 164109e3cd
			
		
	
	
	164109e3cd
	
	
	
		
			
			Replace obsolete strict_strto calls with appropriate kstrto calls Signed-off-by: Daniel Walter <dwalter@google.com> Acked-by: Borislav Petkov <bp@suse.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			2171 lines
		
	
	
	
		
			56 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2171 lines
		
	
	
	
		
			56 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *	SGI UltraViolet TLB flush routines.
 | |
|  *
 | |
|  *	(c) 2008-2014 Cliff Wickman <cpw@sgi.com>, SGI.
 | |
|  *
 | |
|  *	This code is released under the GNU General Public License version 2 or
 | |
|  *	later.
 | |
|  */
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/delay.h>
 | |
| 
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/uv/uv.h>
 | |
| #include <asm/uv/uv_mmrs.h>
 | |
| #include <asm/uv/uv_hub.h>
 | |
| #include <asm/uv/uv_bau.h>
 | |
| #include <asm/apic.h>
 | |
| #include <asm/idle.h>
 | |
| #include <asm/tsc.h>
 | |
| #include <asm/irq_vectors.h>
 | |
| #include <asm/timer.h>
 | |
| 
 | |
| /* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
 | |
| static int timeout_base_ns[] = {
 | |
| 		20,
 | |
| 		160,
 | |
| 		1280,
 | |
| 		10240,
 | |
| 		81920,
 | |
| 		655360,
 | |
| 		5242880,
 | |
| 		167772160
 | |
| };
 | |
| 
 | |
| static int timeout_us;
 | |
| static int nobau;
 | |
| static int nobau_perm;
 | |
| static cycles_t congested_cycles;
 | |
| 
 | |
| /* tunables: */
 | |
| static int max_concurr		= MAX_BAU_CONCURRENT;
 | |
| static int max_concurr_const	= MAX_BAU_CONCURRENT;
 | |
| static int plugged_delay	= PLUGGED_DELAY;
 | |
| static int plugsb4reset		= PLUGSB4RESET;
 | |
| static int giveup_limit		= GIVEUP_LIMIT;
 | |
| static int timeoutsb4reset	= TIMEOUTSB4RESET;
 | |
| static int ipi_reset_limit	= IPI_RESET_LIMIT;
 | |
| static int complete_threshold	= COMPLETE_THRESHOLD;
 | |
| static int congested_respns_us	= CONGESTED_RESPONSE_US;
 | |
| static int congested_reps	= CONGESTED_REPS;
 | |
| static int disabled_period	= DISABLED_PERIOD;
 | |
| 
 | |
| static struct tunables tunables[] = {
 | |
| 	{&max_concurr, MAX_BAU_CONCURRENT}, /* must be [0] */
 | |
| 	{&plugged_delay, PLUGGED_DELAY},
 | |
| 	{&plugsb4reset, PLUGSB4RESET},
 | |
| 	{&timeoutsb4reset, TIMEOUTSB4RESET},
 | |
| 	{&ipi_reset_limit, IPI_RESET_LIMIT},
 | |
| 	{&complete_threshold, COMPLETE_THRESHOLD},
 | |
| 	{&congested_respns_us, CONGESTED_RESPONSE_US},
 | |
| 	{&congested_reps, CONGESTED_REPS},
 | |
| 	{&disabled_period, DISABLED_PERIOD},
 | |
| 	{&giveup_limit, GIVEUP_LIMIT}
 | |
| };
 | |
| 
 | |
| static struct dentry *tunables_dir;
 | |
| static struct dentry *tunables_file;
 | |
| 
 | |
| /* these correspond to the statistics printed by ptc_seq_show() */
 | |
| static char *stat_description[] = {
 | |
| 	"sent:     number of shootdown messages sent",
 | |
| 	"stime:    time spent sending messages",
 | |
| 	"numuvhubs: number of hubs targeted with shootdown",
 | |
| 	"numuvhubs16: number times 16 or more hubs targeted",
 | |
| 	"numuvhubs8: number times 8 or more hubs targeted",
 | |
| 	"numuvhubs4: number times 4 or more hubs targeted",
 | |
| 	"numuvhubs2: number times 2 or more hubs targeted",
 | |
| 	"numuvhubs1: number times 1 hub targeted",
 | |
| 	"numcpus:  number of cpus targeted with shootdown",
 | |
| 	"dto:      number of destination timeouts",
 | |
| 	"retries:  destination timeout retries sent",
 | |
| 	"rok:   :  destination timeouts successfully retried",
 | |
| 	"resetp:   ipi-style resource resets for plugs",
 | |
| 	"resett:   ipi-style resource resets for timeouts",
 | |
| 	"giveup:   fall-backs to ipi-style shootdowns",
 | |
| 	"sto:      number of source timeouts",
 | |
| 	"bz:       number of stay-busy's",
 | |
| 	"throt:    number times spun in throttle",
 | |
| 	"swack:   image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE",
 | |
| 	"recv:     shootdown messages received",
 | |
| 	"rtime:    time spent processing messages",
 | |
| 	"all:      shootdown all-tlb messages",
 | |
| 	"one:      shootdown one-tlb messages",
 | |
| 	"mult:     interrupts that found multiple messages",
 | |
| 	"none:     interrupts that found no messages",
 | |
| 	"retry:    number of retry messages processed",
 | |
| 	"canc:     number messages canceled by retries",
 | |
| 	"nocan:    number retries that found nothing to cancel",
 | |
| 	"reset:    number of ipi-style reset requests processed",
 | |
| 	"rcan:     number messages canceled by reset requests",
 | |
| 	"disable:  number times use of the BAU was disabled",
 | |
| 	"enable:   number times use of the BAU was re-enabled"
 | |
| };
 | |
| 
 | |
| static int __init
 | |
| setup_nobau(char *arg)
 | |
| {
 | |
| 	nobau = 1;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("nobau", setup_nobau);
 | |
| 
 | |
| /* base pnode in this partition */
 | |
| static int uv_base_pnode __read_mostly;
 | |
| 
 | |
| static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
 | |
| static DEFINE_PER_CPU(struct bau_control, bau_control);
 | |
| static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
 | |
| 
 | |
| static void
 | |
| set_bau_on(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	struct bau_control *bcp;
 | |
| 
 | |
| 	if (nobau_perm) {
 | |
| 		pr_info("BAU not initialized; cannot be turned on\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	nobau = 0;
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		bcp = &per_cpu(bau_control, cpu);
 | |
| 		bcp->nobau = 0;
 | |
| 	}
 | |
| 	pr_info("BAU turned on\n");
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void
 | |
| set_bau_off(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	struct bau_control *bcp;
 | |
| 
 | |
| 	nobau = 1;
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		bcp = &per_cpu(bau_control, cpu);
 | |
| 		bcp->nobau = 1;
 | |
| 	}
 | |
| 	pr_info("BAU turned off\n");
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine the first node on a uvhub. 'Nodes' are used for kernel
 | |
|  * memory allocation.
 | |
|  */
 | |
| static int __init uvhub_to_first_node(int uvhub)
 | |
| {
 | |
| 	int node, b;
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		b = uv_node_to_blade_id(node);
 | |
| 		if (uvhub == b)
 | |
| 			return node;
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine the apicid of the first cpu on a uvhub.
 | |
|  */
 | |
| static int __init uvhub_to_first_apicid(int uvhub)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_present_cpu(cpu)
 | |
| 		if (uvhub == uv_cpu_to_blade_id(cpu))
 | |
| 			return per_cpu(x86_cpu_to_apicid, cpu);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a software acknowledge hardware resource by clearing its Pending
 | |
|  * bit. This will return a reply to the sender.
 | |
|  * If the message has timed out, a reply has already been sent by the
 | |
|  * hardware but the resource has not been released. In that case our
 | |
|  * clear of the Timeout bit (as well) will free the resource. No reply will
 | |
|  * be sent (the hardware will only do one reply per message).
 | |
|  */
 | |
| static void reply_to_message(struct msg_desc *mdp, struct bau_control *bcp,
 | |
| 						int do_acknowledge)
 | |
| {
 | |
| 	unsigned long dw;
 | |
| 	struct bau_pq_entry *msg;
 | |
| 
 | |
| 	msg = mdp->msg;
 | |
| 	if (!msg->canceled && do_acknowledge) {
 | |
| 		dw = (msg->swack_vec << UV_SW_ACK_NPENDING) | msg->swack_vec;
 | |
| 		write_mmr_sw_ack(dw);
 | |
| 	}
 | |
| 	msg->replied_to = 1;
 | |
| 	msg->swack_vec = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process the receipt of a RETRY message
 | |
|  */
 | |
| static void bau_process_retry_msg(struct msg_desc *mdp,
 | |
| 					struct bau_control *bcp)
 | |
| {
 | |
| 	int i;
 | |
| 	int cancel_count = 0;
 | |
| 	unsigned long msg_res;
 | |
| 	unsigned long mmr = 0;
 | |
| 	struct bau_pq_entry *msg = mdp->msg;
 | |
| 	struct bau_pq_entry *msg2;
 | |
| 	struct ptc_stats *stat = bcp->statp;
 | |
| 
 | |
| 	stat->d_retries++;
 | |
| 	/*
 | |
| 	 * cancel any message from msg+1 to the retry itself
 | |
| 	 */
 | |
| 	for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
 | |
| 		if (msg2 > mdp->queue_last)
 | |
| 			msg2 = mdp->queue_first;
 | |
| 		if (msg2 == msg)
 | |
| 			break;
 | |
| 
 | |
| 		/* same conditions for cancellation as do_reset */
 | |
| 		if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
 | |
| 		    (msg2->swack_vec) && ((msg2->swack_vec &
 | |
| 			msg->swack_vec) == 0) &&
 | |
| 		    (msg2->sending_cpu == msg->sending_cpu) &&
 | |
| 		    (msg2->msg_type != MSG_NOOP)) {
 | |
| 			mmr = read_mmr_sw_ack();
 | |
| 			msg_res = msg2->swack_vec;
 | |
| 			/*
 | |
| 			 * This is a message retry; clear the resources held
 | |
| 			 * by the previous message only if they timed out.
 | |
| 			 * If it has not timed out we have an unexpected
 | |
| 			 * situation to report.
 | |
| 			 */
 | |
| 			if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
 | |
| 				unsigned long mr;
 | |
| 				/*
 | |
| 				 * Is the resource timed out?
 | |
| 				 * Make everyone ignore the cancelled message.
 | |
| 				 */
 | |
| 				msg2->canceled = 1;
 | |
| 				stat->d_canceled++;
 | |
| 				cancel_count++;
 | |
| 				mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
 | |
| 				write_mmr_sw_ack(mr);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if (!cancel_count)
 | |
| 		stat->d_nocanceled++;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do all the things a cpu should do for a TLB shootdown message.
 | |
|  * Other cpu's may come here at the same time for this message.
 | |
|  */
 | |
| static void bau_process_message(struct msg_desc *mdp, struct bau_control *bcp,
 | |
| 						int do_acknowledge)
 | |
| {
 | |
| 	short socket_ack_count = 0;
 | |
| 	short *sp;
 | |
| 	struct atomic_short *asp;
 | |
| 	struct ptc_stats *stat = bcp->statp;
 | |
| 	struct bau_pq_entry *msg = mdp->msg;
 | |
| 	struct bau_control *smaster = bcp->socket_master;
 | |
| 
 | |
| 	/*
 | |
| 	 * This must be a normal message, or retry of a normal message
 | |
| 	 */
 | |
| 	if (msg->address == TLB_FLUSH_ALL) {
 | |
| 		local_flush_tlb();
 | |
| 		stat->d_alltlb++;
 | |
| 	} else {
 | |
| 		__flush_tlb_one(msg->address);
 | |
| 		stat->d_onetlb++;
 | |
| 	}
 | |
| 	stat->d_requestee++;
 | |
| 
 | |
| 	/*
 | |
| 	 * One cpu on each uvhub has the additional job on a RETRY
 | |
| 	 * of releasing the resource held by the message that is
 | |
| 	 * being retried.  That message is identified by sending
 | |
| 	 * cpu number.
 | |
| 	 */
 | |
| 	if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
 | |
| 		bau_process_retry_msg(mdp, bcp);
 | |
| 
 | |
| 	/*
 | |
| 	 * This is a swack message, so we have to reply to it.
 | |
| 	 * Count each responding cpu on the socket. This avoids
 | |
| 	 * pinging the count's cache line back and forth between
 | |
| 	 * the sockets.
 | |
| 	 */
 | |
| 	sp = &smaster->socket_acknowledge_count[mdp->msg_slot];
 | |
| 	asp = (struct atomic_short *)sp;
 | |
| 	socket_ack_count = atom_asr(1, asp);
 | |
| 	if (socket_ack_count == bcp->cpus_in_socket) {
 | |
| 		int msg_ack_count;
 | |
| 		/*
 | |
| 		 * Both sockets dump their completed count total into
 | |
| 		 * the message's count.
 | |
| 		 */
 | |
| 		*sp = 0;
 | |
| 		asp = (struct atomic_short *)&msg->acknowledge_count;
 | |
| 		msg_ack_count = atom_asr(socket_ack_count, asp);
 | |
| 
 | |
| 		if (msg_ack_count == bcp->cpus_in_uvhub) {
 | |
| 			/*
 | |
| 			 * All cpus in uvhub saw it; reply
 | |
| 			 * (unless we are in the UV2 workaround)
 | |
| 			 */
 | |
| 			reply_to_message(mdp, bcp, do_acknowledge);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine the first cpu on a pnode.
 | |
|  */
 | |
| static int pnode_to_first_cpu(int pnode, struct bau_control *smaster)
 | |
| {
 | |
| 	int cpu;
 | |
| 	struct hub_and_pnode *hpp;
 | |
| 
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		hpp = &smaster->thp[cpu];
 | |
| 		if (pnode == hpp->pnode)
 | |
| 			return cpu;
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Last resort when we get a large number of destination timeouts is
 | |
|  * to clear resources held by a given cpu.
 | |
|  * Do this with IPI so that all messages in the BAU message queue
 | |
|  * can be identified by their nonzero swack_vec field.
 | |
|  *
 | |
|  * This is entered for a single cpu on the uvhub.
 | |
|  * The sender want's this uvhub to free a specific message's
 | |
|  * swack resources.
 | |
|  */
 | |
| static void do_reset(void *ptr)
 | |
| {
 | |
| 	int i;
 | |
| 	struct bau_control *bcp = &per_cpu(bau_control, smp_processor_id());
 | |
| 	struct reset_args *rap = (struct reset_args *)ptr;
 | |
| 	struct bau_pq_entry *msg;
 | |
| 	struct ptc_stats *stat = bcp->statp;
 | |
| 
 | |
| 	stat->d_resets++;
 | |
| 	/*
 | |
| 	 * We're looking for the given sender, and
 | |
| 	 * will free its swack resource.
 | |
| 	 * If all cpu's finally responded after the timeout, its
 | |
| 	 * message 'replied_to' was set.
 | |
| 	 */
 | |
| 	for (msg = bcp->queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
 | |
| 		unsigned long msg_res;
 | |
| 		/* do_reset: same conditions for cancellation as
 | |
| 		   bau_process_retry_msg() */
 | |
| 		if ((msg->replied_to == 0) &&
 | |
| 		    (msg->canceled == 0) &&
 | |
| 		    (msg->sending_cpu == rap->sender) &&
 | |
| 		    (msg->swack_vec) &&
 | |
| 		    (msg->msg_type != MSG_NOOP)) {
 | |
| 			unsigned long mmr;
 | |
| 			unsigned long mr;
 | |
| 			/*
 | |
| 			 * make everyone else ignore this message
 | |
| 			 */
 | |
| 			msg->canceled = 1;
 | |
| 			/*
 | |
| 			 * only reset the resource if it is still pending
 | |
| 			 */
 | |
| 			mmr = read_mmr_sw_ack();
 | |
| 			msg_res = msg->swack_vec;
 | |
| 			mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
 | |
| 			if (mmr & msg_res) {
 | |
| 				stat->d_rcanceled++;
 | |
| 				write_mmr_sw_ack(mr);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use IPI to get all target uvhubs to release resources held by
 | |
|  * a given sending cpu number.
 | |
|  */
 | |
| static void reset_with_ipi(struct pnmask *distribution, struct bau_control *bcp)
 | |
| {
 | |
| 	int pnode;
 | |
| 	int apnode;
 | |
| 	int maskbits;
 | |
| 	int sender = bcp->cpu;
 | |
| 	cpumask_t *mask = bcp->uvhub_master->cpumask;
 | |
| 	struct bau_control *smaster = bcp->socket_master;
 | |
| 	struct reset_args reset_args;
 | |
| 
 | |
| 	reset_args.sender = sender;
 | |
| 	cpus_clear(*mask);
 | |
| 	/* find a single cpu for each uvhub in this distribution mask */
 | |
| 	maskbits = sizeof(struct pnmask) * BITSPERBYTE;
 | |
| 	/* each bit is a pnode relative to the partition base pnode */
 | |
| 	for (pnode = 0; pnode < maskbits; pnode++) {
 | |
| 		int cpu;
 | |
| 		if (!bau_uvhub_isset(pnode, distribution))
 | |
| 			continue;
 | |
| 		apnode = pnode + bcp->partition_base_pnode;
 | |
| 		cpu = pnode_to_first_cpu(apnode, smaster);
 | |
| 		cpu_set(cpu, *mask);
 | |
| 	}
 | |
| 
 | |
| 	/* IPI all cpus; preemption is already disabled */
 | |
| 	smp_call_function_many(mask, do_reset, (void *)&reset_args, 1);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Not to be confused with cycles_2_ns() from tsc.c; this gives a relative
 | |
|  * number, not an absolute. It converts a duration in cycles to a duration in
 | |
|  * ns.
 | |
|  */
 | |
| static inline unsigned long long cycles_2_ns(unsigned long long cyc)
 | |
| {
 | |
| 	struct cyc2ns_data *data = cyc2ns_read_begin();
 | |
| 	unsigned long long ns;
 | |
| 
 | |
| 	ns = mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
 | |
| 
 | |
| 	cyc2ns_read_end(data);
 | |
| 	return ns;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The reverse of the above; converts a duration in ns to a duration in cycles.
 | |
|  */
 | |
| static inline unsigned long long ns_2_cycles(unsigned long long ns)
 | |
| {
 | |
| 	struct cyc2ns_data *data = cyc2ns_read_begin();
 | |
| 	unsigned long long cyc;
 | |
| 
 | |
| 	cyc = (ns << data->cyc2ns_shift) / data->cyc2ns_mul;
 | |
| 
 | |
| 	cyc2ns_read_end(data);
 | |
| 	return cyc;
 | |
| }
 | |
| 
 | |
| static inline unsigned long cycles_2_us(unsigned long long cyc)
 | |
| {
 | |
| 	return cycles_2_ns(cyc) / NSEC_PER_USEC;
 | |
| }
 | |
| 
 | |
| static inline cycles_t sec_2_cycles(unsigned long sec)
 | |
| {
 | |
| 	return ns_2_cycles(sec * NSEC_PER_SEC);
 | |
| }
 | |
| 
 | |
| static inline unsigned long long usec_2_cycles(unsigned long usec)
 | |
| {
 | |
| 	return ns_2_cycles(usec * NSEC_PER_USEC);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * wait for all cpus on this hub to finish their sends and go quiet
 | |
|  * leaves uvhub_quiesce set so that no new broadcasts are started by
 | |
|  * bau_flush_send_and_wait()
 | |
|  */
 | |
| static inline void quiesce_local_uvhub(struct bau_control *hmaster)
 | |
| {
 | |
| 	atom_asr(1, (struct atomic_short *)&hmaster->uvhub_quiesce);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mark this quiet-requestor as done
 | |
|  */
 | |
| static inline void end_uvhub_quiesce(struct bau_control *hmaster)
 | |
| {
 | |
| 	atom_asr(-1, (struct atomic_short *)&hmaster->uvhub_quiesce);
 | |
| }
 | |
| 
 | |
| static unsigned long uv1_read_status(unsigned long mmr_offset, int right_shift)
 | |
| {
 | |
| 	unsigned long descriptor_status;
 | |
| 
 | |
| 	descriptor_status = uv_read_local_mmr(mmr_offset);
 | |
| 	descriptor_status >>= right_shift;
 | |
| 	descriptor_status &= UV_ACT_STATUS_MASK;
 | |
| 	return descriptor_status;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wait for completion of a broadcast software ack message
 | |
|  * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
 | |
|  */
 | |
| static int uv1_wait_completion(struct bau_desc *bau_desc,
 | |
| 				unsigned long mmr_offset, int right_shift,
 | |
| 				struct bau_control *bcp, long try)
 | |
| {
 | |
| 	unsigned long descriptor_status;
 | |
| 	cycles_t ttm;
 | |
| 	struct ptc_stats *stat = bcp->statp;
 | |
| 
 | |
| 	descriptor_status = uv1_read_status(mmr_offset, right_shift);
 | |
| 	/* spin on the status MMR, waiting for it to go idle */
 | |
| 	while ((descriptor_status != DS_IDLE)) {
 | |
| 		/*
 | |
| 		 * Our software ack messages may be blocked because
 | |
| 		 * there are no swack resources available.  As long
 | |
| 		 * as none of them has timed out hardware will NACK
 | |
| 		 * our message and its state will stay IDLE.
 | |
| 		 */
 | |
| 		if (descriptor_status == DS_SOURCE_TIMEOUT) {
 | |
| 			stat->s_stimeout++;
 | |
| 			return FLUSH_GIVEUP;
 | |
| 		} else if (descriptor_status == DS_DESTINATION_TIMEOUT) {
 | |
| 			stat->s_dtimeout++;
 | |
| 			ttm = get_cycles();
 | |
| 
 | |
| 			/*
 | |
| 			 * Our retries may be blocked by all destination
 | |
| 			 * swack resources being consumed, and a timeout
 | |
| 			 * pending.  In that case hardware returns the
 | |
| 			 * ERROR that looks like a destination timeout.
 | |
| 			 */
 | |
| 			if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
 | |
| 				bcp->conseccompletes = 0;
 | |
| 				return FLUSH_RETRY_PLUGGED;
 | |
| 			}
 | |
| 
 | |
| 			bcp->conseccompletes = 0;
 | |
| 			return FLUSH_RETRY_TIMEOUT;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * descriptor_status is still BUSY
 | |
| 			 */
 | |
| 			cpu_relax();
 | |
| 		}
 | |
| 		descriptor_status = uv1_read_status(mmr_offset, right_shift);
 | |
| 	}
 | |
| 	bcp->conseccompletes++;
 | |
| 	return FLUSH_COMPLETE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * UV2 could have an extra bit of status in the ACTIVATION_STATUS_2 register.
 | |
|  * But not currently used.
 | |
|  */
 | |
| static unsigned long uv2_3_read_status(unsigned long offset, int rshft, int desc)
 | |
| {
 | |
| 	unsigned long descriptor_status;
 | |
| 
 | |
| 	descriptor_status =
 | |
| 		((read_lmmr(offset) >> rshft) & UV_ACT_STATUS_MASK) << 1;
 | |
| 	return descriptor_status;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return whether the status of the descriptor that is normally used for this
 | |
|  * cpu (the one indexed by its hub-relative cpu number) is busy.
 | |
|  * The status of the original 32 descriptors is always reflected in the 64
 | |
|  * bits of UVH_LB_BAU_SB_ACTIVATION_STATUS_0.
 | |
|  * The bit provided by the activation_status_2 register is irrelevant to
 | |
|  * the status if it is only being tested for busy or not busy.
 | |
|  */
 | |
| int normal_busy(struct bau_control *bcp)
 | |
| {
 | |
| 	int cpu = bcp->uvhub_cpu;
 | |
| 	int mmr_offset;
 | |
| 	int right_shift;
 | |
| 
 | |
| 	mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
 | |
| 	right_shift = cpu * UV_ACT_STATUS_SIZE;
 | |
| 	return (((((read_lmmr(mmr_offset) >> right_shift) &
 | |
| 				UV_ACT_STATUS_MASK)) << 1) == UV2H_DESC_BUSY);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Entered when a bau descriptor has gone into a permanent busy wait because
 | |
|  * of a hardware bug.
 | |
|  * Workaround the bug.
 | |
|  */
 | |
| int handle_uv2_busy(struct bau_control *bcp)
 | |
| {
 | |
| 	struct ptc_stats *stat = bcp->statp;
 | |
| 
 | |
| 	stat->s_uv2_wars++;
 | |
| 	bcp->busy = 1;
 | |
| 	return FLUSH_GIVEUP;
 | |
| }
 | |
| 
 | |
| static int uv2_3_wait_completion(struct bau_desc *bau_desc,
 | |
| 				unsigned long mmr_offset, int right_shift,
 | |
| 				struct bau_control *bcp, long try)
 | |
| {
 | |
| 	unsigned long descriptor_stat;
 | |
| 	cycles_t ttm;
 | |
| 	int desc = bcp->uvhub_cpu;
 | |
| 	long busy_reps = 0;
 | |
| 	struct ptc_stats *stat = bcp->statp;
 | |
| 
 | |
| 	descriptor_stat = uv2_3_read_status(mmr_offset, right_shift, desc);
 | |
| 
 | |
| 	/* spin on the status MMR, waiting for it to go idle */
 | |
| 	while (descriptor_stat != UV2H_DESC_IDLE) {
 | |
| 		if ((descriptor_stat == UV2H_DESC_SOURCE_TIMEOUT)) {
 | |
| 			/*
 | |
| 			 * A h/w bug on the destination side may
 | |
| 			 * have prevented the message being marked
 | |
| 			 * pending, thus it doesn't get replied to
 | |
| 			 * and gets continually nacked until it times
 | |
| 			 * out with a SOURCE_TIMEOUT.
 | |
| 			 */
 | |
| 			stat->s_stimeout++;
 | |
| 			return FLUSH_GIVEUP;
 | |
| 		} else if (descriptor_stat == UV2H_DESC_DEST_TIMEOUT) {
 | |
| 			ttm = get_cycles();
 | |
| 
 | |
| 			/*
 | |
| 			 * Our retries may be blocked by all destination
 | |
| 			 * swack resources being consumed, and a timeout
 | |
| 			 * pending.  In that case hardware returns the
 | |
| 			 * ERROR that looks like a destination timeout.
 | |
| 			 * Without using the extended status we have to
 | |
| 			 * deduce from the short time that this was a
 | |
| 			 * strong nack.
 | |
| 			 */
 | |
| 			if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
 | |
| 				bcp->conseccompletes = 0;
 | |
| 				stat->s_plugged++;
 | |
| 				/* FLUSH_RETRY_PLUGGED causes hang on boot */
 | |
| 				return FLUSH_GIVEUP;
 | |
| 			}
 | |
| 			stat->s_dtimeout++;
 | |
| 			bcp->conseccompletes = 0;
 | |
| 			/* FLUSH_RETRY_TIMEOUT causes hang on boot */
 | |
| 			return FLUSH_GIVEUP;
 | |
| 		} else {
 | |
| 			busy_reps++;
 | |
| 			if (busy_reps > 1000000) {
 | |
| 				/* not to hammer on the clock */
 | |
| 				busy_reps = 0;
 | |
| 				ttm = get_cycles();
 | |
| 				if ((ttm - bcp->send_message) > bcp->timeout_interval)
 | |
| 					return handle_uv2_busy(bcp);
 | |
| 			}
 | |
| 			/*
 | |
| 			 * descriptor_stat is still BUSY
 | |
| 			 */
 | |
| 			cpu_relax();
 | |
| 		}
 | |
| 		descriptor_stat = uv2_3_read_status(mmr_offset, right_shift, desc);
 | |
| 	}
 | |
| 	bcp->conseccompletes++;
 | |
| 	return FLUSH_COMPLETE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There are 2 status registers; each and array[32] of 2 bits. Set up for
 | |
|  * which register to read and position in that register based on cpu in
 | |
|  * current hub.
 | |
|  */
 | |
| static int wait_completion(struct bau_desc *bau_desc, struct bau_control *bcp, long try)
 | |
| {
 | |
| 	int right_shift;
 | |
| 	unsigned long mmr_offset;
 | |
| 	int desc = bcp->uvhub_cpu;
 | |
| 
 | |
| 	if (desc < UV_CPUS_PER_AS) {
 | |
| 		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
 | |
| 		right_shift = desc * UV_ACT_STATUS_SIZE;
 | |
| 	} else {
 | |
| 		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
 | |
| 		right_shift = ((desc - UV_CPUS_PER_AS) * UV_ACT_STATUS_SIZE);
 | |
| 	}
 | |
| 
 | |
| 	if (bcp->uvhub_version == 1)
 | |
| 		return uv1_wait_completion(bau_desc, mmr_offset, right_shift, bcp, try);
 | |
| 	else
 | |
| 		return uv2_3_wait_completion(bau_desc, mmr_offset, right_shift, bcp, try);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Our retries are blocked by all destination sw ack resources being
 | |
|  * in use, and a timeout is pending. In that case hardware immediately
 | |
|  * returns the ERROR that looks like a destination timeout.
 | |
|  */
 | |
| static void destination_plugged(struct bau_desc *bau_desc,
 | |
| 			struct bau_control *bcp,
 | |
| 			struct bau_control *hmaster, struct ptc_stats *stat)
 | |
| {
 | |
| 	udelay(bcp->plugged_delay);
 | |
| 	bcp->plugged_tries++;
 | |
| 
 | |
| 	if (bcp->plugged_tries >= bcp->plugsb4reset) {
 | |
| 		bcp->plugged_tries = 0;
 | |
| 
 | |
| 		quiesce_local_uvhub(hmaster);
 | |
| 
 | |
| 		spin_lock(&hmaster->queue_lock);
 | |
| 		reset_with_ipi(&bau_desc->distribution, bcp);
 | |
| 		spin_unlock(&hmaster->queue_lock);
 | |
| 
 | |
| 		end_uvhub_quiesce(hmaster);
 | |
| 
 | |
| 		bcp->ipi_attempts++;
 | |
| 		stat->s_resets_plug++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void destination_timeout(struct bau_desc *bau_desc,
 | |
| 			struct bau_control *bcp, struct bau_control *hmaster,
 | |
| 			struct ptc_stats *stat)
 | |
| {
 | |
| 	hmaster->max_concurr = 1;
 | |
| 	bcp->timeout_tries++;
 | |
| 	if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
 | |
| 		bcp->timeout_tries = 0;
 | |
| 
 | |
| 		quiesce_local_uvhub(hmaster);
 | |
| 
 | |
| 		spin_lock(&hmaster->queue_lock);
 | |
| 		reset_with_ipi(&bau_desc->distribution, bcp);
 | |
| 		spin_unlock(&hmaster->queue_lock);
 | |
| 
 | |
| 		end_uvhub_quiesce(hmaster);
 | |
| 
 | |
| 		bcp->ipi_attempts++;
 | |
| 		stat->s_resets_timeout++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stop all cpus on a uvhub from using the BAU for a period of time.
 | |
|  * This is reversed by check_enable.
 | |
|  */
 | |
| static void disable_for_period(struct bau_control *bcp, struct ptc_stats *stat)
 | |
| {
 | |
| 	int tcpu;
 | |
| 	struct bau_control *tbcp;
 | |
| 	struct bau_control *hmaster;
 | |
| 	cycles_t tm1;
 | |
| 
 | |
| 	hmaster = bcp->uvhub_master;
 | |
| 	spin_lock(&hmaster->disable_lock);
 | |
| 	if (!bcp->baudisabled) {
 | |
| 		stat->s_bau_disabled++;
 | |
| 		tm1 = get_cycles();
 | |
| 		for_each_present_cpu(tcpu) {
 | |
| 			tbcp = &per_cpu(bau_control, tcpu);
 | |
| 			if (tbcp->uvhub_master == hmaster) {
 | |
| 				tbcp->baudisabled = 1;
 | |
| 				tbcp->set_bau_on_time =
 | |
| 					tm1 + bcp->disabled_period;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&hmaster->disable_lock);
 | |
| }
 | |
| 
 | |
| static void count_max_concurr(int stat, struct bau_control *bcp,
 | |
| 				struct bau_control *hmaster)
 | |
| {
 | |
| 	bcp->plugged_tries = 0;
 | |
| 	bcp->timeout_tries = 0;
 | |
| 	if (stat != FLUSH_COMPLETE)
 | |
| 		return;
 | |
| 	if (bcp->conseccompletes <= bcp->complete_threshold)
 | |
| 		return;
 | |
| 	if (hmaster->max_concurr >= hmaster->max_concurr_const)
 | |
| 		return;
 | |
| 	hmaster->max_concurr++;
 | |
| }
 | |
| 
 | |
| static void record_send_stats(cycles_t time1, cycles_t time2,
 | |
| 		struct bau_control *bcp, struct ptc_stats *stat,
 | |
| 		int completion_status, int try)
 | |
| {
 | |
| 	cycles_t elapsed;
 | |
| 
 | |
| 	if (time2 > time1) {
 | |
| 		elapsed = time2 - time1;
 | |
| 		stat->s_time += elapsed;
 | |
| 
 | |
| 		if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
 | |
| 			bcp->period_requests++;
 | |
| 			bcp->period_time += elapsed;
 | |
| 			if ((elapsed > congested_cycles) &&
 | |
| 			    (bcp->period_requests > bcp->cong_reps) &&
 | |
| 			    ((bcp->period_time / bcp->period_requests) >
 | |
| 							congested_cycles)) {
 | |
| 				stat->s_congested++;
 | |
| 				disable_for_period(bcp, stat);
 | |
| 			}
 | |
| 		}
 | |
| 	} else
 | |
| 		stat->s_requestor--;
 | |
| 
 | |
| 	if (completion_status == FLUSH_COMPLETE && try > 1)
 | |
| 		stat->s_retriesok++;
 | |
| 	else if (completion_status == FLUSH_GIVEUP) {
 | |
| 		stat->s_giveup++;
 | |
| 		if (get_cycles() > bcp->period_end)
 | |
| 			bcp->period_giveups = 0;
 | |
| 		bcp->period_giveups++;
 | |
| 		if (bcp->period_giveups == 1)
 | |
| 			bcp->period_end = get_cycles() + bcp->disabled_period;
 | |
| 		if (bcp->period_giveups > bcp->giveup_limit) {
 | |
| 			disable_for_period(bcp, stat);
 | |
| 			stat->s_giveuplimit++;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Because of a uv1 hardware bug only a limited number of concurrent
 | |
|  * requests can be made.
 | |
|  */
 | |
| static void uv1_throttle(struct bau_control *hmaster, struct ptc_stats *stat)
 | |
| {
 | |
| 	spinlock_t *lock = &hmaster->uvhub_lock;
 | |
| 	atomic_t *v;
 | |
| 
 | |
| 	v = &hmaster->active_descriptor_count;
 | |
| 	if (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr)) {
 | |
| 		stat->s_throttles++;
 | |
| 		do {
 | |
| 			cpu_relax();
 | |
| 		} while (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle the completion status of a message send.
 | |
|  */
 | |
| static void handle_cmplt(int completion_status, struct bau_desc *bau_desc,
 | |
| 			struct bau_control *bcp, struct bau_control *hmaster,
 | |
| 			struct ptc_stats *stat)
 | |
| {
 | |
| 	if (completion_status == FLUSH_RETRY_PLUGGED)
 | |
| 		destination_plugged(bau_desc, bcp, hmaster, stat);
 | |
| 	else if (completion_status == FLUSH_RETRY_TIMEOUT)
 | |
| 		destination_timeout(bau_desc, bcp, hmaster, stat);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Send a broadcast and wait for it to complete.
 | |
|  *
 | |
|  * The flush_mask contains the cpus the broadcast is to be sent to including
 | |
|  * cpus that are on the local uvhub.
 | |
|  *
 | |
|  * Returns 0 if all flushing represented in the mask was done.
 | |
|  * Returns 1 if it gives up entirely and the original cpu mask is to be
 | |
|  * returned to the kernel.
 | |
|  */
 | |
| int uv_flush_send_and_wait(struct cpumask *flush_mask, struct bau_control *bcp,
 | |
| 	struct bau_desc *bau_desc)
 | |
| {
 | |
| 	int seq_number = 0;
 | |
| 	int completion_stat = 0;
 | |
| 	int uv1 = 0;
 | |
| 	long try = 0;
 | |
| 	unsigned long index;
 | |
| 	cycles_t time1;
 | |
| 	cycles_t time2;
 | |
| 	struct ptc_stats *stat = bcp->statp;
 | |
| 	struct bau_control *hmaster = bcp->uvhub_master;
 | |
| 	struct uv1_bau_msg_header *uv1_hdr = NULL;
 | |
| 	struct uv2_3_bau_msg_header *uv2_3_hdr = NULL;
 | |
| 
 | |
| 	if (bcp->uvhub_version == 1) {
 | |
| 		uv1 = 1;
 | |
| 		uv1_throttle(hmaster, stat);
 | |
| 	}
 | |
| 
 | |
| 	while (hmaster->uvhub_quiesce)
 | |
| 		cpu_relax();
 | |
| 
 | |
| 	time1 = get_cycles();
 | |
| 	if (uv1)
 | |
| 		uv1_hdr = &bau_desc->header.uv1_hdr;
 | |
| 	else
 | |
| 		/* uv2 and uv3 */
 | |
| 		uv2_3_hdr = &bau_desc->header.uv2_3_hdr;
 | |
| 
 | |
| 	do {
 | |
| 		if (try == 0) {
 | |
| 			if (uv1)
 | |
| 				uv1_hdr->msg_type = MSG_REGULAR;
 | |
| 			else
 | |
| 				uv2_3_hdr->msg_type = MSG_REGULAR;
 | |
| 			seq_number = bcp->message_number++;
 | |
| 		} else {
 | |
| 			if (uv1)
 | |
| 				uv1_hdr->msg_type = MSG_RETRY;
 | |
| 			else
 | |
| 				uv2_3_hdr->msg_type = MSG_RETRY;
 | |
| 			stat->s_retry_messages++;
 | |
| 		}
 | |
| 
 | |
| 		if (uv1)
 | |
| 			uv1_hdr->sequence = seq_number;
 | |
| 		else
 | |
| 			uv2_3_hdr->sequence = seq_number;
 | |
| 		index = (1UL << AS_PUSH_SHIFT) | bcp->uvhub_cpu;
 | |
| 		bcp->send_message = get_cycles();
 | |
| 
 | |
| 		write_mmr_activation(index);
 | |
| 
 | |
| 		try++;
 | |
| 		completion_stat = wait_completion(bau_desc, bcp, try);
 | |
| 
 | |
| 		handle_cmplt(completion_stat, bau_desc, bcp, hmaster, stat);
 | |
| 
 | |
| 		if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
 | |
| 			bcp->ipi_attempts = 0;
 | |
| 			stat->s_overipilimit++;
 | |
| 			completion_stat = FLUSH_GIVEUP;
 | |
| 			break;
 | |
| 		}
 | |
| 		cpu_relax();
 | |
| 	} while ((completion_stat == FLUSH_RETRY_PLUGGED) ||
 | |
| 		 (completion_stat == FLUSH_RETRY_TIMEOUT));
 | |
| 
 | |
| 	time2 = get_cycles();
 | |
| 
 | |
| 	count_max_concurr(completion_stat, bcp, hmaster);
 | |
| 
 | |
| 	while (hmaster->uvhub_quiesce)
 | |
| 		cpu_relax();
 | |
| 
 | |
| 	atomic_dec(&hmaster->active_descriptor_count);
 | |
| 
 | |
| 	record_send_stats(time1, time2, bcp, stat, completion_stat, try);
 | |
| 
 | |
| 	if (completion_stat == FLUSH_GIVEUP)
 | |
| 		/* FLUSH_GIVEUP will fall back to using IPI's for tlb flush */
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The BAU is disabled for this uvhub. When the disabled time period has
 | |
|  * expired re-enable it.
 | |
|  * Return 0 if it is re-enabled for all cpus on this uvhub.
 | |
|  */
 | |
| static int check_enable(struct bau_control *bcp, struct ptc_stats *stat)
 | |
| {
 | |
| 	int tcpu;
 | |
| 	struct bau_control *tbcp;
 | |
| 	struct bau_control *hmaster;
 | |
| 
 | |
| 	hmaster = bcp->uvhub_master;
 | |
| 	spin_lock(&hmaster->disable_lock);
 | |
| 	if (bcp->baudisabled && (get_cycles() >= bcp->set_bau_on_time)) {
 | |
| 		stat->s_bau_reenabled++;
 | |
| 		for_each_present_cpu(tcpu) {
 | |
| 			tbcp = &per_cpu(bau_control, tcpu);
 | |
| 			if (tbcp->uvhub_master == hmaster) {
 | |
| 				tbcp->baudisabled = 0;
 | |
| 				tbcp->period_requests = 0;
 | |
| 				tbcp->period_time = 0;
 | |
| 				tbcp->period_giveups = 0;
 | |
| 			}
 | |
| 		}
 | |
| 		spin_unlock(&hmaster->disable_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	spin_unlock(&hmaster->disable_lock);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static void record_send_statistics(struct ptc_stats *stat, int locals, int hubs,
 | |
| 				int remotes, struct bau_desc *bau_desc)
 | |
| {
 | |
| 	stat->s_requestor++;
 | |
| 	stat->s_ntargcpu += remotes + locals;
 | |
| 	stat->s_ntargremotes += remotes;
 | |
| 	stat->s_ntarglocals += locals;
 | |
| 
 | |
| 	/* uvhub statistics */
 | |
| 	hubs = bau_uvhub_weight(&bau_desc->distribution);
 | |
| 	if (locals) {
 | |
| 		stat->s_ntarglocaluvhub++;
 | |
| 		stat->s_ntargremoteuvhub += (hubs - 1);
 | |
| 	} else
 | |
| 		stat->s_ntargremoteuvhub += hubs;
 | |
| 
 | |
| 	stat->s_ntarguvhub += hubs;
 | |
| 
 | |
| 	if (hubs >= 16)
 | |
| 		stat->s_ntarguvhub16++;
 | |
| 	else if (hubs >= 8)
 | |
| 		stat->s_ntarguvhub8++;
 | |
| 	else if (hubs >= 4)
 | |
| 		stat->s_ntarguvhub4++;
 | |
| 	else if (hubs >= 2)
 | |
| 		stat->s_ntarguvhub2++;
 | |
| 	else
 | |
| 		stat->s_ntarguvhub1++;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Translate a cpu mask to the uvhub distribution mask in the BAU
 | |
|  * activation descriptor.
 | |
|  */
 | |
| static int set_distrib_bits(struct cpumask *flush_mask, struct bau_control *bcp,
 | |
| 			struct bau_desc *bau_desc, int *localsp, int *remotesp)
 | |
| {
 | |
| 	int cpu;
 | |
| 	int pnode;
 | |
| 	int cnt = 0;
 | |
| 	struct hub_and_pnode *hpp;
 | |
| 
 | |
| 	for_each_cpu(cpu, flush_mask) {
 | |
| 		/*
 | |
| 		 * The distribution vector is a bit map of pnodes, relative
 | |
| 		 * to the partition base pnode (and the partition base nasid
 | |
| 		 * in the header).
 | |
| 		 * Translate cpu to pnode and hub using a local memory array.
 | |
| 		 */
 | |
| 		hpp = &bcp->socket_master->thp[cpu];
 | |
| 		pnode = hpp->pnode - bcp->partition_base_pnode;
 | |
| 		bau_uvhub_set(pnode, &bau_desc->distribution);
 | |
| 		cnt++;
 | |
| 		if (hpp->uvhub == bcp->uvhub)
 | |
| 			(*localsp)++;
 | |
| 		else
 | |
| 			(*remotesp)++;
 | |
| 	}
 | |
| 	if (!cnt)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * globally purge translation cache of a virtual address or all TLB's
 | |
|  * @cpumask: mask of all cpu's in which the address is to be removed
 | |
|  * @mm: mm_struct containing virtual address range
 | |
|  * @start: start virtual address to be removed from TLB
 | |
|  * @end: end virtual address to be remove from TLB
 | |
|  * @cpu: the current cpu
 | |
|  *
 | |
|  * This is the entry point for initiating any UV global TLB shootdown.
 | |
|  *
 | |
|  * Purges the translation caches of all specified processors of the given
 | |
|  * virtual address, or purges all TLB's on specified processors.
 | |
|  *
 | |
|  * The caller has derived the cpumask from the mm_struct.  This function
 | |
|  * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
 | |
|  *
 | |
|  * The cpumask is converted into a uvhubmask of the uvhubs containing
 | |
|  * those cpus.
 | |
|  *
 | |
|  * Note that this function should be called with preemption disabled.
 | |
|  *
 | |
|  * Returns NULL if all remote flushing was done.
 | |
|  * Returns pointer to cpumask if some remote flushing remains to be
 | |
|  * done.  The returned pointer is valid till preemption is re-enabled.
 | |
|  */
 | |
| const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
 | |
| 						struct mm_struct *mm,
 | |
| 						unsigned long start,
 | |
| 						unsigned long end,
 | |
| 						unsigned int cpu)
 | |
| {
 | |
| 	int locals = 0;
 | |
| 	int remotes = 0;
 | |
| 	int hubs = 0;
 | |
| 	struct bau_desc *bau_desc;
 | |
| 	struct cpumask *flush_mask;
 | |
| 	struct ptc_stats *stat;
 | |
| 	struct bau_control *bcp;
 | |
| 	unsigned long descriptor_status;
 | |
| 	unsigned long status;
 | |
| 
 | |
| 	bcp = &per_cpu(bau_control, cpu);
 | |
| 
 | |
| 	if (bcp->nobau)
 | |
| 		return cpumask;
 | |
| 
 | |
| 	stat = bcp->statp;
 | |
| 	stat->s_enters++;
 | |
| 
 | |
| 	if (bcp->busy) {
 | |
| 		descriptor_status =
 | |
| 			read_lmmr(UVH_LB_BAU_SB_ACTIVATION_STATUS_0);
 | |
| 		status = ((descriptor_status >> (bcp->uvhub_cpu *
 | |
| 			UV_ACT_STATUS_SIZE)) & UV_ACT_STATUS_MASK) << 1;
 | |
| 		if (status == UV2H_DESC_BUSY)
 | |
| 			return cpumask;
 | |
| 		bcp->busy = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* bau was disabled due to slow response */
 | |
| 	if (bcp->baudisabled) {
 | |
| 		if (check_enable(bcp, stat)) {
 | |
| 			stat->s_ipifordisabled++;
 | |
| 			return cpumask;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Each sending cpu has a per-cpu mask which it fills from the caller's
 | |
| 	 * cpu mask.  All cpus are converted to uvhubs and copied to the
 | |
| 	 * activation descriptor.
 | |
| 	 */
 | |
| 	flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
 | |
| 	/* don't actually do a shootdown of the local cpu */
 | |
| 	cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
 | |
| 
 | |
| 	if (cpu_isset(cpu, *cpumask))
 | |
| 		stat->s_ntargself++;
 | |
| 
 | |
| 	bau_desc = bcp->descriptor_base;
 | |
| 	bau_desc += (ITEMS_PER_DESC * bcp->uvhub_cpu);
 | |
| 	bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
 | |
| 	if (set_distrib_bits(flush_mask, bcp, bau_desc, &locals, &remotes))
 | |
| 		return NULL;
 | |
| 
 | |
| 	record_send_statistics(stat, locals, hubs, remotes, bau_desc);
 | |
| 
 | |
| 	if (!end || (end - start) <= PAGE_SIZE)
 | |
| 		bau_desc->payload.address = start;
 | |
| 	else
 | |
| 		bau_desc->payload.address = TLB_FLUSH_ALL;
 | |
| 	bau_desc->payload.sending_cpu = cpu;
 | |
| 	/*
 | |
| 	 * uv_flush_send_and_wait returns 0 if all cpu's were messaged,
 | |
| 	 * or 1 if it gave up and the original cpumask should be returned.
 | |
| 	 */
 | |
| 	if (!uv_flush_send_and_wait(flush_mask, bcp, bau_desc))
 | |
| 		return NULL;
 | |
| 	else
 | |
| 		return cpumask;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Search the message queue for any 'other' unprocessed message with the
 | |
|  * same software acknowledge resource bit vector as the 'msg' message.
 | |
|  */
 | |
| struct bau_pq_entry *find_another_by_swack(struct bau_pq_entry *msg,
 | |
| 					   struct bau_control *bcp)
 | |
| {
 | |
| 	struct bau_pq_entry *msg_next = msg + 1;
 | |
| 	unsigned char swack_vec = msg->swack_vec;
 | |
| 
 | |
| 	if (msg_next > bcp->queue_last)
 | |
| 		msg_next = bcp->queue_first;
 | |
| 	while (msg_next != msg) {
 | |
| 		if ((msg_next->canceled == 0) && (msg_next->replied_to == 0) &&
 | |
| 				(msg_next->swack_vec == swack_vec))
 | |
| 			return msg_next;
 | |
| 		msg_next++;
 | |
| 		if (msg_next > bcp->queue_last)
 | |
| 			msg_next = bcp->queue_first;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * UV2 needs to work around a bug in which an arriving message has not
 | |
|  * set a bit in the UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE register.
 | |
|  * Such a message must be ignored.
 | |
|  */
 | |
| void process_uv2_message(struct msg_desc *mdp, struct bau_control *bcp)
 | |
| {
 | |
| 	unsigned long mmr_image;
 | |
| 	unsigned char swack_vec;
 | |
| 	struct bau_pq_entry *msg = mdp->msg;
 | |
| 	struct bau_pq_entry *other_msg;
 | |
| 
 | |
| 	mmr_image = read_mmr_sw_ack();
 | |
| 	swack_vec = msg->swack_vec;
 | |
| 
 | |
| 	if ((swack_vec & mmr_image) == 0) {
 | |
| 		/*
 | |
| 		 * This message was assigned a swack resource, but no
 | |
| 		 * reserved acknowlegment is pending.
 | |
| 		 * The bug has prevented this message from setting the MMR.
 | |
| 		 */
 | |
| 		/*
 | |
| 		 * Some message has set the MMR 'pending' bit; it might have
 | |
| 		 * been another message.  Look for that message.
 | |
| 		 */
 | |
| 		other_msg = find_another_by_swack(msg, bcp);
 | |
| 		if (other_msg) {
 | |
| 			/*
 | |
| 			 * There is another. Process this one but do not
 | |
| 			 * ack it.
 | |
| 			 */
 | |
| 			bau_process_message(mdp, bcp, 0);
 | |
| 			/*
 | |
| 			 * Let the natural processing of that other message
 | |
| 			 * acknowledge it. Don't get the processing of sw_ack's
 | |
| 			 * out of order.
 | |
| 			 */
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Either the MMR shows this one pending a reply or there is no
 | |
| 	 * other message using this sw_ack, so it is safe to acknowledge it.
 | |
| 	 */
 | |
| 	bau_process_message(mdp, bcp, 1);
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The BAU message interrupt comes here. (registered by set_intr_gate)
 | |
|  * See entry_64.S
 | |
|  *
 | |
|  * We received a broadcast assist message.
 | |
|  *
 | |
|  * Interrupts are disabled; this interrupt could represent
 | |
|  * the receipt of several messages.
 | |
|  *
 | |
|  * All cores/threads on this hub get this interrupt.
 | |
|  * The last one to see it does the software ack.
 | |
|  * (the resource will not be freed until noninterruptable cpus see this
 | |
|  *  interrupt; hardware may timeout the s/w ack and reply ERROR)
 | |
|  */
 | |
| void uv_bau_message_interrupt(struct pt_regs *regs)
 | |
| {
 | |
| 	int count = 0;
 | |
| 	cycles_t time_start;
 | |
| 	struct bau_pq_entry *msg;
 | |
| 	struct bau_control *bcp;
 | |
| 	struct ptc_stats *stat;
 | |
| 	struct msg_desc msgdesc;
 | |
| 
 | |
| 	ack_APIC_irq();
 | |
| 	time_start = get_cycles();
 | |
| 
 | |
| 	bcp = &per_cpu(bau_control, smp_processor_id());
 | |
| 	stat = bcp->statp;
 | |
| 
 | |
| 	msgdesc.queue_first = bcp->queue_first;
 | |
| 	msgdesc.queue_last = bcp->queue_last;
 | |
| 
 | |
| 	msg = bcp->bau_msg_head;
 | |
| 	while (msg->swack_vec) {
 | |
| 		count++;
 | |
| 
 | |
| 		msgdesc.msg_slot = msg - msgdesc.queue_first;
 | |
| 		msgdesc.msg = msg;
 | |
| 		if (bcp->uvhub_version == 2)
 | |
| 			process_uv2_message(&msgdesc, bcp);
 | |
| 		else
 | |
| 			/* no error workaround for uv1 or uv3 */
 | |
| 			bau_process_message(&msgdesc, bcp, 1);
 | |
| 
 | |
| 		msg++;
 | |
| 		if (msg > msgdesc.queue_last)
 | |
| 			msg = msgdesc.queue_first;
 | |
| 		bcp->bau_msg_head = msg;
 | |
| 	}
 | |
| 	stat->d_time += (get_cycles() - time_start);
 | |
| 	if (!count)
 | |
| 		stat->d_nomsg++;
 | |
| 	else if (count > 1)
 | |
| 		stat->d_multmsg++;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Each target uvhub (i.e. a uvhub that has cpu's) needs to have
 | |
|  * shootdown message timeouts enabled.  The timeout does not cause
 | |
|  * an interrupt, but causes an error message to be returned to
 | |
|  * the sender.
 | |
|  */
 | |
| static void __init enable_timeouts(void)
 | |
| {
 | |
| 	int uvhub;
 | |
| 	int nuvhubs;
 | |
| 	int pnode;
 | |
| 	unsigned long mmr_image;
 | |
| 
 | |
| 	nuvhubs = uv_num_possible_blades();
 | |
| 
 | |
| 	for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
 | |
| 		if (!uv_blade_nr_possible_cpus(uvhub))
 | |
| 			continue;
 | |
| 
 | |
| 		pnode = uv_blade_to_pnode(uvhub);
 | |
| 		mmr_image = read_mmr_misc_control(pnode);
 | |
| 		/*
 | |
| 		 * Set the timeout period and then lock it in, in three
 | |
| 		 * steps; captures and locks in the period.
 | |
| 		 *
 | |
| 		 * To program the period, the SOFT_ACK_MODE must be off.
 | |
| 		 */
 | |
| 		mmr_image &= ~(1L << SOFTACK_MSHIFT);
 | |
| 		write_mmr_misc_control(pnode, mmr_image);
 | |
| 		/*
 | |
| 		 * Set the 4-bit period.
 | |
| 		 */
 | |
| 		mmr_image &= ~((unsigned long)0xf << SOFTACK_PSHIFT);
 | |
| 		mmr_image |= (SOFTACK_TIMEOUT_PERIOD << SOFTACK_PSHIFT);
 | |
| 		write_mmr_misc_control(pnode, mmr_image);
 | |
| 		/*
 | |
| 		 * UV1:
 | |
| 		 * Subsequent reversals of the timebase bit (3) cause an
 | |
| 		 * immediate timeout of one or all INTD resources as
 | |
| 		 * indicated in bits 2:0 (7 causes all of them to timeout).
 | |
| 		 */
 | |
| 		mmr_image |= (1L << SOFTACK_MSHIFT);
 | |
| 		if (is_uv2_hub()) {
 | |
| 			/* do not touch the legacy mode bit */
 | |
| 			/* hw bug workaround; do not use extended status */
 | |
| 			mmr_image &= ~(1L << UV2_EXT_SHFT);
 | |
| 		} else if (is_uv3_hub()) {
 | |
| 			mmr_image &= ~(1L << PREFETCH_HINT_SHFT);
 | |
| 			mmr_image |= (1L << SB_STATUS_SHFT);
 | |
| 		}
 | |
| 		write_mmr_misc_control(pnode, mmr_image);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void *ptc_seq_start(struct seq_file *file, loff_t *offset)
 | |
| {
 | |
| 	if (*offset < num_possible_cpus())
 | |
| 		return offset;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void *ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
 | |
| {
 | |
| 	(*offset)++;
 | |
| 	if (*offset < num_possible_cpus())
 | |
| 		return offset;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void ptc_seq_stop(struct seq_file *file, void *data)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Display the statistics thru /proc/sgi_uv/ptc_statistics
 | |
|  * 'data' points to the cpu number
 | |
|  * Note: see the descriptions in stat_description[].
 | |
|  */
 | |
| static int ptc_seq_show(struct seq_file *file, void *data)
 | |
| {
 | |
| 	struct ptc_stats *stat;
 | |
| 	struct bau_control *bcp;
 | |
| 	int cpu;
 | |
| 
 | |
| 	cpu = *(loff_t *)data;
 | |
| 	if (!cpu) {
 | |
| 		seq_printf(file,
 | |
| 		 "# cpu bauoff sent stime self locals remotes ncpus localhub ");
 | |
| 		seq_printf(file,
 | |
| 			"remotehub numuvhubs numuvhubs16 numuvhubs8 ");
 | |
| 		seq_printf(file,
 | |
| 			"numuvhubs4 numuvhubs2 numuvhubs1 dto snacks retries ");
 | |
| 		seq_printf(file,
 | |
| 			"rok resetp resett giveup sto bz throt disable ");
 | |
| 		seq_printf(file,
 | |
| 			"enable wars warshw warwaits enters ipidis plugged ");
 | |
| 		seq_printf(file,
 | |
| 			"ipiover glim cong swack recv rtime all one mult ");
 | |
| 		seq_printf(file,
 | |
| 			"none retry canc nocan reset rcan\n");
 | |
| 	}
 | |
| 	if (cpu < num_possible_cpus() && cpu_online(cpu)) {
 | |
| 		bcp = &per_cpu(bau_control, cpu);
 | |
| 		stat = bcp->statp;
 | |
| 		/* source side statistics */
 | |
| 		seq_printf(file,
 | |
| 			"cpu %d %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
 | |
| 			   cpu, bcp->nobau, stat->s_requestor,
 | |
| 			   cycles_2_us(stat->s_time),
 | |
| 			   stat->s_ntargself, stat->s_ntarglocals,
 | |
| 			   stat->s_ntargremotes, stat->s_ntargcpu,
 | |
| 			   stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
 | |
| 			   stat->s_ntarguvhub, stat->s_ntarguvhub16);
 | |
| 		seq_printf(file, "%ld %ld %ld %ld %ld %ld ",
 | |
| 			   stat->s_ntarguvhub8, stat->s_ntarguvhub4,
 | |
| 			   stat->s_ntarguvhub2, stat->s_ntarguvhub1,
 | |
| 			   stat->s_dtimeout, stat->s_strongnacks);
 | |
| 		seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
 | |
| 			   stat->s_retry_messages, stat->s_retriesok,
 | |
| 			   stat->s_resets_plug, stat->s_resets_timeout,
 | |
| 			   stat->s_giveup, stat->s_stimeout,
 | |
| 			   stat->s_busy, stat->s_throttles);
 | |
| 		seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
 | |
| 			   stat->s_bau_disabled, stat->s_bau_reenabled,
 | |
| 			   stat->s_uv2_wars, stat->s_uv2_wars_hw,
 | |
| 			   stat->s_uv2_war_waits, stat->s_enters,
 | |
| 			   stat->s_ipifordisabled, stat->s_plugged,
 | |
| 			   stat->s_overipilimit, stat->s_giveuplimit,
 | |
| 			   stat->s_congested);
 | |
| 
 | |
| 		/* destination side statistics */
 | |
| 		seq_printf(file,
 | |
| 			"%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n",
 | |
| 			   read_gmmr_sw_ack(uv_cpu_to_pnode(cpu)),
 | |
| 			   stat->d_requestee, cycles_2_us(stat->d_time),
 | |
| 			   stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
 | |
| 			   stat->d_nomsg, stat->d_retries, stat->d_canceled,
 | |
| 			   stat->d_nocanceled, stat->d_resets,
 | |
| 			   stat->d_rcanceled);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Display the tunables thru debugfs
 | |
|  */
 | |
| static ssize_t tunables_read(struct file *file, char __user *userbuf,
 | |
| 				size_t count, loff_t *ppos)
 | |
| {
 | |
| 	char *buf;
 | |
| 	int ret;
 | |
| 
 | |
| 	buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d %d\n",
 | |
| 		"max_concur plugged_delay plugsb4reset timeoutsb4reset",
 | |
| 		"ipi_reset_limit complete_threshold congested_response_us",
 | |
| 		"congested_reps disabled_period giveup_limit",
 | |
| 		max_concurr, plugged_delay, plugsb4reset,
 | |
| 		timeoutsb4reset, ipi_reset_limit, complete_threshold,
 | |
| 		congested_respns_us, congested_reps, disabled_period,
 | |
| 		giveup_limit);
 | |
| 
 | |
| 	if (!buf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
 | |
| 	kfree(buf);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * handle a write to /proc/sgi_uv/ptc_statistics
 | |
|  * -1: reset the statistics
 | |
|  *  0: display meaning of the statistics
 | |
|  */
 | |
| static ssize_t ptc_proc_write(struct file *file, const char __user *user,
 | |
| 				size_t count, loff_t *data)
 | |
| {
 | |
| 	int cpu;
 | |
| 	int i;
 | |
| 	int elements;
 | |
| 	long input_arg;
 | |
| 	char optstr[64];
 | |
| 	struct ptc_stats *stat;
 | |
| 
 | |
| 	if (count == 0 || count > sizeof(optstr))
 | |
| 		return -EINVAL;
 | |
| 	if (copy_from_user(optstr, user, count))
 | |
| 		return -EFAULT;
 | |
| 	optstr[count - 1] = '\0';
 | |
| 
 | |
| 	if (!strcmp(optstr, "on")) {
 | |
| 		set_bau_on();
 | |
| 		return count;
 | |
| 	} else if (!strcmp(optstr, "off")) {
 | |
| 		set_bau_off();
 | |
| 		return count;
 | |
| 	}
 | |
| 
 | |
| 	if (kstrtol(optstr, 10, &input_arg) < 0) {
 | |
| 		printk(KERN_DEBUG "%s is invalid\n", optstr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (input_arg == 0) {
 | |
| 		elements = ARRAY_SIZE(stat_description);
 | |
| 		printk(KERN_DEBUG "# cpu:      cpu number\n");
 | |
| 		printk(KERN_DEBUG "Sender statistics:\n");
 | |
| 		for (i = 0; i < elements; i++)
 | |
| 			printk(KERN_DEBUG "%s\n", stat_description[i]);
 | |
| 	} else if (input_arg == -1) {
 | |
| 		for_each_present_cpu(cpu) {
 | |
| 			stat = &per_cpu(ptcstats, cpu);
 | |
| 			memset(stat, 0, sizeof(struct ptc_stats));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static int local_atoi(const char *name)
 | |
| {
 | |
| 	int val = 0;
 | |
| 
 | |
| 	for (;; name++) {
 | |
| 		switch (*name) {
 | |
| 		case '0' ... '9':
 | |
| 			val = 10*val+(*name-'0');
 | |
| 			break;
 | |
| 		default:
 | |
| 			return val;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Parse the values written to /sys/kernel/debug/sgi_uv/bau_tunables.
 | |
|  * Zero values reset them to defaults.
 | |
|  */
 | |
| static int parse_tunables_write(struct bau_control *bcp, char *instr,
 | |
| 				int count)
 | |
| {
 | |
| 	char *p;
 | |
| 	char *q;
 | |
| 	int cnt = 0;
 | |
| 	int val;
 | |
| 	int e = ARRAY_SIZE(tunables);
 | |
| 
 | |
| 	p = instr + strspn(instr, WHITESPACE);
 | |
| 	q = p;
 | |
| 	for (; *p; p = q + strspn(q, WHITESPACE)) {
 | |
| 		q = p + strcspn(p, WHITESPACE);
 | |
| 		cnt++;
 | |
| 		if (q == p)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (cnt != e) {
 | |
| 		printk(KERN_INFO "bau tunable error: should be %d values\n", e);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	p = instr + strspn(instr, WHITESPACE);
 | |
| 	q = p;
 | |
| 	for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
 | |
| 		q = p + strcspn(p, WHITESPACE);
 | |
| 		val = local_atoi(p);
 | |
| 		switch (cnt) {
 | |
| 		case 0:
 | |
| 			if (val == 0) {
 | |
| 				max_concurr = MAX_BAU_CONCURRENT;
 | |
| 				max_concurr_const = MAX_BAU_CONCURRENT;
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (val < 1 || val > bcp->cpus_in_uvhub) {
 | |
| 				printk(KERN_DEBUG
 | |
| 				"Error: BAU max concurrent %d is invalid\n",
 | |
| 				val);
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			max_concurr = val;
 | |
| 			max_concurr_const = val;
 | |
| 			continue;
 | |
| 		default:
 | |
| 			if (val == 0)
 | |
| 				*tunables[cnt].tunp = tunables[cnt].deflt;
 | |
| 			else
 | |
| 				*tunables[cnt].tunp = val;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (q == p)
 | |
| 			break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle a write to debugfs. (/sys/kernel/debug/sgi_uv/bau_tunables)
 | |
|  */
 | |
| static ssize_t tunables_write(struct file *file, const char __user *user,
 | |
| 				size_t count, loff_t *data)
 | |
| {
 | |
| 	int cpu;
 | |
| 	int ret;
 | |
| 	char instr[100];
 | |
| 	struct bau_control *bcp;
 | |
| 
 | |
| 	if (count == 0 || count > sizeof(instr)-1)
 | |
| 		return -EINVAL;
 | |
| 	if (copy_from_user(instr, user, count))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	instr[count] = '\0';
 | |
| 
 | |
| 	cpu = get_cpu();
 | |
| 	bcp = &per_cpu(bau_control, cpu);
 | |
| 	ret = parse_tunables_write(bcp, instr, count);
 | |
| 	put_cpu();
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		bcp = &per_cpu(bau_control, cpu);
 | |
| 		bcp->max_concurr =		max_concurr;
 | |
| 		bcp->max_concurr_const =	max_concurr;
 | |
| 		bcp->plugged_delay =		plugged_delay;
 | |
| 		bcp->plugsb4reset =		plugsb4reset;
 | |
| 		bcp->timeoutsb4reset =		timeoutsb4reset;
 | |
| 		bcp->ipi_reset_limit =		ipi_reset_limit;
 | |
| 		bcp->complete_threshold =	complete_threshold;
 | |
| 		bcp->cong_response_us =		congested_respns_us;
 | |
| 		bcp->cong_reps =		congested_reps;
 | |
| 		bcp->disabled_period =		sec_2_cycles(disabled_period);
 | |
| 		bcp->giveup_limit =		giveup_limit;
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static const struct seq_operations uv_ptc_seq_ops = {
 | |
| 	.start		= ptc_seq_start,
 | |
| 	.next		= ptc_seq_next,
 | |
| 	.stop		= ptc_seq_stop,
 | |
| 	.show		= ptc_seq_show
 | |
| };
 | |
| 
 | |
| static int ptc_proc_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return seq_open(file, &uv_ptc_seq_ops);
 | |
| }
 | |
| 
 | |
| static int tunables_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct file_operations proc_uv_ptc_operations = {
 | |
| 	.open		= ptc_proc_open,
 | |
| 	.read		= seq_read,
 | |
| 	.write		= ptc_proc_write,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= seq_release,
 | |
| };
 | |
| 
 | |
| static const struct file_operations tunables_fops = {
 | |
| 	.open		= tunables_open,
 | |
| 	.read		= tunables_read,
 | |
| 	.write		= tunables_write,
 | |
| 	.llseek		= default_llseek,
 | |
| };
 | |
| 
 | |
| static int __init uv_ptc_init(void)
 | |
| {
 | |
| 	struct proc_dir_entry *proc_uv_ptc;
 | |
| 
 | |
| 	if (!is_uv_system())
 | |
| 		return 0;
 | |
| 
 | |
| 	proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
 | |
| 				  &proc_uv_ptc_operations);
 | |
| 	if (!proc_uv_ptc) {
 | |
| 		printk(KERN_ERR "unable to create %s proc entry\n",
 | |
| 		       UV_PTC_BASENAME);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
 | |
| 	if (!tunables_dir) {
 | |
| 		printk(KERN_ERR "unable to create debugfs directory %s\n",
 | |
| 		       UV_BAU_TUNABLES_DIR);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600,
 | |
| 					tunables_dir, NULL, &tunables_fops);
 | |
| 	if (!tunables_file) {
 | |
| 		printk(KERN_ERR "unable to create debugfs file %s\n",
 | |
| 		       UV_BAU_TUNABLES_FILE);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize the sending side's sending buffers.
 | |
|  */
 | |
| static void activation_descriptor_init(int node, int pnode, int base_pnode)
 | |
| {
 | |
| 	int i;
 | |
| 	int cpu;
 | |
| 	int uv1 = 0;
 | |
| 	unsigned long gpa;
 | |
| 	unsigned long m;
 | |
| 	unsigned long n;
 | |
| 	size_t dsize;
 | |
| 	struct bau_desc *bau_desc;
 | |
| 	struct bau_desc *bd2;
 | |
| 	struct uv1_bau_msg_header *uv1_hdr;
 | |
| 	struct uv2_3_bau_msg_header *uv2_3_hdr;
 | |
| 	struct bau_control *bcp;
 | |
| 
 | |
| 	/*
 | |
| 	 * each bau_desc is 64 bytes; there are 8 (ITEMS_PER_DESC)
 | |
| 	 * per cpu; and one per cpu on the uvhub (ADP_SZ)
 | |
| 	 */
 | |
| 	dsize = sizeof(struct bau_desc) * ADP_SZ * ITEMS_PER_DESC;
 | |
| 	bau_desc = kmalloc_node(dsize, GFP_KERNEL, node);
 | |
| 	BUG_ON(!bau_desc);
 | |
| 
 | |
| 	gpa = uv_gpa(bau_desc);
 | |
| 	n = uv_gpa_to_gnode(gpa);
 | |
| 	m = uv_gpa_to_offset(gpa);
 | |
| 	if (is_uv1_hub())
 | |
| 		uv1 = 1;
 | |
| 
 | |
| 	/* the 14-bit pnode */
 | |
| 	write_mmr_descriptor_base(pnode, (n << UV_DESC_PSHIFT | m));
 | |
| 	/*
 | |
| 	 * Initializing all 8 (ITEMS_PER_DESC) descriptors for each
 | |
| 	 * cpu even though we only use the first one; one descriptor can
 | |
| 	 * describe a broadcast to 256 uv hubs.
 | |
| 	 */
 | |
| 	for (i = 0, bd2 = bau_desc; i < (ADP_SZ * ITEMS_PER_DESC); i++, bd2++) {
 | |
| 		memset(bd2, 0, sizeof(struct bau_desc));
 | |
| 		if (uv1) {
 | |
| 			uv1_hdr = &bd2->header.uv1_hdr;
 | |
| 			uv1_hdr->swack_flag =	1;
 | |
| 			/*
 | |
| 			 * The base_dest_nasid set in the message header
 | |
| 			 * is the nasid of the first uvhub in the partition.
 | |
| 			 * The bit map will indicate destination pnode numbers
 | |
| 			 * relative to that base. They may not be consecutive
 | |
| 			 * if nasid striding is being used.
 | |
| 			 */
 | |
| 			uv1_hdr->base_dest_nasid =
 | |
| 						UV_PNODE_TO_NASID(base_pnode);
 | |
| 			uv1_hdr->dest_subnodeid =	UV_LB_SUBNODEID;
 | |
| 			uv1_hdr->command =		UV_NET_ENDPOINT_INTD;
 | |
| 			uv1_hdr->int_both =		1;
 | |
| 			/*
 | |
| 			 * all others need to be set to zero:
 | |
| 			 *   fairness chaining multilevel count replied_to
 | |
| 			 */
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * BIOS uses legacy mode, but uv2 and uv3 hardware always
 | |
| 			 * uses native mode for selective broadcasts.
 | |
| 			 */
 | |
| 			uv2_3_hdr = &bd2->header.uv2_3_hdr;
 | |
| 			uv2_3_hdr->swack_flag =	1;
 | |
| 			uv2_3_hdr->base_dest_nasid =
 | |
| 						UV_PNODE_TO_NASID(base_pnode);
 | |
| 			uv2_3_hdr->dest_subnodeid =	UV_LB_SUBNODEID;
 | |
| 			uv2_3_hdr->command =		UV_NET_ENDPOINT_INTD;
 | |
| 		}
 | |
| 	}
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
 | |
| 			continue;
 | |
| 		bcp = &per_cpu(bau_control, cpu);
 | |
| 		bcp->descriptor_base = bau_desc;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * initialize the destination side's receiving buffers
 | |
|  * entered for each uvhub in the partition
 | |
|  * - node is first node (kernel memory notion) on the uvhub
 | |
|  * - pnode is the uvhub's physical identifier
 | |
|  */
 | |
| static void pq_init(int node, int pnode)
 | |
| {
 | |
| 	int cpu;
 | |
| 	size_t plsize;
 | |
| 	char *cp;
 | |
| 	void *vp;
 | |
| 	unsigned long pn;
 | |
| 	unsigned long first;
 | |
| 	unsigned long pn_first;
 | |
| 	unsigned long last;
 | |
| 	struct bau_pq_entry *pqp;
 | |
| 	struct bau_control *bcp;
 | |
| 
 | |
| 	plsize = (DEST_Q_SIZE + 1) * sizeof(struct bau_pq_entry);
 | |
| 	vp = kmalloc_node(plsize, GFP_KERNEL, node);
 | |
| 	pqp = (struct bau_pq_entry *)vp;
 | |
| 	BUG_ON(!pqp);
 | |
| 
 | |
| 	cp = (char *)pqp + 31;
 | |
| 	pqp = (struct bau_pq_entry *)(((unsigned long)cp >> 5) << 5);
 | |
| 
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		if (pnode != uv_cpu_to_pnode(cpu))
 | |
| 			continue;
 | |
| 		/* for every cpu on this pnode: */
 | |
| 		bcp = &per_cpu(bau_control, cpu);
 | |
| 		bcp->queue_first	= pqp;
 | |
| 		bcp->bau_msg_head	= pqp;
 | |
| 		bcp->queue_last		= pqp + (DEST_Q_SIZE - 1);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * need the gnode of where the memory was really allocated
 | |
| 	 */
 | |
| 	pn = uv_gpa_to_gnode(uv_gpa(pqp));
 | |
| 	first = uv_physnodeaddr(pqp);
 | |
| 	pn_first = ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) | first;
 | |
| 	last = uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1));
 | |
| 	write_mmr_payload_first(pnode, pn_first);
 | |
| 	write_mmr_payload_tail(pnode, first);
 | |
| 	write_mmr_payload_last(pnode, last);
 | |
| 	write_gmmr_sw_ack(pnode, 0xffffUL);
 | |
| 
 | |
| 	/* in effect, all msg_type's are set to MSG_NOOP */
 | |
| 	memset(pqp, 0, sizeof(struct bau_pq_entry) * DEST_Q_SIZE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialization of each UV hub's structures
 | |
|  */
 | |
| static void __init init_uvhub(int uvhub, int vector, int base_pnode)
 | |
| {
 | |
| 	int node;
 | |
| 	int pnode;
 | |
| 	unsigned long apicid;
 | |
| 
 | |
| 	node = uvhub_to_first_node(uvhub);
 | |
| 	pnode = uv_blade_to_pnode(uvhub);
 | |
| 
 | |
| 	activation_descriptor_init(node, pnode, base_pnode);
 | |
| 
 | |
| 	pq_init(node, pnode);
 | |
| 	/*
 | |
| 	 * The below initialization can't be in firmware because the
 | |
| 	 * messaging IRQ will be determined by the OS.
 | |
| 	 */
 | |
| 	apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
 | |
| 	write_mmr_data_config(pnode, ((apicid << 32) | vector));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We will set BAU_MISC_CONTROL with a timeout period.
 | |
|  * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
 | |
|  * So the destination timeout period has to be calculated from them.
 | |
|  */
 | |
| static int calculate_destination_timeout(void)
 | |
| {
 | |
| 	unsigned long mmr_image;
 | |
| 	int mult1;
 | |
| 	int mult2;
 | |
| 	int index;
 | |
| 	int base;
 | |
| 	int ret;
 | |
| 	unsigned long ts_ns;
 | |
| 
 | |
| 	if (is_uv1_hub()) {
 | |
| 		mult1 = SOFTACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
 | |
| 		mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
 | |
| 		index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
 | |
| 		mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
 | |
| 		mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
 | |
| 		ts_ns = timeout_base_ns[index];
 | |
| 		ts_ns *= (mult1 * mult2);
 | |
| 		ret = ts_ns / 1000;
 | |
| 	} else {
 | |
| 		/* same destination timeout for uv2 and uv3 */
 | |
| 		/* 4 bits  0/1 for 10/80us base, 3 bits of multiplier */
 | |
| 		mmr_image = uv_read_local_mmr(UVH_LB_BAU_MISC_CONTROL);
 | |
| 		mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT;
 | |
| 		if (mmr_image & (1L << UV2_ACK_UNITS_SHFT))
 | |
| 			base = 80;
 | |
| 		else
 | |
| 			base = 10;
 | |
| 		mult1 = mmr_image & UV2_ACK_MASK;
 | |
| 		ret = mult1 * base;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __init init_per_cpu_tunables(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	struct bau_control *bcp;
 | |
| 
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		bcp = &per_cpu(bau_control, cpu);
 | |
| 		bcp->baudisabled		= 0;
 | |
| 		if (nobau)
 | |
| 			bcp->nobau		= 1;
 | |
| 		bcp->statp			= &per_cpu(ptcstats, cpu);
 | |
| 		/* time interval to catch a hardware stay-busy bug */
 | |
| 		bcp->timeout_interval		= usec_2_cycles(2*timeout_us);
 | |
| 		bcp->max_concurr		= max_concurr;
 | |
| 		bcp->max_concurr_const		= max_concurr;
 | |
| 		bcp->plugged_delay		= plugged_delay;
 | |
| 		bcp->plugsb4reset		= plugsb4reset;
 | |
| 		bcp->timeoutsb4reset		= timeoutsb4reset;
 | |
| 		bcp->ipi_reset_limit		= ipi_reset_limit;
 | |
| 		bcp->complete_threshold		= complete_threshold;
 | |
| 		bcp->cong_response_us		= congested_respns_us;
 | |
| 		bcp->cong_reps			= congested_reps;
 | |
| 		bcp->disabled_period =		sec_2_cycles(disabled_period);
 | |
| 		bcp->giveup_limit =		giveup_limit;
 | |
| 		spin_lock_init(&bcp->queue_lock);
 | |
| 		spin_lock_init(&bcp->uvhub_lock);
 | |
| 		spin_lock_init(&bcp->disable_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan all cpus to collect blade and socket summaries.
 | |
|  */
 | |
| static int __init get_cpu_topology(int base_pnode,
 | |
| 					struct uvhub_desc *uvhub_descs,
 | |
| 					unsigned char *uvhub_mask)
 | |
| {
 | |
| 	int cpu;
 | |
| 	int pnode;
 | |
| 	int uvhub;
 | |
| 	int socket;
 | |
| 	struct bau_control *bcp;
 | |
| 	struct uvhub_desc *bdp;
 | |
| 	struct socket_desc *sdp;
 | |
| 
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		bcp = &per_cpu(bau_control, cpu);
 | |
| 
 | |
| 		memset(bcp, 0, sizeof(struct bau_control));
 | |
| 
 | |
| 		pnode = uv_cpu_hub_info(cpu)->pnode;
 | |
| 		if ((pnode - base_pnode) >= UV_DISTRIBUTION_SIZE) {
 | |
| 			printk(KERN_EMERG
 | |
| 				"cpu %d pnode %d-%d beyond %d; BAU disabled\n",
 | |
| 				cpu, pnode, base_pnode, UV_DISTRIBUTION_SIZE);
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		bcp->osnode = cpu_to_node(cpu);
 | |
| 		bcp->partition_base_pnode = base_pnode;
 | |
| 
 | |
| 		uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
 | |
| 		*(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
 | |
| 		bdp = &uvhub_descs[uvhub];
 | |
| 
 | |
| 		bdp->num_cpus++;
 | |
| 		bdp->uvhub = uvhub;
 | |
| 		bdp->pnode = pnode;
 | |
| 
 | |
| 		/* kludge: 'assuming' one node per socket, and assuming that
 | |
| 		   disabling a socket just leaves a gap in node numbers */
 | |
| 		socket = bcp->osnode & 1;
 | |
| 		bdp->socket_mask |= (1 << socket);
 | |
| 		sdp = &bdp->socket[socket];
 | |
| 		sdp->cpu_number[sdp->num_cpus] = cpu;
 | |
| 		sdp->num_cpus++;
 | |
| 		if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
 | |
| 			printk(KERN_EMERG "%d cpus per socket invalid\n",
 | |
| 				sdp->num_cpus);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Each socket is to get a local array of pnodes/hubs.
 | |
|  */
 | |
| static void make_per_cpu_thp(struct bau_control *smaster)
 | |
| {
 | |
| 	int cpu;
 | |
| 	size_t hpsz = sizeof(struct hub_and_pnode) * num_possible_cpus();
 | |
| 
 | |
| 	smaster->thp = kmalloc_node(hpsz, GFP_KERNEL, smaster->osnode);
 | |
| 	memset(smaster->thp, 0, hpsz);
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		smaster->thp[cpu].pnode = uv_cpu_hub_info(cpu)->pnode;
 | |
| 		smaster->thp[cpu].uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Each uvhub is to get a local cpumask.
 | |
|  */
 | |
| static void make_per_hub_cpumask(struct bau_control *hmaster)
 | |
| {
 | |
| 	int sz = sizeof(cpumask_t);
 | |
| 
 | |
| 	hmaster->cpumask = kzalloc_node(sz, GFP_KERNEL, hmaster->osnode);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize all the per_cpu information for the cpu's on a given socket,
 | |
|  * given what has been gathered into the socket_desc struct.
 | |
|  * And reports the chosen hub and socket masters back to the caller.
 | |
|  */
 | |
| static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp,
 | |
| 			struct bau_control **smasterp,
 | |
| 			struct bau_control **hmasterp)
 | |
| {
 | |
| 	int i;
 | |
| 	int cpu;
 | |
| 	struct bau_control *bcp;
 | |
| 
 | |
| 	for (i = 0; i < sdp->num_cpus; i++) {
 | |
| 		cpu = sdp->cpu_number[i];
 | |
| 		bcp = &per_cpu(bau_control, cpu);
 | |
| 		bcp->cpu = cpu;
 | |
| 		if (i == 0) {
 | |
| 			*smasterp = bcp;
 | |
| 			if (!(*hmasterp))
 | |
| 				*hmasterp = bcp;
 | |
| 		}
 | |
| 		bcp->cpus_in_uvhub = bdp->num_cpus;
 | |
| 		bcp->cpus_in_socket = sdp->num_cpus;
 | |
| 		bcp->socket_master = *smasterp;
 | |
| 		bcp->uvhub = bdp->uvhub;
 | |
| 		if (is_uv1_hub())
 | |
| 			bcp->uvhub_version = 1;
 | |
| 		else if (is_uv2_hub())
 | |
| 			bcp->uvhub_version = 2;
 | |
| 		else if (is_uv3_hub())
 | |
| 			bcp->uvhub_version = 3;
 | |
| 		else {
 | |
| 			printk(KERN_EMERG "uvhub version not 1, 2 or 3\n");
 | |
| 			return 1;
 | |
| 		}
 | |
| 		bcp->uvhub_master = *hmasterp;
 | |
| 		bcp->uvhub_cpu = uv_cpu_hub_info(cpu)->blade_processor_id;
 | |
| 		if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
 | |
| 			printk(KERN_EMERG "%d cpus per uvhub invalid\n",
 | |
| 				bcp->uvhub_cpu);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Summarize the blade and socket topology into the per_cpu structures.
 | |
|  */
 | |
| static int __init summarize_uvhub_sockets(int nuvhubs,
 | |
| 			struct uvhub_desc *uvhub_descs,
 | |
| 			unsigned char *uvhub_mask)
 | |
| {
 | |
| 	int socket;
 | |
| 	int uvhub;
 | |
| 	unsigned short socket_mask;
 | |
| 
 | |
| 	for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
 | |
| 		struct uvhub_desc *bdp;
 | |
| 		struct bau_control *smaster = NULL;
 | |
| 		struct bau_control *hmaster = NULL;
 | |
| 
 | |
| 		if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
 | |
| 			continue;
 | |
| 
 | |
| 		bdp = &uvhub_descs[uvhub];
 | |
| 		socket_mask = bdp->socket_mask;
 | |
| 		socket = 0;
 | |
| 		while (socket_mask) {
 | |
| 			struct socket_desc *sdp;
 | |
| 			if ((socket_mask & 1)) {
 | |
| 				sdp = &bdp->socket[socket];
 | |
| 				if (scan_sock(sdp, bdp, &smaster, &hmaster))
 | |
| 					return 1;
 | |
| 				make_per_cpu_thp(smaster);
 | |
| 			}
 | |
| 			socket++;
 | |
| 			socket_mask = (socket_mask >> 1);
 | |
| 		}
 | |
| 		make_per_hub_cpumask(hmaster);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * initialize the bau_control structure for each cpu
 | |
|  */
 | |
| static int __init init_per_cpu(int nuvhubs, int base_part_pnode)
 | |
| {
 | |
| 	unsigned char *uvhub_mask;
 | |
| 	void *vp;
 | |
| 	struct uvhub_desc *uvhub_descs;
 | |
| 
 | |
| 	timeout_us = calculate_destination_timeout();
 | |
| 
 | |
| 	vp = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
 | |
| 	uvhub_descs = (struct uvhub_desc *)vp;
 | |
| 	memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
 | |
| 	uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
 | |
| 
 | |
| 	if (get_cpu_topology(base_part_pnode, uvhub_descs, uvhub_mask))
 | |
| 		goto fail;
 | |
| 
 | |
| 	if (summarize_uvhub_sockets(nuvhubs, uvhub_descs, uvhub_mask))
 | |
| 		goto fail;
 | |
| 
 | |
| 	kfree(uvhub_descs);
 | |
| 	kfree(uvhub_mask);
 | |
| 	init_per_cpu_tunables();
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	kfree(uvhub_descs);
 | |
| 	kfree(uvhub_mask);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialization of BAU-related structures
 | |
|  */
 | |
| static int __init uv_bau_init(void)
 | |
| {
 | |
| 	int uvhub;
 | |
| 	int pnode;
 | |
| 	int nuvhubs;
 | |
| 	int cur_cpu;
 | |
| 	int cpus;
 | |
| 	int vector;
 | |
| 	cpumask_var_t *mask;
 | |
| 
 | |
| 	if (!is_uv_system())
 | |
| 		return 0;
 | |
| 
 | |
| 	for_each_possible_cpu(cur_cpu) {
 | |
| 		mask = &per_cpu(uv_flush_tlb_mask, cur_cpu);
 | |
| 		zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cur_cpu));
 | |
| 	}
 | |
| 
 | |
| 	nuvhubs = uv_num_possible_blades();
 | |
| 	congested_cycles = usec_2_cycles(congested_respns_us);
 | |
| 
 | |
| 	uv_base_pnode = 0x7fffffff;
 | |
| 	for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
 | |
| 		cpus = uv_blade_nr_possible_cpus(uvhub);
 | |
| 		if (cpus && (uv_blade_to_pnode(uvhub) < uv_base_pnode))
 | |
| 			uv_base_pnode = uv_blade_to_pnode(uvhub);
 | |
| 	}
 | |
| 
 | |
| 	enable_timeouts();
 | |
| 
 | |
| 	if (init_per_cpu(nuvhubs, uv_base_pnode)) {
 | |
| 		set_bau_off();
 | |
| 		nobau_perm = 1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	vector = UV_BAU_MESSAGE;
 | |
| 	for_each_possible_blade(uvhub) {
 | |
| 		if (uv_blade_nr_possible_cpus(uvhub))
 | |
| 			init_uvhub(uvhub, vector, uv_base_pnode);
 | |
| 	}
 | |
| 
 | |
| 	alloc_intr_gate(vector, uv_bau_message_intr1);
 | |
| 
 | |
| 	for_each_possible_blade(uvhub) {
 | |
| 		if (uv_blade_nr_possible_cpus(uvhub)) {
 | |
| 			unsigned long val;
 | |
| 			unsigned long mmr;
 | |
| 			pnode = uv_blade_to_pnode(uvhub);
 | |
| 			/* INIT the bau */
 | |
| 			val = 1L << 63;
 | |
| 			write_gmmr_activation(pnode, val);
 | |
| 			mmr = 1; /* should be 1 to broadcast to both sockets */
 | |
| 			if (!is_uv1_hub())
 | |
| 				write_mmr_data_broadcast(pnode, mmr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| core_initcall(uv_bau_init);
 | |
| fs_initcall(uv_ptc_init);
 |