hval;
 | |
| 		} else {
 | |
| 			val= readl(cp->regs+ethtool_register_table[i].offsets);
 | |
| 		}
 | |
| 		memcpy(p, (u8 *)&val, sizeof(u32));
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&cp->lock, flags);
 | |
| }
 | |
| 
 | |
| static struct net_device_stats *cas_get_stats(struct net_device *dev)
 | |
| {
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 	struct net_device_stats *stats = cp->net_stats;
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 	unsigned long tmp;
 | |
| 
 | |
| 	/* we collate all of the stats into net_stats[N_TX_RING] */
 | |
| 	if (!cp->hw_running)
 | |
| 		return stats + N_TX_RINGS;
 | |
| 
 | |
| 	/* collect outstanding stats */
 | |
| 	/* WTZ: the Cassini spec gives these as 16 bit counters but
 | |
| 	 * stored in 32-bit words.  Added a mask of 0xffff to be safe,
 | |
| 	 * in case the chip somehow puts any garbage in the other bits.
 | |
| 	 * Also, counter usage didn't seem to mach what Adrian did
 | |
| 	 * in the parts of the code that set these quantities. Made
 | |
| 	 * that consistent.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
 | |
| 	stats[N_TX_RINGS].rx_crc_errors +=
 | |
| 	  readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
 | |
| 	stats[N_TX_RINGS].rx_frame_errors +=
 | |
| 		readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
 | |
| 	stats[N_TX_RINGS].rx_length_errors +=
 | |
| 		readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
 | |
| #if 1
 | |
| 	tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
 | |
| 		(readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
 | |
| 	stats[N_TX_RINGS].tx_aborted_errors += tmp;
 | |
| 	stats[N_TX_RINGS].collisions +=
 | |
| 	  tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
 | |
| #else
 | |
| 	stats[N_TX_RINGS].tx_aborted_errors +=
 | |
| 		readl(cp->regs + REG_MAC_COLL_EXCESS);
 | |
| 	stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
 | |
| 		readl(cp->regs + REG_MAC_COLL_LATE);
 | |
| #endif
 | |
| 	cas_clear_mac_err(cp);
 | |
| 
 | |
| 	/* saved bits that are unique to ring 0 */
 | |
| 	spin_lock(&cp->stat_lock[0]);
 | |
| 	stats[N_TX_RINGS].collisions        += stats[0].collisions;
 | |
| 	stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
 | |
| 	stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
 | |
| 	stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
 | |
| 	stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
 | |
| 	stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
 | |
| 	spin_unlock(&cp->stat_lock[0]);
 | |
| 
 | |
| 	for (i = 0; i < N_TX_RINGS; i++) {
 | |
| 		spin_lock(&cp->stat_lock[i]);
 | |
| 		stats[N_TX_RINGS].rx_length_errors +=
 | |
| 			stats[i].rx_length_errors;
 | |
| 		stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
 | |
| 		stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
 | |
| 		stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
 | |
| 		stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
 | |
| 		stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
 | |
| 		stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
 | |
| 		stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
 | |
| 		stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
 | |
| 		stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
 | |
| 		memset(stats + i, 0, sizeof(struct net_device_stats));
 | |
| 		spin_unlock(&cp->stat_lock[i]);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
 | |
| 	return stats + N_TX_RINGS;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void cas_set_multicast(struct net_device *dev)
 | |
| {
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 	u32 rxcfg, rxcfg_new;
 | |
| 	unsigned long flags;
 | |
| 	int limit = STOP_TRIES;
 | |
| 
 | |
| 	if (!cp->hw_running)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irqsave(&cp->lock, flags);
 | |
| 	rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
 | |
| 
 | |
| 	/* disable RX MAC and wait for completion */
 | |
| 	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
 | |
| 	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
 | |
| 		if (!limit--)
 | |
| 			break;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 
 | |
| 	/* disable hash filter and wait for completion */
 | |
| 	limit = STOP_TRIES;
 | |
| 	rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
 | |
| 	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
 | |
| 	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
 | |
| 		if (!limit--)
 | |
| 			break;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 
 | |
| 	/* program hash filters */
 | |
| 	cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
 | |
| 	rxcfg |= rxcfg_new;
 | |
| 	writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
 | |
| 	spin_unlock_irqrestore(&cp->lock, flags);
 | |
| }
 | |
| 
 | |
| static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
 | |
| {
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 	strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
 | |
| 	strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
 | |
| 	strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
 | |
| 	info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
 | |
| 		cp->casreg_len : CAS_MAX_REGS;
 | |
| 	info->n_stats = CAS_NUM_STAT_KEYS;
 | |
| }
 | |
| 
 | |
| static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 | |
| {
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 	u16 bmcr;
 | |
| 	int full_duplex, speed, pause;
 | |
| 	unsigned long flags;
 | |
| 	enum link_state linkstate = link_up;
 | |
| 
 | |
| 	cmd->advertising = 0;
 | |
| 	cmd->supported = SUPPORTED_Autoneg;
 | |
| 	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
 | |
| 		cmd->supported |= SUPPORTED_1000baseT_Full;
 | |
| 		cmd->advertising |= ADVERTISED_1000baseT_Full;
 | |
| 	}
 | |
| 
 | |
| 	/* Record PHY settings if HW is on. */
 | |
| 	spin_lock_irqsave(&cp->lock, flags);
 | |
| 	bmcr = 0;
 | |
| 	linkstate = cp->lstate;
 | |
| 	if (CAS_PHY_MII(cp->phy_type)) {
 | |
| 		cmd->port = PORT_MII;
 | |
| 		cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
 | |
| 			XCVR_INTERNAL : XCVR_EXTERNAL;
 | |
| 		cmd->phy_address = cp->phy_addr;
 | |
| 		cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
 | |
| 			ADVERTISED_10baseT_Half |
 | |
| 			ADVERTISED_10baseT_Full |
 | |
| 			ADVERTISED_100baseT_Half |
 | |
| 			ADVERTISED_100baseT_Full;
 | |
| 
 | |
| 		cmd->supported |=
 | |
| 			(SUPPORTED_10baseT_Half |
 | |
| 			 SUPPORTED_10baseT_Full |
 | |
| 			 SUPPORTED_100baseT_Half |
 | |
| 			 SUPPORTED_100baseT_Full |
 | |
| 			 SUPPORTED_TP | SUPPORTED_MII);
 | |
| 
 | |
| 		if (cp->hw_running) {
 | |
| 			cas_mif_poll(cp, 0);
 | |
| 			bmcr = cas_phy_read(cp, MII_BMCR);
 | |
| 			cas_read_mii_link_mode(cp, &full_duplex,
 | |
| 					       &speed, &pause);
 | |
| 			cas_mif_poll(cp, 1);
 | |
| 		}
 | |
| 
 | |
| 	} else {
 | |
| 		cmd->port = PORT_FIBRE;
 | |
| 		cmd->transceiver = XCVR_INTERNAL;
 | |
| 		cmd->phy_address = 0;
 | |
| 		cmd->supported   |= SUPPORTED_FIBRE;
 | |
| 		cmd->advertising |= ADVERTISED_FIBRE;
 | |
| 
 | |
| 		if (cp->hw_running) {
 | |
| 			/* pcs uses the same bits as mii */
 | |
| 			bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
 | |
| 			cas_read_pcs_link_mode(cp, &full_duplex,
 | |
| 					       &speed, &pause);
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&cp->lock, flags);
 | |
| 
 | |
| 	if (bmcr & BMCR_ANENABLE) {
 | |
| 		cmd->advertising |= ADVERTISED_Autoneg;
 | |
| 		cmd->autoneg = AUTONEG_ENABLE;
 | |
| 		ethtool_cmd_speed_set(cmd, ((speed == 10) ?
 | |
| 					    SPEED_10 :
 | |
| 					    ((speed == 1000) ?
 | |
| 					     SPEED_1000 : SPEED_100)));
 | |
| 		cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
 | |
| 	} else {
 | |
| 		cmd->autoneg = AUTONEG_DISABLE;
 | |
| 		ethtool_cmd_speed_set(cmd, ((bmcr & CAS_BMCR_SPEED1000) ?
 | |
| 					    SPEED_1000 :
 | |
| 					    ((bmcr & BMCR_SPEED100) ?
 | |
| 					     SPEED_100 : SPEED_10)));
 | |
| 		cmd->duplex =
 | |
| 			(bmcr & BMCR_FULLDPLX) ?
 | |
| 			DUPLEX_FULL : DUPLEX_HALF;
 | |
| 	}
 | |
| 	if (linkstate != link_up) {
 | |
| 		/* Force these to "unknown" if the link is not up and
 | |
| 		 * autonogotiation in enabled. We can set the link
 | |
| 		 * speed to 0, but not cmd->duplex,
 | |
| 		 * because its legal values are 0 and 1.  Ethtool will
 | |
| 		 * print the value reported in parentheses after the
 | |
| 		 * word "Unknown" for unrecognized values.
 | |
| 		 *
 | |
| 		 * If in forced mode, we report the speed and duplex
 | |
| 		 * settings that we configured.
 | |
| 		 */
 | |
| 		if (cp->link_cntl & BMCR_ANENABLE) {
 | |
| 			ethtool_cmd_speed_set(cmd, 0);
 | |
| 			cmd->duplex = 0xff;
 | |
| 		} else {
 | |
| 			ethtool_cmd_speed_set(cmd, SPEED_10);
 | |
| 			if (cp->link_cntl & BMCR_SPEED100) {
 | |
| 				ethtool_cmd_speed_set(cmd, SPEED_100);
 | |
| 			} else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
 | |
| 				ethtool_cmd_speed_set(cmd, SPEED_1000);
 | |
| 			}
 | |
| 			cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
 | |
| 				DUPLEX_FULL : DUPLEX_HALF;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 | |
| {
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 	unsigned long flags;
 | |
| 	u32 speed = ethtool_cmd_speed(cmd);
 | |
| 
 | |
| 	/* Verify the settings we care about. */
 | |
| 	if (cmd->autoneg != AUTONEG_ENABLE &&
 | |
| 	    cmd->autoneg != AUTONEG_DISABLE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (cmd->autoneg == AUTONEG_DISABLE &&
 | |
| 	    ((speed != SPEED_1000 &&
 | |
| 	      speed != SPEED_100 &&
 | |
| 	      speed != SPEED_10) ||
 | |
| 	     (cmd->duplex != DUPLEX_HALF &&
 | |
| 	      cmd->duplex != DUPLEX_FULL)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Apply settings and restart link process. */
 | |
| 	spin_lock_irqsave(&cp->lock, flags);
 | |
| 	cas_begin_auto_negotiation(cp, cmd);
 | |
| 	spin_unlock_irqrestore(&cp->lock, flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cas_nway_reset(struct net_device *dev)
 | |
| {
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if ((cp->link_cntl & BMCR_ANENABLE) == 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Restart link process. */
 | |
| 	spin_lock_irqsave(&cp->lock, flags);
 | |
| 	cas_begin_auto_negotiation(cp, NULL);
 | |
| 	spin_unlock_irqrestore(&cp->lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u32 cas_get_link(struct net_device *dev)
 | |
| {
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 	return cp->lstate == link_up;
 | |
| }
 | |
| 
 | |
| static u32 cas_get_msglevel(struct net_device *dev)
 | |
| {
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 	return cp->msg_enable;
 | |
| }
 | |
| 
 | |
| static void cas_set_msglevel(struct net_device *dev, u32 value)
 | |
| {
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 	cp->msg_enable = value;
 | |
| }
 | |
| 
 | |
| static int cas_get_regs_len(struct net_device *dev)
 | |
| {
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 	return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
 | |
| }
 | |
| 
 | |
| static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 | |
| 			     void *p)
 | |
| {
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 	regs->version = 0;
 | |
| 	/* cas_read_regs handles locks (cp->lock).  */
 | |
| 	cas_read_regs(cp, p, regs->len / sizeof(u32));
 | |
| }
 | |
| 
 | |
| static int cas_get_sset_count(struct net_device *dev, int sset)
 | |
| {
 | |
| 	switch (sset) {
 | |
| 	case ETH_SS_STATS:
 | |
| 		return CAS_NUM_STAT_KEYS;
 | |
| 	default:
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
 | |
| {
 | |
| 	 memcpy(data, ðtool_cassini_statnames,
 | |
| 					 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
 | |
| }
 | |
| 
 | |
| static void cas_get_ethtool_stats(struct net_device *dev,
 | |
| 				      struct ethtool_stats *estats, u64 *data)
 | |
| {
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 	struct net_device_stats *stats = cas_get_stats(cp->dev);
 | |
| 	int i = 0;
 | |
| 	data[i++] = stats->collisions;
 | |
| 	data[i++] = stats->rx_bytes;
 | |
| 	data[i++] = stats->rx_crc_errors;
 | |
| 	data[i++] = stats->rx_dropped;
 | |
| 	data[i++] = stats->rx_errors;
 | |
| 	data[i++] = stats->rx_fifo_errors;
 | |
| 	data[i++] = stats->rx_frame_errors;
 | |
| 	data[i++] = stats->rx_length_errors;
 | |
| 	data[i++] = stats->rx_over_errors;
 | |
| 	data[i++] = stats->rx_packets;
 | |
| 	data[i++] = stats->tx_aborted_errors;
 | |
| 	data[i++] = stats->tx_bytes;
 | |
| 	data[i++] = stats->tx_dropped;
 | |
| 	data[i++] = stats->tx_errors;
 | |
| 	data[i++] = stats->tx_fifo_errors;
 | |
| 	data[i++] = stats->tx_packets;
 | |
| 	BUG_ON(i != CAS_NUM_STAT_KEYS);
 | |
| }
 | |
| 
 | |
| static const struct ethtool_ops cas_ethtool_ops = {
 | |
| 	.get_drvinfo		= cas_get_drvinfo,
 | |
| 	.get_settings		= cas_get_settings,
 | |
| 	.set_settings		= cas_set_settings,
 | |
| 	.nway_reset		= cas_nway_reset,
 | |
| 	.get_link		= cas_get_link,
 | |
| 	.get_msglevel		= cas_get_msglevel,
 | |
| 	.set_msglevel		= cas_set_msglevel,
 | |
| 	.get_regs_len		= cas_get_regs_len,
 | |
| 	.get_regs		= cas_get_regs,
 | |
| 	.get_sset_count		= cas_get_sset_count,
 | |
| 	.get_strings		= cas_get_strings,
 | |
| 	.get_ethtool_stats	= cas_get_ethtool_stats,
 | |
| };
 | |
| 
 | |
| static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
 | |
| {
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 	struct mii_ioctl_data *data = if_mii(ifr);
 | |
| 	unsigned long flags;
 | |
| 	int rc = -EOPNOTSUPP;
 | |
| 
 | |
| 	/* Hold the PM mutex while doing ioctl's or we may collide
 | |
| 	 * with open/close and power management and oops.
 | |
| 	 */
 | |
| 	mutex_lock(&cp->pm_mutex);
 | |
| 	switch (cmd) {
 | |
| 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
 | |
| 		data->phy_id = cp->phy_addr;
 | |
| 		/* Fallthrough... */
 | |
| 
 | |
| 	case SIOCGMIIREG:		/* Read MII PHY register. */
 | |
| 		spin_lock_irqsave(&cp->lock, flags);
 | |
| 		cas_mif_poll(cp, 0);
 | |
| 		data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
 | |
| 		cas_mif_poll(cp, 1);
 | |
| 		spin_unlock_irqrestore(&cp->lock, flags);
 | |
| 		rc = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case SIOCSMIIREG:		/* Write MII PHY register. */
 | |
| 		spin_lock_irqsave(&cp->lock, flags);
 | |
| 		cas_mif_poll(cp, 0);
 | |
| 		rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
 | |
| 		cas_mif_poll(cp, 1);
 | |
| 		spin_unlock_irqrestore(&cp->lock, flags);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&cp->pm_mutex);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* When this chip sits underneath an Intel 31154 bridge, it is the
 | |
|  * only subordinate device and we can tweak the bridge settings to
 | |
|  * reflect that fact.
 | |
|  */
 | |
| static void cas_program_bridge(struct pci_dev *cas_pdev)
 | |
| {
 | |
| 	struct pci_dev *pdev = cas_pdev->bus->self;
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (!pdev)
 | |
| 		return;
 | |
| 
 | |
| 	if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
 | |
| 		return;
 | |
| 
 | |
| 	/* Clear bit 10 (Bus Parking Control) in the Secondary
 | |
| 	 * Arbiter Control/Status Register which lives at offset
 | |
| 	 * 0x41.  Using a 32-bit word read/modify/write at 0x40
 | |
| 	 * is much simpler so that's how we do this.
 | |
| 	 */
 | |
| 	pci_read_config_dword(pdev, 0x40, &val);
 | |
| 	val &= ~0x00040000;
 | |
| 	pci_write_config_dword(pdev, 0x40, val);
 | |
| 
 | |
| 	/* Max out the Multi-Transaction Timer settings since
 | |
| 	 * Cassini is the only device present.
 | |
| 	 *
 | |
| 	 * The register is 16-bit and lives at 0x50.  When the
 | |
| 	 * settings are enabled, it extends the GRANT# signal
 | |
| 	 * for a requestor after a transaction is complete.  This
 | |
| 	 * allows the next request to run without first needing
 | |
| 	 * to negotiate the GRANT# signal back.
 | |
| 	 *
 | |
| 	 * Bits 12:10 define the grant duration:
 | |
| 	 *
 | |
| 	 *	1	--	16 clocks
 | |
| 	 *	2	--	32 clocks
 | |
| 	 *	3	--	64 clocks
 | |
| 	 *	4	--	128 clocks
 | |
| 	 *	5	--	256 clocks
 | |
| 	 *
 | |
| 	 * All other values are illegal.
 | |
| 	 *
 | |
| 	 * Bits 09:00 define which REQ/GNT signal pairs get the
 | |
| 	 * GRANT# signal treatment.  We set them all.
 | |
| 	 */
 | |
| 	pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
 | |
| 
 | |
| 	/* The Read Prefecth Policy register is 16-bit and sits at
 | |
| 	 * offset 0x52.  It enables a "smart" pre-fetch policy.  We
 | |
| 	 * enable it and max out all of the settings since only one
 | |
| 	 * device is sitting underneath and thus bandwidth sharing is
 | |
| 	 * not an issue.
 | |
| 	 *
 | |
| 	 * The register has several 3 bit fields, which indicates a
 | |
| 	 * multiplier applied to the base amount of prefetching the
 | |
| 	 * chip would do.  These fields are at:
 | |
| 	 *
 | |
| 	 *	15:13	---	ReRead Primary Bus
 | |
| 	 *	12:10	---	FirstRead Primary Bus
 | |
| 	 *	09:07	---	ReRead Secondary Bus
 | |
| 	 *	06:04	---	FirstRead Secondary Bus
 | |
| 	 *
 | |
| 	 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
 | |
| 	 * get enabled on.  Bit 3 is a grouped enabler which controls
 | |
| 	 * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
 | |
| 	 * the individual REQ/GNT pairs [2:0].
 | |
| 	 */
 | |
| 	pci_write_config_word(pdev, 0x52,
 | |
| 			      (0x7 << 13) |
 | |
| 			      (0x7 << 10) |
 | |
| 			      (0x7 <<  7) |
 | |
| 			      (0x7 <<  4) |
 | |
| 			      (0xf <<  0));
 | |
| 
 | |
| 	/* Force cacheline size to 0x8 */
 | |
| 	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
 | |
| 
 | |
| 	/* Force latency timer to maximum setting so Cassini can
 | |
| 	 * sit on the bus as long as it likes.
 | |
| 	 */
 | |
| 	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
 | |
| }
 | |
| 
 | |
| static const struct net_device_ops cas_netdev_ops = {
 | |
| 	.ndo_open		= cas_open,
 | |
| 	.ndo_stop		= cas_close,
 | |
| 	.ndo_start_xmit		= cas_start_xmit,
 | |
| 	.ndo_get_stats 		= cas_get_stats,
 | |
| 	.ndo_set_rx_mode	= cas_set_multicast,
 | |
| 	.ndo_do_ioctl		= cas_ioctl,
 | |
| 	.ndo_tx_timeout		= cas_tx_timeout,
 | |
| 	.ndo_change_mtu		= cas_change_mtu,
 | |
| 	.ndo_set_mac_address	= eth_mac_addr,
 | |
| 	.ndo_validate_addr	= eth_validate_addr,
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| 	.ndo_poll_controller	= cas_netpoll,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
 | |
| {
 | |
| 	static int cas_version_printed = 0;
 | |
| 	unsigned long casreg_len;
 | |
| 	struct net_device *dev;
 | |
| 	struct cas *cp;
 | |
| 	int i, err, pci_using_dac;
 | |
| 	u16 pci_cmd;
 | |
| 	u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
 | |
| 
 | |
| 	if (cas_version_printed++ == 0)
 | |
| 		pr_info("%s", version);
 | |
| 
 | |
| 	err = pci_enable_device(pdev);
 | |
| 	if (err) {
 | |
| 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
 | |
| 		dev_err(&pdev->dev, "Cannot find proper PCI device "
 | |
| 		       "base address, aborting\n");
 | |
| 		err = -ENODEV;
 | |
| 		goto err_out_disable_pdev;
 | |
| 	}
 | |
| 
 | |
| 	dev = alloc_etherdev(sizeof(*cp));
 | |
| 	if (!dev) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto err_out_disable_pdev;
 | |
| 	}
 | |
| 	SET_NETDEV_DEV(dev, &pdev->dev);
 | |
| 
 | |
| 	err = pci_request_regions(pdev, dev->name);
 | |
| 	if (err) {
 | |
| 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
 | |
| 		goto err_out_free_netdev;
 | |
| 	}
 | |
| 	pci_set_master(pdev);
 | |
| 
 | |
| 	/* we must always turn on parity response or else parity
 | |
| 	 * doesn't get generated properly. disable SERR/PERR as well.
 | |
| 	 * in addition, we want to turn MWI on.
 | |
| 	 */
 | |
| 	pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
 | |
| 	pci_cmd &= ~PCI_COMMAND_SERR;
 | |
| 	pci_cmd |= PCI_COMMAND_PARITY;
 | |
| 	pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
 | |
| 	if (pci_try_set_mwi(pdev))
 | |
| 		pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
 | |
| 
 | |
| 	cas_program_bridge(pdev);
 | |
| 
 | |
| 	/*
 | |
| 	 * On some architectures, the default cache line size set
 | |
| 	 * by pci_try_set_mwi reduces perforamnce.  We have to increase
 | |
| 	 * it for this case.  To start, we'll print some configuration
 | |
| 	 * data.
 | |
| 	 */
 | |
| #if 1
 | |
| 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
 | |
| 			     &orig_cacheline_size);
 | |
| 	if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
 | |
| 		cas_cacheline_size =
 | |
| 			(CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
 | |
| 			CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
 | |
| 		if (pci_write_config_byte(pdev,
 | |
| 					  PCI_CACHE_LINE_SIZE,
 | |
| 					  cas_cacheline_size)) {
 | |
| 			dev_err(&pdev->dev, "Could not set PCI cache "
 | |
| 			       "line size\n");
 | |
| 			goto err_write_cacheline;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 	/* Configure DMA attributes. */
 | |
| 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
 | |
| 		pci_using_dac = 1;
 | |
| 		err = pci_set_consistent_dma_mask(pdev,
 | |
| 						  DMA_BIT_MASK(64));
 | |
| 		if (err < 0) {
 | |
| 			dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
 | |
| 			       "for consistent allocations\n");
 | |
| 			goto err_out_free_res;
 | |
| 		}
 | |
| 
 | |
| 	} else {
 | |
| 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
 | |
| 		if (err) {
 | |
| 			dev_err(&pdev->dev, "No usable DMA configuration, "
 | |
| 			       "aborting\n");
 | |
| 			goto err_out_free_res;
 | |
| 		}
 | |
| 		pci_using_dac = 0;
 | |
| 	}
 | |
| 
 | |
| 	casreg_len = pci_resource_len(pdev, 0);
 | |
| 
 | |
| 	cp = netdev_priv(dev);
 | |
| 	cp->pdev = pdev;
 | |
| #if 1
 | |
| 	/* A value of 0 indicates we never explicitly set it */
 | |
| 	cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
 | |
| #endif
 | |
| 	cp->dev = dev;
 | |
| 	cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
 | |
| 	  cassini_debug;
 | |
| 
 | |
| #if defined(CONFIG_SPARC)
 | |
| 	cp->of_node = pci_device_to_OF_node(pdev);
 | |
| #endif
 | |
| 
 | |
| 	cp->link_transition = LINK_TRANSITION_UNKNOWN;
 | |
| 	cp->link_transition_jiffies_valid = 0;
 | |
| 
 | |
| 	spin_lock_init(&cp->lock);
 | |
| 	spin_lock_init(&cp->rx_inuse_lock);
 | |
| 	spin_lock_init(&cp->rx_spare_lock);
 | |
| 	for (i = 0; i < N_TX_RINGS; i++) {
 | |
| 		spin_lock_init(&cp->stat_lock[i]);
 | |
| 		spin_lock_init(&cp->tx_lock[i]);
 | |
| 	}
 | |
| 	spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
 | |
| 	mutex_init(&cp->pm_mutex);
 | |
| 
 | |
| 	init_timer(&cp->link_timer);
 | |
| 	cp->link_timer.function = cas_link_timer;
 | |
| 	cp->link_timer.data = (unsigned long) cp;
 | |
| 
 | |
| #if 1
 | |
| 	/* Just in case the implementation of atomic operations
 | |
| 	 * change so that an explicit initialization is necessary.
 | |
| 	 */
 | |
| 	atomic_set(&cp->reset_task_pending, 0);
 | |
| 	atomic_set(&cp->reset_task_pending_all, 0);
 | |
| 	atomic_set(&cp->reset_task_pending_spare, 0);
 | |
| 	atomic_set(&cp->reset_task_pending_mtu, 0);
 | |
| #endif
 | |
| 	INIT_WORK(&cp->reset_task, cas_reset_task);
 | |
| 
 | |
| 	/* Default link parameters */
 | |
| 	if (link_mode >= 0 && link_mode < 6)
 | |
| 		cp->link_cntl = link_modes[link_mode];
 | |
| 	else
 | |
| 		cp->link_cntl = BMCR_ANENABLE;
 | |
| 	cp->lstate = link_down;
 | |
| 	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
 | |
| 	netif_carrier_off(cp->dev);
 | |
| 	cp->timer_ticks = 0;
 | |
| 
 | |
| 	/* give us access to cassini registers */
 | |
| 	cp->regs = pci_iomap(pdev, 0, casreg_len);
 | |
| 	if (!cp->regs) {
 | |
| 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
 | |
| 		goto err_out_free_res;
 | |
| 	}
 | |
| 	cp->casreg_len = casreg_len;
 | |
| 
 | |
| 	pci_save_state(pdev);
 | |
| 	cas_check_pci_invariants(cp);
 | |
| 	cas_hard_reset(cp);
 | |
| 	cas_reset(cp, 0);
 | |
| 	if (cas_check_invariants(cp))
 | |
| 		goto err_out_iounmap;
 | |
| 	if (cp->cas_flags & CAS_FLAG_SATURN)
 | |
| 		cas_saturn_firmware_init(cp);
 | |
| 
 | |
| 	cp->init_block = (struct cas_init_block *)
 | |
| 		pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
 | |
| 				     &cp->block_dvma);
 | |
| 	if (!cp->init_block) {
 | |
| 		dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
 | |
| 		goto err_out_iounmap;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < N_TX_RINGS; i++)
 | |
| 		cp->init_txds[i] = cp->init_block->txds[i];
 | |
| 
 | |
| 	for (i = 0; i < N_RX_DESC_RINGS; i++)
 | |
| 		cp->init_rxds[i] = cp->init_block->rxds[i];
 | |
| 
 | |
| 	for (i = 0; i < N_RX_COMP_RINGS; i++)
 | |
| 		cp->init_rxcs[i] = cp->init_block->rxcs[i];
 | |
| 
 | |
| 	for (i = 0; i < N_RX_FLOWS; i++)
 | |
| 		skb_queue_head_init(&cp->rx_flows[i]);
 | |
| 
 | |
| 	dev->netdev_ops = &cas_netdev_ops;
 | |
| 	dev->ethtool_ops = &cas_ethtool_ops;
 | |
| 	dev->watchdog_timeo = CAS_TX_TIMEOUT;
 | |
| 
 | |
| #ifdef USE_NAPI
 | |
| 	netif_napi_add(dev, &cp->napi, cas_poll, 64);
 | |
| #endif
 | |
| 	dev->irq = pdev->irq;
 | |
| 	dev->dma = 0;
 | |
| 
 | |
| 	/* Cassini features. */
 | |
| 	if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
 | |
| 		dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
 | |
| 
 | |
| 	if (pci_using_dac)
 | |
| 		dev->features |= NETIF_F_HIGHDMA;
 | |
| 
 | |
| 	if (register_netdev(dev)) {
 | |
| 		dev_err(&pdev->dev, "Cannot register net device, aborting\n");
 | |
| 		goto err_out_free_consistent;
 | |
| 	}
 | |
| 
 | |
| 	i = readl(cp->regs + REG_BIM_CFG);
 | |
| 	netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
 | |
| 		    (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
 | |
| 		    (i & BIM_CFG_32BIT) ? "32" : "64",
 | |
| 		    (i & BIM_CFG_66MHZ) ? "66" : "33",
 | |
| 		    (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
 | |
| 		    dev->dev_addr);
 | |
| 
 | |
| 	pci_set_drvdata(pdev, dev);
 | |
| 	cp->hw_running = 1;
 | |
| 	cas_entropy_reset(cp);
 | |
| 	cas_phy_init(cp);
 | |
| 	cas_begin_auto_negotiation(cp, NULL);
 | |
| 	return 0;
 | |
| 
 | |
| err_out_free_consistent:
 | |
| 	pci_free_consistent(pdev, sizeof(struct cas_init_block),
 | |
| 			    cp->init_block, cp->block_dvma);
 | |
| 
 | |
| err_out_iounmap:
 | |
| 	mutex_lock(&cp->pm_mutex);
 | |
| 	if (cp->hw_running)
 | |
| 		cas_shutdown(cp);
 | |
| 	mutex_unlock(&cp->pm_mutex);
 | |
| 
 | |
| 	pci_iounmap(pdev, cp->regs);
 | |
| 
 | |
| 
 | |
| err_out_free_res:
 | |
| 	pci_release_regions(pdev);
 | |
| 
 | |
| err_write_cacheline:
 | |
| 	/* Try to restore it in case the error occurred after we
 | |
| 	 * set it.
 | |
| 	 */
 | |
| 	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
 | |
| 
 | |
| err_out_free_netdev:
 | |
| 	free_netdev(dev);
 | |
| 
 | |
| err_out_disable_pdev:
 | |
| 	pci_disable_device(pdev);
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| static void cas_remove_one(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *dev = pci_get_drvdata(pdev);
 | |
| 	struct cas *cp;
 | |
| 	if (!dev)
 | |
| 		return;
 | |
| 
 | |
| 	cp = netdev_priv(dev);
 | |
| 	unregister_netdev(dev);
 | |
| 
 | |
| 	if (cp->fw_data)
 | |
| 		vfree(cp->fw_data);
 | |
| 
 | |
| 	mutex_lock(&cp->pm_mutex);
 | |
| 	cancel_work_sync(&cp->reset_task);
 | |
| 	if (cp->hw_running)
 | |
| 		cas_shutdown(cp);
 | |
| 	mutex_unlock(&cp->pm_mutex);
 | |
| 
 | |
| #if 1
 | |
| 	if (cp->orig_cacheline_size) {
 | |
| 		/* Restore the cache line size if we had modified
 | |
| 		 * it.
 | |
| 		 */
 | |
| 		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
 | |
| 				      cp->orig_cacheline_size);
 | |
| 	}
 | |
| #endif
 | |
| 	pci_free_consistent(pdev, sizeof(struct cas_init_block),
 | |
| 			    cp->init_block, cp->block_dvma);
 | |
| 	pci_iounmap(pdev, cp->regs);
 | |
| 	free_netdev(dev);
 | |
| 	pci_release_regions(pdev);
 | |
| 	pci_disable_device(pdev);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
 | |
| {
 | |
| 	struct net_device *dev = pci_get_drvdata(pdev);
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	mutex_lock(&cp->pm_mutex);
 | |
| 
 | |
| 	/* If the driver is opened, we stop the DMA */
 | |
| 	if (cp->opened) {
 | |
| 		netif_device_detach(dev);
 | |
| 
 | |
| 		cas_lock_all_save(cp, flags);
 | |
| 
 | |
| 		/* We can set the second arg of cas_reset to 0
 | |
| 		 * because on resume, we'll call cas_init_hw with
 | |
| 		 * its second arg set so that autonegotiation is
 | |
| 		 * restarted.
 | |
| 		 */
 | |
| 		cas_reset(cp, 0);
 | |
| 		cas_clean_rings(cp);
 | |
| 		cas_unlock_all_restore(cp, flags);
 | |
| 	}
 | |
| 
 | |
| 	if (cp->hw_running)
 | |
| 		cas_shutdown(cp);
 | |
| 	mutex_unlock(&cp->pm_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cas_resume(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *dev = pci_get_drvdata(pdev);
 | |
| 	struct cas *cp = netdev_priv(dev);
 | |
| 
 | |
| 	netdev_info(dev, "resuming\n");
 | |
| 
 | |
| 	mutex_lock(&cp->pm_mutex);
 | |
| 	cas_hard_reset(cp);
 | |
| 	if (cp->opened) {
 | |
| 		unsigned long flags;
 | |
| 		cas_lock_all_save(cp, flags);
 | |
| 		cas_reset(cp, 0);
 | |
| 		cp->hw_running = 1;
 | |
| 		cas_clean_rings(cp);
 | |
| 		cas_init_hw(cp, 1);
 | |
| 		cas_unlock_all_restore(cp, flags);
 | |
| 
 | |
| 		netif_device_attach(dev);
 | |
| 	}
 | |
| 	mutex_unlock(&cp->pm_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_PM */
 | |
| 
 | |
| static struct pci_driver cas_driver = {
 | |
| 	.name		= DRV_MODULE_NAME,
 | |
| 	.id_table	= cas_pci_tbl,
 | |
| 	.probe		= cas_init_one,
 | |
| 	.remove		= cas_remove_one,
 | |
| #ifdef CONFIG_PM
 | |
| 	.suspend	= cas_suspend,
 | |
| 	.resume		= cas_resume
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static int __init cas_init(void)
 | |
| {
 | |
| 	if (linkdown_timeout > 0)
 | |
| 		link_transition_timeout = linkdown_timeout * HZ;
 | |
| 	else
 | |
| 		link_transition_timeout = 0;
 | |
| 
 | |
| 	return pci_register_driver(&cas_driver);
 | |
| }
 | |
| 
 | |
| static void __exit cas_cleanup(void)
 | |
| {
 | |
| 	pci_unregister_driver(&cas_driver);
 | |
| }
 | |
| 
 | |
| module_init(cas_init);
 | |
| module_exit(cas_cleanup);
 |