 e1802b065d
			
		
	
	
	e1802b065d
	
	
	
		
			
			Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
		
			
				
	
	
		
			1676 lines
		
	
	
	
		
			43 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1676 lines
		
	
	
	
		
			43 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Derived from "arch/i386/kernel/process.c"
 | |
|  *    Copyright (C) 1995  Linus Torvalds
 | |
|  *
 | |
|  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 | |
|  *  Paul Mackerras (paulus@cs.anu.edu.au)
 | |
|  *
 | |
|  *  PowerPC version
 | |
|  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or
 | |
|  *  modify it under the terms of the GNU General Public License
 | |
|  *  as published by the Free Software Foundation; either version
 | |
|  *  2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| #include <linux/errno.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/stddef.h>
 | |
| #include <linux/unistd.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/user.h>
 | |
| #include <linux/elf.h>
 | |
| #include <linux/prctl.h>
 | |
| #include <linux/init_task.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/kallsyms.h>
 | |
| #include <linux/mqueue.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <linux/utsname.h>
 | |
| #include <linux/ftrace.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/personality.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/hw_breakpoint.h>
 | |
| 
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/mmu.h>
 | |
| #include <asm/prom.h>
 | |
| #include <asm/machdep.h>
 | |
| #include <asm/time.h>
 | |
| #include <asm/runlatch.h>
 | |
| #include <asm/syscalls.h>
 | |
| #include <asm/switch_to.h>
 | |
| #include <asm/tm.h>
 | |
| #include <asm/debug.h>
 | |
| #ifdef CONFIG_PPC64
 | |
| #include <asm/firmware.h>
 | |
| #endif
 | |
| #include <asm/code-patching.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/kdebug.h>
 | |
| 
 | |
| /* Transactional Memory debug */
 | |
| #ifdef TM_DEBUG_SW
 | |
| #define TM_DEBUG(x...) printk(KERN_INFO x)
 | |
| #else
 | |
| #define TM_DEBUG(x...) do { } while(0)
 | |
| #endif
 | |
| 
 | |
| extern unsigned long _get_SP(void);
 | |
| 
 | |
| #ifndef CONFIG_SMP
 | |
| struct task_struct *last_task_used_math = NULL;
 | |
| struct task_struct *last_task_used_altivec = NULL;
 | |
| struct task_struct *last_task_used_vsx = NULL;
 | |
| struct task_struct *last_task_used_spe = NULL;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 | |
| void giveup_fpu_maybe_transactional(struct task_struct *tsk)
 | |
| {
 | |
| 	/*
 | |
| 	 * If we are saving the current thread's registers, and the
 | |
| 	 * thread is in a transactional state, set the TIF_RESTORE_TM
 | |
| 	 * bit so that we know to restore the registers before
 | |
| 	 * returning to userspace.
 | |
| 	 */
 | |
| 	if (tsk == current && tsk->thread.regs &&
 | |
| 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
 | |
| 	    !test_thread_flag(TIF_RESTORE_TM)) {
 | |
| 		tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
 | |
| 		set_thread_flag(TIF_RESTORE_TM);
 | |
| 	}
 | |
| 
 | |
| 	giveup_fpu(tsk);
 | |
| }
 | |
| 
 | |
| void giveup_altivec_maybe_transactional(struct task_struct *tsk)
 | |
| {
 | |
| 	/*
 | |
| 	 * If we are saving the current thread's registers, and the
 | |
| 	 * thread is in a transactional state, set the TIF_RESTORE_TM
 | |
| 	 * bit so that we know to restore the registers before
 | |
| 	 * returning to userspace.
 | |
| 	 */
 | |
| 	if (tsk == current && tsk->thread.regs &&
 | |
| 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
 | |
| 	    !test_thread_flag(TIF_RESTORE_TM)) {
 | |
| 		tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
 | |
| 		set_thread_flag(TIF_RESTORE_TM);
 | |
| 	}
 | |
| 
 | |
| 	giveup_altivec(tsk);
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define giveup_fpu_maybe_transactional(tsk)	giveup_fpu(tsk)
 | |
| #define giveup_altivec_maybe_transactional(tsk)	giveup_altivec(tsk)
 | |
| #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 | |
| 
 | |
| #ifdef CONFIG_PPC_FPU
 | |
| /*
 | |
|  * Make sure the floating-point register state in the
 | |
|  * the thread_struct is up to date for task tsk.
 | |
|  */
 | |
| void flush_fp_to_thread(struct task_struct *tsk)
 | |
| {
 | |
| 	if (tsk->thread.regs) {
 | |
| 		/*
 | |
| 		 * We need to disable preemption here because if we didn't,
 | |
| 		 * another process could get scheduled after the regs->msr
 | |
| 		 * test but before we have finished saving the FP registers
 | |
| 		 * to the thread_struct.  That process could take over the
 | |
| 		 * FPU, and then when we get scheduled again we would store
 | |
| 		 * bogus values for the remaining FP registers.
 | |
| 		 */
 | |
| 		preempt_disable();
 | |
| 		if (tsk->thread.regs->msr & MSR_FP) {
 | |
| #ifdef CONFIG_SMP
 | |
| 			/*
 | |
| 			 * This should only ever be called for current or
 | |
| 			 * for a stopped child process.  Since we save away
 | |
| 			 * the FP register state on context switch on SMP,
 | |
| 			 * there is something wrong if a stopped child appears
 | |
| 			 * to still have its FP state in the CPU registers.
 | |
| 			 */
 | |
| 			BUG_ON(tsk != current);
 | |
| #endif
 | |
| 			giveup_fpu_maybe_transactional(tsk);
 | |
| 		}
 | |
| 		preempt_enable();
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(flush_fp_to_thread);
 | |
| #endif /* CONFIG_PPC_FPU */
 | |
| 
 | |
| void enable_kernel_fp(void)
 | |
| {
 | |
| 	WARN_ON(preemptible());
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
 | |
| 		giveup_fpu_maybe_transactional(current);
 | |
| 	else
 | |
| 		giveup_fpu(NULL);	/* just enables FP for kernel */
 | |
| #else
 | |
| 	giveup_fpu_maybe_transactional(last_task_used_math);
 | |
| #endif /* CONFIG_SMP */
 | |
| }
 | |
| EXPORT_SYMBOL(enable_kernel_fp);
 | |
| 
 | |
| #ifdef CONFIG_ALTIVEC
 | |
| void enable_kernel_altivec(void)
 | |
| {
 | |
| 	WARN_ON(preemptible());
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
 | |
| 		giveup_altivec_maybe_transactional(current);
 | |
| 	else
 | |
| 		giveup_altivec_notask();
 | |
| #else
 | |
| 	giveup_altivec_maybe_transactional(last_task_used_altivec);
 | |
| #endif /* CONFIG_SMP */
 | |
| }
 | |
| EXPORT_SYMBOL(enable_kernel_altivec);
 | |
| 
 | |
| /*
 | |
|  * Make sure the VMX/Altivec register state in the
 | |
|  * the thread_struct is up to date for task tsk.
 | |
|  */
 | |
| void flush_altivec_to_thread(struct task_struct *tsk)
 | |
| {
 | |
| 	if (tsk->thread.regs) {
 | |
| 		preempt_disable();
 | |
| 		if (tsk->thread.regs->msr & MSR_VEC) {
 | |
| #ifdef CONFIG_SMP
 | |
| 			BUG_ON(tsk != current);
 | |
| #endif
 | |
| 			giveup_altivec_maybe_transactional(tsk);
 | |
| 		}
 | |
| 		preempt_enable();
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
 | |
| #endif /* CONFIG_ALTIVEC */
 | |
| 
 | |
| #ifdef CONFIG_VSX
 | |
| #if 0
 | |
| /* not currently used, but some crazy RAID module might want to later */
 | |
| void enable_kernel_vsx(void)
 | |
| {
 | |
| 	WARN_ON(preemptible());
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
 | |
| 		giveup_vsx(current);
 | |
| 	else
 | |
| 		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
 | |
| #else
 | |
| 	giveup_vsx(last_task_used_vsx);
 | |
| #endif /* CONFIG_SMP */
 | |
| }
 | |
| EXPORT_SYMBOL(enable_kernel_vsx);
 | |
| #endif
 | |
| 
 | |
| void giveup_vsx(struct task_struct *tsk)
 | |
| {
 | |
| 	giveup_fpu_maybe_transactional(tsk);
 | |
| 	giveup_altivec_maybe_transactional(tsk);
 | |
| 	__giveup_vsx(tsk);
 | |
| }
 | |
| EXPORT_SYMBOL(giveup_vsx);
 | |
| 
 | |
| void flush_vsx_to_thread(struct task_struct *tsk)
 | |
| {
 | |
| 	if (tsk->thread.regs) {
 | |
| 		preempt_disable();
 | |
| 		if (tsk->thread.regs->msr & MSR_VSX) {
 | |
| #ifdef CONFIG_SMP
 | |
| 			BUG_ON(tsk != current);
 | |
| #endif
 | |
| 			giveup_vsx(tsk);
 | |
| 		}
 | |
| 		preempt_enable();
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
 | |
| #endif /* CONFIG_VSX */
 | |
| 
 | |
| #ifdef CONFIG_SPE
 | |
| 
 | |
| void enable_kernel_spe(void)
 | |
| {
 | |
| 	WARN_ON(preemptible());
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
 | |
| 		giveup_spe(current);
 | |
| 	else
 | |
| 		giveup_spe(NULL);	/* just enable SPE for kernel - force */
 | |
| #else
 | |
| 	giveup_spe(last_task_used_spe);
 | |
| #endif /* __SMP __ */
 | |
| }
 | |
| EXPORT_SYMBOL(enable_kernel_spe);
 | |
| 
 | |
| void flush_spe_to_thread(struct task_struct *tsk)
 | |
| {
 | |
| 	if (tsk->thread.regs) {
 | |
| 		preempt_disable();
 | |
| 		if (tsk->thread.regs->msr & MSR_SPE) {
 | |
| #ifdef CONFIG_SMP
 | |
| 			BUG_ON(tsk != current);
 | |
| #endif
 | |
| 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
 | |
| 			giveup_spe(tsk);
 | |
| 		}
 | |
| 		preempt_enable();
 | |
| 	}
 | |
| }
 | |
| #endif /* CONFIG_SPE */
 | |
| 
 | |
| #ifndef CONFIG_SMP
 | |
| /*
 | |
|  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
 | |
|  * and the current task has some state, discard it.
 | |
|  */
 | |
| void discard_lazy_cpu_state(void)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	if (last_task_used_math == current)
 | |
| 		last_task_used_math = NULL;
 | |
| #ifdef CONFIG_ALTIVEC
 | |
| 	if (last_task_used_altivec == current)
 | |
| 		last_task_used_altivec = NULL;
 | |
| #endif /* CONFIG_ALTIVEC */
 | |
| #ifdef CONFIG_VSX
 | |
| 	if (last_task_used_vsx == current)
 | |
| 		last_task_used_vsx = NULL;
 | |
| #endif /* CONFIG_VSX */
 | |
| #ifdef CONFIG_SPE
 | |
| 	if (last_task_used_spe == current)
 | |
| 		last_task_used_spe = NULL;
 | |
| #endif
 | |
| 	preempt_enable();
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS
 | |
| void do_send_trap(struct pt_regs *regs, unsigned long address,
 | |
| 		  unsigned long error_code, int signal_code, int breakpt)
 | |
| {
 | |
| 	siginfo_t info;
 | |
| 
 | |
| 	current->thread.trap_nr = signal_code;
 | |
| 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 | |
| 			11, SIGSEGV) == NOTIFY_STOP)
 | |
| 		return;
 | |
| 
 | |
| 	/* Deliver the signal to userspace */
 | |
| 	info.si_signo = SIGTRAP;
 | |
| 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
 | |
| 	info.si_code = signal_code;
 | |
| 	info.si_addr = (void __user *)address;
 | |
| 	force_sig_info(SIGTRAP, &info, current);
 | |
| }
 | |
| #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
 | |
| void do_break (struct pt_regs *regs, unsigned long address,
 | |
| 		    unsigned long error_code)
 | |
| {
 | |
| 	siginfo_t info;
 | |
| 
 | |
| 	current->thread.trap_nr = TRAP_HWBKPT;
 | |
| 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 | |
| 			11, SIGSEGV) == NOTIFY_STOP)
 | |
| 		return;
 | |
| 
 | |
| 	if (debugger_break_match(regs))
 | |
| 		return;
 | |
| 
 | |
| 	/* Clear the breakpoint */
 | |
| 	hw_breakpoint_disable();
 | |
| 
 | |
| 	/* Deliver the signal to userspace */
 | |
| 	info.si_signo = SIGTRAP;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code = TRAP_HWBKPT;
 | |
| 	info.si_addr = (void __user *)address;
 | |
| 	force_sig_info(SIGTRAP, &info, current);
 | |
| }
 | |
| #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
 | |
| 
 | |
| static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
 | |
| 
 | |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS
 | |
| /*
 | |
|  * Set the debug registers back to their default "safe" values.
 | |
|  */
 | |
| static void set_debug_reg_defaults(struct thread_struct *thread)
 | |
| {
 | |
| 	thread->debug.iac1 = thread->debug.iac2 = 0;
 | |
| #if CONFIG_PPC_ADV_DEBUG_IACS > 2
 | |
| 	thread->debug.iac3 = thread->debug.iac4 = 0;
 | |
| #endif
 | |
| 	thread->debug.dac1 = thread->debug.dac2 = 0;
 | |
| #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 | |
| 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
 | |
| #endif
 | |
| 	thread->debug.dbcr0 = 0;
 | |
| #ifdef CONFIG_BOOKE
 | |
| 	/*
 | |
| 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
 | |
| 	 */
 | |
| 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
 | |
| 			DBCR1_IAC3US | DBCR1_IAC4US;
 | |
| 	/*
 | |
| 	 * Force Data Address Compare User/Supervisor bits to be User-only
 | |
| 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
 | |
| 	 */
 | |
| 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
 | |
| #else
 | |
| 	thread->debug.dbcr1 = 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void prime_debug_regs(struct debug_reg *debug)
 | |
| {
 | |
| 	/*
 | |
| 	 * We could have inherited MSR_DE from userspace, since
 | |
| 	 * it doesn't get cleared on exception entry.  Make sure
 | |
| 	 * MSR_DE is clear before we enable any debug events.
 | |
| 	 */
 | |
| 	mtmsr(mfmsr() & ~MSR_DE);
 | |
| 
 | |
| 	mtspr(SPRN_IAC1, debug->iac1);
 | |
| 	mtspr(SPRN_IAC2, debug->iac2);
 | |
| #if CONFIG_PPC_ADV_DEBUG_IACS > 2
 | |
| 	mtspr(SPRN_IAC3, debug->iac3);
 | |
| 	mtspr(SPRN_IAC4, debug->iac4);
 | |
| #endif
 | |
| 	mtspr(SPRN_DAC1, debug->dac1);
 | |
| 	mtspr(SPRN_DAC2, debug->dac2);
 | |
| #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 | |
| 	mtspr(SPRN_DVC1, debug->dvc1);
 | |
| 	mtspr(SPRN_DVC2, debug->dvc2);
 | |
| #endif
 | |
| 	mtspr(SPRN_DBCR0, debug->dbcr0);
 | |
| 	mtspr(SPRN_DBCR1, debug->dbcr1);
 | |
| #ifdef CONFIG_BOOKE
 | |
| 	mtspr(SPRN_DBCR2, debug->dbcr2);
 | |
| #endif
 | |
| }
 | |
| /*
 | |
|  * Unless neither the old or new thread are making use of the
 | |
|  * debug registers, set the debug registers from the values
 | |
|  * stored in the new thread.
 | |
|  */
 | |
| void switch_booke_debug_regs(struct debug_reg *new_debug)
 | |
| {
 | |
| 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
 | |
| 		|| (new_debug->dbcr0 & DBCR0_IDM))
 | |
| 			prime_debug_regs(new_debug);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
 | |
| #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
 | |
| #ifndef CONFIG_HAVE_HW_BREAKPOINT
 | |
| static void set_debug_reg_defaults(struct thread_struct *thread)
 | |
| {
 | |
| 	thread->hw_brk.address = 0;
 | |
| 	thread->hw_brk.type = 0;
 | |
| 	set_breakpoint(&thread->hw_brk);
 | |
| }
 | |
| #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
 | |
| #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
 | |
| 
 | |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS
 | |
| static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 | |
| {
 | |
| 	mtspr(SPRN_DAC1, dabr);
 | |
| #ifdef CONFIG_PPC_47x
 | |
| 	isync();
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| #elif defined(CONFIG_PPC_BOOK3S)
 | |
| static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 | |
| {
 | |
| 	mtspr(SPRN_DABR, dabr);
 | |
| 	if (cpu_has_feature(CPU_FTR_DABRX))
 | |
| 		mtspr(SPRN_DABRX, dabrx);
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline int set_dabr(struct arch_hw_breakpoint *brk)
 | |
| {
 | |
| 	unsigned long dabr, dabrx;
 | |
| 
 | |
| 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
 | |
| 	dabrx = ((brk->type >> 3) & 0x7);
 | |
| 
 | |
| 	if (ppc_md.set_dabr)
 | |
| 		return ppc_md.set_dabr(dabr, dabrx);
 | |
| 
 | |
| 	return __set_dabr(dabr, dabrx);
 | |
| }
 | |
| 
 | |
| static inline int set_dawr(struct arch_hw_breakpoint *brk)
 | |
| {
 | |
| 	unsigned long dawr, dawrx, mrd;
 | |
| 
 | |
| 	dawr = brk->address;
 | |
| 
 | |
| 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
 | |
| 		                   << (63 - 58); //* read/write bits */
 | |
| 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
 | |
| 		                   << (63 - 59); //* translate */
 | |
| 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
 | |
| 		                   >> 3; //* PRIM bits */
 | |
| 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
 | |
| 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
 | |
| 	   0b111111=64DW.
 | |
| 	   brk->len is in bytes.
 | |
| 	   This aligns up to double word size, shifts and does the bias.
 | |
| 	*/
 | |
| 	mrd = ((brk->len + 7) >> 3) - 1;
 | |
| 	dawrx |= (mrd & 0x3f) << (63 - 53);
 | |
| 
 | |
| 	if (ppc_md.set_dawr)
 | |
| 		return ppc_md.set_dawr(dawr, dawrx);
 | |
| 	mtspr(SPRN_DAWR, dawr);
 | |
| 	mtspr(SPRN_DAWRX, dawrx);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __set_breakpoint(struct arch_hw_breakpoint *brk)
 | |
| {
 | |
| 	__get_cpu_var(current_brk) = *brk;
 | |
| 
 | |
| 	if (cpu_has_feature(CPU_FTR_DAWR))
 | |
| 		set_dawr(brk);
 | |
| 	else
 | |
| 		set_dabr(brk);
 | |
| }
 | |
| 
 | |
| void set_breakpoint(struct arch_hw_breakpoint *brk)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	__set_breakpoint(brk);
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC64
 | |
| DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
 | |
| #endif
 | |
| 
 | |
| static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
 | |
| 			      struct arch_hw_breakpoint *b)
 | |
| {
 | |
| 	if (a->address != b->address)
 | |
| 		return false;
 | |
| 	if (a->type != b->type)
 | |
| 		return false;
 | |
| 	if (a->len != b->len)
 | |
| 		return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 | |
| static void tm_reclaim_thread(struct thread_struct *thr,
 | |
| 			      struct thread_info *ti, uint8_t cause)
 | |
| {
 | |
| 	unsigned long msr_diff = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If FP/VSX registers have been already saved to the
 | |
| 	 * thread_struct, move them to the transact_fp array.
 | |
| 	 * We clear the TIF_RESTORE_TM bit since after the reclaim
 | |
| 	 * the thread will no longer be transactional.
 | |
| 	 */
 | |
| 	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
 | |
| 		msr_diff = thr->tm_orig_msr & ~thr->regs->msr;
 | |
| 		if (msr_diff & MSR_FP)
 | |
| 			memcpy(&thr->transact_fp, &thr->fp_state,
 | |
| 			       sizeof(struct thread_fp_state));
 | |
| 		if (msr_diff & MSR_VEC)
 | |
| 			memcpy(&thr->transact_vr, &thr->vr_state,
 | |
| 			       sizeof(struct thread_vr_state));
 | |
| 		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
 | |
| 		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
 | |
| 	}
 | |
| 
 | |
| 	tm_reclaim(thr, thr->regs->msr, cause);
 | |
| 
 | |
| 	/* Having done the reclaim, we now have the checkpointed
 | |
| 	 * FP/VSX values in the registers.  These might be valid
 | |
| 	 * even if we have previously called enable_kernel_fp() or
 | |
| 	 * flush_fp_to_thread(), so update thr->regs->msr to
 | |
| 	 * indicate their current validity.
 | |
| 	 */
 | |
| 	thr->regs->msr |= msr_diff;
 | |
| }
 | |
| 
 | |
| void tm_reclaim_current(uint8_t cause)
 | |
| {
 | |
| 	tm_enable();
 | |
| 	tm_reclaim_thread(¤t->thread, current_thread_info(), cause);
 | |
| }
 | |
| 
 | |
| static inline void tm_reclaim_task(struct task_struct *tsk)
 | |
| {
 | |
| 	/* We have to work out if we're switching from/to a task that's in the
 | |
| 	 * middle of a transaction.
 | |
| 	 *
 | |
| 	 * In switching we need to maintain a 2nd register state as
 | |
| 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
 | |
| 	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
 | |
| 	 * (current) FPRs into oldtask->thread.transact_fpr[].
 | |
| 	 *
 | |
| 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
 | |
| 	 */
 | |
| 	struct thread_struct *thr = &tsk->thread;
 | |
| 
 | |
| 	if (!thr->regs)
 | |
| 		return;
 | |
| 
 | |
| 	if (!MSR_TM_ACTIVE(thr->regs->msr))
 | |
| 		goto out_and_saveregs;
 | |
| 
 | |
| 	/* Stash the original thread MSR, as giveup_fpu et al will
 | |
| 	 * modify it.  We hold onto it to see whether the task used
 | |
| 	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
 | |
| 	 * tm_orig_msr is already set.
 | |
| 	 */
 | |
| 	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
 | |
| 		thr->tm_orig_msr = thr->regs->msr;
 | |
| 
 | |
| 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
 | |
| 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
 | |
| 		 tsk->pid, thr->regs->nip,
 | |
| 		 thr->regs->ccr, thr->regs->msr,
 | |
| 		 thr->regs->trap);
 | |
| 
 | |
| 	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
 | |
| 
 | |
| 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
 | |
| 		 tsk->pid);
 | |
| 
 | |
| out_and_saveregs:
 | |
| 	/* Always save the regs here, even if a transaction's not active.
 | |
| 	 * This context-switches a thread's TM info SPRs.  We do it here to
 | |
| 	 * be consistent with the restore path (in recheckpoint) which
 | |
| 	 * cannot happen later in _switch().
 | |
| 	 */
 | |
| 	tm_save_sprs(thr);
 | |
| }
 | |
| 
 | |
| extern void __tm_recheckpoint(struct thread_struct *thread,
 | |
| 			      unsigned long orig_msr);
 | |
| 
 | |
| void tm_recheckpoint(struct thread_struct *thread,
 | |
| 		     unsigned long orig_msr)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* We really can't be interrupted here as the TEXASR registers can't
 | |
| 	 * change and later in the trecheckpoint code, we have a userspace R1.
 | |
| 	 * So let's hard disable over this region.
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 	hard_irq_disable();
 | |
| 
 | |
| 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
 | |
| 	 * before the trecheckpoint and no explosion occurs.
 | |
| 	 */
 | |
| 	tm_restore_sprs(thread);
 | |
| 
 | |
| 	__tm_recheckpoint(thread, orig_msr);
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| static inline void tm_recheckpoint_new_task(struct task_struct *new)
 | |
| {
 | |
| 	unsigned long msr;
 | |
| 
 | |
| 	if (!cpu_has_feature(CPU_FTR_TM))
 | |
| 		return;
 | |
| 
 | |
| 	/* Recheckpoint the registers of the thread we're about to switch to.
 | |
| 	 *
 | |
| 	 * If the task was using FP, we non-lazily reload both the original and
 | |
| 	 * the speculative FP register states.  This is because the kernel
 | |
| 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
 | |
| 	 * unavoidable later, we are unable to determine which set of FP regs
 | |
| 	 * need to be restored.
 | |
| 	 */
 | |
| 	if (!new->thread.regs)
 | |
| 		return;
 | |
| 
 | |
| 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
 | |
| 		tm_restore_sprs(&new->thread);
 | |
| 		return;
 | |
| 	}
 | |
| 	msr = new->thread.tm_orig_msr;
 | |
| 	/* Recheckpoint to restore original checkpointed register state. */
 | |
| 	TM_DEBUG("*** tm_recheckpoint of pid %d "
 | |
| 		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
 | |
| 		 new->pid, new->thread.regs->msr, msr);
 | |
| 
 | |
| 	/* This loads the checkpointed FP/VEC state, if used */
 | |
| 	tm_recheckpoint(&new->thread, msr);
 | |
| 
 | |
| 	/* This loads the speculative FP/VEC state, if used */
 | |
| 	if (msr & MSR_FP) {
 | |
| 		do_load_up_transact_fpu(&new->thread);
 | |
| 		new->thread.regs->msr |=
 | |
| 			(MSR_FP | new->thread.fpexc_mode);
 | |
| 	}
 | |
| #ifdef CONFIG_ALTIVEC
 | |
| 	if (msr & MSR_VEC) {
 | |
| 		do_load_up_transact_altivec(&new->thread);
 | |
| 		new->thread.regs->msr |= MSR_VEC;
 | |
| 	}
 | |
| #endif
 | |
| 	/* We may as well turn on VSX too since all the state is restored now */
 | |
| 	if (msr & MSR_VSX)
 | |
| 		new->thread.regs->msr |= MSR_VSX;
 | |
| 
 | |
| 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
 | |
| 		 "(kernel msr 0x%lx)\n",
 | |
| 		 new->pid, mfmsr());
 | |
| }
 | |
| 
 | |
| static inline void __switch_to_tm(struct task_struct *prev)
 | |
| {
 | |
| 	if (cpu_has_feature(CPU_FTR_TM)) {
 | |
| 		tm_enable();
 | |
| 		tm_reclaim_task(prev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called if we are on the way out to userspace and the
 | |
|  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 | |
|  * FP and/or vector state and does so if necessary.
 | |
|  * If userspace is inside a transaction (whether active or
 | |
|  * suspended) and FP/VMX/VSX instructions have ever been enabled
 | |
|  * inside that transaction, then we have to keep them enabled
 | |
|  * and keep the FP/VMX/VSX state loaded while ever the transaction
 | |
|  * continues.  The reason is that if we didn't, and subsequently
 | |
|  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 | |
|  * we don't know whether it's the same transaction, and thus we
 | |
|  * don't know which of the checkpointed state and the transactional
 | |
|  * state to use.
 | |
|  */
 | |
| void restore_tm_state(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long msr_diff;
 | |
| 
 | |
| 	clear_thread_flag(TIF_RESTORE_TM);
 | |
| 	if (!MSR_TM_ACTIVE(regs->msr))
 | |
| 		return;
 | |
| 
 | |
| 	msr_diff = current->thread.tm_orig_msr & ~regs->msr;
 | |
| 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
 | |
| 	if (msr_diff & MSR_FP) {
 | |
| 		fp_enable();
 | |
| 		load_fp_state(¤t->thread.fp_state);
 | |
| 		regs->msr |= current->thread.fpexc_mode;
 | |
| 	}
 | |
| 	if (msr_diff & MSR_VEC) {
 | |
| 		vec_enable();
 | |
| 		load_vr_state(¤t->thread.vr_state);
 | |
| 	}
 | |
| 	regs->msr |= msr_diff;
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define tm_recheckpoint_new_task(new)
 | |
| #define __switch_to_tm(prev)
 | |
| #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 | |
| 
 | |
| struct task_struct *__switch_to(struct task_struct *prev,
 | |
| 	struct task_struct *new)
 | |
| {
 | |
| 	struct thread_struct *new_thread, *old_thread;
 | |
| 	struct task_struct *last;
 | |
| #ifdef CONFIG_PPC_BOOK3S_64
 | |
| 	struct ppc64_tlb_batch *batch;
 | |
| #endif
 | |
| 
 | |
| 	WARN_ON(!irqs_disabled());
 | |
| 
 | |
| 	/* Back up the TAR and DSCR across context switches.
 | |
| 	 * Note that the TAR is not available for use in the kernel.  (To
 | |
| 	 * provide this, the TAR should be backed up/restored on exception
 | |
| 	 * entry/exit instead, and be in pt_regs.  FIXME, this should be in
 | |
| 	 * pt_regs anyway (for debug).)
 | |
| 	 * Save the TAR and DSCR here before we do treclaim/trecheckpoint as
 | |
| 	 * these will change them.
 | |
| 	 */
 | |
| 	save_early_sprs(&prev->thread);
 | |
| 
 | |
| 	__switch_to_tm(prev);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/* avoid complexity of lazy save/restore of fpu
 | |
| 	 * by just saving it every time we switch out if
 | |
| 	 * this task used the fpu during the last quantum.
 | |
| 	 *
 | |
| 	 * If it tries to use the fpu again, it'll trap and
 | |
| 	 * reload its fp regs.  So we don't have to do a restore
 | |
| 	 * every switch, just a save.
 | |
| 	 *  -- Cort
 | |
| 	 */
 | |
| 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
 | |
| 		giveup_fpu(prev);
 | |
| #ifdef CONFIG_ALTIVEC
 | |
| 	/*
 | |
| 	 * If the previous thread used altivec in the last quantum
 | |
| 	 * (thus changing altivec regs) then save them.
 | |
| 	 * We used to check the VRSAVE register but not all apps
 | |
| 	 * set it, so we don't rely on it now (and in fact we need
 | |
| 	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
 | |
| 	 *
 | |
| 	 * On SMP we always save/restore altivec regs just to avoid the
 | |
| 	 * complexity of changing processors.
 | |
| 	 *  -- Cort
 | |
| 	 */
 | |
| 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
 | |
| 		giveup_altivec(prev);
 | |
| #endif /* CONFIG_ALTIVEC */
 | |
| #ifdef CONFIG_VSX
 | |
| 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
 | |
| 		/* VMX and FPU registers are already save here */
 | |
| 		__giveup_vsx(prev);
 | |
| #endif /* CONFIG_VSX */
 | |
| #ifdef CONFIG_SPE
 | |
| 	/*
 | |
| 	 * If the previous thread used spe in the last quantum
 | |
| 	 * (thus changing spe regs) then save them.
 | |
| 	 *
 | |
| 	 * On SMP we always save/restore spe regs just to avoid the
 | |
| 	 * complexity of changing processors.
 | |
| 	 */
 | |
| 	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
 | |
| 		giveup_spe(prev);
 | |
| #endif /* CONFIG_SPE */
 | |
| 
 | |
| #else  /* CONFIG_SMP */
 | |
| #ifdef CONFIG_ALTIVEC
 | |
| 	/* Avoid the trap.  On smp this this never happens since
 | |
| 	 * we don't set last_task_used_altivec -- Cort
 | |
| 	 */
 | |
| 	if (new->thread.regs && last_task_used_altivec == new)
 | |
| 		new->thread.regs->msr |= MSR_VEC;
 | |
| #endif /* CONFIG_ALTIVEC */
 | |
| #ifdef CONFIG_VSX
 | |
| 	if (new->thread.regs && last_task_used_vsx == new)
 | |
| 		new->thread.regs->msr |= MSR_VSX;
 | |
| #endif /* CONFIG_VSX */
 | |
| #ifdef CONFIG_SPE
 | |
| 	/* Avoid the trap.  On smp this this never happens since
 | |
| 	 * we don't set last_task_used_spe
 | |
| 	 */
 | |
| 	if (new->thread.regs && last_task_used_spe == new)
 | |
| 		new->thread.regs->msr |= MSR_SPE;
 | |
| #endif /* CONFIG_SPE */
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS
 | |
| 	switch_booke_debug_regs(&new->thread.debug);
 | |
| #else
 | |
| /*
 | |
|  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 | |
|  * schedule DABR
 | |
|  */
 | |
| #ifndef CONFIG_HAVE_HW_BREAKPOINT
 | |
| 	if (unlikely(!hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
 | |
| 		__set_breakpoint(&new->thread.hw_brk);
 | |
| #endif /* CONFIG_HAVE_HW_BREAKPOINT */
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 	new_thread = &new->thread;
 | |
| 	old_thread = ¤t->thread;
 | |
| 
 | |
| #ifdef CONFIG_PPC64
 | |
| 	/*
 | |
| 	 * Collect processor utilization data per process
 | |
| 	 */
 | |
| 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
 | |
| 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
 | |
| 		long unsigned start_tb, current_tb;
 | |
| 		start_tb = old_thread->start_tb;
 | |
| 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
 | |
| 		old_thread->accum_tb += (current_tb - start_tb);
 | |
| 		new_thread->start_tb = current_tb;
 | |
| 	}
 | |
| #endif /* CONFIG_PPC64 */
 | |
| 
 | |
| #ifdef CONFIG_PPC_BOOK3S_64
 | |
| 	batch = &__get_cpu_var(ppc64_tlb_batch);
 | |
| 	if (batch->active) {
 | |
| 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
 | |
| 		if (batch->index)
 | |
| 			__flush_tlb_pending(batch);
 | |
| 		batch->active = 0;
 | |
| 	}
 | |
| #endif /* CONFIG_PPC_BOOK3S_64 */
 | |
| 
 | |
| 	/*
 | |
| 	 * We can't take a PMU exception inside _switch() since there is a
 | |
| 	 * window where the kernel stack SLB and the kernel stack are out
 | |
| 	 * of sync. Hard disable here.
 | |
| 	 */
 | |
| 	hard_irq_disable();
 | |
| 
 | |
| 	tm_recheckpoint_new_task(new);
 | |
| 
 | |
| 	last = _switch(old_thread, new_thread);
 | |
| 
 | |
| #ifdef CONFIG_PPC_BOOK3S_64
 | |
| 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
 | |
| 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
 | |
| 		batch = &__get_cpu_var(ppc64_tlb_batch);
 | |
| 		batch->active = 1;
 | |
| 	}
 | |
| #endif /* CONFIG_PPC_BOOK3S_64 */
 | |
| 
 | |
| 	return last;
 | |
| }
 | |
| 
 | |
| static int instructions_to_print = 16;
 | |
| 
 | |
| static void show_instructions(struct pt_regs *regs)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
 | |
| 			sizeof(int));
 | |
| 
 | |
| 	printk("Instruction dump:");
 | |
| 
 | |
| 	for (i = 0; i < instructions_to_print; i++) {
 | |
| 		int instr;
 | |
| 
 | |
| 		if (!(i % 8))
 | |
| 			printk("\n");
 | |
| 
 | |
| #if !defined(CONFIG_BOOKE)
 | |
| 		/* If executing with the IMMU off, adjust pc rather
 | |
| 		 * than print XXXXXXXX.
 | |
| 		 */
 | |
| 		if (!(regs->msr & MSR_IR))
 | |
| 			pc = (unsigned long)phys_to_virt(pc);
 | |
| #endif
 | |
| 
 | |
| 		/* We use __get_user here *only* to avoid an OOPS on a
 | |
| 		 * bad address because the pc *should* only be a
 | |
| 		 * kernel address.
 | |
| 		 */
 | |
| 		if (!__kernel_text_address(pc) ||
 | |
| 		     __get_user(instr, (unsigned int __user *)pc)) {
 | |
| 			printk(KERN_CONT "XXXXXXXX ");
 | |
| 		} else {
 | |
| 			if (regs->nip == pc)
 | |
| 				printk(KERN_CONT "<%08x> ", instr);
 | |
| 			else
 | |
| 				printk(KERN_CONT "%08x ", instr);
 | |
| 		}
 | |
| 
 | |
| 		pc += sizeof(int);
 | |
| 	}
 | |
| 
 | |
| 	printk("\n");
 | |
| }
 | |
| 
 | |
| static struct regbit {
 | |
| 	unsigned long bit;
 | |
| 	const char *name;
 | |
| } msr_bits[] = {
 | |
| #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
 | |
| 	{MSR_SF,	"SF"},
 | |
| 	{MSR_HV,	"HV"},
 | |
| #endif
 | |
| 	{MSR_VEC,	"VEC"},
 | |
| 	{MSR_VSX,	"VSX"},
 | |
| #ifdef CONFIG_BOOKE
 | |
| 	{MSR_CE,	"CE"},
 | |
| #endif
 | |
| 	{MSR_EE,	"EE"},
 | |
| 	{MSR_PR,	"PR"},
 | |
| 	{MSR_FP,	"FP"},
 | |
| 	{MSR_ME,	"ME"},
 | |
| #ifdef CONFIG_BOOKE
 | |
| 	{MSR_DE,	"DE"},
 | |
| #else
 | |
| 	{MSR_SE,	"SE"},
 | |
| 	{MSR_BE,	"BE"},
 | |
| #endif
 | |
| 	{MSR_IR,	"IR"},
 | |
| 	{MSR_DR,	"DR"},
 | |
| 	{MSR_PMM,	"PMM"},
 | |
| #ifndef CONFIG_BOOKE
 | |
| 	{MSR_RI,	"RI"},
 | |
| 	{MSR_LE,	"LE"},
 | |
| #endif
 | |
| 	{0,		NULL}
 | |
| };
 | |
| 
 | |
| static void printbits(unsigned long val, struct regbit *bits)
 | |
| {
 | |
| 	const char *sep = "";
 | |
| 
 | |
| 	printk("<");
 | |
| 	for (; bits->bit; ++bits)
 | |
| 		if (val & bits->bit) {
 | |
| 			printk("%s%s", sep, bits->name);
 | |
| 			sep = ",";
 | |
| 		}
 | |
| 	printk(">");
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC64
 | |
| #define REG		"%016lx"
 | |
| #define REGS_PER_LINE	4
 | |
| #define LAST_VOLATILE	13
 | |
| #else
 | |
| #define REG		"%08lx"
 | |
| #define REGS_PER_LINE	8
 | |
| #define LAST_VOLATILE	12
 | |
| #endif
 | |
| 
 | |
| void show_regs(struct pt_regs * regs)
 | |
| {
 | |
| 	int i, trap;
 | |
| 
 | |
| 	show_regs_print_info(KERN_DEFAULT);
 | |
| 
 | |
| 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
 | |
| 	       regs->nip, regs->link, regs->ctr);
 | |
| 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
 | |
| 	       regs, regs->trap, print_tainted(), init_utsname()->release);
 | |
| 	printk("MSR: "REG" ", regs->msr);
 | |
| 	printbits(regs->msr, msr_bits);
 | |
| 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
 | |
| 	trap = TRAP(regs);
 | |
| 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
 | |
| 		printk("CFAR: "REG" ", regs->orig_gpr3);
 | |
| 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
 | |
| #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
 | |
| 		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
 | |
| #else
 | |
| 		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
 | |
| #endif
 | |
| #ifdef CONFIG_PPC64
 | |
| 	printk("SOFTE: %ld ", regs->softe);
 | |
| #endif
 | |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 | |
| 	if (MSR_TM_ACTIVE(regs->msr))
 | |
| 		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
 | |
| #endif
 | |
| 
 | |
| 	for (i = 0;  i < 32;  i++) {
 | |
| 		if ((i % REGS_PER_LINE) == 0)
 | |
| 			printk("\nGPR%02d: ", i);
 | |
| 		printk(REG " ", regs->gpr[i]);
 | |
| 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
 | |
| 			break;
 | |
| 	}
 | |
| 	printk("\n");
 | |
| #ifdef CONFIG_KALLSYMS
 | |
| 	/*
 | |
| 	 * Lookup NIP late so we have the best change of getting the
 | |
| 	 * above info out without failing
 | |
| 	 */
 | |
| 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
 | |
| 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
 | |
| #endif
 | |
| 	show_stack(current, (unsigned long *) regs->gpr[1]);
 | |
| 	if (!user_mode(regs))
 | |
| 		show_instructions(regs);
 | |
| }
 | |
| 
 | |
| void exit_thread(void)
 | |
| {
 | |
| 	discard_lazy_cpu_state();
 | |
| }
 | |
| 
 | |
| void flush_thread(void)
 | |
| {
 | |
| 	discard_lazy_cpu_state();
 | |
| 
 | |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT
 | |
| 	flush_ptrace_hw_breakpoint(current);
 | |
| #else /* CONFIG_HAVE_HW_BREAKPOINT */
 | |
| 	set_debug_reg_defaults(¤t->thread);
 | |
| #endif /* CONFIG_HAVE_HW_BREAKPOINT */
 | |
| }
 | |
| 
 | |
| void
 | |
| release_thread(struct task_struct *t)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this gets called so that we can store coprocessor state into memory and
 | |
|  * copy the current task into the new thread.
 | |
|  */
 | |
| int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 | |
| {
 | |
| 	flush_fp_to_thread(src);
 | |
| 	flush_altivec_to_thread(src);
 | |
| 	flush_vsx_to_thread(src);
 | |
| 	flush_spe_to_thread(src);
 | |
| 	/*
 | |
| 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
 | |
| 	 * flush but it removes the checkpointed state from the current CPU and
 | |
| 	 * transitions the CPU out of TM mode.  Hence we need to call
 | |
| 	 * tm_recheckpoint_new_task() (on the same task) to restore the
 | |
| 	 * checkpointed state back and the TM mode.
 | |
| 	 */
 | |
| 	__switch_to_tm(src);
 | |
| 	tm_recheckpoint_new_task(src);
 | |
| 
 | |
| 	*dst = *src;
 | |
| 
 | |
| 	clear_task_ebb(dst);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
 | |
| {
 | |
| #ifdef CONFIG_PPC_STD_MMU_64
 | |
| 	unsigned long sp_vsid;
 | |
| 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
 | |
| 
 | |
| 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
 | |
| 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
 | |
| 			<< SLB_VSID_SHIFT_1T;
 | |
| 	else
 | |
| 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
 | |
| 			<< SLB_VSID_SHIFT;
 | |
| 	sp_vsid |= SLB_VSID_KERNEL | llp;
 | |
| 	p->thread.ksp_vsid = sp_vsid;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy a thread..
 | |
|  */
 | |
| extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
 | |
| 
 | |
| int copy_thread(unsigned long clone_flags, unsigned long usp,
 | |
| 		unsigned long arg, struct task_struct *p)
 | |
| {
 | |
| 	struct pt_regs *childregs, *kregs;
 | |
| 	extern void ret_from_fork(void);
 | |
| 	extern void ret_from_kernel_thread(void);
 | |
| 	void (*f)(void);
 | |
| 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
 | |
| 
 | |
| 	/* Copy registers */
 | |
| 	sp -= sizeof(struct pt_regs);
 | |
| 	childregs = (struct pt_regs *) sp;
 | |
| 	if (unlikely(p->flags & PF_KTHREAD)) {
 | |
| 		struct thread_info *ti = (void *)task_stack_page(p);
 | |
| 		memset(childregs, 0, sizeof(struct pt_regs));
 | |
| 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
 | |
| 		/* function */
 | |
| 		if (usp)
 | |
| 			childregs->gpr[14] = ppc_function_entry((void *)usp);
 | |
| #ifdef CONFIG_PPC64
 | |
| 		clear_tsk_thread_flag(p, TIF_32BIT);
 | |
| 		childregs->softe = 1;
 | |
| #endif
 | |
| 		childregs->gpr[15] = arg;
 | |
| 		p->thread.regs = NULL;	/* no user register state */
 | |
| 		ti->flags |= _TIF_RESTOREALL;
 | |
| 		f = ret_from_kernel_thread;
 | |
| 	} else {
 | |
| 		struct pt_regs *regs = current_pt_regs();
 | |
| 		CHECK_FULL_REGS(regs);
 | |
| 		*childregs = *regs;
 | |
| 		if (usp)
 | |
| 			childregs->gpr[1] = usp;
 | |
| 		p->thread.regs = childregs;
 | |
| 		childregs->gpr[3] = 0;  /* Result from fork() */
 | |
| 		if (clone_flags & CLONE_SETTLS) {
 | |
| #ifdef CONFIG_PPC64
 | |
| 			if (!is_32bit_task())
 | |
| 				childregs->gpr[13] = childregs->gpr[6];
 | |
| 			else
 | |
| #endif
 | |
| 				childregs->gpr[2] = childregs->gpr[6];
 | |
| 		}
 | |
| 
 | |
| 		f = ret_from_fork;
 | |
| 	}
 | |
| 	sp -= STACK_FRAME_OVERHEAD;
 | |
| 
 | |
| 	/*
 | |
| 	 * The way this works is that at some point in the future
 | |
| 	 * some task will call _switch to switch to the new task.
 | |
| 	 * That will pop off the stack frame created below and start
 | |
| 	 * the new task running at ret_from_fork.  The new task will
 | |
| 	 * do some house keeping and then return from the fork or clone
 | |
| 	 * system call, using the stack frame created above.
 | |
| 	 */
 | |
| 	((unsigned long *)sp)[0] = 0;
 | |
| 	sp -= sizeof(struct pt_regs);
 | |
| 	kregs = (struct pt_regs *) sp;
 | |
| 	sp -= STACK_FRAME_OVERHEAD;
 | |
| 	p->thread.ksp = sp;
 | |
| #ifdef CONFIG_PPC32
 | |
| 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
 | |
| 				_ALIGN_UP(sizeof(struct thread_info), 16);
 | |
| #endif
 | |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT
 | |
| 	p->thread.ptrace_bps[0] = NULL;
 | |
| #endif
 | |
| 
 | |
| 	p->thread.fp_save_area = NULL;
 | |
| #ifdef CONFIG_ALTIVEC
 | |
| 	p->thread.vr_save_area = NULL;
 | |
| #endif
 | |
| 
 | |
| 	setup_ksp_vsid(p, sp);
 | |
| 
 | |
| #ifdef CONFIG_PPC64 
 | |
| 	if (cpu_has_feature(CPU_FTR_DSCR)) {
 | |
| 		p->thread.dscr_inherit = current->thread.dscr_inherit;
 | |
| 		p->thread.dscr = current->thread.dscr;
 | |
| 	}
 | |
| 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
 | |
| 		p->thread.ppr = INIT_PPR;
 | |
| #endif
 | |
| 	kregs->nip = ppc_function_entry(f);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set up a thread for executing a new program
 | |
|  */
 | |
| void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
 | |
| {
 | |
| #ifdef CONFIG_PPC64
 | |
| 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * If we exec out of a kernel thread then thread.regs will not be
 | |
| 	 * set.  Do it now.
 | |
| 	 */
 | |
| 	if (!current->thread.regs) {
 | |
| 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
 | |
| 		current->thread.regs = regs - 1;
 | |
| 	}
 | |
| 
 | |
| 	memset(regs->gpr, 0, sizeof(regs->gpr));
 | |
| 	regs->ctr = 0;
 | |
| 	regs->link = 0;
 | |
| 	regs->xer = 0;
 | |
| 	regs->ccr = 0;
 | |
| 	regs->gpr[1] = sp;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have just cleared all the nonvolatile GPRs, so make
 | |
| 	 * FULL_REGS(regs) return true.  This is necessary to allow
 | |
| 	 * ptrace to examine the thread immediately after exec.
 | |
| 	 */
 | |
| 	regs->trap &= ~1UL;
 | |
| 
 | |
| #ifdef CONFIG_PPC32
 | |
| 	regs->mq = 0;
 | |
| 	regs->nip = start;
 | |
| 	regs->msr = MSR_USER;
 | |
| #else
 | |
| 	if (!is_32bit_task()) {
 | |
| 		unsigned long entry;
 | |
| 
 | |
| 		if (is_elf2_task()) {
 | |
| 			/* Look ma, no function descriptors! */
 | |
| 			entry = start;
 | |
| 
 | |
| 			/*
 | |
| 			 * Ulrich says:
 | |
| 			 *   The latest iteration of the ABI requires that when
 | |
| 			 *   calling a function (at its global entry point),
 | |
| 			 *   the caller must ensure r12 holds the entry point
 | |
| 			 *   address (so that the function can quickly
 | |
| 			 *   establish addressability).
 | |
| 			 */
 | |
| 			regs->gpr[12] = start;
 | |
| 			/* Make sure that's restored on entry to userspace. */
 | |
| 			set_thread_flag(TIF_RESTOREALL);
 | |
| 		} else {
 | |
| 			unsigned long toc;
 | |
| 
 | |
| 			/* start is a relocated pointer to the function
 | |
| 			 * descriptor for the elf _start routine.  The first
 | |
| 			 * entry in the function descriptor is the entry
 | |
| 			 * address of _start and the second entry is the TOC
 | |
| 			 * value we need to use.
 | |
| 			 */
 | |
| 			__get_user(entry, (unsigned long __user *)start);
 | |
| 			__get_user(toc, (unsigned long __user *)start+1);
 | |
| 
 | |
| 			/* Check whether the e_entry function descriptor entries
 | |
| 			 * need to be relocated before we can use them.
 | |
| 			 */
 | |
| 			if (load_addr != 0) {
 | |
| 				entry += load_addr;
 | |
| 				toc   += load_addr;
 | |
| 			}
 | |
| 			regs->gpr[2] = toc;
 | |
| 		}
 | |
| 		regs->nip = entry;
 | |
| 		regs->msr = MSR_USER64;
 | |
| 	} else {
 | |
| 		regs->nip = start;
 | |
| 		regs->gpr[2] = 0;
 | |
| 		regs->msr = MSR_USER32;
 | |
| 	}
 | |
| #endif
 | |
| 	discard_lazy_cpu_state();
 | |
| #ifdef CONFIG_VSX
 | |
| 	current->thread.used_vsr = 0;
 | |
| #endif
 | |
| 	memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state));
 | |
| 	current->thread.fp_save_area = NULL;
 | |
| #ifdef CONFIG_ALTIVEC
 | |
| 	memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state));
 | |
| 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
 | |
| 	current->thread.vr_save_area = NULL;
 | |
| 	current->thread.vrsave = 0;
 | |
| 	current->thread.used_vr = 0;
 | |
| #endif /* CONFIG_ALTIVEC */
 | |
| #ifdef CONFIG_SPE
 | |
| 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
 | |
| 	current->thread.acc = 0;
 | |
| 	current->thread.spefscr = 0;
 | |
| 	current->thread.used_spe = 0;
 | |
| #endif /* CONFIG_SPE */
 | |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 | |
| 	if (cpu_has_feature(CPU_FTR_TM))
 | |
| 		regs->msr |= MSR_TM;
 | |
| 	current->thread.tm_tfhar = 0;
 | |
| 	current->thread.tm_texasr = 0;
 | |
| 	current->thread.tm_tfiar = 0;
 | |
| #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 | |
| }
 | |
| EXPORT_SYMBOL(start_thread);
 | |
| 
 | |
| #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
 | |
| 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
 | |
| 
 | |
| int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
 | |
| {
 | |
| 	struct pt_regs *regs = tsk->thread.regs;
 | |
| 
 | |
| 	/* This is a bit hairy.  If we are an SPE enabled  processor
 | |
| 	 * (have embedded fp) we store the IEEE exception enable flags in
 | |
| 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
 | |
| 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
 | |
| 	if (val & PR_FP_EXC_SW_ENABLE) {
 | |
| #ifdef CONFIG_SPE
 | |
| 		if (cpu_has_feature(CPU_FTR_SPE)) {
 | |
| 			/*
 | |
| 			 * When the sticky exception bits are set
 | |
| 			 * directly by userspace, it must call prctl
 | |
| 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
 | |
| 			 * in the existing prctl settings) or
 | |
| 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
 | |
| 			 * the bits being set).  <fenv.h> functions
 | |
| 			 * saving and restoring the whole
 | |
| 			 * floating-point environment need to do so
 | |
| 			 * anyway to restore the prctl settings from
 | |
| 			 * the saved environment.
 | |
| 			 */
 | |
| 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
 | |
| 			tsk->thread.fpexc_mode = val &
 | |
| 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
 | |
| 			return 0;
 | |
| 		} else {
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| #else
 | |
| 		return -EINVAL;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/* on a CONFIG_SPE this does not hurt us.  The bits that
 | |
| 	 * __pack_fe01 use do not overlap with bits used for
 | |
| 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
 | |
| 	 * on CONFIG_SPE implementations are reserved so writing to
 | |
| 	 * them does not change anything */
 | |
| 	if (val > PR_FP_EXC_PRECISE)
 | |
| 		return -EINVAL;
 | |
| 	tsk->thread.fpexc_mode = __pack_fe01(val);
 | |
| 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
 | |
| 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
 | |
| 			| tsk->thread.fpexc_mode;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
 | |
| {
 | |
| 	unsigned int val;
 | |
| 
 | |
| 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
 | |
| #ifdef CONFIG_SPE
 | |
| 		if (cpu_has_feature(CPU_FTR_SPE)) {
 | |
| 			/*
 | |
| 			 * When the sticky exception bits are set
 | |
| 			 * directly by userspace, it must call prctl
 | |
| 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
 | |
| 			 * in the existing prctl settings) or
 | |
| 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
 | |
| 			 * the bits being set).  <fenv.h> functions
 | |
| 			 * saving and restoring the whole
 | |
| 			 * floating-point environment need to do so
 | |
| 			 * anyway to restore the prctl settings from
 | |
| 			 * the saved environment.
 | |
| 			 */
 | |
| 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
 | |
| 			val = tsk->thread.fpexc_mode;
 | |
| 		} else
 | |
| 			return -EINVAL;
 | |
| #else
 | |
| 		return -EINVAL;
 | |
| #endif
 | |
| 	else
 | |
| 		val = __unpack_fe01(tsk->thread.fpexc_mode);
 | |
| 	return put_user(val, (unsigned int __user *) adr);
 | |
| }
 | |
| 
 | |
| int set_endian(struct task_struct *tsk, unsigned int val)
 | |
| {
 | |
| 	struct pt_regs *regs = tsk->thread.regs;
 | |
| 
 | |
| 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
 | |
| 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (regs == NULL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (val == PR_ENDIAN_BIG)
 | |
| 		regs->msr &= ~MSR_LE;
 | |
| 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
 | |
| 		regs->msr |= MSR_LE;
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int get_endian(struct task_struct *tsk, unsigned long adr)
 | |
| {
 | |
| 	struct pt_regs *regs = tsk->thread.regs;
 | |
| 	unsigned int val;
 | |
| 
 | |
| 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
 | |
| 	    !cpu_has_feature(CPU_FTR_REAL_LE))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (regs == NULL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (regs->msr & MSR_LE) {
 | |
| 		if (cpu_has_feature(CPU_FTR_REAL_LE))
 | |
| 			val = PR_ENDIAN_LITTLE;
 | |
| 		else
 | |
| 			val = PR_ENDIAN_PPC_LITTLE;
 | |
| 	} else
 | |
| 		val = PR_ENDIAN_BIG;
 | |
| 
 | |
| 	return put_user(val, (unsigned int __user *)adr);
 | |
| }
 | |
| 
 | |
| int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
 | |
| {
 | |
| 	tsk->thread.align_ctl = val;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
 | |
| {
 | |
| 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
 | |
| }
 | |
| 
 | |
| static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
 | |
| 				  unsigned long nbytes)
 | |
| {
 | |
| 	unsigned long stack_page;
 | |
| 	unsigned long cpu = task_cpu(p);
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid crashing if the stack has overflowed and corrupted
 | |
| 	 * task_cpu(p), which is in the thread_info struct.
 | |
| 	 */
 | |
| 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
 | |
| 		stack_page = (unsigned long) hardirq_ctx[cpu];
 | |
| 		if (sp >= stack_page + sizeof(struct thread_struct)
 | |
| 		    && sp <= stack_page + THREAD_SIZE - nbytes)
 | |
| 			return 1;
 | |
| 
 | |
| 		stack_page = (unsigned long) softirq_ctx[cpu];
 | |
| 		if (sp >= stack_page + sizeof(struct thread_struct)
 | |
| 		    && sp <= stack_page + THREAD_SIZE - nbytes)
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int validate_sp(unsigned long sp, struct task_struct *p,
 | |
| 		       unsigned long nbytes)
 | |
| {
 | |
| 	unsigned long stack_page = (unsigned long)task_stack_page(p);
 | |
| 
 | |
| 	if (sp >= stack_page + sizeof(struct thread_struct)
 | |
| 	    && sp <= stack_page + THREAD_SIZE - nbytes)
 | |
| 		return 1;
 | |
| 
 | |
| 	return valid_irq_stack(sp, p, nbytes);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(validate_sp);
 | |
| 
 | |
| unsigned long get_wchan(struct task_struct *p)
 | |
| {
 | |
| 	unsigned long ip, sp;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	if (!p || p == current || p->state == TASK_RUNNING)
 | |
| 		return 0;
 | |
| 
 | |
| 	sp = p->thread.ksp;
 | |
| 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
 | |
| 		return 0;
 | |
| 
 | |
| 	do {
 | |
| 		sp = *(unsigned long *)sp;
 | |
| 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
 | |
| 			return 0;
 | |
| 		if (count > 0) {
 | |
| 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
 | |
| 			if (!in_sched_functions(ip))
 | |
| 				return ip;
 | |
| 		}
 | |
| 	} while (count++ < 16);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
 | |
| 
 | |
| void show_stack(struct task_struct *tsk, unsigned long *stack)
 | |
| {
 | |
| 	unsigned long sp, ip, lr, newsp;
 | |
| 	int count = 0;
 | |
| 	int firstframe = 1;
 | |
| #ifdef CONFIG_FUNCTION_GRAPH_TRACER
 | |
| 	int curr_frame = current->curr_ret_stack;
 | |
| 	extern void return_to_handler(void);
 | |
| 	unsigned long rth = (unsigned long)return_to_handler;
 | |
| 	unsigned long mrth = -1;
 | |
| #ifdef CONFIG_PPC64
 | |
| 	extern void mod_return_to_handler(void);
 | |
| 	rth = *(unsigned long *)rth;
 | |
| 	mrth = (unsigned long)mod_return_to_handler;
 | |
| 	mrth = *(unsigned long *)mrth;
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| 	sp = (unsigned long) stack;
 | |
| 	if (tsk == NULL)
 | |
| 		tsk = current;
 | |
| 	if (sp == 0) {
 | |
| 		if (tsk == current)
 | |
| 			asm("mr %0,1" : "=r" (sp));
 | |
| 		else
 | |
| 			sp = tsk->thread.ksp;
 | |
| 	}
 | |
| 
 | |
| 	lr = 0;
 | |
| 	printk("Call Trace:\n");
 | |
| 	do {
 | |
| 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
 | |
| 			return;
 | |
| 
 | |
| 		stack = (unsigned long *) sp;
 | |
| 		newsp = stack[0];
 | |
| 		ip = stack[STACK_FRAME_LR_SAVE];
 | |
| 		if (!firstframe || ip != lr) {
 | |
| 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
 | |
| #ifdef CONFIG_FUNCTION_GRAPH_TRACER
 | |
| 			if ((ip == rth || ip == mrth) && curr_frame >= 0) {
 | |
| 				printk(" (%pS)",
 | |
| 				       (void *)current->ret_stack[curr_frame].ret);
 | |
| 				curr_frame--;
 | |
| 			}
 | |
| #endif
 | |
| 			if (firstframe)
 | |
| 				printk(" (unreliable)");
 | |
| 			printk("\n");
 | |
| 		}
 | |
| 		firstframe = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * See if this is an exception frame.
 | |
| 		 * We look for the "regshere" marker in the current frame.
 | |
| 		 */
 | |
| 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
 | |
| 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
 | |
| 			struct pt_regs *regs = (struct pt_regs *)
 | |
| 				(sp + STACK_FRAME_OVERHEAD);
 | |
| 			lr = regs->link;
 | |
| 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
 | |
| 			       regs->trap, (void *)regs->nip, (void *)lr);
 | |
| 			firstframe = 1;
 | |
| 		}
 | |
| 
 | |
| 		sp = newsp;
 | |
| 	} while (count++ < kstack_depth_to_print);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC64
 | |
| /* Called with hard IRQs off */
 | |
| void notrace __ppc64_runlatch_on(void)
 | |
| {
 | |
| 	struct thread_info *ti = current_thread_info();
 | |
| 	unsigned long ctrl;
 | |
| 
 | |
| 	ctrl = mfspr(SPRN_CTRLF);
 | |
| 	ctrl |= CTRL_RUNLATCH;
 | |
| 	mtspr(SPRN_CTRLT, ctrl);
 | |
| 
 | |
| 	ti->local_flags |= _TLF_RUNLATCH;
 | |
| }
 | |
| 
 | |
| /* Called with hard IRQs off */
 | |
| void notrace __ppc64_runlatch_off(void)
 | |
| {
 | |
| 	struct thread_info *ti = current_thread_info();
 | |
| 	unsigned long ctrl;
 | |
| 
 | |
| 	ti->local_flags &= ~_TLF_RUNLATCH;
 | |
| 
 | |
| 	ctrl = mfspr(SPRN_CTRLF);
 | |
| 	ctrl &= ~CTRL_RUNLATCH;
 | |
| 	mtspr(SPRN_CTRLT, ctrl);
 | |
| }
 | |
| #endif /* CONFIG_PPC64 */
 | |
| 
 | |
| unsigned long arch_align_stack(unsigned long sp)
 | |
| {
 | |
| 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 | |
| 		sp -= get_random_int() & ~PAGE_MASK;
 | |
| 	return sp & ~0xf;
 | |
| }
 | |
| 
 | |
| static inline unsigned long brk_rnd(void)
 | |
| {
 | |
|         unsigned long rnd = 0;
 | |
| 
 | |
| 	/* 8MB for 32bit, 1GB for 64bit */
 | |
| 	if (is_32bit_task())
 | |
| 		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
 | |
| 	else
 | |
| 		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
 | |
| 
 | |
| 	return rnd << PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| unsigned long arch_randomize_brk(struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned long base = mm->brk;
 | |
| 	unsigned long ret;
 | |
| 
 | |
| #ifdef CONFIG_PPC_STD_MMU_64
 | |
| 	/*
 | |
| 	 * If we are using 1TB segments and we are allowed to randomise
 | |
| 	 * the heap, we can put it above 1TB so it is backed by a 1TB
 | |
| 	 * segment. Otherwise the heap will be in the bottom 1TB
 | |
| 	 * which always uses 256MB segments and this may result in a
 | |
| 	 * performance penalty.
 | |
| 	 */
 | |
| 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
 | |
| 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
 | |
| #endif
 | |
| 
 | |
| 	ret = PAGE_ALIGN(base + brk_rnd());
 | |
| 
 | |
| 	if (ret < mm->brk)
 | |
| 		return mm->brk;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| unsigned long randomize_et_dyn(unsigned long base)
 | |
| {
 | |
| 	unsigned long ret = PAGE_ALIGN(base + brk_rnd());
 | |
| 
 | |
| 	if (ret < base)
 | |
| 		return base;
 | |
| 
 | |
| 	return ret;
 | |
| }
 |