 3cf0c6bd68
			
		
	
	
	3cf0c6bd68
	
	
	
		
			
			There are some patches that depends on media-v3.16-rc6. So, merge back from upstream before applying them. * linus/master: (1123 commits) drm/nouveau: ltc/gf100-: fix cbc issues on certain boards drm/bochs: add missing drm_connector_register call drm/cirrus: add missing drm_connector_register call staging: vt6655: buffer overflow in ioctl USB: storage: Add quirks for Entrega/Xircom USB to SCSI converters USB: storage: Add quirk for Ariston Technologies iConnect USB to SCSI adapter USB: storage: Add quirk for Adaptec USBConnect 2000 USB-to-SCSI Adapter USB: EHCI: unlink QHs even after the controller has stopped [SCSI] fix for bidi use after free [SCSI] fix regression that accidentally disabled block-based tcq [SCSI] libiscsi: fix potential buffer overrun in __iscsi_conn_send_pdu drm/radeon: Fix typo 'addr' -> 'entry' in rs400_gart_set_page drm/nouveau/runpm: fix module unload drm/radeon/px: fix module unload vgaswitcheroo: add vga_switcheroo_fini_domain_pm_ops drm/radeon: don't reset dma on r6xx-evergreen init drm/radeon: don't reset sdma on CIK init drm/radeon: don't reset dma on NI/SI init drm/radeon/dpm: fix resume on mullins drm/radeon: Disable HDP flush before every CS again for < r600 ...
		
			
				
	
	
		
			2934 lines
		
	
	
	
		
			78 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2934 lines
		
	
	
	
		
			78 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * drivers/media/i2c/smiapp/smiapp-core.c
 | |
|  *
 | |
|  * Generic driver for SMIA/SMIA++ compliant camera modules
 | |
|  *
 | |
|  * Copyright (C) 2010--2012 Nokia Corporation
 | |
|  * Contact: Sakari Ailus <sakari.ailus@iki.fi>
 | |
|  *
 | |
|  * Based on smiapp driver by Vimarsh Zutshi
 | |
|  * Based on jt8ev1.c by Vimarsh Zutshi
 | |
|  * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * version 2 as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
 | |
|  * 02110-1301 USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/clk.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/gpio.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/regulator/consumer.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/smiapp.h>
 | |
| #include <linux/v4l2-mediabus.h>
 | |
| #include <media/v4l2-device.h>
 | |
| 
 | |
| #include "smiapp.h"
 | |
| 
 | |
| #define SMIAPP_ALIGN_DIM(dim, flags)	\
 | |
| 	((flags) & V4L2_SEL_FLAG_GE	\
 | |
| 	 ? ALIGN((dim), 2)		\
 | |
| 	 : (dim) & ~1)
 | |
| 
 | |
| /*
 | |
|  * smiapp_module_idents - supported camera modules
 | |
|  */
 | |
| static const struct smiapp_module_ident smiapp_module_idents[] = {
 | |
| 	SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
 | |
| 	SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
 | |
| 	SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
 | |
| 	SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
 | |
| 	SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
 | |
| 	SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
 | |
| 	SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
 | |
| 	SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
 | |
| 	SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
 | |
| 	SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
 | |
| 	SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *
 | |
|  * Dynamic Capability Identification
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
 | |
| {
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 | |
| 	u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
 | |
| 	unsigned int i;
 | |
| 	int rval;
 | |
| 	int line_count = 0;
 | |
| 	int embedded_start = -1, embedded_end = -1;
 | |
| 	int image_start = 0;
 | |
| 
 | |
| 	rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
 | |
| 			   &fmt_model_type);
 | |
| 	if (rval)
 | |
| 		return rval;
 | |
| 
 | |
| 	rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
 | |
| 			   &fmt_model_subtype);
 | |
| 	if (rval)
 | |
| 		return rval;
 | |
| 
 | |
| 	ncol_desc = (fmt_model_subtype
 | |
| 		     & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
 | |
| 		>> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
 | |
| 	nrow_desc = fmt_model_subtype
 | |
| 		& SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
 | |
| 
 | |
| 	dev_dbg(&client->dev, "format_model_type %s\n",
 | |
| 		fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
 | |
| 		? "2 byte" :
 | |
| 		fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
 | |
| 		? "4 byte" : "is simply bad");
 | |
| 
 | |
| 	for (i = 0; i < ncol_desc + nrow_desc; i++) {
 | |
| 		u32 desc;
 | |
| 		u32 pixelcode;
 | |
| 		u32 pixels;
 | |
| 		char *which;
 | |
| 		char *what;
 | |
| 
 | |
| 		if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
 | |
| 			rval = smiapp_read(
 | |
| 				sensor,
 | |
| 				SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i),
 | |
| 				&desc);
 | |
| 			if (rval)
 | |
| 				return rval;
 | |
| 
 | |
| 			pixelcode =
 | |
| 				(desc
 | |
| 				 & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
 | |
| 				>> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
 | |
| 			pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
 | |
| 		} else if (fmt_model_type
 | |
| 			   == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
 | |
| 			rval = smiapp_read(
 | |
| 				sensor,
 | |
| 				SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i),
 | |
| 				&desc);
 | |
| 			if (rval)
 | |
| 				return rval;
 | |
| 
 | |
| 			pixelcode =
 | |
| 				(desc
 | |
| 				 & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
 | |
| 				>> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
 | |
| 			pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
 | |
| 		} else {
 | |
| 			dev_dbg(&client->dev,
 | |
| 				"invalid frame format model type %d\n",
 | |
| 				fmt_model_type);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (i < ncol_desc)
 | |
| 			which = "columns";
 | |
| 		else
 | |
| 			which = "rows";
 | |
| 
 | |
| 		switch (pixelcode) {
 | |
| 		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
 | |
| 			what = "embedded";
 | |
| 			break;
 | |
| 		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
 | |
| 			what = "dummy";
 | |
| 			break;
 | |
| 		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
 | |
| 			what = "black";
 | |
| 			break;
 | |
| 		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
 | |
| 			what = "dark";
 | |
| 			break;
 | |
| 		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
 | |
| 			what = "visible";
 | |
| 			break;
 | |
| 		default:
 | |
| 			what = "invalid";
 | |
| 			dev_dbg(&client->dev, "pixelcode %d\n", pixelcode);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		dev_dbg(&client->dev, "%s pixels: %d %s\n",
 | |
| 			what, pixels, which);
 | |
| 
 | |
| 		if (i < ncol_desc)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Handle row descriptors */
 | |
| 		if (pixelcode
 | |
| 		    == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED) {
 | |
| 			embedded_start = line_count;
 | |
| 		} else {
 | |
| 			if (pixelcode == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE
 | |
| 			    || pixels >= sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES] / 2)
 | |
| 				image_start = line_count;
 | |
| 			if (embedded_start != -1 && embedded_end == -1)
 | |
| 				embedded_end = line_count;
 | |
| 		}
 | |
| 		line_count += pixels;
 | |
| 	}
 | |
| 
 | |
| 	if (embedded_start == -1 || embedded_end == -1) {
 | |
| 		embedded_start = 0;
 | |
| 		embedded_end = 0;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
 | |
| 		embedded_start, embedded_end);
 | |
| 	dev_dbg(&client->dev, "image data starts at line %d\n", image_start);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int smiapp_pll_configure(struct smiapp_sensor *sensor)
 | |
| {
 | |
| 	struct smiapp_pll *pll = &sensor->pll;
 | |
| 	int rval;
 | |
| 
 | |
| 	rval = smiapp_write(
 | |
| 		sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt_pix_clk_div);
 | |
| 	if (rval < 0)
 | |
| 		return rval;
 | |
| 
 | |
| 	rval = smiapp_write(
 | |
| 		sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt_sys_clk_div);
 | |
| 	if (rval < 0)
 | |
| 		return rval;
 | |
| 
 | |
| 	rval = smiapp_write(
 | |
| 		sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
 | |
| 	if (rval < 0)
 | |
| 		return rval;
 | |
| 
 | |
| 	rval = smiapp_write(
 | |
| 		sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
 | |
| 	if (rval < 0)
 | |
| 		return rval;
 | |
| 
 | |
| 	/* Lane op clock ratio does not apply here. */
 | |
| 	rval = smiapp_write(
 | |
| 		sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
 | |
| 		DIV_ROUND_UP(pll->op_sys_clk_freq_hz, 1000000 / 256 / 256));
 | |
| 	if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
 | |
| 		return rval;
 | |
| 
 | |
| 	rval = smiapp_write(
 | |
| 		sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op_pix_clk_div);
 | |
| 	if (rval < 0)
 | |
| 		return rval;
 | |
| 
 | |
| 	return smiapp_write(
 | |
| 		sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op_sys_clk_div);
 | |
| }
 | |
| 
 | |
| static int smiapp_pll_update(struct smiapp_sensor *sensor)
 | |
| {
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 | |
| 	struct smiapp_pll_limits lim = {
 | |
| 		.min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV],
 | |
| 		.max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV],
 | |
| 		.min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ],
 | |
| 		.max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ],
 | |
| 		.min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER],
 | |
| 		.max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER],
 | |
| 		.min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ],
 | |
| 		.max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ],
 | |
| 
 | |
| 		.op.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV],
 | |
| 		.op.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV],
 | |
| 		.op.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV],
 | |
| 		.op.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV],
 | |
| 		.op.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ],
 | |
| 		.op.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ],
 | |
| 		.op.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ],
 | |
| 		.op.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ],
 | |
| 
 | |
| 		.vt.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV],
 | |
| 		.vt.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV],
 | |
| 		.vt.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV],
 | |
| 		.vt.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV],
 | |
| 		.vt.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ],
 | |
| 		.vt.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ],
 | |
| 		.vt.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ],
 | |
| 		.vt.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ],
 | |
| 
 | |
| 		.min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN],
 | |
| 		.min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK],
 | |
| 	};
 | |
| 	struct smiapp_pll *pll = &sensor->pll;
 | |
| 	int rval;
 | |
| 
 | |
| 	if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0) {
 | |
| 		/*
 | |
| 		 * Fill in operational clock divisors limits from the
 | |
| 		 * video timing ones. On profile 0 sensors the
 | |
| 		 * requirements regarding them are essentially the
 | |
| 		 * same as on VT ones.
 | |
| 		 */
 | |
| 		lim.op = lim.vt;
 | |
| 	}
 | |
| 
 | |
| 	pll->binning_horizontal = sensor->binning_horizontal;
 | |
| 	pll->binning_vertical = sensor->binning_vertical;
 | |
| 	pll->link_freq =
 | |
| 		sensor->link_freq->qmenu_int[sensor->link_freq->val];
 | |
| 	pll->scale_m = sensor->scale_m;
 | |
| 	pll->bits_per_pixel = sensor->csi_format->compressed;
 | |
| 
 | |
| 	rval = smiapp_pll_calculate(&client->dev, &lim, pll);
 | |
| 	if (rval < 0)
 | |
| 		return rval;
 | |
| 
 | |
| 	__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
 | |
| 				 pll->vt_pix_clk_freq_hz);
 | |
| 	__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *
 | |
|  * V4L2 Controls handling
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
 | |
| {
 | |
| 	struct v4l2_ctrl *ctrl = sensor->exposure;
 | |
| 	int max;
 | |
| 
 | |
| 	max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
 | |
| 		+ sensor->vblank->val
 | |
| 		- sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN];
 | |
| 
 | |
| 	__v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Order matters.
 | |
|  *
 | |
|  * 1. Bits-per-pixel, descending.
 | |
|  * 2. Bits-per-pixel compressed, descending.
 | |
|  * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
 | |
|  *    orders must be defined.
 | |
|  */
 | |
| static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
 | |
| 	{ V4L2_MBUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
 | |
| 	{ V4L2_MBUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
 | |
| 	{ V4L2_MBUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
 | |
| 	{ V4L2_MBUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
 | |
| 	{ V4L2_MBUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
 | |
| 	{ V4L2_MBUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
 | |
| 	{ V4L2_MBUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
 | |
| 	{ V4L2_MBUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
 | |
| 	{ V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
 | |
| 	{ V4L2_MBUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
 | |
| 	{ V4L2_MBUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
 | |
| 	{ V4L2_MBUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
 | |
| 	{ V4L2_MBUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
 | |
| 	{ V4L2_MBUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
 | |
| 	{ V4L2_MBUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
 | |
| 	{ V4L2_MBUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
 | |
| };
 | |
| 
 | |
| const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
 | |
| 
 | |
| #define to_csi_format_idx(fmt) (((unsigned long)(fmt)			\
 | |
| 				 - (unsigned long)smiapp_csi_data_formats) \
 | |
| 				/ sizeof(*smiapp_csi_data_formats))
 | |
| 
 | |
| static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
 | |
| {
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 | |
| 	int flip = 0;
 | |
| 
 | |
| 	if (sensor->hflip) {
 | |
| 		if (sensor->hflip->val)
 | |
| 			flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
 | |
| 
 | |
| 		if (sensor->vflip->val)
 | |
| 			flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
 | |
| 	}
 | |
| 
 | |
| 	flip ^= sensor->hvflip_inv_mask;
 | |
| 
 | |
| 	dev_dbg(&client->dev, "flip %d\n", flip);
 | |
| 	return sensor->default_pixel_order ^ flip;
 | |
| }
 | |
| 
 | |
| static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
 | |
| {
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 | |
| 	unsigned int csi_format_idx =
 | |
| 		to_csi_format_idx(sensor->csi_format) & ~3;
 | |
| 	unsigned int internal_csi_format_idx =
 | |
| 		to_csi_format_idx(sensor->internal_csi_format) & ~3;
 | |
| 	unsigned int pixel_order = smiapp_pixel_order(sensor);
 | |
| 
 | |
| 	sensor->mbus_frame_fmts =
 | |
| 		sensor->default_mbus_frame_fmts << pixel_order;
 | |
| 	sensor->csi_format =
 | |
| 		&smiapp_csi_data_formats[csi_format_idx + pixel_order];
 | |
| 	sensor->internal_csi_format =
 | |
| 		&smiapp_csi_data_formats[internal_csi_format_idx
 | |
| 					 + pixel_order];
 | |
| 
 | |
| 	BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
 | |
| 	       >= ARRAY_SIZE(smiapp_csi_data_formats));
 | |
| 
 | |
| 	dev_dbg(&client->dev, "new pixel order %s\n",
 | |
| 		pixel_order_str[pixel_order]);
 | |
| }
 | |
| 
 | |
| static const char * const smiapp_test_patterns[] = {
 | |
| 	"Disabled",
 | |
| 	"Solid Colour",
 | |
| 	"Eight Vertical Colour Bars",
 | |
| 	"Colour Bars With Fade to Grey",
 | |
| 	"Pseudorandom Sequence (PN9)",
 | |
| };
 | |
| 
 | |
| static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
 | |
| {
 | |
| 	struct smiapp_sensor *sensor =
 | |
| 		container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
 | |
| 			->sensor;
 | |
| 	u32 orient = 0;
 | |
| 	int exposure;
 | |
| 	int rval;
 | |
| 
 | |
| 	switch (ctrl->id) {
 | |
| 	case V4L2_CID_ANALOGUE_GAIN:
 | |
| 		return smiapp_write(
 | |
| 			sensor,
 | |
| 			SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
 | |
| 
 | |
| 	case V4L2_CID_EXPOSURE:
 | |
| 		return smiapp_write(
 | |
| 			sensor,
 | |
| 			SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
 | |
| 
 | |
| 	case V4L2_CID_HFLIP:
 | |
| 	case V4L2_CID_VFLIP:
 | |
| 		if (sensor->streaming)
 | |
| 			return -EBUSY;
 | |
| 
 | |
| 		if (sensor->hflip->val)
 | |
| 			orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
 | |
| 
 | |
| 		if (sensor->vflip->val)
 | |
| 			orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
 | |
| 
 | |
| 		orient ^= sensor->hvflip_inv_mask;
 | |
| 		rval = smiapp_write(sensor,
 | |
| 				    SMIAPP_REG_U8_IMAGE_ORIENTATION,
 | |
| 				    orient);
 | |
| 		if (rval < 0)
 | |
| 			return rval;
 | |
| 
 | |
| 		smiapp_update_mbus_formats(sensor);
 | |
| 
 | |
| 		return 0;
 | |
| 
 | |
| 	case V4L2_CID_VBLANK:
 | |
| 		exposure = sensor->exposure->val;
 | |
| 
 | |
| 		__smiapp_update_exposure_limits(sensor);
 | |
| 
 | |
| 		if (exposure > sensor->exposure->maximum) {
 | |
| 			sensor->exposure->val =
 | |
| 				sensor->exposure->maximum;
 | |
| 			rval = smiapp_set_ctrl(
 | |
| 				sensor->exposure);
 | |
| 			if (rval < 0)
 | |
| 				return rval;
 | |
| 		}
 | |
| 
 | |
| 		return smiapp_write(
 | |
| 			sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
 | |
| 			sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
 | |
| 			+ ctrl->val);
 | |
| 
 | |
| 	case V4L2_CID_HBLANK:
 | |
| 		return smiapp_write(
 | |
| 			sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
 | |
| 			sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
 | |
| 			+ ctrl->val);
 | |
| 
 | |
| 	case V4L2_CID_LINK_FREQ:
 | |
| 		if (sensor->streaming)
 | |
| 			return -EBUSY;
 | |
| 
 | |
| 		return smiapp_pll_update(sensor);
 | |
| 
 | |
| 	case V4L2_CID_TEST_PATTERN: {
 | |
| 		unsigned int i;
 | |
| 
 | |
| 		for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
 | |
| 			v4l2_ctrl_activate(
 | |
| 				sensor->test_data[i],
 | |
| 				ctrl->val ==
 | |
| 				V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
 | |
| 
 | |
| 		return smiapp_write(
 | |
| 			sensor, SMIAPP_REG_U16_TEST_PATTERN_MODE, ctrl->val);
 | |
| 	}
 | |
| 
 | |
| 	case V4L2_CID_TEST_PATTERN_RED:
 | |
| 		return smiapp_write(
 | |
| 			sensor, SMIAPP_REG_U16_TEST_DATA_RED, ctrl->val);
 | |
| 
 | |
| 	case V4L2_CID_TEST_PATTERN_GREENR:
 | |
| 		return smiapp_write(
 | |
| 			sensor, SMIAPP_REG_U16_TEST_DATA_GREENR, ctrl->val);
 | |
| 
 | |
| 	case V4L2_CID_TEST_PATTERN_BLUE:
 | |
| 		return smiapp_write(
 | |
| 			sensor, SMIAPP_REG_U16_TEST_DATA_BLUE, ctrl->val);
 | |
| 
 | |
| 	case V4L2_CID_TEST_PATTERN_GREENB:
 | |
| 		return smiapp_write(
 | |
| 			sensor, SMIAPP_REG_U16_TEST_DATA_GREENB, ctrl->val);
 | |
| 
 | |
| 	case V4L2_CID_PIXEL_RATE:
 | |
| 		/* For v4l2_ctrl_s_ctrl_int64() used internally. */
 | |
| 		return 0;
 | |
| 
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
 | |
| 	.s_ctrl = smiapp_set_ctrl,
 | |
| };
 | |
| 
 | |
| static int smiapp_init_controls(struct smiapp_sensor *sensor)
 | |
| {
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 | |
| 	unsigned int max, i;
 | |
| 	int rval;
 | |
| 
 | |
| 	rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 12);
 | |
| 	if (rval)
 | |
| 		return rval;
 | |
| 	sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
 | |
| 
 | |
| 	sensor->analog_gain = v4l2_ctrl_new_std(
 | |
| 		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
 | |
| 		V4L2_CID_ANALOGUE_GAIN,
 | |
| 		sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN],
 | |
| 		sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX],
 | |
| 		max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U),
 | |
| 		sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]);
 | |
| 
 | |
| 	/* Exposure limits will be updated soon, use just something here. */
 | |
| 	sensor->exposure = v4l2_ctrl_new_std(
 | |
| 		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
 | |
| 		V4L2_CID_EXPOSURE, 0, 0, 1, 0);
 | |
| 
 | |
| 	sensor->hflip = v4l2_ctrl_new_std(
 | |
| 		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
 | |
| 		V4L2_CID_HFLIP, 0, 1, 1, 0);
 | |
| 	sensor->vflip = v4l2_ctrl_new_std(
 | |
| 		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
 | |
| 		V4L2_CID_VFLIP, 0, 1, 1, 0);
 | |
| 
 | |
| 	sensor->vblank = v4l2_ctrl_new_std(
 | |
| 		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
 | |
| 		V4L2_CID_VBLANK, 0, 1, 1, 0);
 | |
| 
 | |
| 	if (sensor->vblank)
 | |
| 		sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
 | |
| 
 | |
| 	sensor->hblank = v4l2_ctrl_new_std(
 | |
| 		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
 | |
| 		V4L2_CID_HBLANK, 0, 1, 1, 0);
 | |
| 
 | |
| 	if (sensor->hblank)
 | |
| 		sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
 | |
| 
 | |
| 	sensor->pixel_rate_parray = v4l2_ctrl_new_std(
 | |
| 		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
 | |
| 		V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
 | |
| 
 | |
| 	v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
 | |
| 				     &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN,
 | |
| 				     ARRAY_SIZE(smiapp_test_patterns) - 1,
 | |
| 				     0, 0, smiapp_test_patterns);
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
 | |
| 		int max_value = (1 << sensor->csi_format->width) - 1;
 | |
| 		sensor->test_data[i] =
 | |
| 			v4l2_ctrl_new_std(
 | |
| 				&sensor->pixel_array->ctrl_handler,
 | |
| 				&smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
 | |
| 				0, max_value, 1, max_value);
 | |
| 	}
 | |
| 
 | |
| 	if (sensor->pixel_array->ctrl_handler.error) {
 | |
| 		dev_err(&client->dev,
 | |
| 			"pixel array controls initialization failed (%d)\n",
 | |
| 			sensor->pixel_array->ctrl_handler.error);
 | |
| 		rval = sensor->pixel_array->ctrl_handler.error;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	sensor->pixel_array->sd.ctrl_handler =
 | |
| 		&sensor->pixel_array->ctrl_handler;
 | |
| 
 | |
| 	v4l2_ctrl_cluster(2, &sensor->hflip);
 | |
| 
 | |
| 	rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
 | |
| 	if (rval)
 | |
| 		goto error;
 | |
| 	sensor->src->ctrl_handler.lock = &sensor->mutex;
 | |
| 
 | |
| 	for (max = 0; sensor->platform_data->op_sys_clock[max + 1]; max++);
 | |
| 
 | |
| 	sensor->link_freq = v4l2_ctrl_new_int_menu(
 | |
| 		&sensor->src->ctrl_handler, &smiapp_ctrl_ops,
 | |
| 		V4L2_CID_LINK_FREQ, max, 0,
 | |
| 		sensor->platform_data->op_sys_clock);
 | |
| 
 | |
| 	sensor->pixel_rate_csi = v4l2_ctrl_new_std(
 | |
| 		&sensor->src->ctrl_handler, &smiapp_ctrl_ops,
 | |
| 		V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
 | |
| 
 | |
| 	if (sensor->src->ctrl_handler.error) {
 | |
| 		dev_err(&client->dev,
 | |
| 			"src controls initialization failed (%d)\n",
 | |
| 			sensor->src->ctrl_handler.error);
 | |
| 		rval = sensor->src->ctrl_handler.error;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	sensor->src->sd.ctrl_handler =
 | |
| 		&sensor->src->ctrl_handler;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error:
 | |
| 	v4l2_ctrl_handler_free(&sensor->pixel_array->ctrl_handler);
 | |
| 	v4l2_ctrl_handler_free(&sensor->src->ctrl_handler);
 | |
| 
 | |
| 	return rval;
 | |
| }
 | |
| 
 | |
| static void smiapp_free_controls(struct smiapp_sensor *sensor)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < sensor->ssds_used; i++)
 | |
| 		v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
 | |
| }
 | |
| 
 | |
| static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit,
 | |
| 			     unsigned int n)
 | |
| {
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 | |
| 	unsigned int i;
 | |
| 	u32 val;
 | |
| 	int rval;
 | |
| 
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 		rval = smiapp_read(
 | |
| 			sensor, smiapp_reg_limits[limit[i]].addr, &val);
 | |
| 		if (rval)
 | |
| 			return rval;
 | |
| 		sensor->limits[limit[i]] = val;
 | |
| 		dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
 | |
| 			smiapp_reg_limits[limit[i]].addr,
 | |
| 			smiapp_reg_limits[limit[i]].what, val, val);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int smiapp_get_all_limits(struct smiapp_sensor *sensor)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	int rval;
 | |
| 
 | |
| 	for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
 | |
| 		rval = smiapp_get_limits(sensor, &i, 1);
 | |
| 		if (rval < 0)
 | |
| 			return rval;
 | |
| 	}
 | |
| 
 | |
| 	if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0)
 | |
| 		smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int smiapp_get_limits_binning(struct smiapp_sensor *sensor)
 | |
| {
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 | |
| 	static u32 const limits[] = {
 | |
| 		SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN,
 | |
| 		SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN,
 | |
| 		SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN,
 | |
| 		SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN,
 | |
| 		SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN,
 | |
| 		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN,
 | |
| 		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN,
 | |
| 	};
 | |
| 	static u32 const limits_replace[] = {
 | |
| 		SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES,
 | |
| 		SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES,
 | |
| 		SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK,
 | |
| 		SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK,
 | |
| 		SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK,
 | |
| 		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN,
 | |
| 		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN,
 | |
| 	};
 | |
| 	unsigned int i;
 | |
| 	int rval;
 | |
| 
 | |
| 	if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] ==
 | |
| 	    SMIAPP_BINNING_CAPABILITY_NO) {
 | |
| 		for (i = 0; i < ARRAY_SIZE(limits); i++)
 | |
| 			sensor->limits[limits[i]] =
 | |
| 				sensor->limits[limits_replace[i]];
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits));
 | |
| 	if (rval < 0)
 | |
| 		return rval;
 | |
| 
 | |
| 	/*
 | |
| 	 * Sanity check whether the binning limits are valid. If not,
 | |
| 	 * use the non-binning ones.
 | |
| 	 */
 | |
| 	if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN]
 | |
| 	    && sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN]
 | |
| 	    && sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN])
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(limits); i++) {
 | |
| 		dev_dbg(&client->dev,
 | |
| 			"replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
 | |
| 			smiapp_reg_limits[limits[i]].addr,
 | |
| 			smiapp_reg_limits[limits[i]].what,
 | |
| 			sensor->limits[limits_replace[i]],
 | |
| 			sensor->limits[limits_replace[i]]);
 | |
| 		sensor->limits[limits[i]] =
 | |
| 			sensor->limits[limits_replace[i]];
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
 | |
| {
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 | |
| 	unsigned int type, n;
 | |
| 	unsigned int i, pixel_order;
 | |
| 	int rval;
 | |
| 
 | |
| 	rval = smiapp_read(
 | |
| 		sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
 | |
| 	if (rval)
 | |
| 		return rval;
 | |
| 
 | |
| 	dev_dbg(&client->dev, "data_format_model_type %d\n", type);
 | |
| 
 | |
| 	rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
 | |
| 			   &pixel_order);
 | |
| 	if (rval)
 | |
| 		return rval;
 | |
| 
 | |
| 	if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
 | |
| 		dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
 | |
| 		pixel_order_str[pixel_order]);
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
 | |
| 		n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
 | |
| 		break;
 | |
| 	case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
 | |
| 		n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	sensor->default_pixel_order = pixel_order;
 | |
| 	sensor->mbus_frame_fmts = 0;
 | |
| 
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 		unsigned int fmt, j;
 | |
| 
 | |
| 		rval = smiapp_read(
 | |
| 			sensor,
 | |
| 			SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
 | |
| 		if (rval)
 | |
| 			return rval;
 | |
| 
 | |
| 		dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
 | |
| 			i, fmt >> 8, (u8)fmt);
 | |
| 
 | |
| 		for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
 | |
| 			const struct smiapp_csi_data_format *f =
 | |
| 				&smiapp_csi_data_formats[j];
 | |
| 
 | |
| 			if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
 | |
| 				continue;
 | |
| 
 | |
| 			if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
 | |
| 				continue;
 | |
| 
 | |
| 			dev_dbg(&client->dev, "jolly good! %d\n", j);
 | |
| 
 | |
| 			sensor->default_mbus_frame_fmts |= 1 << j;
 | |
| 			if (!sensor->csi_format
 | |
| 			    || f->width > sensor->csi_format->width
 | |
| 			    || (f->width == sensor->csi_format->width
 | |
| 				&& f->compressed
 | |
| 				> sensor->csi_format->compressed)) {
 | |
| 				sensor->csi_format = f;
 | |
| 				sensor->internal_csi_format = f;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!sensor->csi_format) {
 | |
| 		dev_err(&client->dev, "no supported mbus code found\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	smiapp_update_mbus_formats(sensor);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void smiapp_update_blanking(struct smiapp_sensor *sensor)
 | |
| {
 | |
| 	struct v4l2_ctrl *vblank = sensor->vblank;
 | |
| 	struct v4l2_ctrl *hblank = sensor->hblank;
 | |
| 	int min, max;
 | |
| 
 | |
| 	min = max_t(int,
 | |
| 		    sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES],
 | |
| 		    sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] -
 | |
| 		    sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
 | |
| 	max = sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] -
 | |
| 		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
 | |
| 
 | |
| 	__v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
 | |
| 
 | |
| 	min = max_t(int,
 | |
| 		    sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] -
 | |
| 		    sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
 | |
| 		    sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]);
 | |
| 	max = sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] -
 | |
| 		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
 | |
| 
 | |
| 	__v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
 | |
| 
 | |
| 	__smiapp_update_exposure_limits(sensor);
 | |
| }
 | |
| 
 | |
| static int smiapp_update_mode(struct smiapp_sensor *sensor)
 | |
| {
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 | |
| 	unsigned int binning_mode;
 | |
| 	int rval;
 | |
| 
 | |
| 	dev_dbg(&client->dev, "frame size: %dx%d\n",
 | |
| 		sensor->src->crop[SMIAPP_PAD_SRC].width,
 | |
| 		sensor->src->crop[SMIAPP_PAD_SRC].height);
 | |
| 	dev_dbg(&client->dev, "csi format width: %d\n",
 | |
| 		sensor->csi_format->width);
 | |
| 
 | |
| 	/* Binning has to be set up here; it affects limits */
 | |
| 	if (sensor->binning_horizontal == 1 &&
 | |
| 	    sensor->binning_vertical == 1) {
 | |
| 		binning_mode = 0;
 | |
| 	} else {
 | |
| 		u8 binning_type =
 | |
| 			(sensor->binning_horizontal << 4)
 | |
| 			| sensor->binning_vertical;
 | |
| 
 | |
| 		rval = smiapp_write(
 | |
| 			sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
 | |
| 		if (rval < 0)
 | |
| 			return rval;
 | |
| 
 | |
| 		binning_mode = 1;
 | |
| 	}
 | |
| 	rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
 | |
| 	if (rval < 0)
 | |
| 		return rval;
 | |
| 
 | |
| 	/* Get updated limits due to binning */
 | |
| 	rval = smiapp_get_limits_binning(sensor);
 | |
| 	if (rval < 0)
 | |
| 		return rval;
 | |
| 
 | |
| 	rval = smiapp_pll_update(sensor);
 | |
| 	if (rval < 0)
 | |
| 		return rval;
 | |
| 
 | |
| 	/* Output from pixel array, including blanking */
 | |
| 	smiapp_update_blanking(sensor);
 | |
| 
 | |
| 	dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
 | |
| 	dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
 | |
| 
 | |
| 	dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
 | |
| 		sensor->pll.vt_pix_clk_freq_hz /
 | |
| 		((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
 | |
| 		  + sensor->hblank->val) *
 | |
| 		 (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
 | |
| 		  + sensor->vblank->val) / 100));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *
 | |
|  * SMIA++ NVM handling
 | |
|  *
 | |
|  */
 | |
| static int smiapp_read_nvm(struct smiapp_sensor *sensor,
 | |
| 			   unsigned char *nvm)
 | |
| {
 | |
| 	u32 i, s, p, np, v;
 | |
| 	int rval = 0, rval2;
 | |
| 
 | |
| 	np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE;
 | |
| 	for (p = 0; p < np; p++) {
 | |
| 		rval = smiapp_write(
 | |
| 			sensor,
 | |
| 			SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
 | |
| 		if (rval)
 | |
| 			goto out;
 | |
| 
 | |
| 		rval = smiapp_write(sensor,
 | |
| 				    SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
 | |
| 				    SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN |
 | |
| 				    SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN);
 | |
| 		if (rval)
 | |
| 			goto out;
 | |
| 
 | |
| 		for (i = 0; i < 1000; i++) {
 | |
| 			rval = smiapp_read(
 | |
| 				sensor,
 | |
| 				SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s);
 | |
| 
 | |
| 			if (rval)
 | |
| 				goto out;
 | |
| 
 | |
| 			if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
 | |
| 				break;
 | |
| 
 | |
| 			if (--i == 0) {
 | |
| 				rval = -ETIMEDOUT;
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
 | |
| 			rval = smiapp_read(
 | |
| 				sensor,
 | |
| 				SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
 | |
| 				&v);
 | |
| 			if (rval)
 | |
| 				goto out;
 | |
| 
 | |
| 			*nvm++ = v;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
 | |
| 	if (rval < 0)
 | |
| 		return rval;
 | |
| 	else
 | |
| 		return rval2;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *
 | |
|  * SMIA++ CCI address control
 | |
|  *
 | |
|  */
 | |
| static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
 | |
| {
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 | |
| 	int rval;
 | |
| 	u32 val;
 | |
| 
 | |
| 	client->addr = sensor->platform_data->i2c_addr_dfl;
 | |
| 
 | |
| 	rval = smiapp_write(sensor,
 | |
| 			    SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
 | |
| 			    sensor->platform_data->i2c_addr_alt << 1);
 | |
| 	if (rval)
 | |
| 		return rval;
 | |
| 
 | |
| 	client->addr = sensor->platform_data->i2c_addr_alt;
 | |
| 
 | |
| 	/* verify addr change went ok */
 | |
| 	rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
 | |
| 	if (rval)
 | |
| 		return rval;
 | |
| 
 | |
| 	if (val != sensor->platform_data->i2c_addr_alt << 1)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *
 | |
|  * SMIA++ Mode Control
 | |
|  *
 | |
|  */
 | |
| static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
 | |
| {
 | |
| 	struct smiapp_flash_strobe_parms *strobe_setup;
 | |
| 	unsigned int ext_freq = sensor->platform_data->ext_clk;
 | |
| 	u32 tmp;
 | |
| 	u32 strobe_adjustment;
 | |
| 	u32 strobe_width_high_rs;
 | |
| 	int rval;
 | |
| 
 | |
| 	strobe_setup = sensor->platform_data->strobe_setup;
 | |
| 
 | |
| 	/*
 | |
| 	 * How to calculate registers related to strobe length. Please
 | |
| 	 * do not change, or if you do at least know what you're
 | |
| 	 * doing. :-)
 | |
| 	 *
 | |
| 	 * Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25
 | |
| 	 *
 | |
| 	 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
 | |
| 	 *	/ EXTCLK freq [Hz]) * flash_strobe_adjustment
 | |
| 	 *
 | |
| 	 * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
 | |
| 	 * flash_strobe_adjustment E N, [1 - 0xff]
 | |
| 	 *
 | |
| 	 * The formula above is written as below to keep it on one
 | |
| 	 * line:
 | |
| 	 *
 | |
| 	 * l / 10^6 = w / e * a
 | |
| 	 *
 | |
| 	 * Let's mark w * a by x:
 | |
| 	 *
 | |
| 	 * x = w * a
 | |
| 	 *
 | |
| 	 * Thus, we get:
 | |
| 	 *
 | |
| 	 * x = l * e / 10^6
 | |
| 	 *
 | |
| 	 * The strobe width must be at least as long as requested,
 | |
| 	 * thus rounding upwards is needed.
 | |
| 	 *
 | |
| 	 * x = (l * e + 10^6 - 1) / 10^6
 | |
| 	 * -----------------------------
 | |
| 	 *
 | |
| 	 * Maximum possible accuracy is wanted at all times. Thus keep
 | |
| 	 * a as small as possible.
 | |
| 	 *
 | |
| 	 * Calculate a, assuming maximum w, with rounding upwards:
 | |
| 	 *
 | |
| 	 * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
 | |
| 	 * -------------------------------------
 | |
| 	 *
 | |
| 	 * Thus, we also get w, with that a, with rounding upwards:
 | |
| 	 *
 | |
| 	 * w = (x + a - 1) / a
 | |
| 	 * -------------------
 | |
| 	 *
 | |
| 	 * To get limits:
 | |
| 	 *
 | |
| 	 * x E [1, (2^16 - 1) * (2^8 - 1)]
 | |
| 	 *
 | |
| 	 * Substituting maximum x to the original formula (with rounding),
 | |
| 	 * the maximum l is thus
 | |
| 	 *
 | |
| 	 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
 | |
| 	 *
 | |
| 	 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
 | |
| 	 * --------------------------------------------------
 | |
| 	 *
 | |
| 	 * flash_strobe_length must be clamped between 1 and
 | |
| 	 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
 | |
| 	 *
 | |
| 	 * Then,
 | |
| 	 *
 | |
| 	 * flash_strobe_adjustment = ((flash_strobe_length *
 | |
| 	 *	EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
 | |
| 	 *
 | |
| 	 * tFlash_strobe_width_ctrl = ((flash_strobe_length *
 | |
| 	 *	EXTCLK freq + 10^6 - 1) / 10^6 +
 | |
| 	 *	flash_strobe_adjustment - 1) / flash_strobe_adjustment
 | |
| 	 */
 | |
| 	tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
 | |
| 		      1000000 + 1, ext_freq);
 | |
| 	strobe_setup->strobe_width_high_us =
 | |
| 		clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
 | |
| 
 | |
| 	tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
 | |
| 			1000000 - 1), 1000000ULL);
 | |
| 	strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
 | |
| 	strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
 | |
| 				strobe_adjustment;
 | |
| 
 | |
| 	rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
 | |
| 			    strobe_setup->mode);
 | |
| 	if (rval < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
 | |
| 			    strobe_adjustment);
 | |
| 	if (rval < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	rval = smiapp_write(
 | |
| 		sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
 | |
| 		strobe_width_high_rs);
 | |
| 	if (rval < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
 | |
| 			    strobe_setup->strobe_delay);
 | |
| 	if (rval < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
 | |
| 			    strobe_setup->stobe_start_point);
 | |
| 	if (rval < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
 | |
| 			    strobe_setup->trigger);
 | |
| 
 | |
| out:
 | |
| 	sensor->platform_data->strobe_setup->trigger = 0;
 | |
| 
 | |
| 	return rval;
 | |
| }
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
|  * Power management
 | |
|  */
 | |
| 
 | |
| static int smiapp_power_on(struct smiapp_sensor *sensor)
 | |
| {
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 | |
| 	unsigned int sleep;
 | |
| 	int rval;
 | |
| 
 | |
| 	rval = regulator_enable(sensor->vana);
 | |
| 	if (rval) {
 | |
| 		dev_err(&client->dev, "failed to enable vana regulator\n");
 | |
| 		return rval;
 | |
| 	}
 | |
| 	usleep_range(1000, 1000);
 | |
| 
 | |
| 	if (sensor->platform_data->set_xclk)
 | |
| 		rval = sensor->platform_data->set_xclk(
 | |
| 			&sensor->src->sd, sensor->platform_data->ext_clk);
 | |
| 	else
 | |
| 		rval = clk_prepare_enable(sensor->ext_clk);
 | |
| 	if (rval < 0) {
 | |
| 		dev_dbg(&client->dev, "failed to enable xclk\n");
 | |
| 		goto out_xclk_fail;
 | |
| 	}
 | |
| 	usleep_range(1000, 1000);
 | |
| 
 | |
| 	if (gpio_is_valid(sensor->platform_data->xshutdown))
 | |
| 		gpio_set_value(sensor->platform_data->xshutdown, 1);
 | |
| 
 | |
| 	sleep = SMIAPP_RESET_DELAY(sensor->platform_data->ext_clk);
 | |
| 	usleep_range(sleep, sleep);
 | |
| 
 | |
| 	/*
 | |
| 	 * Failures to respond to the address change command have been noticed.
 | |
| 	 * Those failures seem to be caused by the sensor requiring a longer
 | |
| 	 * boot time than advertised. An additional 10ms delay seems to work
 | |
| 	 * around the issue, but the SMIA++ I2C write retry hack makes the delay
 | |
| 	 * unnecessary. The failures need to be investigated to find a proper
 | |
| 	 * fix, and a delay will likely need to be added here if the I2C write
 | |
| 	 * retry hack is reverted before the root cause of the boot time issue
 | |
| 	 * is found.
 | |
| 	 */
 | |
| 
 | |
| 	if (sensor->platform_data->i2c_addr_alt) {
 | |
| 		rval = smiapp_change_cci_addr(sensor);
 | |
| 		if (rval) {
 | |
| 			dev_err(&client->dev, "cci address change error\n");
 | |
| 			goto out_cci_addr_fail;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
 | |
| 			    SMIAPP_SOFTWARE_RESET);
 | |
| 	if (rval < 0) {
 | |
| 		dev_err(&client->dev, "software reset failed\n");
 | |
| 		goto out_cci_addr_fail;
 | |
| 	}
 | |
| 
 | |
| 	if (sensor->platform_data->i2c_addr_alt) {
 | |
| 		rval = smiapp_change_cci_addr(sensor);
 | |
| 		if (rval) {
 | |
| 			dev_err(&client->dev, "cci address change error\n");
 | |
| 			goto out_cci_addr_fail;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
 | |
| 			    SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
 | |
| 	if (rval) {
 | |
| 		dev_err(&client->dev, "compression mode set failed\n");
 | |
| 		goto out_cci_addr_fail;
 | |
| 	}
 | |
| 
 | |
| 	rval = smiapp_write(
 | |
| 		sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
 | |
| 		sensor->platform_data->ext_clk / (1000000 / (1 << 8)));
 | |
| 	if (rval) {
 | |
| 		dev_err(&client->dev, "extclk frequency set failed\n");
 | |
| 		goto out_cci_addr_fail;
 | |
| 	}
 | |
| 
 | |
| 	rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
 | |
| 			    sensor->platform_data->lanes - 1);
 | |
| 	if (rval) {
 | |
| 		dev_err(&client->dev, "csi lane mode set failed\n");
 | |
| 		goto out_cci_addr_fail;
 | |
| 	}
 | |
| 
 | |
| 	rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
 | |
| 			    SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
 | |
| 	if (rval) {
 | |
| 		dev_err(&client->dev, "fast standby set failed\n");
 | |
| 		goto out_cci_addr_fail;
 | |
| 	}
 | |
| 
 | |
| 	rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
 | |
| 			    sensor->platform_data->csi_signalling_mode);
 | |
| 	if (rval) {
 | |
| 		dev_err(&client->dev, "csi signalling mode set failed\n");
 | |
| 		goto out_cci_addr_fail;
 | |
| 	}
 | |
| 
 | |
| 	/* DPHY control done by sensor based on requested link rate */
 | |
| 	rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
 | |
| 			    SMIAPP_DPHY_CTRL_UI);
 | |
| 	if (rval < 0)
 | |
| 		return rval;
 | |
| 
 | |
| 	rval = smiapp_call_quirk(sensor, post_poweron);
 | |
| 	if (rval) {
 | |
| 		dev_err(&client->dev, "post_poweron quirks failed\n");
 | |
| 		goto out_cci_addr_fail;
 | |
| 	}
 | |
| 
 | |
| 	/* Are we still initialising...? If yes, return here. */
 | |
| 	if (!sensor->pixel_array)
 | |
| 		return 0;
 | |
| 
 | |
| 	rval = v4l2_ctrl_handler_setup(
 | |
| 		&sensor->pixel_array->ctrl_handler);
 | |
| 	if (rval)
 | |
| 		goto out_cci_addr_fail;
 | |
| 
 | |
| 	rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
 | |
| 	if (rval)
 | |
| 		goto out_cci_addr_fail;
 | |
| 
 | |
| 	mutex_lock(&sensor->mutex);
 | |
| 	rval = smiapp_update_mode(sensor);
 | |
| 	mutex_unlock(&sensor->mutex);
 | |
| 	if (rval < 0)
 | |
| 		goto out_cci_addr_fail;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_cci_addr_fail:
 | |
| 	if (gpio_is_valid(sensor->platform_data->xshutdown))
 | |
| 		gpio_set_value(sensor->platform_data->xshutdown, 0);
 | |
| 	if (sensor->platform_data->set_xclk)
 | |
| 		sensor->platform_data->set_xclk(&sensor->src->sd, 0);
 | |
| 	else
 | |
| 		clk_disable_unprepare(sensor->ext_clk);
 | |
| 
 | |
| out_xclk_fail:
 | |
| 	regulator_disable(sensor->vana);
 | |
| 	return rval;
 | |
| }
 | |
| 
 | |
| static void smiapp_power_off(struct smiapp_sensor *sensor)
 | |
| {
 | |
| 	/*
 | |
| 	 * Currently power/clock to lens are enable/disabled separately
 | |
| 	 * but they are essentially the same signals. So if the sensor is
 | |
| 	 * powered off while the lens is powered on the sensor does not
 | |
| 	 * really see a power off and next time the cci address change
 | |
| 	 * will fail. So do a soft reset explicitly here.
 | |
| 	 */
 | |
| 	if (sensor->platform_data->i2c_addr_alt)
 | |
| 		smiapp_write(sensor,
 | |
| 			     SMIAPP_REG_U8_SOFTWARE_RESET,
 | |
| 			     SMIAPP_SOFTWARE_RESET);
 | |
| 
 | |
| 	if (gpio_is_valid(sensor->platform_data->xshutdown))
 | |
| 		gpio_set_value(sensor->platform_data->xshutdown, 0);
 | |
| 	if (sensor->platform_data->set_xclk)
 | |
| 		sensor->platform_data->set_xclk(&sensor->src->sd, 0);
 | |
| 	else
 | |
| 		clk_disable_unprepare(sensor->ext_clk);
 | |
| 	usleep_range(5000, 5000);
 | |
| 	regulator_disable(sensor->vana);
 | |
| 	sensor->streaming = false;
 | |
| }
 | |
| 
 | |
| static int smiapp_set_power(struct v4l2_subdev *subdev, int on)
 | |
| {
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&sensor->power_mutex);
 | |
| 
 | |
| 	if (on && !sensor->power_count) {
 | |
| 		/* Power on and perform initialisation. */
 | |
| 		ret = smiapp_power_on(sensor);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 	} else if (!on && sensor->power_count == 1) {
 | |
| 		smiapp_power_off(sensor);
 | |
| 	}
 | |
| 
 | |
| 	/* Update the power count. */
 | |
| 	sensor->power_count += on ? 1 : -1;
 | |
| 	WARN_ON(sensor->power_count < 0);
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&sensor->power_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
|  * Video stream management
 | |
|  */
 | |
| 
 | |
| static int smiapp_start_streaming(struct smiapp_sensor *sensor)
 | |
| {
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 | |
| 	int rval;
 | |
| 
 | |
| 	mutex_lock(&sensor->mutex);
 | |
| 
 | |
| 	rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
 | |
| 			    (sensor->csi_format->width << 8) |
 | |
| 			    sensor->csi_format->compressed);
 | |
| 	if (rval)
 | |
| 		goto out;
 | |
| 
 | |
| 	rval = smiapp_pll_configure(sensor);
 | |
| 	if (rval)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Analog crop start coordinates */
 | |
| 	rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
 | |
| 			    sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
 | |
| 	if (rval < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
 | |
| 			    sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
 | |
| 	if (rval < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Analog crop end coordinates */
 | |
| 	rval = smiapp_write(
 | |
| 		sensor, SMIAPP_REG_U16_X_ADDR_END,
 | |
| 		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
 | |
| 		+ sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
 | |
| 	if (rval < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	rval = smiapp_write(
 | |
| 		sensor, SMIAPP_REG_U16_Y_ADDR_END,
 | |
| 		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
 | |
| 		+ sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
 | |
| 	if (rval < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Output from pixel array, including blanking, is set using
 | |
| 	 * controls below. No need to set here.
 | |
| 	 */
 | |
| 
 | |
| 	/* Digital crop */
 | |
| 	if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
 | |
| 	    == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
 | |
| 		rval = smiapp_write(
 | |
| 			sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
 | |
| 			sensor->scaler->crop[SMIAPP_PAD_SINK].left);
 | |
| 		if (rval < 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		rval = smiapp_write(
 | |
| 			sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
 | |
| 			sensor->scaler->crop[SMIAPP_PAD_SINK].top);
 | |
| 		if (rval < 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		rval = smiapp_write(
 | |
| 			sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
 | |
| 			sensor->scaler->crop[SMIAPP_PAD_SINK].width);
 | |
| 		if (rval < 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		rval = smiapp_write(
 | |
| 			sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
 | |
| 			sensor->scaler->crop[SMIAPP_PAD_SINK].height);
 | |
| 		if (rval < 0)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Scaling */
 | |
| 	if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
 | |
| 	    != SMIAPP_SCALING_CAPABILITY_NONE) {
 | |
| 		rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
 | |
| 				    sensor->scaling_mode);
 | |
| 		if (rval < 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
 | |
| 				    sensor->scale_m);
 | |
| 		if (rval < 0)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Output size from sensor */
 | |
| 	rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
 | |
| 			    sensor->src->crop[SMIAPP_PAD_SRC].width);
 | |
| 	if (rval < 0)
 | |
| 		goto out;
 | |
| 	rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
 | |
| 			    sensor->src->crop[SMIAPP_PAD_SRC].height);
 | |
| 	if (rval < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if ((sensor->flash_capability &
 | |
| 	     (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
 | |
| 	      SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
 | |
| 	    sensor->platform_data->strobe_setup != NULL &&
 | |
| 	    sensor->platform_data->strobe_setup->trigger != 0) {
 | |
| 		rval = smiapp_setup_flash_strobe(sensor);
 | |
| 		if (rval)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	rval = smiapp_call_quirk(sensor, pre_streamon);
 | |
| 	if (rval) {
 | |
| 		dev_err(&client->dev, "pre_streamon quirks failed\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
 | |
| 			    SMIAPP_MODE_SELECT_STREAMING);
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&sensor->mutex);
 | |
| 
 | |
| 	return rval;
 | |
| }
 | |
| 
 | |
| static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
 | |
| {
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 | |
| 	int rval;
 | |
| 
 | |
| 	mutex_lock(&sensor->mutex);
 | |
| 	rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
 | |
| 			    SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
 | |
| 	if (rval)
 | |
| 		goto out;
 | |
| 
 | |
| 	rval = smiapp_call_quirk(sensor, post_streamoff);
 | |
| 	if (rval)
 | |
| 		dev_err(&client->dev, "post_streamoff quirks failed\n");
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&sensor->mutex);
 | |
| 	return rval;
 | |
| }
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
|  * V4L2 subdev video operations
 | |
|  */
 | |
| 
 | |
| static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
 | |
| {
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 	int rval;
 | |
| 
 | |
| 	if (sensor->streaming == enable)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (enable) {
 | |
| 		sensor->streaming = true;
 | |
| 		rval = smiapp_start_streaming(sensor);
 | |
| 		if (rval < 0)
 | |
| 			sensor->streaming = false;
 | |
| 	} else {
 | |
| 		rval = smiapp_stop_streaming(sensor);
 | |
| 		sensor->streaming = false;
 | |
| 	}
 | |
| 
 | |
| 	return rval;
 | |
| }
 | |
| 
 | |
| static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
 | |
| 				 struct v4l2_subdev_fh *fh,
 | |
| 				 struct v4l2_subdev_mbus_code_enum *code)
 | |
| {
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 	unsigned int i;
 | |
| 	int idx = -1;
 | |
| 	int rval = -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&sensor->mutex);
 | |
| 
 | |
| 	dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
 | |
| 		subdev->name, code->pad, code->index);
 | |
| 
 | |
| 	if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
 | |
| 		if (code->index)
 | |
| 			goto out;
 | |
| 
 | |
| 		code->code = sensor->internal_csi_format->code;
 | |
| 		rval = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
 | |
| 		if (sensor->mbus_frame_fmts & (1 << i))
 | |
| 			idx++;
 | |
| 
 | |
| 		if (idx == code->index) {
 | |
| 			code->code = smiapp_csi_data_formats[i].code;
 | |
| 			dev_err(&client->dev, "found index %d, i %d, code %x\n",
 | |
| 				code->index, i, code->code);
 | |
| 			rval = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&sensor->mutex);
 | |
| 
 | |
| 	return rval;
 | |
| }
 | |
| 
 | |
| static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
 | |
| 				  unsigned int pad)
 | |
| {
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 
 | |
| 	if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
 | |
| 		return sensor->csi_format->code;
 | |
| 	else
 | |
| 		return sensor->internal_csi_format->code;
 | |
| }
 | |
| 
 | |
| static int __smiapp_get_format(struct v4l2_subdev *subdev,
 | |
| 			       struct v4l2_subdev_fh *fh,
 | |
| 			       struct v4l2_subdev_format *fmt)
 | |
| {
 | |
| 	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
 | |
| 
 | |
| 	if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
 | |
| 		fmt->format = *v4l2_subdev_get_try_format(fh, fmt->pad);
 | |
| 	} else {
 | |
| 		struct v4l2_rect *r;
 | |
| 
 | |
| 		if (fmt->pad == ssd->source_pad)
 | |
| 			r = &ssd->crop[ssd->source_pad];
 | |
| 		else
 | |
| 			r = &ssd->sink_fmt;
 | |
| 
 | |
| 		fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
 | |
| 		fmt->format.width = r->width;
 | |
| 		fmt->format.height = r->height;
 | |
| 		fmt->format.field = V4L2_FIELD_NONE;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int smiapp_get_format(struct v4l2_subdev *subdev,
 | |
| 			     struct v4l2_subdev_fh *fh,
 | |
| 			     struct v4l2_subdev_format *fmt)
 | |
| {
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 	int rval;
 | |
| 
 | |
| 	mutex_lock(&sensor->mutex);
 | |
| 	rval = __smiapp_get_format(subdev, fh, fmt);
 | |
| 	mutex_unlock(&sensor->mutex);
 | |
| 
 | |
| 	return rval;
 | |
| }
 | |
| 
 | |
| static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
 | |
| 				    struct v4l2_subdev_fh *fh,
 | |
| 				    struct v4l2_rect **crops,
 | |
| 				    struct v4l2_rect **comps, int which)
 | |
| {
 | |
| 	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
 | |
| 		if (crops)
 | |
| 			for (i = 0; i < subdev->entity.num_pads; i++)
 | |
| 				crops[i] = &ssd->crop[i];
 | |
| 		if (comps)
 | |
| 			*comps = &ssd->compose;
 | |
| 	} else {
 | |
| 		if (crops) {
 | |
| 			for (i = 0; i < subdev->entity.num_pads; i++) {
 | |
| 				crops[i] = v4l2_subdev_get_try_crop(fh, i);
 | |
| 				BUG_ON(!crops[i]);
 | |
| 			}
 | |
| 		}
 | |
| 		if (comps) {
 | |
| 			*comps = v4l2_subdev_get_try_compose(fh,
 | |
| 							     SMIAPP_PAD_SINK);
 | |
| 			BUG_ON(!*comps);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Changes require propagation only on sink pad. */
 | |
| static void smiapp_propagate(struct v4l2_subdev *subdev,
 | |
| 			     struct v4l2_subdev_fh *fh, int which,
 | |
| 			     int target)
 | |
| {
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
 | |
| 	struct v4l2_rect *comp, *crops[SMIAPP_PADS];
 | |
| 
 | |
| 	smiapp_get_crop_compose(subdev, fh, crops, &comp, which);
 | |
| 
 | |
| 	switch (target) {
 | |
| 	case V4L2_SEL_TGT_CROP:
 | |
| 		comp->width = crops[SMIAPP_PAD_SINK]->width;
 | |
| 		comp->height = crops[SMIAPP_PAD_SINK]->height;
 | |
| 		if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
 | |
| 			if (ssd == sensor->scaler) {
 | |
| 				sensor->scale_m =
 | |
| 					sensor->limits[
 | |
| 						SMIAPP_LIMIT_SCALER_N_MIN];
 | |
| 				sensor->scaling_mode =
 | |
| 					SMIAPP_SCALING_MODE_NONE;
 | |
| 			} else if (ssd == sensor->binner) {
 | |
| 				sensor->binning_horizontal = 1;
 | |
| 				sensor->binning_vertical = 1;
 | |
| 			}
 | |
| 		}
 | |
| 		/* Fall through */
 | |
| 	case V4L2_SEL_TGT_COMPOSE:
 | |
| 		*crops[SMIAPP_PAD_SRC] = *comp;
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const struct smiapp_csi_data_format
 | |
| *smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
 | |
| {
 | |
| 	const struct smiapp_csi_data_format *csi_format = sensor->csi_format;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
 | |
| 		if (sensor->mbus_frame_fmts & (1 << i)
 | |
| 		    && smiapp_csi_data_formats[i].code == code)
 | |
| 			return &smiapp_csi_data_formats[i];
 | |
| 	}
 | |
| 
 | |
| 	return csi_format;
 | |
| }
 | |
| 
 | |
| static int smiapp_set_format(struct v4l2_subdev *subdev,
 | |
| 			     struct v4l2_subdev_fh *fh,
 | |
| 			     struct v4l2_subdev_format *fmt)
 | |
| {
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
 | |
| 	struct v4l2_rect *crops[SMIAPP_PADS];
 | |
| 
 | |
| 	mutex_lock(&sensor->mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Media bus code is changeable on src subdev's source pad. On
 | |
| 	 * other source pads we just get format here.
 | |
| 	 */
 | |
| 	if (fmt->pad == ssd->source_pad) {
 | |
| 		u32 code = fmt->format.code;
 | |
| 		int rval = __smiapp_get_format(subdev, fh, fmt);
 | |
| 		bool range_changed = false;
 | |
| 		unsigned int i;
 | |
| 
 | |
| 		if (!rval && subdev == &sensor->src->sd) {
 | |
| 			const struct smiapp_csi_data_format *csi_format =
 | |
| 				smiapp_validate_csi_data_format(sensor, code);
 | |
| 
 | |
| 			if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
 | |
| 				if (csi_format->width !=
 | |
| 				    sensor->csi_format->width)
 | |
| 					range_changed = true;
 | |
| 
 | |
| 				sensor->csi_format = csi_format;
 | |
| 			}
 | |
| 
 | |
| 			fmt->format.code = csi_format->code;
 | |
| 		}
 | |
| 
 | |
| 		mutex_unlock(&sensor->mutex);
 | |
| 		if (rval || !range_changed)
 | |
| 			return rval;
 | |
| 
 | |
| 		for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
 | |
| 			v4l2_ctrl_modify_range(
 | |
| 				sensor->test_data[i],
 | |
| 				0, (1 << sensor->csi_format->width) - 1, 1, 0);
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Sink pad. Width and height are changeable here. */
 | |
| 	fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
 | |
| 	fmt->format.width &= ~1;
 | |
| 	fmt->format.height &= ~1;
 | |
| 	fmt->format.field = V4L2_FIELD_NONE;
 | |
| 
 | |
| 	fmt->format.width =
 | |
| 		clamp(fmt->format.width,
 | |
| 		      sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
 | |
| 		      sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]);
 | |
| 	fmt->format.height =
 | |
| 		clamp(fmt->format.height,
 | |
| 		      sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
 | |
| 		      sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]);
 | |
| 
 | |
| 	smiapp_get_crop_compose(subdev, fh, crops, NULL, fmt->which);
 | |
| 
 | |
| 	crops[ssd->sink_pad]->left = 0;
 | |
| 	crops[ssd->sink_pad]->top = 0;
 | |
| 	crops[ssd->sink_pad]->width = fmt->format.width;
 | |
| 	crops[ssd->sink_pad]->height = fmt->format.height;
 | |
| 	if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
 | |
| 		ssd->sink_fmt = *crops[ssd->sink_pad];
 | |
| 	smiapp_propagate(subdev, fh, fmt->which,
 | |
| 			 V4L2_SEL_TGT_CROP);
 | |
| 
 | |
| 	mutex_unlock(&sensor->mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate goodness of scaled image size compared to expected image
 | |
|  * size and flags provided.
 | |
|  */
 | |
| #define SCALING_GOODNESS		100000
 | |
| #define SCALING_GOODNESS_EXTREME	100000000
 | |
| static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
 | |
| 			    int h, int ask_h, u32 flags)
 | |
| {
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
 | |
| 	int val = 0;
 | |
| 
 | |
| 	w &= ~1;
 | |
| 	ask_w &= ~1;
 | |
| 	h &= ~1;
 | |
| 	ask_h &= ~1;
 | |
| 
 | |
| 	if (flags & V4L2_SEL_FLAG_GE) {
 | |
| 		if (w < ask_w)
 | |
| 			val -= SCALING_GOODNESS;
 | |
| 		if (h < ask_h)
 | |
| 			val -= SCALING_GOODNESS;
 | |
| 	}
 | |
| 
 | |
| 	if (flags & V4L2_SEL_FLAG_LE) {
 | |
| 		if (w > ask_w)
 | |
| 			val -= SCALING_GOODNESS;
 | |
| 		if (h > ask_h)
 | |
| 			val -= SCALING_GOODNESS;
 | |
| 	}
 | |
| 
 | |
| 	val -= abs(w - ask_w);
 | |
| 	val -= abs(h - ask_h);
 | |
| 
 | |
| 	if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE])
 | |
| 		val -= SCALING_GOODNESS_EXTREME;
 | |
| 
 | |
| 	dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
 | |
| 		w, ask_h, h, ask_h, val);
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
 | |
| 				      struct v4l2_subdev_fh *fh,
 | |
| 				      struct v4l2_subdev_selection *sel,
 | |
| 				      struct v4l2_rect **crops,
 | |
| 				      struct v4l2_rect *comp)
 | |
| {
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 	unsigned int i;
 | |
| 	unsigned int binh = 1, binv = 1;
 | |
| 	int best = scaling_goodness(
 | |
| 		subdev,
 | |
| 		crops[SMIAPP_PAD_SINK]->width, sel->r.width,
 | |
| 		crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
 | |
| 
 | |
| 	for (i = 0; i < sensor->nbinning_subtypes; i++) {
 | |
| 		int this = scaling_goodness(
 | |
| 			subdev,
 | |
| 			crops[SMIAPP_PAD_SINK]->width
 | |
| 			/ sensor->binning_subtypes[i].horizontal,
 | |
| 			sel->r.width,
 | |
| 			crops[SMIAPP_PAD_SINK]->height
 | |
| 			/ sensor->binning_subtypes[i].vertical,
 | |
| 			sel->r.height, sel->flags);
 | |
| 
 | |
| 		if (this > best) {
 | |
| 			binh = sensor->binning_subtypes[i].horizontal;
 | |
| 			binv = sensor->binning_subtypes[i].vertical;
 | |
| 			best = this;
 | |
| 		}
 | |
| 	}
 | |
| 	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
 | |
| 		sensor->binning_vertical = binv;
 | |
| 		sensor->binning_horizontal = binh;
 | |
| 	}
 | |
| 
 | |
| 	sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
 | |
| 	sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate best scaling ratio and mode for given output resolution.
 | |
|  *
 | |
|  * Try all of these: horizontal ratio, vertical ratio and smallest
 | |
|  * size possible (horizontally).
 | |
|  *
 | |
|  * Also try whether horizontal scaler or full scaler gives a better
 | |
|  * result.
 | |
|  */
 | |
| static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
 | |
| 				      struct v4l2_subdev_fh *fh,
 | |
| 				      struct v4l2_subdev_selection *sel,
 | |
| 				      struct v4l2_rect **crops,
 | |
| 				      struct v4l2_rect *comp)
 | |
| {
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 	u32 min, max, a, b, max_m;
 | |
| 	u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
 | |
| 	int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
 | |
| 	u32 try[4];
 | |
| 	u32 ntry = 0;
 | |
| 	unsigned int i;
 | |
| 	int best = INT_MIN;
 | |
| 
 | |
| 	sel->r.width = min_t(unsigned int, sel->r.width,
 | |
| 			     crops[SMIAPP_PAD_SINK]->width);
 | |
| 	sel->r.height = min_t(unsigned int, sel->r.height,
 | |
| 			      crops[SMIAPP_PAD_SINK]->height);
 | |
| 
 | |
| 	a = crops[SMIAPP_PAD_SINK]->width
 | |
| 		* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width;
 | |
| 	b = crops[SMIAPP_PAD_SINK]->height
 | |
| 		* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height;
 | |
| 	max_m = crops[SMIAPP_PAD_SINK]->width
 | |
| 		* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]
 | |
| 		/ sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE];
 | |
| 
 | |
| 	a = clamp(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
 | |
| 		  sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
 | |
| 	b = clamp(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
 | |
| 		  sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
 | |
| 	max_m = clamp(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
 | |
| 		      sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
 | |
| 
 | |
| 	dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
 | |
| 
 | |
| 	min = min(max_m, min(a, b));
 | |
| 	max = min(max_m, max(a, b));
 | |
| 
 | |
| 	try[ntry] = min;
 | |
| 	ntry++;
 | |
| 	if (min != max) {
 | |
| 		try[ntry] = max;
 | |
| 		ntry++;
 | |
| 	}
 | |
| 	if (max != max_m) {
 | |
| 		try[ntry] = min + 1;
 | |
| 		ntry++;
 | |
| 		if (min != max) {
 | |
| 			try[ntry] = max + 1;
 | |
| 			ntry++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ntry; i++) {
 | |
| 		int this = scaling_goodness(
 | |
| 			subdev,
 | |
| 			crops[SMIAPP_PAD_SINK]->width
 | |
| 			/ try[i]
 | |
| 			* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
 | |
| 			sel->r.width,
 | |
| 			crops[SMIAPP_PAD_SINK]->height,
 | |
| 			sel->r.height,
 | |
| 			sel->flags);
 | |
| 
 | |
| 		dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
 | |
| 
 | |
| 		if (this > best) {
 | |
| 			scale_m = try[i];
 | |
| 			mode = SMIAPP_SCALING_MODE_HORIZONTAL;
 | |
| 			best = this;
 | |
| 		}
 | |
| 
 | |
| 		if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
 | |
| 		    == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
 | |
| 			continue;
 | |
| 
 | |
| 		this = scaling_goodness(
 | |
| 			subdev, crops[SMIAPP_PAD_SINK]->width
 | |
| 			/ try[i]
 | |
| 			* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
 | |
| 			sel->r.width,
 | |
| 			crops[SMIAPP_PAD_SINK]->height
 | |
| 			/ try[i]
 | |
| 			* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
 | |
| 			sel->r.height,
 | |
| 			sel->flags);
 | |
| 
 | |
| 		if (this > best) {
 | |
| 			scale_m = try[i];
 | |
| 			mode = SMIAPP_SCALING_MODE_BOTH;
 | |
| 			best = this;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sel->r.width =
 | |
| 		(crops[SMIAPP_PAD_SINK]->width
 | |
| 		 / scale_m
 | |
| 		 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1;
 | |
| 	if (mode == SMIAPP_SCALING_MODE_BOTH)
 | |
| 		sel->r.height =
 | |
| 			(crops[SMIAPP_PAD_SINK]->height
 | |
| 			 / scale_m
 | |
| 			 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN])
 | |
| 			& ~1;
 | |
| 	else
 | |
| 		sel->r.height = crops[SMIAPP_PAD_SINK]->height;
 | |
| 
 | |
| 	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
 | |
| 		sensor->scale_m = scale_m;
 | |
| 		sensor->scaling_mode = mode;
 | |
| 	}
 | |
| }
 | |
| /* We're only called on source pads. This function sets scaling. */
 | |
| static int smiapp_set_compose(struct v4l2_subdev *subdev,
 | |
| 			      struct v4l2_subdev_fh *fh,
 | |
| 			      struct v4l2_subdev_selection *sel)
 | |
| {
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
 | |
| 	struct v4l2_rect *comp, *crops[SMIAPP_PADS];
 | |
| 
 | |
| 	smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
 | |
| 
 | |
| 	sel->r.top = 0;
 | |
| 	sel->r.left = 0;
 | |
| 
 | |
| 	if (ssd == sensor->binner)
 | |
| 		smiapp_set_compose_binner(subdev, fh, sel, crops, comp);
 | |
| 	else
 | |
| 		smiapp_set_compose_scaler(subdev, fh, sel, crops, comp);
 | |
| 
 | |
| 	*comp = sel->r;
 | |
| 	smiapp_propagate(subdev, fh, sel->which,
 | |
| 			 V4L2_SEL_TGT_COMPOSE);
 | |
| 
 | |
| 	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
 | |
| 		return smiapp_update_mode(sensor);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
 | |
| 				  struct v4l2_subdev_selection *sel)
 | |
| {
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
 | |
| 
 | |
| 	/* We only implement crop in three places. */
 | |
| 	switch (sel->target) {
 | |
| 	case V4L2_SEL_TGT_CROP:
 | |
| 	case V4L2_SEL_TGT_CROP_BOUNDS:
 | |
| 		if (ssd == sensor->pixel_array
 | |
| 		    && sel->pad == SMIAPP_PA_PAD_SRC)
 | |
| 			return 0;
 | |
| 		if (ssd == sensor->src
 | |
| 		    && sel->pad == SMIAPP_PAD_SRC)
 | |
| 			return 0;
 | |
| 		if (ssd == sensor->scaler
 | |
| 		    && sel->pad == SMIAPP_PAD_SINK
 | |
| 		    && sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
 | |
| 		    == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
 | |
| 			return 0;
 | |
| 		return -EINVAL;
 | |
| 	case V4L2_SEL_TGT_COMPOSE:
 | |
| 	case V4L2_SEL_TGT_COMPOSE_BOUNDS:
 | |
| 		if (sel->pad == ssd->source_pad)
 | |
| 			return -EINVAL;
 | |
| 		if (ssd == sensor->binner)
 | |
| 			return 0;
 | |
| 		if (ssd == sensor->scaler
 | |
| 		    && sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
 | |
| 		    != SMIAPP_SCALING_CAPABILITY_NONE)
 | |
| 			return 0;
 | |
| 		/* Fall through */
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int smiapp_set_crop(struct v4l2_subdev *subdev,
 | |
| 			   struct v4l2_subdev_fh *fh,
 | |
| 			   struct v4l2_subdev_selection *sel)
 | |
| {
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
 | |
| 	struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
 | |
| 	struct v4l2_rect _r;
 | |
| 
 | |
| 	smiapp_get_crop_compose(subdev, fh, crops, NULL, sel->which);
 | |
| 
 | |
| 	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
 | |
| 		if (sel->pad == ssd->sink_pad)
 | |
| 			src_size = &ssd->sink_fmt;
 | |
| 		else
 | |
| 			src_size = &ssd->compose;
 | |
| 	} else {
 | |
| 		if (sel->pad == ssd->sink_pad) {
 | |
| 			_r.left = 0;
 | |
| 			_r.top = 0;
 | |
| 			_r.width = v4l2_subdev_get_try_format(fh, sel->pad)
 | |
| 				->width;
 | |
| 			_r.height = v4l2_subdev_get_try_format(fh, sel->pad)
 | |
| 				->height;
 | |
| 			src_size = &_r;
 | |
| 		} else {
 | |
| 			src_size =
 | |
| 				v4l2_subdev_get_try_compose(
 | |
| 					fh, ssd->sink_pad);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
 | |
| 		sel->r.left = 0;
 | |
| 		sel->r.top = 0;
 | |
| 	}
 | |
| 
 | |
| 	sel->r.width = min(sel->r.width, src_size->width);
 | |
| 	sel->r.height = min(sel->r.height, src_size->height);
 | |
| 
 | |
| 	sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
 | |
| 	sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
 | |
| 
 | |
| 	*crops[sel->pad] = sel->r;
 | |
| 
 | |
| 	if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
 | |
| 		smiapp_propagate(subdev, fh, sel->which,
 | |
| 				 V4L2_SEL_TGT_CROP);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __smiapp_get_selection(struct v4l2_subdev *subdev,
 | |
| 				  struct v4l2_subdev_fh *fh,
 | |
| 				  struct v4l2_subdev_selection *sel)
 | |
| {
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
 | |
| 	struct v4l2_rect *comp, *crops[SMIAPP_PADS];
 | |
| 	struct v4l2_rect sink_fmt;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = __smiapp_sel_supported(subdev, sel);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
 | |
| 
 | |
| 	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
 | |
| 		sink_fmt = ssd->sink_fmt;
 | |
| 	} else {
 | |
| 		struct v4l2_mbus_framefmt *fmt =
 | |
| 			v4l2_subdev_get_try_format(fh, ssd->sink_pad);
 | |
| 
 | |
| 		sink_fmt.left = 0;
 | |
| 		sink_fmt.top = 0;
 | |
| 		sink_fmt.width = fmt->width;
 | |
| 		sink_fmt.height = fmt->height;
 | |
| 	}
 | |
| 
 | |
| 	switch (sel->target) {
 | |
| 	case V4L2_SEL_TGT_CROP_BOUNDS:
 | |
| 		if (ssd == sensor->pixel_array) {
 | |
| 			sel->r.width =
 | |
| 				sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
 | |
| 			sel->r.height =
 | |
| 				sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
 | |
| 		} else if (sel->pad == ssd->sink_pad) {
 | |
| 			sel->r = sink_fmt;
 | |
| 		} else {
 | |
| 			sel->r = *comp;
 | |
| 		}
 | |
| 		break;
 | |
| 	case V4L2_SEL_TGT_CROP:
 | |
| 	case V4L2_SEL_TGT_COMPOSE_BOUNDS:
 | |
| 		sel->r = *crops[sel->pad];
 | |
| 		break;
 | |
| 	case V4L2_SEL_TGT_COMPOSE:
 | |
| 		sel->r = *comp;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int smiapp_get_selection(struct v4l2_subdev *subdev,
 | |
| 				struct v4l2_subdev_fh *fh,
 | |
| 				struct v4l2_subdev_selection *sel)
 | |
| {
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 	int rval;
 | |
| 
 | |
| 	mutex_lock(&sensor->mutex);
 | |
| 	rval = __smiapp_get_selection(subdev, fh, sel);
 | |
| 	mutex_unlock(&sensor->mutex);
 | |
| 
 | |
| 	return rval;
 | |
| }
 | |
| static int smiapp_set_selection(struct v4l2_subdev *subdev,
 | |
| 				struct v4l2_subdev_fh *fh,
 | |
| 				struct v4l2_subdev_selection *sel)
 | |
| {
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = __smiapp_sel_supported(subdev, sel);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	mutex_lock(&sensor->mutex);
 | |
| 
 | |
| 	sel->r.left = max(0, sel->r.left & ~1);
 | |
| 	sel->r.top = max(0, sel->r.top & ~1);
 | |
| 	sel->r.width = SMIAPP_ALIGN_DIM(sel->r.width, sel->flags);
 | |
| 	sel->r.height =	SMIAPP_ALIGN_DIM(sel->r.height, sel->flags);
 | |
| 
 | |
| 	sel->r.width = max_t(unsigned int,
 | |
| 			     sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
 | |
| 			     sel->r.width);
 | |
| 	sel->r.height = max_t(unsigned int,
 | |
| 			      sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
 | |
| 			      sel->r.height);
 | |
| 
 | |
| 	switch (sel->target) {
 | |
| 	case V4L2_SEL_TGT_CROP:
 | |
| 		ret = smiapp_set_crop(subdev, fh, sel);
 | |
| 		break;
 | |
| 	case V4L2_SEL_TGT_COMPOSE:
 | |
| 		ret = smiapp_set_compose(subdev, fh, sel);
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&sensor->mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
 | |
| {
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 
 | |
| 	*frames = sensor->frame_skip;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
|  * sysfs attributes
 | |
|  */
 | |
| 
 | |
| static ssize_t
 | |
| smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
 | |
| 		      char *buf)
 | |
| {
 | |
| 	struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 	unsigned int nbytes;
 | |
| 
 | |
| 	if (!sensor->dev_init_done)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (!sensor->nvm_size) {
 | |
| 		/* NVM not read yet - read it now */
 | |
| 		sensor->nvm_size = sensor->platform_data->nvm_size;
 | |
| 		if (smiapp_set_power(subdev, 1) < 0)
 | |
| 			return -ENODEV;
 | |
| 		if (smiapp_read_nvm(sensor, sensor->nvm)) {
 | |
| 			dev_err(&client->dev, "nvm read failed\n");
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 		smiapp_set_power(subdev, 0);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * NVM is still way below a PAGE_SIZE, so we can safely
 | |
| 	 * assume this for now.
 | |
| 	 */
 | |
| 	nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE);
 | |
| 	memcpy(buf, sensor->nvm, nbytes);
 | |
| 
 | |
| 	return nbytes;
 | |
| }
 | |
| static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
 | |
| 
 | |
| static ssize_t
 | |
| smiapp_sysfs_ident_read(struct device *dev, struct device_attribute *attr,
 | |
| 			char *buf)
 | |
| {
 | |
| 	struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 	struct smiapp_module_info *minfo = &sensor->minfo;
 | |
| 
 | |
| 	return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
 | |
| 			minfo->manufacturer_id, minfo->model_id,
 | |
| 			minfo->revision_number_major) + 1;
 | |
| }
 | |
| 
 | |
| static DEVICE_ATTR(ident, S_IRUGO, smiapp_sysfs_ident_read, NULL);
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
|  * V4L2 subdev core operations
 | |
|  */
 | |
| 
 | |
| static int smiapp_identify_module(struct v4l2_subdev *subdev)
 | |
| {
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
 | |
| 	struct smiapp_module_info *minfo = &sensor->minfo;
 | |
| 	unsigned int i;
 | |
| 	int rval = 0;
 | |
| 
 | |
| 	minfo->name = SMIAPP_NAME;
 | |
| 
 | |
| 	/* Module info */
 | |
| 	rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
 | |
| 				 &minfo->manufacturer_id);
 | |
| 	if (!rval)
 | |
| 		rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
 | |
| 					 &minfo->model_id);
 | |
| 	if (!rval)
 | |
| 		rval = smiapp_read_8only(sensor,
 | |
| 					 SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
 | |
| 					 &minfo->revision_number_major);
 | |
| 	if (!rval)
 | |
| 		rval = smiapp_read_8only(sensor,
 | |
| 					 SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
 | |
| 					 &minfo->revision_number_minor);
 | |
| 	if (!rval)
 | |
| 		rval = smiapp_read_8only(sensor,
 | |
| 					 SMIAPP_REG_U8_MODULE_DATE_YEAR,
 | |
| 					 &minfo->module_year);
 | |
| 	if (!rval)
 | |
| 		rval = smiapp_read_8only(sensor,
 | |
| 					 SMIAPP_REG_U8_MODULE_DATE_MONTH,
 | |
| 					 &minfo->module_month);
 | |
| 	if (!rval)
 | |
| 		rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
 | |
| 					 &minfo->module_day);
 | |
| 
 | |
| 	/* Sensor info */
 | |
| 	if (!rval)
 | |
| 		rval = smiapp_read_8only(sensor,
 | |
| 					 SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
 | |
| 					 &minfo->sensor_manufacturer_id);
 | |
| 	if (!rval)
 | |
| 		rval = smiapp_read_8only(sensor,
 | |
| 					 SMIAPP_REG_U16_SENSOR_MODEL_ID,
 | |
| 					 &minfo->sensor_model_id);
 | |
| 	if (!rval)
 | |
| 		rval = smiapp_read_8only(sensor,
 | |
| 					 SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
 | |
| 					 &minfo->sensor_revision_number);
 | |
| 	if (!rval)
 | |
| 		rval = smiapp_read_8only(sensor,
 | |
| 					 SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
 | |
| 					 &minfo->sensor_firmware_version);
 | |
| 
 | |
| 	/* SMIA */
 | |
| 	if (!rval)
 | |
| 		rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
 | |
| 					 &minfo->smia_version);
 | |
| 	if (!rval)
 | |
| 		rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
 | |
| 					 &minfo->smiapp_version);
 | |
| 
 | |
| 	if (rval) {
 | |
| 		dev_err(&client->dev, "sensor detection failed\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
 | |
| 		minfo->manufacturer_id, minfo->model_id);
 | |
| 
 | |
| 	dev_dbg(&client->dev,
 | |
| 		"module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
 | |
| 		minfo->revision_number_major, minfo->revision_number_minor,
 | |
| 		minfo->module_year, minfo->module_month, minfo->module_day);
 | |
| 
 | |
| 	dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
 | |
| 		minfo->sensor_manufacturer_id, minfo->sensor_model_id);
 | |
| 
 | |
| 	dev_dbg(&client->dev,
 | |
| 		"sensor revision 0x%2.2x firmware version 0x%2.2x\n",
 | |
| 		minfo->sensor_revision_number, minfo->sensor_firmware_version);
 | |
| 
 | |
| 	dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
 | |
| 		minfo->smia_version, minfo->smiapp_version);
 | |
| 
 | |
| 	/*
 | |
| 	 * Some modules have bad data in the lvalues below. Hope the
 | |
| 	 * rvalues have better stuff. The lvalues are module
 | |
| 	 * parameters whereas the rvalues are sensor parameters.
 | |
| 	 */
 | |
| 	if (!minfo->manufacturer_id && !minfo->model_id) {
 | |
| 		minfo->manufacturer_id = minfo->sensor_manufacturer_id;
 | |
| 		minfo->model_id = minfo->sensor_model_id;
 | |
| 		minfo->revision_number_major = minfo->sensor_revision_number;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
 | |
| 		if (smiapp_module_idents[i].manufacturer_id
 | |
| 		    != minfo->manufacturer_id)
 | |
| 			continue;
 | |
| 		if (smiapp_module_idents[i].model_id != minfo->model_id)
 | |
| 			continue;
 | |
| 		if (smiapp_module_idents[i].flags
 | |
| 		    & SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
 | |
| 			if (smiapp_module_idents[i].revision_number_major
 | |
| 			    < minfo->revision_number_major)
 | |
| 				continue;
 | |
| 		} else {
 | |
| 			if (smiapp_module_idents[i].revision_number_major
 | |
| 			    != minfo->revision_number_major)
 | |
| 				continue;
 | |
| 		}
 | |
| 
 | |
| 		minfo->name = smiapp_module_idents[i].name;
 | |
| 		minfo->quirk = smiapp_module_idents[i].quirk;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (i >= ARRAY_SIZE(smiapp_module_idents))
 | |
| 		dev_warn(&client->dev,
 | |
| 			 "no quirks for this module; let's hope it's fully compliant\n");
 | |
| 
 | |
| 	dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
 | |
| 		minfo->name, minfo->manufacturer_id, minfo->model_id,
 | |
| 		minfo->revision_number_major);
 | |
| 
 | |
| 	strlcpy(subdev->name, sensor->minfo.name, sizeof(subdev->name));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct v4l2_subdev_ops smiapp_ops;
 | |
| static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
 | |
| static const struct media_entity_operations smiapp_entity_ops;
 | |
| 
 | |
| static int smiapp_registered(struct v4l2_subdev *subdev)
 | |
| {
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
 | |
| 	struct smiapp_pll *pll = &sensor->pll;
 | |
| 	struct smiapp_subdev *last = NULL;
 | |
| 	u32 tmp;
 | |
| 	unsigned int i;
 | |
| 	int rval;
 | |
| 
 | |
| 	sensor->vana = devm_regulator_get(&client->dev, "vana");
 | |
| 	if (IS_ERR(sensor->vana)) {
 | |
| 		dev_err(&client->dev, "could not get regulator for vana\n");
 | |
| 		return PTR_ERR(sensor->vana);
 | |
| 	}
 | |
| 
 | |
| 	if (!sensor->platform_data->set_xclk) {
 | |
| 		sensor->ext_clk = devm_clk_get(&client->dev, "ext_clk");
 | |
| 		if (IS_ERR(sensor->ext_clk)) {
 | |
| 			dev_err(&client->dev, "could not get clock\n");
 | |
| 			return PTR_ERR(sensor->ext_clk);
 | |
| 		}
 | |
| 
 | |
| 		rval = clk_set_rate(sensor->ext_clk,
 | |
| 				    sensor->platform_data->ext_clk);
 | |
| 		if (rval < 0) {
 | |
| 			dev_err(&client->dev,
 | |
| 				"unable to set clock freq to %u\n",
 | |
| 				sensor->platform_data->ext_clk);
 | |
| 			return rval;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (gpio_is_valid(sensor->platform_data->xshutdown)) {
 | |
| 		rval = devm_gpio_request_one(
 | |
| 			&client->dev, sensor->platform_data->xshutdown, 0,
 | |
| 			"SMIA++ xshutdown");
 | |
| 		if (rval < 0) {
 | |
| 			dev_err(&client->dev,
 | |
| 				"unable to acquire reset gpio %d\n",
 | |
| 				sensor->platform_data->xshutdown);
 | |
| 			return rval;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rval = smiapp_power_on(sensor);
 | |
| 	if (rval)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	rval = smiapp_identify_module(subdev);
 | |
| 	if (rval) {
 | |
| 		rval = -ENODEV;
 | |
| 		goto out_power_off;
 | |
| 	}
 | |
| 
 | |
| 	rval = smiapp_get_all_limits(sensor);
 | |
| 	if (rval) {
 | |
| 		rval = -ENODEV;
 | |
| 		goto out_power_off;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle Sensor Module orientation on the board.
 | |
| 	 *
 | |
| 	 * The application of H-FLIP and V-FLIP on the sensor is modified by
 | |
| 	 * the sensor orientation on the board.
 | |
| 	 *
 | |
| 	 * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
 | |
| 	 * both H-FLIP and V-FLIP for normal operation which also implies
 | |
| 	 * that a set/unset operation for user space HFLIP and VFLIP v4l2
 | |
| 	 * controls will need to be internally inverted.
 | |
| 	 *
 | |
| 	 * Rotation also changes the bayer pattern.
 | |
| 	 */
 | |
| 	if (sensor->platform_data->module_board_orient ==
 | |
| 	    SMIAPP_MODULE_BOARD_ORIENT_180)
 | |
| 		sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
 | |
| 					  SMIAPP_IMAGE_ORIENTATION_VFLIP;
 | |
| 
 | |
| 	rval = smiapp_call_quirk(sensor, limits);
 | |
| 	if (rval) {
 | |
| 		dev_err(&client->dev, "limits quirks failed\n");
 | |
| 		goto out_power_off;
 | |
| 	}
 | |
| 
 | |
| 	rval = smiapp_get_mbus_formats(sensor);
 | |
| 	if (rval) {
 | |
| 		rval = -ENODEV;
 | |
| 		goto out_power_off;
 | |
| 	}
 | |
| 
 | |
| 	if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) {
 | |
| 		u32 val;
 | |
| 
 | |
| 		rval = smiapp_read(sensor,
 | |
| 				   SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
 | |
| 		if (rval < 0) {
 | |
| 			rval = -ENODEV;
 | |
| 			goto out_power_off;
 | |
| 		}
 | |
| 		sensor->nbinning_subtypes = min_t(u8, val,
 | |
| 						  SMIAPP_BINNING_SUBTYPES);
 | |
| 
 | |
| 		for (i = 0; i < sensor->nbinning_subtypes; i++) {
 | |
| 			rval = smiapp_read(
 | |
| 				sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
 | |
| 			if (rval < 0) {
 | |
| 				rval = -ENODEV;
 | |
| 				goto out_power_off;
 | |
| 			}
 | |
| 			sensor->binning_subtypes[i] =
 | |
| 				*(struct smiapp_binning_subtype *)&val;
 | |
| 
 | |
| 			dev_dbg(&client->dev, "binning %xx%x\n",
 | |
| 				sensor->binning_subtypes[i].horizontal,
 | |
| 				sensor->binning_subtypes[i].vertical);
 | |
| 		}
 | |
| 	}
 | |
| 	sensor->binning_horizontal = 1;
 | |
| 	sensor->binning_vertical = 1;
 | |
| 
 | |
| 	if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
 | |
| 		dev_err(&client->dev, "sysfs ident entry creation failed\n");
 | |
| 		rval = -ENOENT;
 | |
| 		goto out_power_off;
 | |
| 	}
 | |
| 	/* SMIA++ NVM initialization - it will be read from the sensor
 | |
| 	 * when it is first requested by userspace.
 | |
| 	 */
 | |
| 	if (sensor->minfo.smiapp_version && sensor->platform_data->nvm_size) {
 | |
| 		sensor->nvm = devm_kzalloc(&client->dev,
 | |
| 				sensor->platform_data->nvm_size, GFP_KERNEL);
 | |
| 		if (sensor->nvm == NULL) {
 | |
| 			dev_err(&client->dev, "nvm buf allocation failed\n");
 | |
| 			rval = -ENOMEM;
 | |
| 			goto out_ident_release;
 | |
| 		}
 | |
| 
 | |
| 		if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
 | |
| 			dev_err(&client->dev, "sysfs nvm entry failed\n");
 | |
| 			rval = -EBUSY;
 | |
| 			goto out_ident_release;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* We consider this as profile 0 sensor if any of these are zero. */
 | |
| 	if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] ||
 | |
| 	    !sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] ||
 | |
| 	    !sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] ||
 | |
| 	    !sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) {
 | |
| 		sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
 | |
| 	} else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
 | |
| 		   != SMIAPP_SCALING_CAPABILITY_NONE) {
 | |
| 		if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
 | |
| 		    == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
 | |
| 			sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
 | |
| 		else
 | |
| 			sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
 | |
| 		sensor->scaler = &sensor->ssds[sensor->ssds_used];
 | |
| 		sensor->ssds_used++;
 | |
| 	} else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
 | |
| 		   == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
 | |
| 		sensor->scaler = &sensor->ssds[sensor->ssds_used];
 | |
| 		sensor->ssds_used++;
 | |
| 	}
 | |
| 	sensor->binner = &sensor->ssds[sensor->ssds_used];
 | |
| 	sensor->ssds_used++;
 | |
| 	sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
 | |
| 	sensor->ssds_used++;
 | |
| 
 | |
| 	sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
 | |
| 
 | |
| 	for (i = 0; i < SMIAPP_SUBDEVS; i++) {
 | |
| 		struct {
 | |
| 			struct smiapp_subdev *ssd;
 | |
| 			char *name;
 | |
| 		} const __this[] = {
 | |
| 			{ sensor->scaler, "scaler", },
 | |
| 			{ sensor->binner, "binner", },
 | |
| 			{ sensor->pixel_array, "pixel array", },
 | |
| 		}, *_this = &__this[i];
 | |
| 		struct smiapp_subdev *this = _this->ssd;
 | |
| 
 | |
| 		if (!this)
 | |
| 			continue;
 | |
| 
 | |
| 		if (this != sensor->src)
 | |
| 			v4l2_subdev_init(&this->sd, &smiapp_ops);
 | |
| 
 | |
| 		this->sensor = sensor;
 | |
| 
 | |
| 		if (this == sensor->pixel_array) {
 | |
| 			this->npads = 1;
 | |
| 		} else {
 | |
| 			this->npads = 2;
 | |
| 			this->source_pad = 1;
 | |
| 		}
 | |
| 
 | |
| 		snprintf(this->sd.name,
 | |
| 			 sizeof(this->sd.name), "%s %s %d-%4.4x",
 | |
| 			 sensor->minfo.name, _this->name,
 | |
| 			 i2c_adapter_id(client->adapter), client->addr);
 | |
| 
 | |
| 		this->sink_fmt.width =
 | |
| 			sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
 | |
| 		this->sink_fmt.height =
 | |
| 			sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
 | |
| 		this->compose.width = this->sink_fmt.width;
 | |
| 		this->compose.height = this->sink_fmt.height;
 | |
| 		this->crop[this->source_pad] = this->compose;
 | |
| 		this->pads[this->source_pad].flags = MEDIA_PAD_FL_SOURCE;
 | |
| 		if (this != sensor->pixel_array) {
 | |
| 			this->crop[this->sink_pad] = this->compose;
 | |
| 			this->pads[this->sink_pad].flags = MEDIA_PAD_FL_SINK;
 | |
| 		}
 | |
| 
 | |
| 		this->sd.entity.ops = &smiapp_entity_ops;
 | |
| 
 | |
| 		if (last == NULL) {
 | |
| 			last = this;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		this->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
 | |
| 		this->sd.internal_ops = &smiapp_internal_ops;
 | |
| 		this->sd.owner = THIS_MODULE;
 | |
| 		v4l2_set_subdevdata(&this->sd, client);
 | |
| 
 | |
| 		rval = media_entity_init(&this->sd.entity,
 | |
| 					 this->npads, this->pads, 0);
 | |
| 		if (rval) {
 | |
| 			dev_err(&client->dev,
 | |
| 				"media_entity_init failed\n");
 | |
| 			goto out_nvm_release;
 | |
| 		}
 | |
| 
 | |
| 		rval = media_entity_create_link(&this->sd.entity,
 | |
| 						this->source_pad,
 | |
| 						&last->sd.entity,
 | |
| 						last->sink_pad,
 | |
| 						MEDIA_LNK_FL_ENABLED |
 | |
| 						MEDIA_LNK_FL_IMMUTABLE);
 | |
| 		if (rval) {
 | |
| 			dev_err(&client->dev,
 | |
| 				"media_entity_create_link failed\n");
 | |
| 			goto out_nvm_release;
 | |
| 		}
 | |
| 
 | |
| 		rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
 | |
| 						   &this->sd);
 | |
| 		if (rval) {
 | |
| 			dev_err(&client->dev,
 | |
| 				"v4l2_device_register_subdev failed\n");
 | |
| 			goto out_nvm_release;
 | |
| 		}
 | |
| 
 | |
| 		last = this;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
 | |
| 
 | |
| 	sensor->pixel_array->sd.entity.type = MEDIA_ENT_T_V4L2_SUBDEV_SENSOR;
 | |
| 
 | |
| 	/* final steps */
 | |
| 	smiapp_read_frame_fmt(sensor);
 | |
| 	rval = smiapp_init_controls(sensor);
 | |
| 	if (rval < 0)
 | |
| 		goto out_nvm_release;
 | |
| 
 | |
| 	/* prepare PLL configuration input values */
 | |
| 	pll->bus_type = SMIAPP_PLL_BUS_TYPE_CSI2;
 | |
| 	pll->csi2.lanes = sensor->platform_data->lanes;
 | |
| 	pll->ext_clk_freq_hz = sensor->platform_data->ext_clk;
 | |
| 	pll->flags = smiapp_call_quirk(sensor, pll_flags);
 | |
| 
 | |
| 	/* Profile 0 sensors have no separate OP clock branch. */
 | |
| 	if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
 | |
| 		pll->flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
 | |
| 	pll->scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
 | |
| 
 | |
| 	rval = smiapp_update_mode(sensor);
 | |
| 	if (rval) {
 | |
| 		dev_err(&client->dev, "update mode failed\n");
 | |
| 		goto out_nvm_release;
 | |
| 	}
 | |
| 
 | |
| 	sensor->streaming = false;
 | |
| 	sensor->dev_init_done = true;
 | |
| 
 | |
| 	/* check flash capability */
 | |
| 	rval = smiapp_read(sensor, SMIAPP_REG_U8_FLASH_MODE_CAPABILITY, &tmp);
 | |
| 	sensor->flash_capability = tmp;
 | |
| 	if (rval)
 | |
| 		goto out_nvm_release;
 | |
| 
 | |
| 	smiapp_power_off(sensor);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_nvm_release:
 | |
| 	device_remove_file(&client->dev, &dev_attr_nvm);
 | |
| 
 | |
| out_ident_release:
 | |
| 	device_remove_file(&client->dev, &dev_attr_ident);
 | |
| 
 | |
| out_power_off:
 | |
| 	smiapp_power_off(sensor);
 | |
| 	return rval;
 | |
| }
 | |
| 
 | |
| static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
 | |
| {
 | |
| 	struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
 | |
| 	struct smiapp_sensor *sensor = ssd->sensor;
 | |
| 	u32 mbus_code =
 | |
| 		smiapp_csi_data_formats[smiapp_pixel_order(sensor)].code;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	mutex_lock(&sensor->mutex);
 | |
| 
 | |
| 	for (i = 0; i < ssd->npads; i++) {
 | |
| 		struct v4l2_mbus_framefmt *try_fmt =
 | |
| 			v4l2_subdev_get_try_format(fh, i);
 | |
| 		struct v4l2_rect *try_crop = v4l2_subdev_get_try_crop(fh, i);
 | |
| 		struct v4l2_rect *try_comp;
 | |
| 
 | |
| 		try_fmt->width = sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
 | |
| 		try_fmt->height = sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
 | |
| 		try_fmt->code = mbus_code;
 | |
| 		try_fmt->field = V4L2_FIELD_NONE;
 | |
| 
 | |
| 		try_crop->top = 0;
 | |
| 		try_crop->left = 0;
 | |
| 		try_crop->width = try_fmt->width;
 | |
| 		try_crop->height = try_fmt->height;
 | |
| 
 | |
| 		if (ssd != sensor->pixel_array)
 | |
| 			continue;
 | |
| 
 | |
| 		try_comp = v4l2_subdev_get_try_compose(fh, i);
 | |
| 		*try_comp = *try_crop;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&sensor->mutex);
 | |
| 
 | |
| 	return smiapp_set_power(sd, 1);
 | |
| }
 | |
| 
 | |
| static int smiapp_close(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
 | |
| {
 | |
| 	return smiapp_set_power(sd, 0);
 | |
| }
 | |
| 
 | |
| static const struct v4l2_subdev_video_ops smiapp_video_ops = {
 | |
| 	.s_stream = smiapp_set_stream,
 | |
| };
 | |
| 
 | |
| static const struct v4l2_subdev_core_ops smiapp_core_ops = {
 | |
| 	.s_power = smiapp_set_power,
 | |
| };
 | |
| 
 | |
| static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
 | |
| 	.enum_mbus_code = smiapp_enum_mbus_code,
 | |
| 	.get_fmt = smiapp_get_format,
 | |
| 	.set_fmt = smiapp_set_format,
 | |
| 	.get_selection = smiapp_get_selection,
 | |
| 	.set_selection = smiapp_set_selection,
 | |
| };
 | |
| 
 | |
| static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
 | |
| 	.g_skip_frames = smiapp_get_skip_frames,
 | |
| };
 | |
| 
 | |
| static const struct v4l2_subdev_ops smiapp_ops = {
 | |
| 	.core = &smiapp_core_ops,
 | |
| 	.video = &smiapp_video_ops,
 | |
| 	.pad = &smiapp_pad_ops,
 | |
| 	.sensor = &smiapp_sensor_ops,
 | |
| };
 | |
| 
 | |
| static const struct media_entity_operations smiapp_entity_ops = {
 | |
| 	.link_validate = v4l2_subdev_link_validate,
 | |
| };
 | |
| 
 | |
| static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
 | |
| 	.registered = smiapp_registered,
 | |
| 	.open = smiapp_open,
 | |
| 	.close = smiapp_close,
 | |
| };
 | |
| 
 | |
| static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
 | |
| 	.open = smiapp_open,
 | |
| 	.close = smiapp_close,
 | |
| };
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
|  * I2C Driver
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| 
 | |
| static int smiapp_suspend(struct device *dev)
 | |
| {
 | |
| 	struct i2c_client *client = to_i2c_client(dev);
 | |
| 	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 	bool streaming;
 | |
| 
 | |
| 	BUG_ON(mutex_is_locked(&sensor->mutex));
 | |
| 
 | |
| 	if (sensor->power_count == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (sensor->streaming)
 | |
| 		smiapp_stop_streaming(sensor);
 | |
| 
 | |
| 	streaming = sensor->streaming;
 | |
| 
 | |
| 	smiapp_power_off(sensor);
 | |
| 
 | |
| 	/* save state for resume */
 | |
| 	sensor->streaming = streaming;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int smiapp_resume(struct device *dev)
 | |
| {
 | |
| 	struct i2c_client *client = to_i2c_client(dev);
 | |
| 	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 	int rval;
 | |
| 
 | |
| 	if (sensor->power_count == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	rval = smiapp_power_on(sensor);
 | |
| 	if (rval)
 | |
| 		return rval;
 | |
| 
 | |
| 	if (sensor->streaming)
 | |
| 		rval = smiapp_start_streaming(sensor);
 | |
| 
 | |
| 	return rval;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define smiapp_suspend	NULL
 | |
| #define smiapp_resume	NULL
 | |
| 
 | |
| #endif /* CONFIG_PM */
 | |
| 
 | |
| static int smiapp_probe(struct i2c_client *client,
 | |
| 			const struct i2c_device_id *devid)
 | |
| {
 | |
| 	struct smiapp_sensor *sensor;
 | |
| 
 | |
| 	if (client->dev.platform_data == NULL)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
 | |
| 	if (sensor == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	sensor->platform_data = client->dev.platform_data;
 | |
| 	mutex_init(&sensor->mutex);
 | |
| 	mutex_init(&sensor->power_mutex);
 | |
| 	sensor->src = &sensor->ssds[sensor->ssds_used];
 | |
| 
 | |
| 	v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
 | |
| 	sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
 | |
| 	sensor->src->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
 | |
| 	sensor->src->sensor = sensor;
 | |
| 
 | |
| 	sensor->src->pads[0].flags = MEDIA_PAD_FL_SOURCE;
 | |
| 	return media_entity_init(&sensor->src->sd.entity, 2,
 | |
| 				 sensor->src->pads, 0);
 | |
| }
 | |
| 
 | |
| static int smiapp_remove(struct i2c_client *client)
 | |
| {
 | |
| 	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
 | |
| 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (sensor->power_count) {
 | |
| 		if (gpio_is_valid(sensor->platform_data->xshutdown))
 | |
| 			gpio_set_value(sensor->platform_data->xshutdown, 0);
 | |
| 		if (sensor->platform_data->set_xclk)
 | |
| 			sensor->platform_data->set_xclk(&sensor->src->sd, 0);
 | |
| 		else
 | |
| 			clk_disable_unprepare(sensor->ext_clk);
 | |
| 		sensor->power_count = 0;
 | |
| 	}
 | |
| 
 | |
| 	device_remove_file(&client->dev, &dev_attr_ident);
 | |
| 	if (sensor->nvm)
 | |
| 		device_remove_file(&client->dev, &dev_attr_nvm);
 | |
| 
 | |
| 	for (i = 0; i < sensor->ssds_used; i++) {
 | |
| 		v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
 | |
| 		media_entity_cleanup(&sensor->ssds[i].sd.entity);
 | |
| 	}
 | |
| 	smiapp_free_controls(sensor);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct i2c_device_id smiapp_id_table[] = {
 | |
| 	{ SMIAPP_NAME, 0 },
 | |
| 	{ },
 | |
| };
 | |
| MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
 | |
| 
 | |
| static const struct dev_pm_ops smiapp_pm_ops = {
 | |
| 	.suspend	= smiapp_suspend,
 | |
| 	.resume		= smiapp_resume,
 | |
| };
 | |
| 
 | |
| static struct i2c_driver smiapp_i2c_driver = {
 | |
| 	.driver	= {
 | |
| 		.name = SMIAPP_NAME,
 | |
| 		.pm = &smiapp_pm_ops,
 | |
| 	},
 | |
| 	.probe	= smiapp_probe,
 | |
| 	.remove	= smiapp_remove,
 | |
| 	.id_table = smiapp_id_table,
 | |
| };
 | |
| 
 | |
| module_i2c_driver(smiapp_i2c_driver);
 | |
| 
 | |
| MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
 | |
| MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
 | |
| MODULE_LICENSE("GPL");
 |