 ddca156ae6
			
		
	
	
	ddca156ae6
	
	
	
		
			
			Use make_dsisr instead of open coding it. This also have the added benefit of handling alignment interrupt on additional instructions. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
		
			
				
	
	
		
			1042 lines
		
	
	
	
		
			25 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1042 lines
		
	
	
	
		
			25 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* align.c - handle alignment exceptions for the Power PC.
 | |
|  *
 | |
|  * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
 | |
|  * Copyright (c) 1998-1999 TiVo, Inc.
 | |
|  *   PowerPC 403GCX modifications.
 | |
|  * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
 | |
|  *   PowerPC 403GCX/405GP modifications.
 | |
|  * Copyright (c) 2001-2002 PPC64 team, IBM Corp
 | |
|  *   64-bit and Power4 support
 | |
|  * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
 | |
|  *                    <benh@kernel.crashing.org>
 | |
|  *   Merge ppc32 and ppc64 implementations
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/cache.h>
 | |
| #include <asm/cputable.h>
 | |
| #include <asm/emulated_ops.h>
 | |
| #include <asm/switch_to.h>
 | |
| #include <asm/disassemble.h>
 | |
| 
 | |
| struct aligninfo {
 | |
| 	unsigned char len;
 | |
| 	unsigned char flags;
 | |
| };
 | |
| 
 | |
| 
 | |
| #define INVALID	{ 0, 0 }
 | |
| 
 | |
| /* Bits in the flags field */
 | |
| #define LD	0	/* load */
 | |
| #define ST	1	/* store */
 | |
| #define SE	2	/* sign-extend value, or FP ld/st as word */
 | |
| #define F	4	/* to/from fp regs */
 | |
| #define U	8	/* update index register */
 | |
| #define M	0x10	/* multiple load/store */
 | |
| #define SW	0x20	/* byte swap */
 | |
| #define S	0x40	/* single-precision fp or... */
 | |
| #define SX	0x40	/* ... byte count in XER */
 | |
| #define HARD	0x80	/* string, stwcx. */
 | |
| #define E4	0x40	/* SPE endianness is word */
 | |
| #define E8	0x80	/* SPE endianness is double word */
 | |
| #define SPLT	0x80	/* VSX SPLAT load */
 | |
| 
 | |
| /* DSISR bits reported for a DCBZ instruction: */
 | |
| #define DCBZ	0x5f	/* 8xx/82xx dcbz faults when cache not enabled */
 | |
| 
 | |
| /*
 | |
|  * The PowerPC stores certain bits of the instruction that caused the
 | |
|  * alignment exception in the DSISR register.  This array maps those
 | |
|  * bits to information about the operand length and what the
 | |
|  * instruction would do.
 | |
|  */
 | |
| static struct aligninfo aligninfo[128] = {
 | |
| 	{ 4, LD },		/* 00 0 0000: lwz / lwarx */
 | |
| 	INVALID,		/* 00 0 0001 */
 | |
| 	{ 4, ST },		/* 00 0 0010: stw */
 | |
| 	INVALID,		/* 00 0 0011 */
 | |
| 	{ 2, LD },		/* 00 0 0100: lhz */
 | |
| 	{ 2, LD+SE },		/* 00 0 0101: lha */
 | |
| 	{ 2, ST },		/* 00 0 0110: sth */
 | |
| 	{ 4, LD+M },		/* 00 0 0111: lmw */
 | |
| 	{ 4, LD+F+S },		/* 00 0 1000: lfs */
 | |
| 	{ 8, LD+F },		/* 00 0 1001: lfd */
 | |
| 	{ 4, ST+F+S },		/* 00 0 1010: stfs */
 | |
| 	{ 8, ST+F },		/* 00 0 1011: stfd */
 | |
| 	{ 16, LD },		/* 00 0 1100: lq */
 | |
| 	{ 8, LD },		/* 00 0 1101: ld/ldu/lwa */
 | |
| 	INVALID,		/* 00 0 1110 */
 | |
| 	{ 8, ST },		/* 00 0 1111: std/stdu */
 | |
| 	{ 4, LD+U },		/* 00 1 0000: lwzu */
 | |
| 	INVALID,		/* 00 1 0001 */
 | |
| 	{ 4, ST+U },		/* 00 1 0010: stwu */
 | |
| 	INVALID,		/* 00 1 0011 */
 | |
| 	{ 2, LD+U },		/* 00 1 0100: lhzu */
 | |
| 	{ 2, LD+SE+U },		/* 00 1 0101: lhau */
 | |
| 	{ 2, ST+U },		/* 00 1 0110: sthu */
 | |
| 	{ 4, ST+M },		/* 00 1 0111: stmw */
 | |
| 	{ 4, LD+F+S+U },	/* 00 1 1000: lfsu */
 | |
| 	{ 8, LD+F+U },		/* 00 1 1001: lfdu */
 | |
| 	{ 4, ST+F+S+U },	/* 00 1 1010: stfsu */
 | |
| 	{ 8, ST+F+U },		/* 00 1 1011: stfdu */
 | |
| 	{ 16, LD+F },		/* 00 1 1100: lfdp */
 | |
| 	INVALID,		/* 00 1 1101 */
 | |
| 	{ 16, ST+F },		/* 00 1 1110: stfdp */
 | |
| 	INVALID,		/* 00 1 1111 */
 | |
| 	{ 8, LD },		/* 01 0 0000: ldx */
 | |
| 	INVALID,		/* 01 0 0001 */
 | |
| 	{ 8, ST },		/* 01 0 0010: stdx */
 | |
| 	INVALID,		/* 01 0 0011 */
 | |
| 	INVALID,		/* 01 0 0100 */
 | |
| 	{ 4, LD+SE },		/* 01 0 0101: lwax */
 | |
| 	INVALID,		/* 01 0 0110 */
 | |
| 	INVALID,		/* 01 0 0111 */
 | |
| 	{ 4, LD+M+HARD+SX },	/* 01 0 1000: lswx */
 | |
| 	{ 4, LD+M+HARD },	/* 01 0 1001: lswi */
 | |
| 	{ 4, ST+M+HARD+SX },	/* 01 0 1010: stswx */
 | |
| 	{ 4, ST+M+HARD },	/* 01 0 1011: stswi */
 | |
| 	INVALID,		/* 01 0 1100 */
 | |
| 	{ 8, LD+U },		/* 01 0 1101: ldu */
 | |
| 	INVALID,		/* 01 0 1110 */
 | |
| 	{ 8, ST+U },		/* 01 0 1111: stdu */
 | |
| 	{ 8, LD+U },		/* 01 1 0000: ldux */
 | |
| 	INVALID,		/* 01 1 0001 */
 | |
| 	{ 8, ST+U },		/* 01 1 0010: stdux */
 | |
| 	INVALID,		/* 01 1 0011 */
 | |
| 	INVALID,		/* 01 1 0100 */
 | |
| 	{ 4, LD+SE+U },		/* 01 1 0101: lwaux */
 | |
| 	INVALID,		/* 01 1 0110 */
 | |
| 	INVALID,		/* 01 1 0111 */
 | |
| 	INVALID,		/* 01 1 1000 */
 | |
| 	INVALID,		/* 01 1 1001 */
 | |
| 	INVALID,		/* 01 1 1010 */
 | |
| 	INVALID,		/* 01 1 1011 */
 | |
| 	INVALID,		/* 01 1 1100 */
 | |
| 	INVALID,		/* 01 1 1101 */
 | |
| 	INVALID,		/* 01 1 1110 */
 | |
| 	INVALID,		/* 01 1 1111 */
 | |
| 	INVALID,		/* 10 0 0000 */
 | |
| 	INVALID,		/* 10 0 0001 */
 | |
| 	INVALID,		/* 10 0 0010: stwcx. */
 | |
| 	INVALID,		/* 10 0 0011 */
 | |
| 	INVALID,		/* 10 0 0100 */
 | |
| 	INVALID,		/* 10 0 0101 */
 | |
| 	INVALID,		/* 10 0 0110 */
 | |
| 	INVALID,		/* 10 0 0111 */
 | |
| 	{ 4, LD+SW },		/* 10 0 1000: lwbrx */
 | |
| 	INVALID,		/* 10 0 1001 */
 | |
| 	{ 4, ST+SW },		/* 10 0 1010: stwbrx */
 | |
| 	INVALID,		/* 10 0 1011 */
 | |
| 	{ 2, LD+SW },		/* 10 0 1100: lhbrx */
 | |
| 	{ 4, LD+SE },		/* 10 0 1101  lwa */
 | |
| 	{ 2, ST+SW },		/* 10 0 1110: sthbrx */
 | |
| 	{ 16, ST },		/* 10 0 1111: stq */
 | |
| 	INVALID,		/* 10 1 0000 */
 | |
| 	INVALID,		/* 10 1 0001 */
 | |
| 	INVALID,		/* 10 1 0010 */
 | |
| 	INVALID,		/* 10 1 0011 */
 | |
| 	INVALID,		/* 10 1 0100 */
 | |
| 	INVALID,		/* 10 1 0101 */
 | |
| 	INVALID,		/* 10 1 0110 */
 | |
| 	INVALID,		/* 10 1 0111 */
 | |
| 	INVALID,		/* 10 1 1000 */
 | |
| 	INVALID,		/* 10 1 1001 */
 | |
| 	INVALID,		/* 10 1 1010 */
 | |
| 	INVALID,		/* 10 1 1011 */
 | |
| 	INVALID,		/* 10 1 1100 */
 | |
| 	INVALID,		/* 10 1 1101 */
 | |
| 	INVALID,		/* 10 1 1110 */
 | |
| 	{ 0, ST+HARD },		/* 10 1 1111: dcbz */
 | |
| 	{ 4, LD },		/* 11 0 0000: lwzx */
 | |
| 	INVALID,		/* 11 0 0001 */
 | |
| 	{ 4, ST },		/* 11 0 0010: stwx */
 | |
| 	INVALID,		/* 11 0 0011 */
 | |
| 	{ 2, LD },		/* 11 0 0100: lhzx */
 | |
| 	{ 2, LD+SE },		/* 11 0 0101: lhax */
 | |
| 	{ 2, ST },		/* 11 0 0110: sthx */
 | |
| 	INVALID,		/* 11 0 0111 */
 | |
| 	{ 4, LD+F+S },		/* 11 0 1000: lfsx */
 | |
| 	{ 8, LD+F },		/* 11 0 1001: lfdx */
 | |
| 	{ 4, ST+F+S },		/* 11 0 1010: stfsx */
 | |
| 	{ 8, ST+F },		/* 11 0 1011: stfdx */
 | |
| 	{ 16, LD+F },		/* 11 0 1100: lfdpx */
 | |
| 	{ 4, LD+F+SE },		/* 11 0 1101: lfiwax */
 | |
| 	{ 16, ST+F },		/* 11 0 1110: stfdpx */
 | |
| 	{ 4, ST+F },		/* 11 0 1111: stfiwx */
 | |
| 	{ 4, LD+U },		/* 11 1 0000: lwzux */
 | |
| 	INVALID,		/* 11 1 0001 */
 | |
| 	{ 4, ST+U },		/* 11 1 0010: stwux */
 | |
| 	INVALID,		/* 11 1 0011 */
 | |
| 	{ 2, LD+U },		/* 11 1 0100: lhzux */
 | |
| 	{ 2, LD+SE+U },		/* 11 1 0101: lhaux */
 | |
| 	{ 2, ST+U },		/* 11 1 0110: sthux */
 | |
| 	INVALID,		/* 11 1 0111 */
 | |
| 	{ 4, LD+F+S+U },	/* 11 1 1000: lfsux */
 | |
| 	{ 8, LD+F+U },		/* 11 1 1001: lfdux */
 | |
| 	{ 4, ST+F+S+U },	/* 11 1 1010: stfsux */
 | |
| 	{ 8, ST+F+U },		/* 11 1 1011: stfdux */
 | |
| 	INVALID,		/* 11 1 1100 */
 | |
| 	{ 4, LD+F },		/* 11 1 1101: lfiwzx */
 | |
| 	INVALID,		/* 11 1 1110 */
 | |
| 	INVALID,		/* 11 1 1111 */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The dcbz (data cache block zero) instruction
 | |
|  * gives an alignment fault if used on non-cacheable
 | |
|  * memory.  We handle the fault mainly for the
 | |
|  * case when we are running with the cache disabled
 | |
|  * for debugging.
 | |
|  */
 | |
| static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr)
 | |
| {
 | |
| 	long __user *p;
 | |
| 	int i, size;
 | |
| 
 | |
| #ifdef __powerpc64__
 | |
| 	size = ppc64_caches.dline_size;
 | |
| #else
 | |
| 	size = L1_CACHE_BYTES;
 | |
| #endif
 | |
| 	p = (long __user *) (regs->dar & -size);
 | |
| 	if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size))
 | |
| 		return -EFAULT;
 | |
| 	for (i = 0; i < size / sizeof(long); ++i)
 | |
| 		if (__put_user_inatomic(0, p+i))
 | |
| 			return -EFAULT;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Emulate load & store multiple instructions
 | |
|  * On 64-bit machines, these instructions only affect/use the
 | |
|  * bottom 4 bytes of each register, and the loads clear the
 | |
|  * top 4 bytes of the affected register.
 | |
|  */
 | |
| #ifdef __BIG_ENDIAN__
 | |
| #ifdef CONFIG_PPC64
 | |
| #define REG_BYTE(rp, i)		*((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4)
 | |
| #else
 | |
| #define REG_BYTE(rp, i)		*((u8 *)(rp) + (i))
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef __LITTLE_ENDIAN__
 | |
| #define REG_BYTE(rp, i)		(*(((u8 *)((rp) + ((i)>>2)) + ((i)&3))))
 | |
| #endif
 | |
| 
 | |
| #define SWIZ_PTR(p)		((unsigned char __user *)((p) ^ swiz))
 | |
| 
 | |
| static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
 | |
| 			    unsigned int reg, unsigned int nb,
 | |
| 			    unsigned int flags, unsigned int instr,
 | |
| 			    unsigned long swiz)
 | |
| {
 | |
| 	unsigned long *rptr;
 | |
| 	unsigned int nb0, i, bswiz;
 | |
| 	unsigned long p;
 | |
| 
 | |
| 	/*
 | |
| 	 * We do not try to emulate 8 bytes multiple as they aren't really
 | |
| 	 * available in our operating environments and we don't try to
 | |
| 	 * emulate multiples operations in kernel land as they should never
 | |
| 	 * be used/generated there at least not on unaligned boundaries
 | |
| 	 */
 | |
| 	if (unlikely((nb > 4) || !user_mode(regs)))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* lmw, stmw, lswi/x, stswi/x */
 | |
| 	nb0 = 0;
 | |
| 	if (flags & HARD) {
 | |
| 		if (flags & SX) {
 | |
| 			nb = regs->xer & 127;
 | |
| 			if (nb == 0)
 | |
| 				return 1;
 | |
| 		} else {
 | |
| 			unsigned long pc = regs->nip ^ (swiz & 4);
 | |
| 
 | |
| 			if (__get_user_inatomic(instr,
 | |
| 						(unsigned int __user *)pc))
 | |
| 				return -EFAULT;
 | |
| 			if (swiz == 0 && (flags & SW))
 | |
| 				instr = cpu_to_le32(instr);
 | |
| 			nb = (instr >> 11) & 0x1f;
 | |
| 			if (nb == 0)
 | |
| 				nb = 32;
 | |
| 		}
 | |
| 		if (nb + reg * 4 > 128) {
 | |
| 			nb0 = nb + reg * 4 - 128;
 | |
| 			nb = 128 - reg * 4;
 | |
| 		}
 | |
| #ifdef __LITTLE_ENDIAN__
 | |
| 		/*
 | |
| 		 *  String instructions are endian neutral but the code
 | |
| 		 *  below is not.  Force byte swapping on so that the
 | |
| 		 *  effects of swizzling are undone in the load/store
 | |
| 		 *  loops below.
 | |
| 		 */
 | |
| 		flags ^= SW;
 | |
| #endif
 | |
| 	} else {
 | |
| 		/* lwm, stmw */
 | |
| 		nb = (32 - reg) * 4;
 | |
| 	}
 | |
| 
 | |
| 	if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0))
 | |
| 		return -EFAULT;	/* bad address */
 | |
| 
 | |
| 	rptr = ®s->gpr[reg];
 | |
| 	p = (unsigned long) addr;
 | |
| 	bswiz = (flags & SW)? 3: 0;
 | |
| 
 | |
| 	if (!(flags & ST)) {
 | |
| 		/*
 | |
| 		 * This zeroes the top 4 bytes of the affected registers
 | |
| 		 * in 64-bit mode, and also zeroes out any remaining
 | |
| 		 * bytes of the last register for lsw*.
 | |
| 		 */
 | |
| 		memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long));
 | |
| 		if (nb0 > 0)
 | |
| 			memset(®s->gpr[0], 0,
 | |
| 			       ((nb0 + 3) / 4) * sizeof(unsigned long));
 | |
| 
 | |
| 		for (i = 0; i < nb; ++i, ++p)
 | |
| 			if (__get_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
 | |
| 						SWIZ_PTR(p)))
 | |
| 				return -EFAULT;
 | |
| 		if (nb0 > 0) {
 | |
| 			rptr = ®s->gpr[0];
 | |
| 			addr += nb;
 | |
| 			for (i = 0; i < nb0; ++i, ++p)
 | |
| 				if (__get_user_inatomic(REG_BYTE(rptr,
 | |
| 								 i ^ bswiz),
 | |
| 							SWIZ_PTR(p)))
 | |
| 					return -EFAULT;
 | |
| 		}
 | |
| 
 | |
| 	} else {
 | |
| 		for (i = 0; i < nb; ++i, ++p)
 | |
| 			if (__put_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
 | |
| 						SWIZ_PTR(p)))
 | |
| 				return -EFAULT;
 | |
| 		if (nb0 > 0) {
 | |
| 			rptr = ®s->gpr[0];
 | |
| 			addr += nb;
 | |
| 			for (i = 0; i < nb0; ++i, ++p)
 | |
| 				if (__put_user_inatomic(REG_BYTE(rptr,
 | |
| 								 i ^ bswiz),
 | |
| 							SWIZ_PTR(p)))
 | |
| 					return -EFAULT;
 | |
| 		}
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Emulate floating-point pair loads and stores.
 | |
|  * Only POWER6 has these instructions, and it does true little-endian,
 | |
|  * so we don't need the address swizzling.
 | |
|  */
 | |
| static int emulate_fp_pair(unsigned char __user *addr, unsigned int reg,
 | |
| 			   unsigned int flags)
 | |
| {
 | |
| 	char *ptr0 = (char *) ¤t->thread.TS_FPR(reg);
 | |
| 	char *ptr1 = (char *) ¤t->thread.TS_FPR(reg+1);
 | |
| 	int i, ret, sw = 0;
 | |
| 
 | |
| 	if (reg & 1)
 | |
| 		return 0;	/* invalid form: FRS/FRT must be even */
 | |
| 	if (flags & SW)
 | |
| 		sw = 7;
 | |
| 	ret = 0;
 | |
| 	for (i = 0; i < 8; ++i) {
 | |
| 		if (!(flags & ST)) {
 | |
| 			ret |= __get_user(ptr0[i^sw], addr + i);
 | |
| 			ret |= __get_user(ptr1[i^sw], addr + i + 8);
 | |
| 		} else {
 | |
| 			ret |= __put_user(ptr0[i^sw], addr + i);
 | |
| 			ret |= __put_user(ptr1[i^sw], addr + i + 8);
 | |
| 		}
 | |
| 	}
 | |
| 	if (ret)
 | |
| 		return -EFAULT;
 | |
| 	return 1;	/* exception handled and fixed up */
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC64
 | |
| static int emulate_lq_stq(struct pt_regs *regs, unsigned char __user *addr,
 | |
| 			  unsigned int reg, unsigned int flags)
 | |
| {
 | |
| 	char *ptr0 = (char *)®s->gpr[reg];
 | |
| 	char *ptr1 = (char *)®s->gpr[reg+1];
 | |
| 	int i, ret, sw = 0;
 | |
| 
 | |
| 	if (reg & 1)
 | |
| 		return 0;	/* invalid form: GPR must be even */
 | |
| 	if (flags & SW)
 | |
| 		sw = 7;
 | |
| 	ret = 0;
 | |
| 	for (i = 0; i < 8; ++i) {
 | |
| 		if (!(flags & ST)) {
 | |
| 			ret |= __get_user(ptr0[i^sw], addr + i);
 | |
| 			ret |= __get_user(ptr1[i^sw], addr + i + 8);
 | |
| 		} else {
 | |
| 			ret |= __put_user(ptr0[i^sw], addr + i);
 | |
| 			ret |= __put_user(ptr1[i^sw], addr + i + 8);
 | |
| 		}
 | |
| 	}
 | |
| 	if (ret)
 | |
| 		return -EFAULT;
 | |
| 	return 1;	/* exception handled and fixed up */
 | |
| }
 | |
| #endif /* CONFIG_PPC64 */
 | |
| 
 | |
| #ifdef CONFIG_SPE
 | |
| 
 | |
| static struct aligninfo spe_aligninfo[32] = {
 | |
| 	{ 8, LD+E8 },		/* 0 00 00: evldd[x] */
 | |
| 	{ 8, LD+E4 },		/* 0 00 01: evldw[x] */
 | |
| 	{ 8, LD },		/* 0 00 10: evldh[x] */
 | |
| 	INVALID,		/* 0 00 11 */
 | |
| 	{ 2, LD },		/* 0 01 00: evlhhesplat[x] */
 | |
| 	INVALID,		/* 0 01 01 */
 | |
| 	{ 2, LD },		/* 0 01 10: evlhhousplat[x] */
 | |
| 	{ 2, LD+SE },		/* 0 01 11: evlhhossplat[x] */
 | |
| 	{ 4, LD },		/* 0 10 00: evlwhe[x] */
 | |
| 	INVALID,		/* 0 10 01 */
 | |
| 	{ 4, LD },		/* 0 10 10: evlwhou[x] */
 | |
| 	{ 4, LD+SE },		/* 0 10 11: evlwhos[x] */
 | |
| 	{ 4, LD+E4 },		/* 0 11 00: evlwwsplat[x] */
 | |
| 	INVALID,		/* 0 11 01 */
 | |
| 	{ 4, LD },		/* 0 11 10: evlwhsplat[x] */
 | |
| 	INVALID,		/* 0 11 11 */
 | |
| 
 | |
| 	{ 8, ST+E8 },		/* 1 00 00: evstdd[x] */
 | |
| 	{ 8, ST+E4 },		/* 1 00 01: evstdw[x] */
 | |
| 	{ 8, ST },		/* 1 00 10: evstdh[x] */
 | |
| 	INVALID,		/* 1 00 11 */
 | |
| 	INVALID,		/* 1 01 00 */
 | |
| 	INVALID,		/* 1 01 01 */
 | |
| 	INVALID,		/* 1 01 10 */
 | |
| 	INVALID,		/* 1 01 11 */
 | |
| 	{ 4, ST },		/* 1 10 00: evstwhe[x] */
 | |
| 	INVALID,		/* 1 10 01 */
 | |
| 	{ 4, ST },		/* 1 10 10: evstwho[x] */
 | |
| 	INVALID,		/* 1 10 11 */
 | |
| 	{ 4, ST+E4 },		/* 1 11 00: evstwwe[x] */
 | |
| 	INVALID,		/* 1 11 01 */
 | |
| 	{ 4, ST+E4 },		/* 1 11 10: evstwwo[x] */
 | |
| 	INVALID,		/* 1 11 11 */
 | |
| };
 | |
| 
 | |
| #define	EVLDD		0x00
 | |
| #define	EVLDW		0x01
 | |
| #define	EVLDH		0x02
 | |
| #define	EVLHHESPLAT	0x04
 | |
| #define	EVLHHOUSPLAT	0x06
 | |
| #define	EVLHHOSSPLAT	0x07
 | |
| #define	EVLWHE		0x08
 | |
| #define	EVLWHOU		0x0A
 | |
| #define	EVLWHOS		0x0B
 | |
| #define	EVLWWSPLAT	0x0C
 | |
| #define	EVLWHSPLAT	0x0E
 | |
| #define	EVSTDD		0x10
 | |
| #define	EVSTDW		0x11
 | |
| #define	EVSTDH		0x12
 | |
| #define	EVSTWHE		0x18
 | |
| #define	EVSTWHO		0x1A
 | |
| #define	EVSTWWE		0x1C
 | |
| #define	EVSTWWO		0x1E
 | |
| 
 | |
| /*
 | |
|  * Emulate SPE loads and stores.
 | |
|  * Only Book-E has these instructions, and it does true little-endian,
 | |
|  * so we don't need the address swizzling.
 | |
|  */
 | |
| static int emulate_spe(struct pt_regs *regs, unsigned int reg,
 | |
| 		       unsigned int instr)
 | |
| {
 | |
| 	int ret;
 | |
| 	union {
 | |
| 		u64 ll;
 | |
| 		u32 w[2];
 | |
| 		u16 h[4];
 | |
| 		u8 v[8];
 | |
| 	} data, temp;
 | |
| 	unsigned char __user *p, *addr;
 | |
| 	unsigned long *evr = ¤t->thread.evr[reg];
 | |
| 	unsigned int nb, flags;
 | |
| 
 | |
| 	instr = (instr >> 1) & 0x1f;
 | |
| 
 | |
| 	/* DAR has the operand effective address */
 | |
| 	addr = (unsigned char __user *)regs->dar;
 | |
| 
 | |
| 	nb = spe_aligninfo[instr].len;
 | |
| 	flags = spe_aligninfo[instr].flags;
 | |
| 
 | |
| 	/* Verify the address of the operand */
 | |
| 	if (unlikely(user_mode(regs) &&
 | |
| 		     !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
 | |
| 				addr, nb)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/* userland only */
 | |
| 	if (unlikely(!user_mode(regs)))
 | |
| 		return 0;
 | |
| 
 | |
| 	flush_spe_to_thread(current);
 | |
| 
 | |
| 	/* If we are loading, get the data from user space, else
 | |
| 	 * get it from register values
 | |
| 	 */
 | |
| 	if (flags & ST) {
 | |
| 		data.ll = 0;
 | |
| 		switch (instr) {
 | |
| 		case EVSTDD:
 | |
| 		case EVSTDW:
 | |
| 		case EVSTDH:
 | |
| 			data.w[0] = *evr;
 | |
| 			data.w[1] = regs->gpr[reg];
 | |
| 			break;
 | |
| 		case EVSTWHE:
 | |
| 			data.h[2] = *evr >> 16;
 | |
| 			data.h[3] = regs->gpr[reg] >> 16;
 | |
| 			break;
 | |
| 		case EVSTWHO:
 | |
| 			data.h[2] = *evr & 0xffff;
 | |
| 			data.h[3] = regs->gpr[reg] & 0xffff;
 | |
| 			break;
 | |
| 		case EVSTWWE:
 | |
| 			data.w[1] = *evr;
 | |
| 			break;
 | |
| 		case EVSTWWO:
 | |
| 			data.w[1] = regs->gpr[reg];
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	} else {
 | |
| 		temp.ll = data.ll = 0;
 | |
| 		ret = 0;
 | |
| 		p = addr;
 | |
| 
 | |
| 		switch (nb) {
 | |
| 		case 8:
 | |
| 			ret |= __get_user_inatomic(temp.v[0], p++);
 | |
| 			ret |= __get_user_inatomic(temp.v[1], p++);
 | |
| 			ret |= __get_user_inatomic(temp.v[2], p++);
 | |
| 			ret |= __get_user_inatomic(temp.v[3], p++);
 | |
| 		case 4:
 | |
| 			ret |= __get_user_inatomic(temp.v[4], p++);
 | |
| 			ret |= __get_user_inatomic(temp.v[5], p++);
 | |
| 		case 2:
 | |
| 			ret |= __get_user_inatomic(temp.v[6], p++);
 | |
| 			ret |= __get_user_inatomic(temp.v[7], p++);
 | |
| 			if (unlikely(ret))
 | |
| 				return -EFAULT;
 | |
| 		}
 | |
| 
 | |
| 		switch (instr) {
 | |
| 		case EVLDD:
 | |
| 		case EVLDW:
 | |
| 		case EVLDH:
 | |
| 			data.ll = temp.ll;
 | |
| 			break;
 | |
| 		case EVLHHESPLAT:
 | |
| 			data.h[0] = temp.h[3];
 | |
| 			data.h[2] = temp.h[3];
 | |
| 			break;
 | |
| 		case EVLHHOUSPLAT:
 | |
| 		case EVLHHOSSPLAT:
 | |
| 			data.h[1] = temp.h[3];
 | |
| 			data.h[3] = temp.h[3];
 | |
| 			break;
 | |
| 		case EVLWHE:
 | |
| 			data.h[0] = temp.h[2];
 | |
| 			data.h[2] = temp.h[3];
 | |
| 			break;
 | |
| 		case EVLWHOU:
 | |
| 		case EVLWHOS:
 | |
| 			data.h[1] = temp.h[2];
 | |
| 			data.h[3] = temp.h[3];
 | |
| 			break;
 | |
| 		case EVLWWSPLAT:
 | |
| 			data.w[0] = temp.w[1];
 | |
| 			data.w[1] = temp.w[1];
 | |
| 			break;
 | |
| 		case EVLWHSPLAT:
 | |
| 			data.h[0] = temp.h[2];
 | |
| 			data.h[1] = temp.h[2];
 | |
| 			data.h[2] = temp.h[3];
 | |
| 			data.h[3] = temp.h[3];
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (flags & SW) {
 | |
| 		switch (flags & 0xf0) {
 | |
| 		case E8:
 | |
| 			data.ll = swab64(data.ll);
 | |
| 			break;
 | |
| 		case E4:
 | |
| 			data.w[0] = swab32(data.w[0]);
 | |
| 			data.w[1] = swab32(data.w[1]);
 | |
| 			break;
 | |
| 		/* Its half word endian */
 | |
| 		default:
 | |
| 			data.h[0] = swab16(data.h[0]);
 | |
| 			data.h[1] = swab16(data.h[1]);
 | |
| 			data.h[2] = swab16(data.h[2]);
 | |
| 			data.h[3] = swab16(data.h[3]);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (flags & SE) {
 | |
| 		data.w[0] = (s16)data.h[1];
 | |
| 		data.w[1] = (s16)data.h[3];
 | |
| 	}
 | |
| 
 | |
| 	/* Store result to memory or update registers */
 | |
| 	if (flags & ST) {
 | |
| 		ret = 0;
 | |
| 		p = addr;
 | |
| 		switch (nb) {
 | |
| 		case 8:
 | |
| 			ret |= __put_user_inatomic(data.v[0], p++);
 | |
| 			ret |= __put_user_inatomic(data.v[1], p++);
 | |
| 			ret |= __put_user_inatomic(data.v[2], p++);
 | |
| 			ret |= __put_user_inatomic(data.v[3], p++);
 | |
| 		case 4:
 | |
| 			ret |= __put_user_inatomic(data.v[4], p++);
 | |
| 			ret |= __put_user_inatomic(data.v[5], p++);
 | |
| 		case 2:
 | |
| 			ret |= __put_user_inatomic(data.v[6], p++);
 | |
| 			ret |= __put_user_inatomic(data.v[7], p++);
 | |
| 		}
 | |
| 		if (unlikely(ret))
 | |
| 			return -EFAULT;
 | |
| 	} else {
 | |
| 		*evr = data.w[0];
 | |
| 		regs->gpr[reg] = data.w[1];
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| #endif /* CONFIG_SPE */
 | |
| 
 | |
| #ifdef CONFIG_VSX
 | |
| /*
 | |
|  * Emulate VSX instructions...
 | |
|  */
 | |
| static int emulate_vsx(unsigned char __user *addr, unsigned int reg,
 | |
| 		       unsigned int areg, struct pt_regs *regs,
 | |
| 		       unsigned int flags, unsigned int length,
 | |
| 		       unsigned int elsize)
 | |
| {
 | |
| 	char *ptr;
 | |
| 	unsigned long *lptr;
 | |
| 	int ret = 0;
 | |
| 	int sw = 0;
 | |
| 	int i, j;
 | |
| 
 | |
| 	/* userland only */
 | |
| 	if (unlikely(!user_mode(regs)))
 | |
| 		return 0;
 | |
| 
 | |
| 	flush_vsx_to_thread(current);
 | |
| 
 | |
| 	if (reg < 32)
 | |
| 		ptr = (char *) ¤t->thread.fp_state.fpr[reg][0];
 | |
| 	else
 | |
| 		ptr = (char *) ¤t->thread.vr_state.vr[reg - 32];
 | |
| 
 | |
| 	lptr = (unsigned long *) ptr;
 | |
| 
 | |
| #ifdef __LITTLE_ENDIAN__
 | |
| 	if (flags & SW) {
 | |
| 		elsize = length;
 | |
| 		sw = length-1;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The elements are BE ordered, even in LE mode, so process
 | |
| 		 * them in reverse order.
 | |
| 		 */
 | |
| 		addr += length - elsize;
 | |
| 
 | |
| 		/* 8 byte memory accesses go in the top 8 bytes of the VR */
 | |
| 		if (length == 8)
 | |
| 			ptr += 8;
 | |
| 	}
 | |
| #else
 | |
| 	if (flags & SW)
 | |
| 		sw = elsize-1;
 | |
| #endif
 | |
| 
 | |
| 	for (j = 0; j < length; j += elsize) {
 | |
| 		for (i = 0; i < elsize; ++i) {
 | |
| 			if (flags & ST)
 | |
| 				ret |= __put_user(ptr[i^sw], addr + i);
 | |
| 			else
 | |
| 				ret |= __get_user(ptr[i^sw], addr + i);
 | |
| 		}
 | |
| 		ptr  += elsize;
 | |
| #ifdef __LITTLE_ENDIAN__
 | |
| 		addr -= elsize;
 | |
| #else
 | |
| 		addr += elsize;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| #ifdef __BIG_ENDIAN__
 | |
| #define VSX_HI 0
 | |
| #define VSX_LO 1
 | |
| #else
 | |
| #define VSX_HI 1
 | |
| #define VSX_LO 0
 | |
| #endif
 | |
| 
 | |
| 	if (!ret) {
 | |
| 		if (flags & U)
 | |
| 			regs->gpr[areg] = regs->dar;
 | |
| 
 | |
| 		/* Splat load copies the same data to top and bottom 8 bytes */
 | |
| 		if (flags & SPLT)
 | |
| 			lptr[VSX_LO] = lptr[VSX_HI];
 | |
| 		/* For 8 byte loads, zero the low 8 bytes */
 | |
| 		else if (!(flags & ST) && (8 == length))
 | |
| 			lptr[VSX_LO] = 0;
 | |
| 	} else
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Called on alignment exception. Attempts to fixup
 | |
|  *
 | |
|  * Return 1 on success
 | |
|  * Return 0 if unable to handle the interrupt
 | |
|  * Return -EFAULT if data address is bad
 | |
|  */
 | |
| 
 | |
| int fix_alignment(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned int instr, nb, flags, instruction = 0;
 | |
| 	unsigned int reg, areg;
 | |
| 	unsigned int dsisr;
 | |
| 	unsigned char __user *addr;
 | |
| 	unsigned long p, swiz;
 | |
| 	int ret, i;
 | |
| 	union data {
 | |
| 		u64 ll;
 | |
| 		double dd;
 | |
| 		unsigned char v[8];
 | |
| 		struct {
 | |
| #ifdef __LITTLE_ENDIAN__
 | |
| 			int	 low32;
 | |
| 			unsigned hi32;
 | |
| #else
 | |
| 			unsigned hi32;
 | |
| 			int	 low32;
 | |
| #endif
 | |
| 		} x32;
 | |
| 		struct {
 | |
| #ifdef __LITTLE_ENDIAN__
 | |
| 			short	      low16;
 | |
| 			unsigned char hi48[6];
 | |
| #else
 | |
| 			unsigned char hi48[6];
 | |
| 			short	      low16;
 | |
| #endif
 | |
| 		} x16;
 | |
| 	} data;
 | |
| 
 | |
| 	/*
 | |
| 	 * We require a complete register set, if not, then our assembly
 | |
| 	 * is broken
 | |
| 	 */
 | |
| 	CHECK_FULL_REGS(regs);
 | |
| 
 | |
| 	dsisr = regs->dsisr;
 | |
| 
 | |
| 	/* Some processors don't provide us with a DSISR we can use here,
 | |
| 	 * let's make one up from the instruction
 | |
| 	 */
 | |
| 	if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) {
 | |
| 		unsigned long pc = regs->nip;
 | |
| 
 | |
| 		if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE))
 | |
| 			pc ^= 4;
 | |
| 		if (unlikely(__get_user_inatomic(instr,
 | |
| 						 (unsigned int __user *)pc)))
 | |
| 			return -EFAULT;
 | |
| 		if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE))
 | |
| 			instr = cpu_to_le32(instr);
 | |
| 		dsisr = make_dsisr(instr);
 | |
| 		instruction = instr;
 | |
| 	}
 | |
| 
 | |
| 	/* extract the operation and registers from the dsisr */
 | |
| 	reg = (dsisr >> 5) & 0x1f;	/* source/dest register */
 | |
| 	areg = dsisr & 0x1f;		/* register to update */
 | |
| 
 | |
| #ifdef CONFIG_SPE
 | |
| 	if ((instr >> 26) == 0x4) {
 | |
| 		PPC_WARN_ALIGNMENT(spe, regs);
 | |
| 		return emulate_spe(regs, reg, instr);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	instr = (dsisr >> 10) & 0x7f;
 | |
| 	instr |= (dsisr >> 13) & 0x60;
 | |
| 
 | |
| 	/* Lookup the operation in our table */
 | |
| 	nb = aligninfo[instr].len;
 | |
| 	flags = aligninfo[instr].flags;
 | |
| 
 | |
| 	/* ldbrx/stdbrx overlap lfs/stfs in the DSISR unfortunately */
 | |
| 	if (IS_XFORM(instruction) && ((instruction >> 1) & 0x3ff) == 532) {
 | |
| 		nb = 8;
 | |
| 		flags = LD+SW;
 | |
| 	} else if (IS_XFORM(instruction) &&
 | |
| 		   ((instruction >> 1) & 0x3ff) == 660) {
 | |
| 		nb = 8;
 | |
| 		flags = ST+SW;
 | |
| 	}
 | |
| 
 | |
| 	/* Byteswap little endian loads and stores */
 | |
| 	swiz = 0;
 | |
| 	if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE)) {
 | |
| 		flags ^= SW;
 | |
| #ifdef __BIG_ENDIAN__
 | |
| 		/*
 | |
| 		 * So-called "PowerPC little endian" mode works by
 | |
| 		 * swizzling addresses rather than by actually doing
 | |
| 		 * any byte-swapping.  To emulate this, we XOR each
 | |
| 		 * byte address with 7.  We also byte-swap, because
 | |
| 		 * the processor's address swizzling depends on the
 | |
| 		 * operand size (it xors the address with 7 for bytes,
 | |
| 		 * 6 for halfwords, 4 for words, 0 for doublewords) but
 | |
| 		 * we will xor with 7 and load/store each byte separately.
 | |
| 		 */
 | |
| 		if (cpu_has_feature(CPU_FTR_PPC_LE))
 | |
| 			swiz = 7;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/* DAR has the operand effective address */
 | |
| 	addr = (unsigned char __user *)regs->dar;
 | |
| 
 | |
| #ifdef CONFIG_VSX
 | |
| 	if ((instruction & 0xfc00003e) == 0x7c000018) {
 | |
| 		unsigned int elsize;
 | |
| 
 | |
| 		/* Additional register addressing bit (64 VSX vs 32 FPR/GPR) */
 | |
| 		reg |= (instruction & 0x1) << 5;
 | |
| 		/* Simple inline decoder instead of a table */
 | |
| 		/* VSX has only 8 and 16 byte memory accesses */
 | |
| 		nb = 8;
 | |
| 		if (instruction & 0x200)
 | |
| 			nb = 16;
 | |
| 
 | |
| 		/* Vector stores in little-endian mode swap individual
 | |
| 		   elements, so process them separately */
 | |
| 		elsize = 4;
 | |
| 		if (instruction & 0x80)
 | |
| 			elsize = 8;
 | |
| 
 | |
| 		flags = 0;
 | |
| 		if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE))
 | |
| 			flags |= SW;
 | |
| 		if (instruction & 0x100)
 | |
| 			flags |= ST;
 | |
| 		if (instruction & 0x040)
 | |
| 			flags |= U;
 | |
| 		/* splat load needs a special decoder */
 | |
| 		if ((instruction & 0x400) == 0){
 | |
| 			flags |= SPLT;
 | |
| 			nb = 8;
 | |
| 		}
 | |
| 		PPC_WARN_ALIGNMENT(vsx, regs);
 | |
| 		return emulate_vsx(addr, reg, areg, regs, flags, nb, elsize);
 | |
| 	}
 | |
| #endif
 | |
| 	/* A size of 0 indicates an instruction we don't support, with
 | |
| 	 * the exception of DCBZ which is handled as a special case here
 | |
| 	 */
 | |
| 	if (instr == DCBZ) {
 | |
| 		PPC_WARN_ALIGNMENT(dcbz, regs);
 | |
| 		return emulate_dcbz(regs, addr);
 | |
| 	}
 | |
| 	if (unlikely(nb == 0))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Load/Store Multiple instructions are handled in their own
 | |
| 	 * function
 | |
| 	 */
 | |
| 	if (flags & M) {
 | |
| 		PPC_WARN_ALIGNMENT(multiple, regs);
 | |
| 		return emulate_multiple(regs, addr, reg, nb,
 | |
| 					flags, instr, swiz);
 | |
| 	}
 | |
| 
 | |
| 	/* Verify the address of the operand */
 | |
| 	if (unlikely(user_mode(regs) &&
 | |
| 		     !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
 | |
| 				addr, nb)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/* Force the fprs into the save area so we can reference them */
 | |
| 	if (flags & F) {
 | |
| 		/* userland only */
 | |
| 		if (unlikely(!user_mode(regs)))
 | |
| 			return 0;
 | |
| 		flush_fp_to_thread(current);
 | |
| 	}
 | |
| 
 | |
| 	if ((nb == 16)) {
 | |
| 		if (flags & F) {
 | |
| 			/* Special case for 16-byte FP loads and stores */
 | |
| 			PPC_WARN_ALIGNMENT(fp_pair, regs);
 | |
| 			return emulate_fp_pair(addr, reg, flags);
 | |
| 		} else {
 | |
| #ifdef CONFIG_PPC64
 | |
| 			/* Special case for 16-byte loads and stores */
 | |
| 			PPC_WARN_ALIGNMENT(lq_stq, regs);
 | |
| 			return emulate_lq_stq(regs, addr, reg, flags);
 | |
| #else
 | |
| 			return 0;
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	PPC_WARN_ALIGNMENT(unaligned, regs);
 | |
| 
 | |
| 	/* If we are loading, get the data from user space, else
 | |
| 	 * get it from register values
 | |
| 	 */
 | |
| 	if (!(flags & ST)) {
 | |
| 		unsigned int start = 0;
 | |
| 
 | |
| 		switch (nb) {
 | |
| 		case 4:
 | |
| 			start = offsetof(union data, x32.low32);
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			start = offsetof(union data, x16.low16);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		data.ll = 0;
 | |
| 		ret = 0;
 | |
| 		p = (unsigned long)addr;
 | |
| 
 | |
| 		for (i = 0; i < nb; i++)
 | |
| 			ret |= __get_user_inatomic(data.v[start + i],
 | |
| 						   SWIZ_PTR(p++));
 | |
| 
 | |
| 		if (unlikely(ret))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 	} else if (flags & F) {
 | |
| 		data.ll = current->thread.TS_FPR(reg);
 | |
| 		if (flags & S) {
 | |
| 			/* Single-precision FP store requires conversion... */
 | |
| #ifdef CONFIG_PPC_FPU
 | |
| 			preempt_disable();
 | |
| 			enable_kernel_fp();
 | |
| 			cvt_df(&data.dd, (float *)&data.x32.low32);
 | |
| 			preempt_enable();
 | |
| #else
 | |
| 			return 0;
 | |
| #endif
 | |
| 		}
 | |
| 	} else
 | |
| 		data.ll = regs->gpr[reg];
 | |
| 
 | |
| 	if (flags & SW) {
 | |
| 		switch (nb) {
 | |
| 		case 8:
 | |
| 			data.ll = swab64(data.ll);
 | |
| 			break;
 | |
| 		case 4:
 | |
| 			data.x32.low32 = swab32(data.x32.low32);
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			data.x16.low16 = swab16(data.x16.low16);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Perform other misc operations like sign extension
 | |
| 	 * or floating point single precision conversion
 | |
| 	 */
 | |
| 	switch (flags & ~(U|SW)) {
 | |
| 	case LD+SE:	/* sign extending integer loads */
 | |
| 	case LD+F+SE:	/* sign extend for lfiwax */
 | |
| 		if ( nb == 2 )
 | |
| 			data.ll = data.x16.low16;
 | |
| 		else	/* nb must be 4 */
 | |
| 			data.ll = data.x32.low32;
 | |
| 		break;
 | |
| 
 | |
| 	/* Single-precision FP load requires conversion... */
 | |
| 	case LD+F+S:
 | |
| #ifdef CONFIG_PPC_FPU
 | |
| 		preempt_disable();
 | |
| 		enable_kernel_fp();
 | |
| 		cvt_fd((float *)&data.x32.low32, &data.dd);
 | |
| 		preempt_enable();
 | |
| #else
 | |
| 		return 0;
 | |
| #endif
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Store result to memory or update registers */
 | |
| 	if (flags & ST) {
 | |
| 		unsigned int start = 0;
 | |
| 
 | |
| 		switch (nb) {
 | |
| 		case 4:
 | |
| 			start = offsetof(union data, x32.low32);
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			start = offsetof(union data, x16.low16);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ret = 0;
 | |
| 		p = (unsigned long)addr;
 | |
| 
 | |
| 		for (i = 0; i < nb; i++)
 | |
| 			ret |= __put_user_inatomic(data.v[start + i],
 | |
| 						   SWIZ_PTR(p++));
 | |
| 
 | |
| 		if (unlikely(ret))
 | |
| 			return -EFAULT;
 | |
| 	} else if (flags & F)
 | |
| 		current->thread.TS_FPR(reg) = data.ll;
 | |
| 	else
 | |
| 		regs->gpr[reg] = data.ll;
 | |
| 
 | |
| 	/* Update RA as needed */
 | |
| 	if (flags & U)
 | |
| 		regs->gpr[areg] = regs->dar;
 | |
| 
 | |
| 	return 1;
 | |
| }
 |