 ba935f4097
			
		
	
	
	ba935f4097
	
	
	
		
			
			Currently, there is no other bus that has something like this macro for their device ids. Thus, DEFINE_PCI_DEVICE_TABLE macro should be removed. Signed-off-by: Jingoo Han <jg1.han@samsung.com> Link: http://lkml.kernel.org/r/001c01ceefb3$5724d860$056e8920$%han@samsung.com [ Boris: swap commit message with better one. ] Signed-off-by: Borislav Petkov <bp@suse.de>
		
			
				
	
	
		
			570 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			570 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Intel 3000/3010 Memory Controller kernel module
 | |
|  * Copyright (C) 2007 Akamai Technologies, Inc.
 | |
|  * Shamelessly copied from:
 | |
|  * 	Intel D82875P Memory Controller kernel module
 | |
|  * 	(C) 2003 Linux Networx (http://lnxi.com)
 | |
|  *
 | |
|  * This file may be distributed under the terms of the
 | |
|  * GNU General Public License.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/pci_ids.h>
 | |
| #include <linux/edac.h>
 | |
| #include "edac_core.h"
 | |
| 
 | |
| #define I3000_REVISION		"1.1"
 | |
| 
 | |
| #define EDAC_MOD_STR		"i3000_edac"
 | |
| 
 | |
| #define I3000_RANKS		8
 | |
| #define I3000_RANKS_PER_CHANNEL	4
 | |
| #define I3000_CHANNELS		2
 | |
| 
 | |
| /* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
 | |
| 
 | |
| #define I3000_MCHBAR		0x44	/* MCH Memory Mapped Register BAR */
 | |
| #define I3000_MCHBAR_MASK	0xffffc000
 | |
| #define I3000_MMR_WINDOW_SIZE	16384
 | |
| 
 | |
| #define I3000_EDEAP	0x70	/* Extended DRAM Error Address Pointer (8b)
 | |
| 				 *
 | |
| 				 * 7:1   reserved
 | |
| 				 * 0     bit 32 of address
 | |
| 				 */
 | |
| #define I3000_DEAP	0x58	/* DRAM Error Address Pointer (32b)
 | |
| 				 *
 | |
| 				 * 31:7  address
 | |
| 				 * 6:1   reserved
 | |
| 				 * 0     Error channel 0/1
 | |
| 				 */
 | |
| #define I3000_DEAP_GRAIN 		(1 << 7)
 | |
| 
 | |
| /*
 | |
|  * Helper functions to decode the DEAP/EDEAP hardware registers.
 | |
|  *
 | |
|  * The type promotion here is deliberate; we're deriving an
 | |
|  * unsigned long pfn and offset from hardware regs which are u8/u32.
 | |
|  */
 | |
| 
 | |
| static inline unsigned long deap_pfn(u8 edeap, u32 deap)
 | |
| {
 | |
| 	deap >>= PAGE_SHIFT;
 | |
| 	deap |= (edeap & 1) << (32 - PAGE_SHIFT);
 | |
| 	return deap;
 | |
| }
 | |
| 
 | |
| static inline unsigned long deap_offset(u32 deap)
 | |
| {
 | |
| 	return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK;
 | |
| }
 | |
| 
 | |
| static inline int deap_channel(u32 deap)
 | |
| {
 | |
| 	return deap & 1;
 | |
| }
 | |
| 
 | |
| #define I3000_DERRSYN	0x5c	/* DRAM Error Syndrome (8b)
 | |
| 				 *
 | |
| 				 *  7:0  DRAM ECC Syndrome
 | |
| 				 */
 | |
| 
 | |
| #define I3000_ERRSTS	0xc8	/* Error Status Register (16b)
 | |
| 				 *
 | |
| 				 * 15:12 reserved
 | |
| 				 * 11    MCH Thermal Sensor Event
 | |
| 				 *         for SMI/SCI/SERR
 | |
| 				 * 10    reserved
 | |
| 				 *  9    LOCK to non-DRAM Memory Flag (LCKF)
 | |
| 				 *  8    Received Refresh Timeout Flag (RRTOF)
 | |
| 				 *  7:2  reserved
 | |
| 				 *  1    Multi-bit DRAM ECC Error Flag (DMERR)
 | |
| 				 *  0    Single-bit DRAM ECC Error Flag (DSERR)
 | |
| 				 */
 | |
| #define I3000_ERRSTS_BITS	0x0b03	/* bits which indicate errors */
 | |
| #define I3000_ERRSTS_UE		0x0002
 | |
| #define I3000_ERRSTS_CE		0x0001
 | |
| 
 | |
| #define I3000_ERRCMD	0xca	/* Error Command (16b)
 | |
| 				 *
 | |
| 				 * 15:12 reserved
 | |
| 				 * 11    SERR on MCH Thermal Sensor Event
 | |
| 				 *         (TSESERR)
 | |
| 				 * 10    reserved
 | |
| 				 *  9    SERR on LOCK to non-DRAM Memory
 | |
| 				 *         (LCKERR)
 | |
| 				 *  8    SERR on DRAM Refresh Timeout
 | |
| 				 *         (DRTOERR)
 | |
| 				 *  7:2  reserved
 | |
| 				 *  1    SERR Multi-Bit DRAM ECC Error
 | |
| 				 *         (DMERR)
 | |
| 				 *  0    SERR on Single-Bit ECC Error
 | |
| 				 *         (DSERR)
 | |
| 				 */
 | |
| 
 | |
| /* Intel  MMIO register space - device 0 function 0 - MMR space */
 | |
| 
 | |
| #define I3000_DRB_SHIFT 25	/* 32MiB grain */
 | |
| 
 | |
| #define I3000_C0DRB	0x100	/* Channel 0 DRAM Rank Boundary (8b x 4)
 | |
| 				 *
 | |
| 				 * 7:0   Channel 0 DRAM Rank Boundary Address
 | |
| 				 */
 | |
| #define I3000_C1DRB	0x180	/* Channel 1 DRAM Rank Boundary (8b x 4)
 | |
| 				 *
 | |
| 				 * 7:0   Channel 1 DRAM Rank Boundary Address
 | |
| 				 */
 | |
| 
 | |
| #define I3000_C0DRA	0x108	/* Channel 0 DRAM Rank Attribute (8b x 2)
 | |
| 				 *
 | |
| 				 * 7     reserved
 | |
| 				 * 6:4   DRAM odd Rank Attribute
 | |
| 				 * 3     reserved
 | |
| 				 * 2:0   DRAM even Rank Attribute
 | |
| 				 *
 | |
| 				 * Each attribute defines the page
 | |
| 				 * size of the corresponding rank:
 | |
| 				 *     000: unpopulated
 | |
| 				 *     001: reserved
 | |
| 				 *     010: 4 KB
 | |
| 				 *     011: 8 KB
 | |
| 				 *     100: 16 KB
 | |
| 				 *     Others: reserved
 | |
| 				 */
 | |
| #define I3000_C1DRA	0x188	/* Channel 1 DRAM Rank Attribute (8b x 2) */
 | |
| 
 | |
| static inline unsigned char odd_rank_attrib(unsigned char dra)
 | |
| {
 | |
| 	return (dra & 0x70) >> 4;
 | |
| }
 | |
| 
 | |
| static inline unsigned char even_rank_attrib(unsigned char dra)
 | |
| {
 | |
| 	return dra & 0x07;
 | |
| }
 | |
| 
 | |
| #define I3000_C0DRC0	0x120	/* DRAM Controller Mode 0 (32b)
 | |
| 				 *
 | |
| 				 * 31:30 reserved
 | |
| 				 * 29    Initialization Complete (IC)
 | |
| 				 * 28:11 reserved
 | |
| 				 * 10:8  Refresh Mode Select (RMS)
 | |
| 				 * 7     reserved
 | |
| 				 * 6:4   Mode Select (SMS)
 | |
| 				 * 3:2   reserved
 | |
| 				 * 1:0   DRAM Type (DT)
 | |
| 				 */
 | |
| 
 | |
| #define I3000_C0DRC1	0x124	/* DRAM Controller Mode 1 (32b)
 | |
| 				 *
 | |
| 				 * 31    Enhanced Addressing Enable (ENHADE)
 | |
| 				 * 30:0  reserved
 | |
| 				 */
 | |
| 
 | |
| enum i3000p_chips {
 | |
| 	I3000 = 0,
 | |
| };
 | |
| 
 | |
| struct i3000_dev_info {
 | |
| 	const char *ctl_name;
 | |
| };
 | |
| 
 | |
| struct i3000_error_info {
 | |
| 	u16 errsts;
 | |
| 	u8 derrsyn;
 | |
| 	u8 edeap;
 | |
| 	u32 deap;
 | |
| 	u16 errsts2;
 | |
| };
 | |
| 
 | |
| static const struct i3000_dev_info i3000_devs[] = {
 | |
| 	[I3000] = {
 | |
| 		.ctl_name = "i3000"},
 | |
| };
 | |
| 
 | |
| static struct pci_dev *mci_pdev;
 | |
| static int i3000_registered = 1;
 | |
| static struct edac_pci_ctl_info *i3000_pci;
 | |
| 
 | |
| static void i3000_get_error_info(struct mem_ctl_info *mci,
 | |
| 				 struct i3000_error_info *info)
 | |
| {
 | |
| 	struct pci_dev *pdev;
 | |
| 
 | |
| 	pdev = to_pci_dev(mci->pdev);
 | |
| 
 | |
| 	/*
 | |
| 	 * This is a mess because there is no atomic way to read all the
 | |
| 	 * registers at once and the registers can transition from CE being
 | |
| 	 * overwritten by UE.
 | |
| 	 */
 | |
| 	pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
 | |
| 	if (!(info->errsts & I3000_ERRSTS_BITS))
 | |
| 		return;
 | |
| 	pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
 | |
| 	pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
 | |
| 	pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
 | |
| 	pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the error is the same for both reads then the first set
 | |
| 	 * of reads is valid.  If there is a change then there is a CE
 | |
| 	 * with no info and the second set of reads is valid and
 | |
| 	 * should be UE info.
 | |
| 	 */
 | |
| 	if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
 | |
| 		pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
 | |
| 		pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
 | |
| 		pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear any error bits.
 | |
| 	 * (Yes, we really clear bits by writing 1 to them.)
 | |
| 	 */
 | |
| 	pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
 | |
| 			 I3000_ERRSTS_BITS);
 | |
| }
 | |
| 
 | |
| static int i3000_process_error_info(struct mem_ctl_info *mci,
 | |
| 				struct i3000_error_info *info,
 | |
| 				int handle_errors)
 | |
| {
 | |
| 	int row, multi_chan, channel;
 | |
| 	unsigned long pfn, offset;
 | |
| 
 | |
| 	multi_chan = mci->csrows[0]->nr_channels - 1;
 | |
| 
 | |
| 	if (!(info->errsts & I3000_ERRSTS_BITS))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!handle_errors)
 | |
| 		return 1;
 | |
| 
 | |
| 	if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
 | |
| 		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
 | |
| 				     -1, -1, -1,
 | |
| 				     "UE overwrote CE", "");
 | |
| 		info->errsts = info->errsts2;
 | |
| 	}
 | |
| 
 | |
| 	pfn = deap_pfn(info->edeap, info->deap);
 | |
| 	offset = deap_offset(info->deap);
 | |
| 	channel = deap_channel(info->deap);
 | |
| 
 | |
| 	row = edac_mc_find_csrow_by_page(mci, pfn);
 | |
| 
 | |
| 	if (info->errsts & I3000_ERRSTS_UE)
 | |
| 		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
 | |
| 				     pfn, offset, 0,
 | |
| 				     row, -1, -1,
 | |
| 				     "i3000 UE", "");
 | |
| 	else
 | |
| 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
 | |
| 				     pfn, offset, info->derrsyn,
 | |
| 				     row, multi_chan ? channel : 0, -1,
 | |
| 				     "i3000 CE", "");
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void i3000_check(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct i3000_error_info info;
 | |
| 
 | |
| 	edac_dbg(1, "MC%d\n", mci->mc_idx);
 | |
| 	i3000_get_error_info(mci, &info);
 | |
| 	i3000_process_error_info(mci, &info, 1);
 | |
| }
 | |
| 
 | |
| static int i3000_is_interleaved(const unsigned char *c0dra,
 | |
| 				const unsigned char *c1dra,
 | |
| 				const unsigned char *c0drb,
 | |
| 				const unsigned char *c1drb)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the channels aren't populated identically then
 | |
| 	 * we're not interleaved.
 | |
| 	 */
 | |
| 	for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
 | |
| 		if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) ||
 | |
| 			even_rank_attrib(c0dra[i]) !=
 | |
| 						even_rank_attrib(c1dra[i]))
 | |
| 			return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the rank boundaries for the two channels are different
 | |
| 	 * then we're not interleaved.
 | |
| 	 */
 | |
| 	for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
 | |
| 		if (c0drb[i] != c1drb[i])
 | |
| 			return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
 | |
| {
 | |
| 	int rc;
 | |
| 	int i, j;
 | |
| 	struct mem_ctl_info *mci = NULL;
 | |
| 	struct edac_mc_layer layers[2];
 | |
| 	unsigned long last_cumul_size, nr_pages;
 | |
| 	int interleaved, nr_channels;
 | |
| 	unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
 | |
| 	unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
 | |
| 	unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
 | |
| 	unsigned long mchbar;
 | |
| 	void __iomem *window;
 | |
| 
 | |
| 	edac_dbg(0, "MC:\n");
 | |
| 
 | |
| 	pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
 | |
| 	mchbar &= I3000_MCHBAR_MASK;
 | |
| 	window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
 | |
| 	if (!window) {
 | |
| 		printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
 | |
| 			mchbar);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	c0dra[0] = readb(window + I3000_C0DRA + 0);	/* ranks 0,1 */
 | |
| 	c0dra[1] = readb(window + I3000_C0DRA + 1);	/* ranks 2,3 */
 | |
| 	c1dra[0] = readb(window + I3000_C1DRA + 0);	/* ranks 0,1 */
 | |
| 	c1dra[1] = readb(window + I3000_C1DRA + 1);	/* ranks 2,3 */
 | |
| 
 | |
| 	for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
 | |
| 		c0drb[i] = readb(window + I3000_C0DRB + i);
 | |
| 		c1drb[i] = readb(window + I3000_C1DRB + i);
 | |
| 	}
 | |
| 
 | |
| 	iounmap(window);
 | |
| 
 | |
| 	/*
 | |
| 	 * Figure out how many channels we have.
 | |
| 	 *
 | |
| 	 * If we have what the datasheet calls "asymmetric channels"
 | |
| 	 * (essentially the same as what was called "virtual single
 | |
| 	 * channel mode" in the i82875) then it's a single channel as
 | |
| 	 * far as EDAC is concerned.
 | |
| 	 */
 | |
| 	interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
 | |
| 	nr_channels = interleaved ? 2 : 1;
 | |
| 
 | |
| 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
 | |
| 	layers[0].size = I3000_RANKS / nr_channels;
 | |
| 	layers[0].is_virt_csrow = true;
 | |
| 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
 | |
| 	layers[1].size = nr_channels;
 | |
| 	layers[1].is_virt_csrow = false;
 | |
| 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0);
 | |
| 	if (!mci)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	edac_dbg(3, "MC: init mci\n");
 | |
| 
 | |
| 	mci->pdev = &pdev->dev;
 | |
| 	mci->mtype_cap = MEM_FLAG_DDR2;
 | |
| 
 | |
| 	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
 | |
| 	mci->edac_cap = EDAC_FLAG_SECDED;
 | |
| 
 | |
| 	mci->mod_name = EDAC_MOD_STR;
 | |
| 	mci->mod_ver = I3000_REVISION;
 | |
| 	mci->ctl_name = i3000_devs[dev_idx].ctl_name;
 | |
| 	mci->dev_name = pci_name(pdev);
 | |
| 	mci->edac_check = i3000_check;
 | |
| 	mci->ctl_page_to_phys = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * The dram rank boundary (DRB) reg values are boundary addresses
 | |
| 	 * for each DRAM rank with a granularity of 32MB.  DRB regs are
 | |
| 	 * cumulative; the last one will contain the total memory
 | |
| 	 * contained in all ranks.
 | |
| 	 *
 | |
| 	 * If we're in interleaved mode then we're only walking through
 | |
| 	 * the ranks of controller 0, so we double all the values we see.
 | |
| 	 */
 | |
| 	for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
 | |
| 		u8 value;
 | |
| 		u32 cumul_size;
 | |
| 		struct csrow_info *csrow = mci->csrows[i];
 | |
| 
 | |
| 		value = drb[i];
 | |
| 		cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
 | |
| 		if (interleaved)
 | |
| 			cumul_size <<= 1;
 | |
| 		edac_dbg(3, "MC: (%d) cumul_size 0x%x\n", i, cumul_size);
 | |
| 		if (cumul_size == last_cumul_size)
 | |
| 			continue;
 | |
| 
 | |
| 		csrow->first_page = last_cumul_size;
 | |
| 		csrow->last_page = cumul_size - 1;
 | |
| 		nr_pages = cumul_size - last_cumul_size;
 | |
| 		last_cumul_size = cumul_size;
 | |
| 
 | |
| 		for (j = 0; j < nr_channels; j++) {
 | |
| 			struct dimm_info *dimm = csrow->channels[j]->dimm;
 | |
| 
 | |
| 			dimm->nr_pages = nr_pages / nr_channels;
 | |
| 			dimm->grain = I3000_DEAP_GRAIN;
 | |
| 			dimm->mtype = MEM_DDR2;
 | |
| 			dimm->dtype = DEV_UNKNOWN;
 | |
| 			dimm->edac_mode = EDAC_UNKNOWN;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear any error bits.
 | |
| 	 * (Yes, we really clear bits by writing 1 to them.)
 | |
| 	 */
 | |
| 	pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
 | |
| 			 I3000_ERRSTS_BITS);
 | |
| 
 | |
| 	rc = -ENODEV;
 | |
| 	if (edac_mc_add_mc(mci)) {
 | |
| 		edac_dbg(3, "MC: failed edac_mc_add_mc()\n");
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	/* allocating generic PCI control info */
 | |
| 	i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
 | |
| 	if (!i3000_pci) {
 | |
| 		printk(KERN_WARNING
 | |
| 			"%s(): Unable to create PCI control\n",
 | |
| 			__func__);
 | |
| 		printk(KERN_WARNING
 | |
| 			"%s(): PCI error report via EDAC not setup\n",
 | |
| 			__func__);
 | |
| 	}
 | |
| 
 | |
| 	/* get this far and it's successful */
 | |
| 	edac_dbg(3, "MC: success\n");
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	if (mci)
 | |
| 		edac_mc_free(mci);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* returns count (>= 0), or negative on error */
 | |
| static int i3000_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	edac_dbg(0, "MC:\n");
 | |
| 
 | |
| 	if (pci_enable_device(pdev) < 0)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	rc = i3000_probe1(pdev, ent->driver_data);
 | |
| 	if (!mci_pdev)
 | |
| 		mci_pdev = pci_dev_get(pdev);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void i3000_remove_one(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct mem_ctl_info *mci;
 | |
| 
 | |
| 	edac_dbg(0, "\n");
 | |
| 
 | |
| 	if (i3000_pci)
 | |
| 		edac_pci_release_generic_ctl(i3000_pci);
 | |
| 
 | |
| 	mci = edac_mc_del_mc(&pdev->dev);
 | |
| 	if (!mci)
 | |
| 		return;
 | |
| 
 | |
| 	edac_mc_free(mci);
 | |
| }
 | |
| 
 | |
| static const struct pci_device_id i3000_pci_tbl[] = {
 | |
| 	{
 | |
| 	 PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
 | |
| 	 I3000},
 | |
| 	{
 | |
| 	 0,
 | |
| 	 }			/* 0 terminated list. */
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
 | |
| 
 | |
| static struct pci_driver i3000_driver = {
 | |
| 	.name = EDAC_MOD_STR,
 | |
| 	.probe = i3000_init_one,
 | |
| 	.remove = i3000_remove_one,
 | |
| 	.id_table = i3000_pci_tbl,
 | |
| };
 | |
| 
 | |
| static int __init i3000_init(void)
 | |
| {
 | |
| 	int pci_rc;
 | |
| 
 | |
| 	edac_dbg(3, "MC:\n");
 | |
| 
 | |
|        /* Ensure that the OPSTATE is set correctly for POLL or NMI */
 | |
|        opstate_init();
 | |
| 
 | |
| 	pci_rc = pci_register_driver(&i3000_driver);
 | |
| 	if (pci_rc < 0)
 | |
| 		goto fail0;
 | |
| 
 | |
| 	if (!mci_pdev) {
 | |
| 		i3000_registered = 0;
 | |
| 		mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 | |
| 					PCI_DEVICE_ID_INTEL_3000_HB, NULL);
 | |
| 		if (!mci_pdev) {
 | |
| 			edac_dbg(0, "i3000 pci_get_device fail\n");
 | |
| 			pci_rc = -ENODEV;
 | |
| 			goto fail1;
 | |
| 		}
 | |
| 
 | |
| 		pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
 | |
| 		if (pci_rc < 0) {
 | |
| 			edac_dbg(0, "i3000 init fail\n");
 | |
| 			pci_rc = -ENODEV;
 | |
| 			goto fail1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail1:
 | |
| 	pci_unregister_driver(&i3000_driver);
 | |
| 
 | |
| fail0:
 | |
| 	if (mci_pdev)
 | |
| 		pci_dev_put(mci_pdev);
 | |
| 
 | |
| 	return pci_rc;
 | |
| }
 | |
| 
 | |
| static void __exit i3000_exit(void)
 | |
| {
 | |
| 	edac_dbg(3, "MC:\n");
 | |
| 
 | |
| 	pci_unregister_driver(&i3000_driver);
 | |
| 	if (!i3000_registered) {
 | |
| 		i3000_remove_one(mci_pdev);
 | |
| 		pci_dev_put(mci_pdev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| module_init(i3000_init);
 | |
| module_exit(i3000_exit);
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
 | |
| MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");
 | |
| 
 | |
| module_param(edac_op_state, int, 0444);
 | |
| MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
 |