 7a32129a42
			
		
	
	
	7a32129a42
	
	
	
		
			
			We will need this to avoid build failures pending a future implicit module.h presence cleanup. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
		
			
				
	
	
		
			1162 lines
		
	
	
	
		
			29 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1162 lines
		
	
	
	
		
			29 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SN Platform GRU Driver
 | |
|  *
 | |
|  *              KERNEL SERVICES THAT USE THE GRU
 | |
|  *
 | |
|  *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or modify
 | |
|  *  it under the terms of the GNU General Public License as published by
 | |
|  *  the Free Software Foundation; either version 2 of the License, or
 | |
|  *  (at your option) any later version.
 | |
|  *
 | |
|  *  This program is distributed in the hope that it will be useful,
 | |
|  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  *  GNU General Public License for more details.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License
 | |
|  *  along with this program; if not, write to the Free Software
 | |
|  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/miscdevice.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/export.h>
 | |
| #include <asm/io_apic.h>
 | |
| #include "gru.h"
 | |
| #include "grulib.h"
 | |
| #include "grutables.h"
 | |
| #include "grukservices.h"
 | |
| #include "gru_instructions.h"
 | |
| #include <asm/uv/uv_hub.h>
 | |
| 
 | |
| /*
 | |
|  * Kernel GRU Usage
 | |
|  *
 | |
|  * The following is an interim algorithm for management of kernel GRU
 | |
|  * resources. This will likely be replaced when we better understand the
 | |
|  * kernel/user requirements.
 | |
|  *
 | |
|  * Blade percpu resources reserved for kernel use. These resources are
 | |
|  * reserved whenever the the kernel context for the blade is loaded. Note
 | |
|  * that the kernel context is not guaranteed to be always available. It is
 | |
|  * loaded on demand & can be stolen by a user if the user demand exceeds the
 | |
|  * kernel demand. The kernel can always reload the kernel context but
 | |
|  * a SLEEP may be required!!!.
 | |
|  *
 | |
|  * Async Overview:
 | |
|  *
 | |
|  * 	Each blade has one "kernel context" that owns GRU kernel resources
 | |
|  * 	located on the blade. Kernel drivers use GRU resources in this context
 | |
|  * 	for sending messages, zeroing memory, etc.
 | |
|  *
 | |
|  * 	The kernel context is dynamically loaded on demand. If it is not in
 | |
|  * 	use by the kernel, the kernel context can be unloaded & given to a user.
 | |
|  * 	The kernel context will be reloaded when needed. This may require that
 | |
|  * 	a context be stolen from a user.
 | |
|  * 		NOTE: frequent unloading/reloading of the kernel context is
 | |
|  * 		expensive. We are depending on batch schedulers, cpusets, sane
 | |
|  * 		drivers or some other mechanism to prevent the need for frequent
 | |
|  *	 	stealing/reloading.
 | |
|  *
 | |
|  * 	The kernel context consists of two parts:
 | |
|  * 		- 1 CB & a few DSRs that are reserved for each cpu on the blade.
 | |
|  * 		  Each cpu has it's own private resources & does not share them
 | |
|  * 		  with other cpus. These resources are used serially, ie,
 | |
|  * 		  locked, used & unlocked  on each call to a function in
 | |
|  * 		  grukservices.
 | |
|  * 		  	(Now that we have dynamic loading of kernel contexts, I
 | |
|  * 		  	 may rethink this & allow sharing between cpus....)
 | |
|  *
 | |
|  *		- Additional resources can be reserved long term & used directly
 | |
|  *		  by UV drivers located in the kernel. Drivers using these GRU
 | |
|  *		  resources can use asynchronous GRU instructions that send
 | |
|  *		  interrupts on completion.
 | |
|  *		  	- these resources must be explicitly locked/unlocked
 | |
|  *		  	- locked resources prevent (obviously) the kernel
 | |
|  *		  	  context from being unloaded.
 | |
|  *			- drivers using these resource directly issue their own
 | |
|  *			  GRU instruction and must wait/check completion.
 | |
|  *
 | |
|  * 		  When these resources are reserved, the caller can optionally
 | |
|  * 		  associate a wait_queue with the resources and use asynchronous
 | |
|  * 		  GRU instructions. When an async GRU instruction completes, the
 | |
|  * 		  driver will do a wakeup on the event.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| 
 | |
| #define ASYNC_HAN_TO_BID(h)	((h) - 1)
 | |
| #define ASYNC_BID_TO_HAN(b)	((b) + 1)
 | |
| #define ASYNC_HAN_TO_BS(h)	gru_base[ASYNC_HAN_TO_BID(h)]
 | |
| 
 | |
| #define GRU_NUM_KERNEL_CBR	1
 | |
| #define GRU_NUM_KERNEL_DSR_BYTES 256
 | |
| #define GRU_NUM_KERNEL_DSR_CL	(GRU_NUM_KERNEL_DSR_BYTES /		\
 | |
| 					GRU_CACHE_LINE_BYTES)
 | |
| 
 | |
| /* GRU instruction attributes for all instructions */
 | |
| #define IMA			IMA_CB_DELAY
 | |
| 
 | |
| /* GRU cacheline size is always 64 bytes - even on arches with 128 byte lines */
 | |
| #define __gru_cacheline_aligned__                               \
 | |
| 	__attribute__((__aligned__(GRU_CACHE_LINE_BYTES)))
 | |
| 
 | |
| #define MAGIC	0x1234567887654321UL
 | |
| 
 | |
| /* Default retry count for GRU errors on kernel instructions */
 | |
| #define EXCEPTION_RETRY_LIMIT	3
 | |
| 
 | |
| /* Status of message queue sections */
 | |
| #define MQS_EMPTY		0
 | |
| #define MQS_FULL		1
 | |
| #define MQS_NOOP		2
 | |
| 
 | |
| /*----------------- RESOURCE MANAGEMENT -------------------------------------*/
 | |
| /* optimized for x86_64 */
 | |
| struct message_queue {
 | |
| 	union gru_mesqhead	head __gru_cacheline_aligned__;	/* CL 0 */
 | |
| 	int			qlines;				/* DW 1 */
 | |
| 	long 			hstatus[2];
 | |
| 	void 			*next __gru_cacheline_aligned__;/* CL 1 */
 | |
| 	void 			*limit;
 | |
| 	void 			*start;
 | |
| 	void 			*start2;
 | |
| 	char			data ____cacheline_aligned;	/* CL 2 */
 | |
| };
 | |
| 
 | |
| /* First word in every message - used by mesq interface */
 | |
| struct message_header {
 | |
| 	char	present;
 | |
| 	char	present2;
 | |
| 	char 	lines;
 | |
| 	char	fill;
 | |
| };
 | |
| 
 | |
| #define HSTATUS(mq, h)	((mq) + offsetof(struct message_queue, hstatus[h]))
 | |
| 
 | |
| /*
 | |
|  * Reload the blade's kernel context into a GRU chiplet. Called holding
 | |
|  * the bs_kgts_sema for READ. Will steal user contexts if necessary.
 | |
|  */
 | |
| static void gru_load_kernel_context(struct gru_blade_state *bs, int blade_id)
 | |
| {
 | |
| 	struct gru_state *gru;
 | |
| 	struct gru_thread_state *kgts;
 | |
| 	void *vaddr;
 | |
| 	int ctxnum, ncpus;
 | |
| 
 | |
| 	up_read(&bs->bs_kgts_sema);
 | |
| 	down_write(&bs->bs_kgts_sema);
 | |
| 
 | |
| 	if (!bs->bs_kgts) {
 | |
| 		bs->bs_kgts = gru_alloc_gts(NULL, 0, 0, 0, 0, 0);
 | |
| 		bs->bs_kgts->ts_user_blade_id = blade_id;
 | |
| 	}
 | |
| 	kgts = bs->bs_kgts;
 | |
| 
 | |
| 	if (!kgts->ts_gru) {
 | |
| 		STAT(load_kernel_context);
 | |
| 		ncpus = uv_blade_nr_possible_cpus(blade_id);
 | |
| 		kgts->ts_cbr_au_count = GRU_CB_COUNT_TO_AU(
 | |
| 			GRU_NUM_KERNEL_CBR * ncpus + bs->bs_async_cbrs);
 | |
| 		kgts->ts_dsr_au_count = GRU_DS_BYTES_TO_AU(
 | |
| 			GRU_NUM_KERNEL_DSR_BYTES * ncpus +
 | |
| 				bs->bs_async_dsr_bytes);
 | |
| 		while (!gru_assign_gru_context(kgts)) {
 | |
| 			msleep(1);
 | |
| 			gru_steal_context(kgts);
 | |
| 		}
 | |
| 		gru_load_context(kgts);
 | |
| 		gru = bs->bs_kgts->ts_gru;
 | |
| 		vaddr = gru->gs_gru_base_vaddr;
 | |
| 		ctxnum = kgts->ts_ctxnum;
 | |
| 		bs->kernel_cb = get_gseg_base_address_cb(vaddr, ctxnum, 0);
 | |
| 		bs->kernel_dsr = get_gseg_base_address_ds(vaddr, ctxnum, 0);
 | |
| 	}
 | |
| 	downgrade_write(&bs->bs_kgts_sema);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free all kernel contexts that are not currently in use.
 | |
|  *   Returns 0 if all freed, else number of inuse context.
 | |
|  */
 | |
| static int gru_free_kernel_contexts(void)
 | |
| {
 | |
| 	struct gru_blade_state *bs;
 | |
| 	struct gru_thread_state *kgts;
 | |
| 	int bid, ret = 0;
 | |
| 
 | |
| 	for (bid = 0; bid < GRU_MAX_BLADES; bid++) {
 | |
| 		bs = gru_base[bid];
 | |
| 		if (!bs)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Ignore busy contexts. Don't want to block here.  */
 | |
| 		if (down_write_trylock(&bs->bs_kgts_sema)) {
 | |
| 			kgts = bs->bs_kgts;
 | |
| 			if (kgts && kgts->ts_gru)
 | |
| 				gru_unload_context(kgts, 0);
 | |
| 			bs->bs_kgts = NULL;
 | |
| 			up_write(&bs->bs_kgts_sema);
 | |
| 			kfree(kgts);
 | |
| 		} else {
 | |
| 			ret++;
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lock & load the kernel context for the specified blade.
 | |
|  */
 | |
| static struct gru_blade_state *gru_lock_kernel_context(int blade_id)
 | |
| {
 | |
| 	struct gru_blade_state *bs;
 | |
| 	int bid;
 | |
| 
 | |
| 	STAT(lock_kernel_context);
 | |
| again:
 | |
| 	bid = blade_id < 0 ? uv_numa_blade_id() : blade_id;
 | |
| 	bs = gru_base[bid];
 | |
| 
 | |
| 	/* Handle the case where migration occurred while waiting for the sema */
 | |
| 	down_read(&bs->bs_kgts_sema);
 | |
| 	if (blade_id < 0 && bid != uv_numa_blade_id()) {
 | |
| 		up_read(&bs->bs_kgts_sema);
 | |
| 		goto again;
 | |
| 	}
 | |
| 	if (!bs->bs_kgts || !bs->bs_kgts->ts_gru)
 | |
| 		gru_load_kernel_context(bs, bid);
 | |
| 	return bs;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unlock the kernel context for the specified blade. Context is not
 | |
|  * unloaded but may be stolen before next use.
 | |
|  */
 | |
| static void gru_unlock_kernel_context(int blade_id)
 | |
| {
 | |
| 	struct gru_blade_state *bs;
 | |
| 
 | |
| 	bs = gru_base[blade_id];
 | |
| 	up_read(&bs->bs_kgts_sema);
 | |
| 	STAT(unlock_kernel_context);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reserve & get pointers to the DSR/CBRs reserved for the current cpu.
 | |
|  * 	- returns with preemption disabled
 | |
|  */
 | |
| static int gru_get_cpu_resources(int dsr_bytes, void **cb, void **dsr)
 | |
| {
 | |
| 	struct gru_blade_state *bs;
 | |
| 	int lcpu;
 | |
| 
 | |
| 	BUG_ON(dsr_bytes > GRU_NUM_KERNEL_DSR_BYTES);
 | |
| 	preempt_disable();
 | |
| 	bs = gru_lock_kernel_context(-1);
 | |
| 	lcpu = uv_blade_processor_id();
 | |
| 	*cb = bs->kernel_cb + lcpu * GRU_HANDLE_STRIDE;
 | |
| 	*dsr = bs->kernel_dsr + lcpu * GRU_NUM_KERNEL_DSR_BYTES;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free the current cpus reserved DSR/CBR resources.
 | |
|  */
 | |
| static void gru_free_cpu_resources(void *cb, void *dsr)
 | |
| {
 | |
| 	gru_unlock_kernel_context(uv_numa_blade_id());
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reserve GRU resources to be used asynchronously.
 | |
|  *   Note: currently supports only 1 reservation per blade.
 | |
|  *
 | |
|  * 	input:
 | |
|  * 		blade_id  - blade on which resources should be reserved
 | |
|  * 		cbrs	  - number of CBRs
 | |
|  * 		dsr_bytes - number of DSR bytes needed
 | |
|  *	output:
 | |
|  *		handle to identify resource
 | |
|  *		(0 = async resources already reserved)
 | |
|  */
 | |
| unsigned long gru_reserve_async_resources(int blade_id, int cbrs, int dsr_bytes,
 | |
| 			struct completion *cmp)
 | |
| {
 | |
| 	struct gru_blade_state *bs;
 | |
| 	struct gru_thread_state *kgts;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	bs = gru_base[blade_id];
 | |
| 
 | |
| 	down_write(&bs->bs_kgts_sema);
 | |
| 
 | |
| 	/* Verify no resources already reserved */
 | |
| 	if (bs->bs_async_dsr_bytes + bs->bs_async_cbrs)
 | |
| 		goto done;
 | |
| 	bs->bs_async_dsr_bytes = dsr_bytes;
 | |
| 	bs->bs_async_cbrs = cbrs;
 | |
| 	bs->bs_async_wq = cmp;
 | |
| 	kgts = bs->bs_kgts;
 | |
| 
 | |
| 	/* Resources changed. Unload context if already loaded */
 | |
| 	if (kgts && kgts->ts_gru)
 | |
| 		gru_unload_context(kgts, 0);
 | |
| 	ret = ASYNC_BID_TO_HAN(blade_id);
 | |
| 
 | |
| done:
 | |
| 	up_write(&bs->bs_kgts_sema);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release async resources previously reserved.
 | |
|  *
 | |
|  *	input:
 | |
|  *		han - handle to identify resources
 | |
|  */
 | |
| void gru_release_async_resources(unsigned long han)
 | |
| {
 | |
| 	struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
 | |
| 
 | |
| 	down_write(&bs->bs_kgts_sema);
 | |
| 	bs->bs_async_dsr_bytes = 0;
 | |
| 	bs->bs_async_cbrs = 0;
 | |
| 	bs->bs_async_wq = NULL;
 | |
| 	up_write(&bs->bs_kgts_sema);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wait for async GRU instructions to complete.
 | |
|  *
 | |
|  *	input:
 | |
|  *		han - handle to identify resources
 | |
|  */
 | |
| void gru_wait_async_cbr(unsigned long han)
 | |
| {
 | |
| 	struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
 | |
| 
 | |
| 	wait_for_completion(bs->bs_async_wq);
 | |
| 	mb();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lock previous reserved async GRU resources
 | |
|  *
 | |
|  *	input:
 | |
|  *		han - handle to identify resources
 | |
|  *	output:
 | |
|  *		cb  - pointer to first CBR
 | |
|  *		dsr - pointer to first DSR
 | |
|  */
 | |
| void gru_lock_async_resource(unsigned long han,  void **cb, void **dsr)
 | |
| {
 | |
| 	struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
 | |
| 	int blade_id = ASYNC_HAN_TO_BID(han);
 | |
| 	int ncpus;
 | |
| 
 | |
| 	gru_lock_kernel_context(blade_id);
 | |
| 	ncpus = uv_blade_nr_possible_cpus(blade_id);
 | |
| 	if (cb)
 | |
| 		*cb = bs->kernel_cb + ncpus * GRU_HANDLE_STRIDE;
 | |
| 	if (dsr)
 | |
| 		*dsr = bs->kernel_dsr + ncpus * GRU_NUM_KERNEL_DSR_BYTES;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unlock previous reserved async GRU resources
 | |
|  *
 | |
|  *	input:
 | |
|  *		han - handle to identify resources
 | |
|  */
 | |
| void gru_unlock_async_resource(unsigned long han)
 | |
| {
 | |
| 	int blade_id = ASYNC_HAN_TO_BID(han);
 | |
| 
 | |
| 	gru_unlock_kernel_context(blade_id);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------*/
 | |
| int gru_get_cb_exception_detail(void *cb,
 | |
| 		struct control_block_extended_exc_detail *excdet)
 | |
| {
 | |
| 	struct gru_control_block_extended *cbe;
 | |
| 	struct gru_thread_state *kgts = NULL;
 | |
| 	unsigned long off;
 | |
| 	int cbrnum, bid;
 | |
| 
 | |
| 	/*
 | |
| 	 * Locate kgts for cb. This algorithm is SLOW but
 | |
| 	 * this function is rarely called (ie., almost never).
 | |
| 	 * Performance does not matter.
 | |
| 	 */
 | |
| 	for_each_possible_blade(bid) {
 | |
| 		if (!gru_base[bid])
 | |
| 			break;
 | |
| 		kgts = gru_base[bid]->bs_kgts;
 | |
| 		if (!kgts || !kgts->ts_gru)
 | |
| 			continue;
 | |
| 		off = cb - kgts->ts_gru->gs_gru_base_vaddr;
 | |
| 		if (off < GRU_SIZE)
 | |
| 			break;
 | |
| 		kgts = NULL;
 | |
| 	}
 | |
| 	BUG_ON(!kgts);
 | |
| 	cbrnum = thread_cbr_number(kgts, get_cb_number(cb));
 | |
| 	cbe = get_cbe(GRUBASE(cb), cbrnum);
 | |
| 	gru_flush_cache(cbe);	/* CBE not coherent */
 | |
| 	sync_core();
 | |
| 	excdet->opc = cbe->opccpy;
 | |
| 	excdet->exopc = cbe->exopccpy;
 | |
| 	excdet->ecause = cbe->ecause;
 | |
| 	excdet->exceptdet0 = cbe->idef1upd;
 | |
| 	excdet->exceptdet1 = cbe->idef3upd;
 | |
| 	gru_flush_cache(cbe);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| char *gru_get_cb_exception_detail_str(int ret, void *cb,
 | |
| 				      char *buf, int size)
 | |
| {
 | |
| 	struct gru_control_block_status *gen = (void *)cb;
 | |
| 	struct control_block_extended_exc_detail excdet;
 | |
| 
 | |
| 	if (ret > 0 && gen->istatus == CBS_EXCEPTION) {
 | |
| 		gru_get_cb_exception_detail(cb, &excdet);
 | |
| 		snprintf(buf, size,
 | |
| 			"GRU:%d exception: cb %p, opc %d, exopc %d, ecause 0x%x,"
 | |
| 			"excdet0 0x%lx, excdet1 0x%x", smp_processor_id(),
 | |
| 			gen, excdet.opc, excdet.exopc, excdet.ecause,
 | |
| 			excdet.exceptdet0, excdet.exceptdet1);
 | |
| 	} else {
 | |
| 		snprintf(buf, size, "No exception");
 | |
| 	}
 | |
| 	return buf;
 | |
| }
 | |
| 
 | |
| static int gru_wait_idle_or_exception(struct gru_control_block_status *gen)
 | |
| {
 | |
| 	while (gen->istatus >= CBS_ACTIVE) {
 | |
| 		cpu_relax();
 | |
| 		barrier();
 | |
| 	}
 | |
| 	return gen->istatus;
 | |
| }
 | |
| 
 | |
| static int gru_retry_exception(void *cb)
 | |
| {
 | |
| 	struct gru_control_block_status *gen = (void *)cb;
 | |
| 	struct control_block_extended_exc_detail excdet;
 | |
| 	int retry = EXCEPTION_RETRY_LIMIT;
 | |
| 
 | |
| 	while (1)  {
 | |
| 		if (gru_wait_idle_or_exception(gen) == CBS_IDLE)
 | |
| 			return CBS_IDLE;
 | |
| 		if (gru_get_cb_message_queue_substatus(cb))
 | |
| 			return CBS_EXCEPTION;
 | |
| 		gru_get_cb_exception_detail(cb, &excdet);
 | |
| 		if ((excdet.ecause & ~EXCEPTION_RETRY_BITS) ||
 | |
| 				(excdet.cbrexecstatus & CBR_EXS_ABORT_OCC))
 | |
| 			break;
 | |
| 		if (retry-- == 0)
 | |
| 			break;
 | |
| 		gen->icmd = 1;
 | |
| 		gru_flush_cache(gen);
 | |
| 	}
 | |
| 	return CBS_EXCEPTION;
 | |
| }
 | |
| 
 | |
| int gru_check_status_proc(void *cb)
 | |
| {
 | |
| 	struct gru_control_block_status *gen = (void *)cb;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = gen->istatus;
 | |
| 	if (ret == CBS_EXCEPTION)
 | |
| 		ret = gru_retry_exception(cb);
 | |
| 	rmb();
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| 
 | |
| int gru_wait_proc(void *cb)
 | |
| {
 | |
| 	struct gru_control_block_status *gen = (void *)cb;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = gru_wait_idle_or_exception(gen);
 | |
| 	if (ret == CBS_EXCEPTION)
 | |
| 		ret = gru_retry_exception(cb);
 | |
| 	rmb();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void gru_abort(int ret, void *cb, char *str)
 | |
| {
 | |
| 	char buf[GRU_EXC_STR_SIZE];
 | |
| 
 | |
| 	panic("GRU FATAL ERROR: %s - %s\n", str,
 | |
| 	      gru_get_cb_exception_detail_str(ret, cb, buf, sizeof(buf)));
 | |
| }
 | |
| 
 | |
| void gru_wait_abort_proc(void *cb)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = gru_wait_proc(cb);
 | |
| 	if (ret)
 | |
| 		gru_abort(ret, cb, "gru_wait_abort");
 | |
| }
 | |
| 
 | |
| 
 | |
| /*------------------------------ MESSAGE QUEUES -----------------------------*/
 | |
| 
 | |
| /* Internal status . These are NOT returned to the user. */
 | |
| #define MQIE_AGAIN		-1	/* try again */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Save/restore the "present" flag that is in the second line of 2-line
 | |
|  * messages
 | |
|  */
 | |
| static inline int get_present2(void *p)
 | |
| {
 | |
| 	struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
 | |
| 	return mhdr->present;
 | |
| }
 | |
| 
 | |
| static inline void restore_present2(void *p, int val)
 | |
| {
 | |
| 	struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
 | |
| 	mhdr->present = val;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create a message queue.
 | |
|  * 	qlines - message queue size in cache lines. Includes 2-line header.
 | |
|  */
 | |
| int gru_create_message_queue(struct gru_message_queue_desc *mqd,
 | |
| 		void *p, unsigned int bytes, int nasid, int vector, int apicid)
 | |
| {
 | |
| 	struct message_queue *mq = p;
 | |
| 	unsigned int qlines;
 | |
| 
 | |
| 	qlines = bytes / GRU_CACHE_LINE_BYTES - 2;
 | |
| 	memset(mq, 0, bytes);
 | |
| 	mq->start = &mq->data;
 | |
| 	mq->start2 = &mq->data + (qlines / 2 - 1) * GRU_CACHE_LINE_BYTES;
 | |
| 	mq->next = &mq->data;
 | |
| 	mq->limit = &mq->data + (qlines - 2) * GRU_CACHE_LINE_BYTES;
 | |
| 	mq->qlines = qlines;
 | |
| 	mq->hstatus[0] = 0;
 | |
| 	mq->hstatus[1] = 1;
 | |
| 	mq->head = gru_mesq_head(2, qlines / 2 + 1);
 | |
| 	mqd->mq = mq;
 | |
| 	mqd->mq_gpa = uv_gpa(mq);
 | |
| 	mqd->qlines = qlines;
 | |
| 	mqd->interrupt_pnode = nasid >> 1;
 | |
| 	mqd->interrupt_vector = vector;
 | |
| 	mqd->interrupt_apicid = apicid;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(gru_create_message_queue);
 | |
| 
 | |
| /*
 | |
|  * Send a NOOP message to a message queue
 | |
|  * 	Returns:
 | |
|  * 		 0 - if queue is full after the send. This is the normal case
 | |
|  * 		     but various races can change this.
 | |
|  *		-1 - if mesq sent successfully but queue not full
 | |
|  *		>0 - unexpected error. MQE_xxx returned
 | |
|  */
 | |
| static int send_noop_message(void *cb, struct gru_message_queue_desc *mqd,
 | |
| 				void *mesg)
 | |
| {
 | |
| 	const struct message_header noop_header = {
 | |
| 					.present = MQS_NOOP, .lines = 1};
 | |
| 	unsigned long m;
 | |
| 	int substatus, ret;
 | |
| 	struct message_header save_mhdr, *mhdr = mesg;
 | |
| 
 | |
| 	STAT(mesq_noop);
 | |
| 	save_mhdr = *mhdr;
 | |
| 	*mhdr = noop_header;
 | |
| 	gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), 1, IMA);
 | |
| 	ret = gru_wait(cb);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		substatus = gru_get_cb_message_queue_substatus(cb);
 | |
| 		switch (substatus) {
 | |
| 		case CBSS_NO_ERROR:
 | |
| 			STAT(mesq_noop_unexpected_error);
 | |
| 			ret = MQE_UNEXPECTED_CB_ERR;
 | |
| 			break;
 | |
| 		case CBSS_LB_OVERFLOWED:
 | |
| 			STAT(mesq_noop_lb_overflow);
 | |
| 			ret = MQE_CONGESTION;
 | |
| 			break;
 | |
| 		case CBSS_QLIMIT_REACHED:
 | |
| 			STAT(mesq_noop_qlimit_reached);
 | |
| 			ret = 0;
 | |
| 			break;
 | |
| 		case CBSS_AMO_NACKED:
 | |
| 			STAT(mesq_noop_amo_nacked);
 | |
| 			ret = MQE_CONGESTION;
 | |
| 			break;
 | |
| 		case CBSS_PUT_NACKED:
 | |
| 			STAT(mesq_noop_put_nacked);
 | |
| 			m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
 | |
| 			gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, 1, 1,
 | |
| 						IMA);
 | |
| 			if (gru_wait(cb) == CBS_IDLE)
 | |
| 				ret = MQIE_AGAIN;
 | |
| 			else
 | |
| 				ret = MQE_UNEXPECTED_CB_ERR;
 | |
| 			break;
 | |
| 		case CBSS_PAGE_OVERFLOW:
 | |
| 			STAT(mesq_noop_page_overflow);
 | |
| 			/* fallthru */
 | |
| 		default:
 | |
| 			BUG();
 | |
| 		}
 | |
| 	}
 | |
| 	*mhdr = save_mhdr;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle a gru_mesq full.
 | |
|  */
 | |
| static int send_message_queue_full(void *cb, struct gru_message_queue_desc *mqd,
 | |
| 				void *mesg, int lines)
 | |
| {
 | |
| 	union gru_mesqhead mqh;
 | |
| 	unsigned int limit, head;
 | |
| 	unsigned long avalue;
 | |
| 	int half, qlines;
 | |
| 
 | |
| 	/* Determine if switching to first/second half of q */
 | |
| 	avalue = gru_get_amo_value(cb);
 | |
| 	head = gru_get_amo_value_head(cb);
 | |
| 	limit = gru_get_amo_value_limit(cb);
 | |
| 
 | |
| 	qlines = mqd->qlines;
 | |
| 	half = (limit != qlines);
 | |
| 
 | |
| 	if (half)
 | |
| 		mqh = gru_mesq_head(qlines / 2 + 1, qlines);
 | |
| 	else
 | |
| 		mqh = gru_mesq_head(2, qlines / 2 + 1);
 | |
| 
 | |
| 	/* Try to get lock for switching head pointer */
 | |
| 	gru_gamir(cb, EOP_IR_CLR, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, IMA);
 | |
| 	if (gru_wait(cb) != CBS_IDLE)
 | |
| 		goto cberr;
 | |
| 	if (!gru_get_amo_value(cb)) {
 | |
| 		STAT(mesq_qf_locked);
 | |
| 		return MQE_QUEUE_FULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Got the lock. Send optional NOP if queue not full, */
 | |
| 	if (head != limit) {
 | |
| 		if (send_noop_message(cb, mqd, mesg)) {
 | |
| 			gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half),
 | |
| 					XTYPE_DW, IMA);
 | |
| 			if (gru_wait(cb) != CBS_IDLE)
 | |
| 				goto cberr;
 | |
| 			STAT(mesq_qf_noop_not_full);
 | |
| 			return MQIE_AGAIN;
 | |
| 		}
 | |
| 		avalue++;
 | |
| 	}
 | |
| 
 | |
| 	/* Then flip queuehead to other half of queue. */
 | |
| 	gru_gamer(cb, EOP_ERR_CSWAP, mqd->mq_gpa, XTYPE_DW, mqh.val, avalue,
 | |
| 							IMA);
 | |
| 	if (gru_wait(cb) != CBS_IDLE)
 | |
| 		goto cberr;
 | |
| 
 | |
| 	/* If not successfully in swapping queue head, clear the hstatus lock */
 | |
| 	if (gru_get_amo_value(cb) != avalue) {
 | |
| 		STAT(mesq_qf_switch_head_failed);
 | |
| 		gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half), XTYPE_DW,
 | |
| 							IMA);
 | |
| 		if (gru_wait(cb) != CBS_IDLE)
 | |
| 			goto cberr;
 | |
| 	}
 | |
| 	return MQIE_AGAIN;
 | |
| cberr:
 | |
| 	STAT(mesq_qf_unexpected_error);
 | |
| 	return MQE_UNEXPECTED_CB_ERR;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle a PUT failure. Note: if message was a 2-line message, one of the
 | |
|  * lines might have successfully have been written. Before sending the
 | |
|  * message, "present" must be cleared in BOTH lines to prevent the receiver
 | |
|  * from prematurely seeing the full message.
 | |
|  */
 | |
| static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd,
 | |
| 			void *mesg, int lines)
 | |
| {
 | |
| 	unsigned long m, *val = mesg, gpa, save;
 | |
| 	int ret;
 | |
| 
 | |
| 	m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
 | |
| 	if (lines == 2) {
 | |
| 		gru_vset(cb, m, 0, XTYPE_CL, lines, 1, IMA);
 | |
| 		if (gru_wait(cb) != CBS_IDLE)
 | |
| 			return MQE_UNEXPECTED_CB_ERR;
 | |
| 	}
 | |
| 	gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, lines, 1, IMA);
 | |
| 	if (gru_wait(cb) != CBS_IDLE)
 | |
| 		return MQE_UNEXPECTED_CB_ERR;
 | |
| 
 | |
| 	if (!mqd->interrupt_vector)
 | |
| 		return MQE_OK;
 | |
| 
 | |
| 	/*
 | |
| 	 * Send a cross-partition interrupt to the SSI that contains the target
 | |
| 	 * message queue. Normally, the interrupt is automatically delivered by
 | |
| 	 * hardware but some error conditions require explicit delivery.
 | |
| 	 * Use the GRU to deliver the interrupt. Otherwise partition failures
 | |
| 	 * could cause unrecovered errors.
 | |
| 	 */
 | |
| 	gpa = uv_global_gru_mmr_address(mqd->interrupt_pnode, UVH_IPI_INT);
 | |
| 	save = *val;
 | |
| 	*val = uv_hub_ipi_value(mqd->interrupt_apicid, mqd->interrupt_vector,
 | |
| 				dest_Fixed);
 | |
| 	gru_vstore_phys(cb, gpa, gru_get_tri(mesg), IAA_REGISTER, IMA);
 | |
| 	ret = gru_wait(cb);
 | |
| 	*val = save;
 | |
| 	if (ret != CBS_IDLE)
 | |
| 		return MQE_UNEXPECTED_CB_ERR;
 | |
| 	return MQE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle a gru_mesq failure. Some of these failures are software recoverable
 | |
|  * or retryable.
 | |
|  */
 | |
| static int send_message_failure(void *cb, struct gru_message_queue_desc *mqd,
 | |
| 				void *mesg, int lines)
 | |
| {
 | |
| 	int substatus, ret = 0;
 | |
| 
 | |
| 	substatus = gru_get_cb_message_queue_substatus(cb);
 | |
| 	switch (substatus) {
 | |
| 	case CBSS_NO_ERROR:
 | |
| 		STAT(mesq_send_unexpected_error);
 | |
| 		ret = MQE_UNEXPECTED_CB_ERR;
 | |
| 		break;
 | |
| 	case CBSS_LB_OVERFLOWED:
 | |
| 		STAT(mesq_send_lb_overflow);
 | |
| 		ret = MQE_CONGESTION;
 | |
| 		break;
 | |
| 	case CBSS_QLIMIT_REACHED:
 | |
| 		STAT(mesq_send_qlimit_reached);
 | |
| 		ret = send_message_queue_full(cb, mqd, mesg, lines);
 | |
| 		break;
 | |
| 	case CBSS_AMO_NACKED:
 | |
| 		STAT(mesq_send_amo_nacked);
 | |
| 		ret = MQE_CONGESTION;
 | |
| 		break;
 | |
| 	case CBSS_PUT_NACKED:
 | |
| 		STAT(mesq_send_put_nacked);
 | |
| 		ret = send_message_put_nacked(cb, mqd, mesg, lines);
 | |
| 		break;
 | |
| 	case CBSS_PAGE_OVERFLOW:
 | |
| 		STAT(mesq_page_overflow);
 | |
| 		/* fallthru */
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Send a message to a message queue
 | |
|  * 	mqd	message queue descriptor
 | |
|  * 	mesg	message. ust be vaddr within a GSEG
 | |
|  * 	bytes	message size (<= 2 CL)
 | |
|  */
 | |
| int gru_send_message_gpa(struct gru_message_queue_desc *mqd, void *mesg,
 | |
| 				unsigned int bytes)
 | |
| {
 | |
| 	struct message_header *mhdr;
 | |
| 	void *cb;
 | |
| 	void *dsr;
 | |
| 	int istatus, clines, ret;
 | |
| 
 | |
| 	STAT(mesq_send);
 | |
| 	BUG_ON(bytes < sizeof(int) || bytes > 2 * GRU_CACHE_LINE_BYTES);
 | |
| 
 | |
| 	clines = DIV_ROUND_UP(bytes, GRU_CACHE_LINE_BYTES);
 | |
| 	if (gru_get_cpu_resources(bytes, &cb, &dsr))
 | |
| 		return MQE_BUG_NO_RESOURCES;
 | |
| 	memcpy(dsr, mesg, bytes);
 | |
| 	mhdr = dsr;
 | |
| 	mhdr->present = MQS_FULL;
 | |
| 	mhdr->lines = clines;
 | |
| 	if (clines == 2) {
 | |
| 		mhdr->present2 = get_present2(mhdr);
 | |
| 		restore_present2(mhdr, MQS_FULL);
 | |
| 	}
 | |
| 
 | |
| 	do {
 | |
| 		ret = MQE_OK;
 | |
| 		gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), clines, IMA);
 | |
| 		istatus = gru_wait(cb);
 | |
| 		if (istatus != CBS_IDLE)
 | |
| 			ret = send_message_failure(cb, mqd, dsr, clines);
 | |
| 	} while (ret == MQIE_AGAIN);
 | |
| 	gru_free_cpu_resources(cb, dsr);
 | |
| 
 | |
| 	if (ret)
 | |
| 		STAT(mesq_send_failed);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(gru_send_message_gpa);
 | |
| 
 | |
| /*
 | |
|  * Advance the receive pointer for the queue to the next message.
 | |
|  */
 | |
| void gru_free_message(struct gru_message_queue_desc *mqd, void *mesg)
 | |
| {
 | |
| 	struct message_queue *mq = mqd->mq;
 | |
| 	struct message_header *mhdr = mq->next;
 | |
| 	void *next, *pnext;
 | |
| 	int half = -1;
 | |
| 	int lines = mhdr->lines;
 | |
| 
 | |
| 	if (lines == 2)
 | |
| 		restore_present2(mhdr, MQS_EMPTY);
 | |
| 	mhdr->present = MQS_EMPTY;
 | |
| 
 | |
| 	pnext = mq->next;
 | |
| 	next = pnext + GRU_CACHE_LINE_BYTES * lines;
 | |
| 	if (next == mq->limit) {
 | |
| 		next = mq->start;
 | |
| 		half = 1;
 | |
| 	} else if (pnext < mq->start2 && next >= mq->start2) {
 | |
| 		half = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (half >= 0)
 | |
| 		mq->hstatus[half] = 1;
 | |
| 	mq->next = next;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(gru_free_message);
 | |
| 
 | |
| /*
 | |
|  * Get next message from message queue. Return NULL if no message
 | |
|  * present. User must call next_message() to move to next message.
 | |
|  * 	rmq	message queue
 | |
|  */
 | |
| void *gru_get_next_message(struct gru_message_queue_desc *mqd)
 | |
| {
 | |
| 	struct message_queue *mq = mqd->mq;
 | |
| 	struct message_header *mhdr = mq->next;
 | |
| 	int present = mhdr->present;
 | |
| 
 | |
| 	/* skip NOOP messages */
 | |
| 	while (present == MQS_NOOP) {
 | |
| 		gru_free_message(mqd, mhdr);
 | |
| 		mhdr = mq->next;
 | |
| 		present = mhdr->present;
 | |
| 	}
 | |
| 
 | |
| 	/* Wait for both halves of 2 line messages */
 | |
| 	if (present == MQS_FULL && mhdr->lines == 2 &&
 | |
| 				get_present2(mhdr) == MQS_EMPTY)
 | |
| 		present = MQS_EMPTY;
 | |
| 
 | |
| 	if (!present) {
 | |
| 		STAT(mesq_receive_none);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (mhdr->lines == 2)
 | |
| 		restore_present2(mhdr, mhdr->present2);
 | |
| 
 | |
| 	STAT(mesq_receive);
 | |
| 	return mhdr;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(gru_get_next_message);
 | |
| 
 | |
| /* ---------------------- GRU DATA COPY FUNCTIONS ---------------------------*/
 | |
| 
 | |
| /*
 | |
|  * Load a DW from a global GPA. The GPA can be a memory or MMR address.
 | |
|  */
 | |
| int gru_read_gpa(unsigned long *value, unsigned long gpa)
 | |
| {
 | |
| 	void *cb;
 | |
| 	void *dsr;
 | |
| 	int ret, iaa;
 | |
| 
 | |
| 	STAT(read_gpa);
 | |
| 	if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
 | |
| 		return MQE_BUG_NO_RESOURCES;
 | |
| 	iaa = gpa >> 62;
 | |
| 	gru_vload_phys(cb, gpa, gru_get_tri(dsr), iaa, IMA);
 | |
| 	ret = gru_wait(cb);
 | |
| 	if (ret == CBS_IDLE)
 | |
| 		*value = *(unsigned long *)dsr;
 | |
| 	gru_free_cpu_resources(cb, dsr);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(gru_read_gpa);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Copy a block of data using the GRU resources
 | |
|  */
 | |
| int gru_copy_gpa(unsigned long dest_gpa, unsigned long src_gpa,
 | |
| 				unsigned int bytes)
 | |
| {
 | |
| 	void *cb;
 | |
| 	void *dsr;
 | |
| 	int ret;
 | |
| 
 | |
| 	STAT(copy_gpa);
 | |
| 	if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
 | |
| 		return MQE_BUG_NO_RESOURCES;
 | |
| 	gru_bcopy(cb, src_gpa, dest_gpa, gru_get_tri(dsr),
 | |
| 		  XTYPE_B, bytes, GRU_NUM_KERNEL_DSR_CL, IMA);
 | |
| 	ret = gru_wait(cb);
 | |
| 	gru_free_cpu_resources(cb, dsr);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(gru_copy_gpa);
 | |
| 
 | |
| /* ------------------- KERNEL QUICKTESTS RUN AT STARTUP ----------------*/
 | |
| /* 	Temp - will delete after we gain confidence in the GRU		*/
 | |
| 
 | |
| static int quicktest0(unsigned long arg)
 | |
| {
 | |
| 	unsigned long word0;
 | |
| 	unsigned long word1;
 | |
| 	void *cb;
 | |
| 	void *dsr;
 | |
| 	unsigned long *p;
 | |
| 	int ret = -EIO;
 | |
| 
 | |
| 	if (gru_get_cpu_resources(GRU_CACHE_LINE_BYTES, &cb, &dsr))
 | |
| 		return MQE_BUG_NO_RESOURCES;
 | |
| 	p = dsr;
 | |
| 	word0 = MAGIC;
 | |
| 	word1 = 0;
 | |
| 
 | |
| 	gru_vload(cb, uv_gpa(&word0), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
 | |
| 	if (gru_wait(cb) != CBS_IDLE) {
 | |
| 		printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 1\n", smp_processor_id());
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	if (*p != MAGIC) {
 | |
| 		printk(KERN_DEBUG "GRU:%d quicktest0 bad magic 0x%lx\n", smp_processor_id(), *p);
 | |
| 		goto done;
 | |
| 	}
 | |
| 	gru_vstore(cb, uv_gpa(&word1), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
 | |
| 	if (gru_wait(cb) != CBS_IDLE) {
 | |
| 		printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 2\n", smp_processor_id());
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	if (word0 != word1 || word1 != MAGIC) {
 | |
| 		printk(KERN_DEBUG
 | |
| 		       "GRU:%d quicktest0 err: found 0x%lx, expected 0x%lx\n",
 | |
| 		     smp_processor_id(), word1, MAGIC);
 | |
| 		goto done;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| 
 | |
| done:
 | |
| 	gru_free_cpu_resources(cb, dsr);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define ALIGNUP(p, q)	((void *)(((unsigned long)(p) + (q) - 1) & ~(q - 1)))
 | |
| 
 | |
| static int quicktest1(unsigned long arg)
 | |
| {
 | |
| 	struct gru_message_queue_desc mqd;
 | |
| 	void *p, *mq;
 | |
| 	unsigned long *dw;
 | |
| 	int i, ret = -EIO;
 | |
| 	char mes[GRU_CACHE_LINE_BYTES], *m;
 | |
| 
 | |
| 	/* Need  1K cacheline aligned that does not cross page boundary */
 | |
| 	p = kmalloc(4096, 0);
 | |
| 	if (p == NULL)
 | |
| 		return -ENOMEM;
 | |
| 	mq = ALIGNUP(p, 1024);
 | |
| 	memset(mes, 0xee, sizeof(mes));
 | |
| 	dw = mq;
 | |
| 
 | |
| 	gru_create_message_queue(&mqd, mq, 8 * GRU_CACHE_LINE_BYTES, 0, 0, 0);
 | |
| 	for (i = 0; i < 6; i++) {
 | |
| 		mes[8] = i;
 | |
| 		do {
 | |
| 			ret = gru_send_message_gpa(&mqd, mes, sizeof(mes));
 | |
| 		} while (ret == MQE_CONGESTION);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (ret != MQE_QUEUE_FULL || i != 4) {
 | |
| 		printk(KERN_DEBUG "GRU:%d quicktest1: unexpect status %d, i %d\n",
 | |
| 		       smp_processor_id(), ret, i);
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 6; i++) {
 | |
| 		m = gru_get_next_message(&mqd);
 | |
| 		if (!m || m[8] != i)
 | |
| 			break;
 | |
| 		gru_free_message(&mqd, m);
 | |
| 	}
 | |
| 	if (i != 4) {
 | |
| 		printk(KERN_DEBUG "GRU:%d quicktest2: bad message, i %d, m %p, m8 %d\n",
 | |
| 			smp_processor_id(), i, m, m ? m[8] : -1);
 | |
| 		goto done;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| 
 | |
| done:
 | |
| 	kfree(p);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int quicktest2(unsigned long arg)
 | |
| {
 | |
| 	static DECLARE_COMPLETION(cmp);
 | |
| 	unsigned long han;
 | |
| 	int blade_id = 0;
 | |
| 	int numcb = 4;
 | |
| 	int ret = 0;
 | |
| 	unsigned long *buf;
 | |
| 	void *cb0, *cb;
 | |
| 	struct gru_control_block_status *gen;
 | |
| 	int i, k, istatus, bytes;
 | |
| 
 | |
| 	bytes = numcb * 4 * 8;
 | |
| 	buf = kmalloc(bytes, GFP_KERNEL);
 | |
| 	if (!buf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = -EBUSY;
 | |
| 	han = gru_reserve_async_resources(blade_id, numcb, 0, &cmp);
 | |
| 	if (!han)
 | |
| 		goto done;
 | |
| 
 | |
| 	gru_lock_async_resource(han, &cb0, NULL);
 | |
| 	memset(buf, 0xee, bytes);
 | |
| 	for (i = 0; i < numcb; i++)
 | |
| 		gru_vset(cb0 + i * GRU_HANDLE_STRIDE, uv_gpa(&buf[i * 4]), 0,
 | |
| 				XTYPE_DW, 4, 1, IMA_INTERRUPT);
 | |
| 
 | |
| 	ret = 0;
 | |
| 	k = numcb;
 | |
| 	do {
 | |
| 		gru_wait_async_cbr(han);
 | |
| 		for (i = 0; i < numcb; i++) {
 | |
| 			cb = cb0 + i * GRU_HANDLE_STRIDE;
 | |
| 			istatus = gru_check_status(cb);
 | |
| 			if (istatus != CBS_ACTIVE && istatus != CBS_CALL_OS)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (i == numcb)
 | |
| 			continue;
 | |
| 		if (istatus != CBS_IDLE) {
 | |
| 			printk(KERN_DEBUG "GRU:%d quicktest2: cb %d, exception\n", smp_processor_id(), i);
 | |
| 			ret = -EFAULT;
 | |
| 		} else if (buf[4 * i] || buf[4 * i + 1] || buf[4 * i + 2] ||
 | |
| 				buf[4 * i + 3]) {
 | |
| 			printk(KERN_DEBUG "GRU:%d quicktest2:cb %d,  buf 0x%lx, 0x%lx, 0x%lx, 0x%lx\n",
 | |
| 			       smp_processor_id(), i, buf[4 * i], buf[4 * i + 1], buf[4 * i + 2], buf[4 * i + 3]);
 | |
| 			ret = -EIO;
 | |
| 		}
 | |
| 		k--;
 | |
| 		gen = cb;
 | |
| 		gen->istatus = CBS_CALL_OS; /* don't handle this CBR again */
 | |
| 	} while (k);
 | |
| 	BUG_ON(cmp.done);
 | |
| 
 | |
| 	gru_unlock_async_resource(han);
 | |
| 	gru_release_async_resources(han);
 | |
| done:
 | |
| 	kfree(buf);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define BUFSIZE 200
 | |
| static int quicktest3(unsigned long arg)
 | |
| {
 | |
| 	char buf1[BUFSIZE], buf2[BUFSIZE];
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	memset(buf2, 0, sizeof(buf2));
 | |
| 	memset(buf1, get_cycles() & 255, sizeof(buf1));
 | |
| 	gru_copy_gpa(uv_gpa(buf2), uv_gpa(buf1), BUFSIZE);
 | |
| 	if (memcmp(buf1, buf2, BUFSIZE)) {
 | |
| 		printk(KERN_DEBUG "GRU:%d quicktest3 error\n", smp_processor_id());
 | |
| 		ret = -EIO;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Debugging only. User hook for various kernel tests
 | |
|  * of driver & gru.
 | |
|  */
 | |
| int gru_ktest(unsigned long arg)
 | |
| {
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	switch (arg & 0xff) {
 | |
| 	case 0:
 | |
| 		ret = quicktest0(arg);
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		ret = quicktest1(arg);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		ret = quicktest2(arg);
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		ret = quicktest3(arg);
 | |
| 		break;
 | |
| 	case 99:
 | |
| 		ret = gru_free_kernel_contexts();
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| 
 | |
| int gru_kservices_init(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void gru_kservices_exit(void)
 | |
| {
 | |
| 	if (gru_free_kernel_contexts())
 | |
| 		BUG();
 | |
| }
 | |
| 
 |