All callers of xfs_imap_to_bp want the dinode pointer, so let's calculate it inside xfs_imap_to_bp. Once that is done xfs_itobp becomes a fairly pointless wrapper which can be replaced with direct calls to xfs_imap_to_bp. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
		
			
				
	
	
		
			3867 lines
		
	
	
	
		
			105 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3867 lines
		
	
	
	
		
			105 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
 | 
						|
 * All Rights Reserved.
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License as
 | 
						|
 * published by the Free Software Foundation.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it would be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write the Free Software Foundation,
 | 
						|
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 */
 | 
						|
#include "xfs.h"
 | 
						|
#include "xfs_fs.h"
 | 
						|
#include "xfs_types.h"
 | 
						|
#include "xfs_bit.h"
 | 
						|
#include "xfs_log.h"
 | 
						|
#include "xfs_inum.h"
 | 
						|
#include "xfs_trans.h"
 | 
						|
#include "xfs_sb.h"
 | 
						|
#include "xfs_ag.h"
 | 
						|
#include "xfs_mount.h"
 | 
						|
#include "xfs_error.h"
 | 
						|
#include "xfs_bmap_btree.h"
 | 
						|
#include "xfs_alloc_btree.h"
 | 
						|
#include "xfs_ialloc_btree.h"
 | 
						|
#include "xfs_dinode.h"
 | 
						|
#include "xfs_inode.h"
 | 
						|
#include "xfs_inode_item.h"
 | 
						|
#include "xfs_alloc.h"
 | 
						|
#include "xfs_ialloc.h"
 | 
						|
#include "xfs_log_priv.h"
 | 
						|
#include "xfs_buf_item.h"
 | 
						|
#include "xfs_log_recover.h"
 | 
						|
#include "xfs_extfree_item.h"
 | 
						|
#include "xfs_trans_priv.h"
 | 
						|
#include "xfs_quota.h"
 | 
						|
#include "xfs_utils.h"
 | 
						|
#include "xfs_trace.h"
 | 
						|
 | 
						|
STATIC int
 | 
						|
xlog_find_zeroed(
 | 
						|
	struct xlog	*,
 | 
						|
	xfs_daddr_t	*);
 | 
						|
STATIC int
 | 
						|
xlog_clear_stale_blocks(
 | 
						|
	struct xlog	*,
 | 
						|
	xfs_lsn_t);
 | 
						|
#if defined(DEBUG)
 | 
						|
STATIC void
 | 
						|
xlog_recover_check_summary(
 | 
						|
	struct xlog *);
 | 
						|
#else
 | 
						|
#define	xlog_recover_check_summary(log)
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * This structure is used during recovery to record the buf log items which
 | 
						|
 * have been canceled and should not be replayed.
 | 
						|
 */
 | 
						|
struct xfs_buf_cancel {
 | 
						|
	xfs_daddr_t		bc_blkno;
 | 
						|
	uint			bc_len;
 | 
						|
	int			bc_refcount;
 | 
						|
	struct list_head	bc_list;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Sector aligned buffer routines for buffer create/read/write/access
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Verify the given count of basic blocks is valid number of blocks
 | 
						|
 * to specify for an operation involving the given XFS log buffer.
 | 
						|
 * Returns nonzero if the count is valid, 0 otherwise.
 | 
						|
 */
 | 
						|
 | 
						|
static inline int
 | 
						|
xlog_buf_bbcount_valid(
 | 
						|
	struct xlog	*log,
 | 
						|
	int		bbcount)
 | 
						|
{
 | 
						|
	return bbcount > 0 && bbcount <= log->l_logBBsize;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate a buffer to hold log data.  The buffer needs to be able
 | 
						|
 * to map to a range of nbblks basic blocks at any valid (basic
 | 
						|
 * block) offset within the log.
 | 
						|
 */
 | 
						|
STATIC xfs_buf_t *
 | 
						|
xlog_get_bp(
 | 
						|
	struct xlog	*log,
 | 
						|
	int		nbblks)
 | 
						|
{
 | 
						|
	struct xfs_buf	*bp;
 | 
						|
 | 
						|
	if (!xlog_buf_bbcount_valid(log, nbblks)) {
 | 
						|
		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 | 
						|
			nbblks);
 | 
						|
		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We do log I/O in units of log sectors (a power-of-2
 | 
						|
	 * multiple of the basic block size), so we round up the
 | 
						|
	 * requested size to accommodate the basic blocks required
 | 
						|
	 * for complete log sectors.
 | 
						|
	 *
 | 
						|
	 * In addition, the buffer may be used for a non-sector-
 | 
						|
	 * aligned block offset, in which case an I/O of the
 | 
						|
	 * requested size could extend beyond the end of the
 | 
						|
	 * buffer.  If the requested size is only 1 basic block it
 | 
						|
	 * will never straddle a sector boundary, so this won't be
 | 
						|
	 * an issue.  Nor will this be a problem if the log I/O is
 | 
						|
	 * done in basic blocks (sector size 1).  But otherwise we
 | 
						|
	 * extend the buffer by one extra log sector to ensure
 | 
						|
	 * there's space to accommodate this possibility.
 | 
						|
	 */
 | 
						|
	if (nbblks > 1 && log->l_sectBBsize > 1)
 | 
						|
		nbblks += log->l_sectBBsize;
 | 
						|
	nbblks = round_up(nbblks, log->l_sectBBsize);
 | 
						|
 | 
						|
	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
 | 
						|
	if (bp)
 | 
						|
		xfs_buf_unlock(bp);
 | 
						|
	return bp;
 | 
						|
}
 | 
						|
 | 
						|
STATIC void
 | 
						|
xlog_put_bp(
 | 
						|
	xfs_buf_t	*bp)
 | 
						|
{
 | 
						|
	xfs_buf_free(bp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the address of the start of the given block number's data
 | 
						|
 * in a log buffer.  The buffer covers a log sector-aligned region.
 | 
						|
 */
 | 
						|
STATIC xfs_caddr_t
 | 
						|
xlog_align(
 | 
						|
	struct xlog	*log,
 | 
						|
	xfs_daddr_t	blk_no,
 | 
						|
	int		nbblks,
 | 
						|
	struct xfs_buf	*bp)
 | 
						|
{
 | 
						|
	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
 | 
						|
 | 
						|
	ASSERT(offset + nbblks <= bp->b_length);
 | 
						|
	return bp->b_addr + BBTOB(offset);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_bread_noalign(
 | 
						|
	struct xlog	*log,
 | 
						|
	xfs_daddr_t	blk_no,
 | 
						|
	int		nbblks,
 | 
						|
	struct xfs_buf	*bp)
 | 
						|
{
 | 
						|
	int		error;
 | 
						|
 | 
						|
	if (!xlog_buf_bbcount_valid(log, nbblks)) {
 | 
						|
		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 | 
						|
			nbblks);
 | 
						|
		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 | 
						|
		return EFSCORRUPTED;
 | 
						|
	}
 | 
						|
 | 
						|
	blk_no = round_down(blk_no, log->l_sectBBsize);
 | 
						|
	nbblks = round_up(nbblks, log->l_sectBBsize);
 | 
						|
 | 
						|
	ASSERT(nbblks > 0);
 | 
						|
	ASSERT(nbblks <= bp->b_length);
 | 
						|
 | 
						|
	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 | 
						|
	XFS_BUF_READ(bp);
 | 
						|
	bp->b_io_length = nbblks;
 | 
						|
	bp->b_error = 0;
 | 
						|
 | 
						|
	xfsbdstrat(log->l_mp, bp);
 | 
						|
	error = xfs_buf_iowait(bp);
 | 
						|
	if (error)
 | 
						|
		xfs_buf_ioerror_alert(bp, __func__);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xlog_bread(
 | 
						|
	struct xlog	*log,
 | 
						|
	xfs_daddr_t	blk_no,
 | 
						|
	int		nbblks,
 | 
						|
	struct xfs_buf	*bp,
 | 
						|
	xfs_caddr_t	*offset)
 | 
						|
{
 | 
						|
	int		error;
 | 
						|
 | 
						|
	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	*offset = xlog_align(log, blk_no, nbblks, bp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Read at an offset into the buffer. Returns with the buffer in it's original
 | 
						|
 * state regardless of the result of the read.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_bread_offset(
 | 
						|
	struct xlog	*log,
 | 
						|
	xfs_daddr_t	blk_no,		/* block to read from */
 | 
						|
	int		nbblks,		/* blocks to read */
 | 
						|
	struct xfs_buf	*bp,
 | 
						|
	xfs_caddr_t	offset)
 | 
						|
{
 | 
						|
	xfs_caddr_t	orig_offset = bp->b_addr;
 | 
						|
	int		orig_len = BBTOB(bp->b_length);
 | 
						|
	int		error, error2;
 | 
						|
 | 
						|
	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 | 
						|
 | 
						|
	/* must reset buffer pointer even on error */
 | 
						|
	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
	return error2;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Write out the buffer at the given block for the given number of blocks.
 | 
						|
 * The buffer is kept locked across the write and is returned locked.
 | 
						|
 * This can only be used for synchronous log writes.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_bwrite(
 | 
						|
	struct xlog	*log,
 | 
						|
	xfs_daddr_t	blk_no,
 | 
						|
	int		nbblks,
 | 
						|
	struct xfs_buf	*bp)
 | 
						|
{
 | 
						|
	int		error;
 | 
						|
 | 
						|
	if (!xlog_buf_bbcount_valid(log, nbblks)) {
 | 
						|
		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 | 
						|
			nbblks);
 | 
						|
		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 | 
						|
		return EFSCORRUPTED;
 | 
						|
	}
 | 
						|
 | 
						|
	blk_no = round_down(blk_no, log->l_sectBBsize);
 | 
						|
	nbblks = round_up(nbblks, log->l_sectBBsize);
 | 
						|
 | 
						|
	ASSERT(nbblks > 0);
 | 
						|
	ASSERT(nbblks <= bp->b_length);
 | 
						|
 | 
						|
	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 | 
						|
	XFS_BUF_ZEROFLAGS(bp);
 | 
						|
	xfs_buf_hold(bp);
 | 
						|
	xfs_buf_lock(bp);
 | 
						|
	bp->b_io_length = nbblks;
 | 
						|
	bp->b_error = 0;
 | 
						|
 | 
						|
	error = xfs_bwrite(bp);
 | 
						|
	if (error)
 | 
						|
		xfs_buf_ioerror_alert(bp, __func__);
 | 
						|
	xfs_buf_relse(bp);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef DEBUG
 | 
						|
/*
 | 
						|
 * dump debug superblock and log record information
 | 
						|
 */
 | 
						|
STATIC void
 | 
						|
xlog_header_check_dump(
 | 
						|
	xfs_mount_t		*mp,
 | 
						|
	xlog_rec_header_t	*head)
 | 
						|
{
 | 
						|
	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d\n",
 | 
						|
		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
 | 
						|
	xfs_debug(mp, "    log : uuid = %pU, fmt = %d\n",
 | 
						|
		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
 | 
						|
}
 | 
						|
#else
 | 
						|
#define xlog_header_check_dump(mp, head)
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * check log record header for recovery
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_header_check_recover(
 | 
						|
	xfs_mount_t		*mp,
 | 
						|
	xlog_rec_header_t	*head)
 | 
						|
{
 | 
						|
	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * IRIX doesn't write the h_fmt field and leaves it zeroed
 | 
						|
	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
 | 
						|
	 * a dirty log created in IRIX.
 | 
						|
	 */
 | 
						|
	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
 | 
						|
		xfs_warn(mp,
 | 
						|
	"dirty log written in incompatible format - can't recover");
 | 
						|
		xlog_header_check_dump(mp, head);
 | 
						|
		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
 | 
						|
				 XFS_ERRLEVEL_HIGH, mp);
 | 
						|
		return XFS_ERROR(EFSCORRUPTED);
 | 
						|
	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 | 
						|
		xfs_warn(mp,
 | 
						|
	"dirty log entry has mismatched uuid - can't recover");
 | 
						|
		xlog_header_check_dump(mp, head);
 | 
						|
		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
 | 
						|
				 XFS_ERRLEVEL_HIGH, mp);
 | 
						|
		return XFS_ERROR(EFSCORRUPTED);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * read the head block of the log and check the header
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_header_check_mount(
 | 
						|
	xfs_mount_t		*mp,
 | 
						|
	xlog_rec_header_t	*head)
 | 
						|
{
 | 
						|
	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 | 
						|
 | 
						|
	if (uuid_is_nil(&head->h_fs_uuid)) {
 | 
						|
		/*
 | 
						|
		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
 | 
						|
		 * h_fs_uuid is nil, we assume this log was last mounted
 | 
						|
		 * by IRIX and continue.
 | 
						|
		 */
 | 
						|
		xfs_warn(mp, "nil uuid in log - IRIX style log");
 | 
						|
	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 | 
						|
		xfs_warn(mp, "log has mismatched uuid - can't recover");
 | 
						|
		xlog_header_check_dump(mp, head);
 | 
						|
		XFS_ERROR_REPORT("xlog_header_check_mount",
 | 
						|
				 XFS_ERRLEVEL_HIGH, mp);
 | 
						|
		return XFS_ERROR(EFSCORRUPTED);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
STATIC void
 | 
						|
xlog_recover_iodone(
 | 
						|
	struct xfs_buf	*bp)
 | 
						|
{
 | 
						|
	if (bp->b_error) {
 | 
						|
		/*
 | 
						|
		 * We're not going to bother about retrying
 | 
						|
		 * this during recovery. One strike!
 | 
						|
		 */
 | 
						|
		xfs_buf_ioerror_alert(bp, __func__);
 | 
						|
		xfs_force_shutdown(bp->b_target->bt_mount,
 | 
						|
					SHUTDOWN_META_IO_ERROR);
 | 
						|
	}
 | 
						|
	bp->b_iodone = NULL;
 | 
						|
	xfs_buf_ioend(bp, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This routine finds (to an approximation) the first block in the physical
 | 
						|
 * log which contains the given cycle.  It uses a binary search algorithm.
 | 
						|
 * Note that the algorithm can not be perfect because the disk will not
 | 
						|
 * necessarily be perfect.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_find_cycle_start(
 | 
						|
	struct xlog	*log,
 | 
						|
	struct xfs_buf	*bp,
 | 
						|
	xfs_daddr_t	first_blk,
 | 
						|
	xfs_daddr_t	*last_blk,
 | 
						|
	uint		cycle)
 | 
						|
{
 | 
						|
	xfs_caddr_t	offset;
 | 
						|
	xfs_daddr_t	mid_blk;
 | 
						|
	xfs_daddr_t	end_blk;
 | 
						|
	uint		mid_cycle;
 | 
						|
	int		error;
 | 
						|
 | 
						|
	end_blk = *last_blk;
 | 
						|
	mid_blk = BLK_AVG(first_blk, end_blk);
 | 
						|
	while (mid_blk != first_blk && mid_blk != end_blk) {
 | 
						|
		error = xlog_bread(log, mid_blk, 1, bp, &offset);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
		mid_cycle = xlog_get_cycle(offset);
 | 
						|
		if (mid_cycle == cycle)
 | 
						|
			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
 | 
						|
		else
 | 
						|
			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
 | 
						|
		mid_blk = BLK_AVG(first_blk, end_blk);
 | 
						|
	}
 | 
						|
	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
 | 
						|
	       (mid_blk == end_blk && mid_blk-1 == first_blk));
 | 
						|
 | 
						|
	*last_blk = end_blk;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check that a range of blocks does not contain stop_on_cycle_no.
 | 
						|
 * Fill in *new_blk with the block offset where such a block is
 | 
						|
 * found, or with -1 (an invalid block number) if there is no such
 | 
						|
 * block in the range.  The scan needs to occur from front to back
 | 
						|
 * and the pointer into the region must be updated since a later
 | 
						|
 * routine will need to perform another test.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_find_verify_cycle(
 | 
						|
	struct xlog	*log,
 | 
						|
	xfs_daddr_t	start_blk,
 | 
						|
	int		nbblks,
 | 
						|
	uint		stop_on_cycle_no,
 | 
						|
	xfs_daddr_t	*new_blk)
 | 
						|
{
 | 
						|
	xfs_daddr_t	i, j;
 | 
						|
	uint		cycle;
 | 
						|
	xfs_buf_t	*bp;
 | 
						|
	xfs_daddr_t	bufblks;
 | 
						|
	xfs_caddr_t	buf = NULL;
 | 
						|
	int		error = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Greedily allocate a buffer big enough to handle the full
 | 
						|
	 * range of basic blocks we'll be examining.  If that fails,
 | 
						|
	 * try a smaller size.  We need to be able to read at least
 | 
						|
	 * a log sector, or we're out of luck.
 | 
						|
	 */
 | 
						|
	bufblks = 1 << ffs(nbblks);
 | 
						|
	while (bufblks > log->l_logBBsize)
 | 
						|
		bufblks >>= 1;
 | 
						|
	while (!(bp = xlog_get_bp(log, bufblks))) {
 | 
						|
		bufblks >>= 1;
 | 
						|
		if (bufblks < log->l_sectBBsize)
 | 
						|
			return ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
 | 
						|
		int	bcount;
 | 
						|
 | 
						|
		bcount = min(bufblks, (start_blk + nbblks - i));
 | 
						|
 | 
						|
		error = xlog_bread(log, i, bcount, bp, &buf);
 | 
						|
		if (error)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		for (j = 0; j < bcount; j++) {
 | 
						|
			cycle = xlog_get_cycle(buf);
 | 
						|
			if (cycle == stop_on_cycle_no) {
 | 
						|
				*new_blk = i+j;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
 | 
						|
			buf += BBSIZE;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	*new_blk = -1;
 | 
						|
 | 
						|
out:
 | 
						|
	xlog_put_bp(bp);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Potentially backup over partial log record write.
 | 
						|
 *
 | 
						|
 * In the typical case, last_blk is the number of the block directly after
 | 
						|
 * a good log record.  Therefore, we subtract one to get the block number
 | 
						|
 * of the last block in the given buffer.  extra_bblks contains the number
 | 
						|
 * of blocks we would have read on a previous read.  This happens when the
 | 
						|
 * last log record is split over the end of the physical log.
 | 
						|
 *
 | 
						|
 * extra_bblks is the number of blocks potentially verified on a previous
 | 
						|
 * call to this routine.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_find_verify_log_record(
 | 
						|
	struct xlog		*log,
 | 
						|
	xfs_daddr_t		start_blk,
 | 
						|
	xfs_daddr_t		*last_blk,
 | 
						|
	int			extra_bblks)
 | 
						|
{
 | 
						|
	xfs_daddr_t		i;
 | 
						|
	xfs_buf_t		*bp;
 | 
						|
	xfs_caddr_t		offset = NULL;
 | 
						|
	xlog_rec_header_t	*head = NULL;
 | 
						|
	int			error = 0;
 | 
						|
	int			smallmem = 0;
 | 
						|
	int			num_blks = *last_blk - start_blk;
 | 
						|
	int			xhdrs;
 | 
						|
 | 
						|
	ASSERT(start_blk != 0 || *last_blk != start_blk);
 | 
						|
 | 
						|
	if (!(bp = xlog_get_bp(log, num_blks))) {
 | 
						|
		if (!(bp = xlog_get_bp(log, 1)))
 | 
						|
			return ENOMEM;
 | 
						|
		smallmem = 1;
 | 
						|
	} else {
 | 
						|
		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
 | 
						|
		if (error)
 | 
						|
			goto out;
 | 
						|
		offset += ((num_blks - 1) << BBSHIFT);
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = (*last_blk) - 1; i >= 0; i--) {
 | 
						|
		if (i < start_blk) {
 | 
						|
			/* valid log record not found */
 | 
						|
			xfs_warn(log->l_mp,
 | 
						|
		"Log inconsistent (didn't find previous header)");
 | 
						|
			ASSERT(0);
 | 
						|
			error = XFS_ERROR(EIO);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		if (smallmem) {
 | 
						|
			error = xlog_bread(log, i, 1, bp, &offset);
 | 
						|
			if (error)
 | 
						|
				goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		head = (xlog_rec_header_t *)offset;
 | 
						|
 | 
						|
		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
 | 
						|
			break;
 | 
						|
 | 
						|
		if (!smallmem)
 | 
						|
			offset -= BBSIZE;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We hit the beginning of the physical log & still no header.  Return
 | 
						|
	 * to caller.  If caller can handle a return of -1, then this routine
 | 
						|
	 * will be called again for the end of the physical log.
 | 
						|
	 */
 | 
						|
	if (i == -1) {
 | 
						|
		error = -1;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We have the final block of the good log (the first block
 | 
						|
	 * of the log record _before_ the head. So we check the uuid.
 | 
						|
	 */
 | 
						|
	if ((error = xlog_header_check_mount(log->l_mp, head)))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We may have found a log record header before we expected one.
 | 
						|
	 * last_blk will be the 1st block # with a given cycle #.  We may end
 | 
						|
	 * up reading an entire log record.  In this case, we don't want to
 | 
						|
	 * reset last_blk.  Only when last_blk points in the middle of a log
 | 
						|
	 * record do we update last_blk.
 | 
						|
	 */
 | 
						|
	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 | 
						|
		uint	h_size = be32_to_cpu(head->h_size);
 | 
						|
 | 
						|
		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
 | 
						|
		if (h_size % XLOG_HEADER_CYCLE_SIZE)
 | 
						|
			xhdrs++;
 | 
						|
	} else {
 | 
						|
		xhdrs = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (*last_blk - i + extra_bblks !=
 | 
						|
	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
 | 
						|
		*last_blk = i;
 | 
						|
 | 
						|
out:
 | 
						|
	xlog_put_bp(bp);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Head is defined to be the point of the log where the next log write
 | 
						|
 * write could go.  This means that incomplete LR writes at the end are
 | 
						|
 * eliminated when calculating the head.  We aren't guaranteed that previous
 | 
						|
 * LR have complete transactions.  We only know that a cycle number of
 | 
						|
 * current cycle number -1 won't be present in the log if we start writing
 | 
						|
 * from our current block number.
 | 
						|
 *
 | 
						|
 * last_blk contains the block number of the first block with a given
 | 
						|
 * cycle number.
 | 
						|
 *
 | 
						|
 * Return: zero if normal, non-zero if error.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_find_head(
 | 
						|
	struct xlog	*log,
 | 
						|
	xfs_daddr_t	*return_head_blk)
 | 
						|
{
 | 
						|
	xfs_buf_t	*bp;
 | 
						|
	xfs_caddr_t	offset;
 | 
						|
	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
 | 
						|
	int		num_scan_bblks;
 | 
						|
	uint		first_half_cycle, last_half_cycle;
 | 
						|
	uint		stop_on_cycle;
 | 
						|
	int		error, log_bbnum = log->l_logBBsize;
 | 
						|
 | 
						|
	/* Is the end of the log device zeroed? */
 | 
						|
	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
 | 
						|
		*return_head_blk = first_blk;
 | 
						|
 | 
						|
		/* Is the whole lot zeroed? */
 | 
						|
		if (!first_blk) {
 | 
						|
			/* Linux XFS shouldn't generate totally zeroed logs -
 | 
						|
			 * mkfs etc write a dummy unmount record to a fresh
 | 
						|
			 * log so we can store the uuid in there
 | 
						|
			 */
 | 
						|
			xfs_warn(log->l_mp, "totally zeroed log");
 | 
						|
		}
 | 
						|
 | 
						|
		return 0;
 | 
						|
	} else if (error) {
 | 
						|
		xfs_warn(log->l_mp, "empty log check failed");
 | 
						|
		return error;
 | 
						|
	}
 | 
						|
 | 
						|
	first_blk = 0;			/* get cycle # of 1st block */
 | 
						|
	bp = xlog_get_bp(log, 1);
 | 
						|
	if (!bp)
 | 
						|
		return ENOMEM;
 | 
						|
 | 
						|
	error = xlog_bread(log, 0, 1, bp, &offset);
 | 
						|
	if (error)
 | 
						|
		goto bp_err;
 | 
						|
 | 
						|
	first_half_cycle = xlog_get_cycle(offset);
 | 
						|
 | 
						|
	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
 | 
						|
	error = xlog_bread(log, last_blk, 1, bp, &offset);
 | 
						|
	if (error)
 | 
						|
		goto bp_err;
 | 
						|
 | 
						|
	last_half_cycle = xlog_get_cycle(offset);
 | 
						|
	ASSERT(last_half_cycle != 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the 1st half cycle number is equal to the last half cycle number,
 | 
						|
	 * then the entire log is stamped with the same cycle number.  In this
 | 
						|
	 * case, head_blk can't be set to zero (which makes sense).  The below
 | 
						|
	 * math doesn't work out properly with head_blk equal to zero.  Instead,
 | 
						|
	 * we set it to log_bbnum which is an invalid block number, but this
 | 
						|
	 * value makes the math correct.  If head_blk doesn't changed through
 | 
						|
	 * all the tests below, *head_blk is set to zero at the very end rather
 | 
						|
	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
 | 
						|
	 * in a circular file.
 | 
						|
	 */
 | 
						|
	if (first_half_cycle == last_half_cycle) {
 | 
						|
		/*
 | 
						|
		 * In this case we believe that the entire log should have
 | 
						|
		 * cycle number last_half_cycle.  We need to scan backwards
 | 
						|
		 * from the end verifying that there are no holes still
 | 
						|
		 * containing last_half_cycle - 1.  If we find such a hole,
 | 
						|
		 * then the start of that hole will be the new head.  The
 | 
						|
		 * simple case looks like
 | 
						|
		 *        x | x ... | x - 1 | x
 | 
						|
		 * Another case that fits this picture would be
 | 
						|
		 *        x | x + 1 | x ... | x
 | 
						|
		 * In this case the head really is somewhere at the end of the
 | 
						|
		 * log, as one of the latest writes at the beginning was
 | 
						|
		 * incomplete.
 | 
						|
		 * One more case is
 | 
						|
		 *        x | x + 1 | x ... | x - 1 | x
 | 
						|
		 * This is really the combination of the above two cases, and
 | 
						|
		 * the head has to end up at the start of the x-1 hole at the
 | 
						|
		 * end of the log.
 | 
						|
		 *
 | 
						|
		 * In the 256k log case, we will read from the beginning to the
 | 
						|
		 * end of the log and search for cycle numbers equal to x-1.
 | 
						|
		 * We don't worry about the x+1 blocks that we encounter,
 | 
						|
		 * because we know that they cannot be the head since the log
 | 
						|
		 * started with x.
 | 
						|
		 */
 | 
						|
		head_blk = log_bbnum;
 | 
						|
		stop_on_cycle = last_half_cycle - 1;
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * In this case we want to find the first block with cycle
 | 
						|
		 * number matching last_half_cycle.  We expect the log to be
 | 
						|
		 * some variation on
 | 
						|
		 *        x + 1 ... | x ... | x
 | 
						|
		 * The first block with cycle number x (last_half_cycle) will
 | 
						|
		 * be where the new head belongs.  First we do a binary search
 | 
						|
		 * for the first occurrence of last_half_cycle.  The binary
 | 
						|
		 * search may not be totally accurate, so then we scan back
 | 
						|
		 * from there looking for occurrences of last_half_cycle before
 | 
						|
		 * us.  If that backwards scan wraps around the beginning of
 | 
						|
		 * the log, then we look for occurrences of last_half_cycle - 1
 | 
						|
		 * at the end of the log.  The cases we're looking for look
 | 
						|
		 * like
 | 
						|
		 *                               v binary search stopped here
 | 
						|
		 *        x + 1 ... | x | x + 1 | x ... | x
 | 
						|
		 *                   ^ but we want to locate this spot
 | 
						|
		 * or
 | 
						|
		 *        <---------> less than scan distance
 | 
						|
		 *        x + 1 ... | x ... | x - 1 | x
 | 
						|
		 *                           ^ we want to locate this spot
 | 
						|
		 */
 | 
						|
		stop_on_cycle = last_half_cycle;
 | 
						|
		if ((error = xlog_find_cycle_start(log, bp, first_blk,
 | 
						|
						&head_blk, last_half_cycle)))
 | 
						|
			goto bp_err;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now validate the answer.  Scan back some number of maximum possible
 | 
						|
	 * blocks and make sure each one has the expected cycle number.  The
 | 
						|
	 * maximum is determined by the total possible amount of buffering
 | 
						|
	 * in the in-core log.  The following number can be made tighter if
 | 
						|
	 * we actually look at the block size of the filesystem.
 | 
						|
	 */
 | 
						|
	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
 | 
						|
	if (head_blk >= num_scan_bblks) {
 | 
						|
		/*
 | 
						|
		 * We are guaranteed that the entire check can be performed
 | 
						|
		 * in one buffer.
 | 
						|
		 */
 | 
						|
		start_blk = head_blk - num_scan_bblks;
 | 
						|
		if ((error = xlog_find_verify_cycle(log,
 | 
						|
						start_blk, num_scan_bblks,
 | 
						|
						stop_on_cycle, &new_blk)))
 | 
						|
			goto bp_err;
 | 
						|
		if (new_blk != -1)
 | 
						|
			head_blk = new_blk;
 | 
						|
	} else {		/* need to read 2 parts of log */
 | 
						|
		/*
 | 
						|
		 * We are going to scan backwards in the log in two parts.
 | 
						|
		 * First we scan the physical end of the log.  In this part
 | 
						|
		 * of the log, we are looking for blocks with cycle number
 | 
						|
		 * last_half_cycle - 1.
 | 
						|
		 * If we find one, then we know that the log starts there, as
 | 
						|
		 * we've found a hole that didn't get written in going around
 | 
						|
		 * the end of the physical log.  The simple case for this is
 | 
						|
		 *        x + 1 ... | x ... | x - 1 | x
 | 
						|
		 *        <---------> less than scan distance
 | 
						|
		 * If all of the blocks at the end of the log have cycle number
 | 
						|
		 * last_half_cycle, then we check the blocks at the start of
 | 
						|
		 * the log looking for occurrences of last_half_cycle.  If we
 | 
						|
		 * find one, then our current estimate for the location of the
 | 
						|
		 * first occurrence of last_half_cycle is wrong and we move
 | 
						|
		 * back to the hole we've found.  This case looks like
 | 
						|
		 *        x + 1 ... | x | x + 1 | x ...
 | 
						|
		 *                               ^ binary search stopped here
 | 
						|
		 * Another case we need to handle that only occurs in 256k
 | 
						|
		 * logs is
 | 
						|
		 *        x + 1 ... | x ... | x+1 | x ...
 | 
						|
		 *                   ^ binary search stops here
 | 
						|
		 * In a 256k log, the scan at the end of the log will see the
 | 
						|
		 * x + 1 blocks.  We need to skip past those since that is
 | 
						|
		 * certainly not the head of the log.  By searching for
 | 
						|
		 * last_half_cycle-1 we accomplish that.
 | 
						|
		 */
 | 
						|
		ASSERT(head_blk <= INT_MAX &&
 | 
						|
			(xfs_daddr_t) num_scan_bblks >= head_blk);
 | 
						|
		start_blk = log_bbnum - (num_scan_bblks - head_blk);
 | 
						|
		if ((error = xlog_find_verify_cycle(log, start_blk,
 | 
						|
					num_scan_bblks - (int)head_blk,
 | 
						|
					(stop_on_cycle - 1), &new_blk)))
 | 
						|
			goto bp_err;
 | 
						|
		if (new_blk != -1) {
 | 
						|
			head_blk = new_blk;
 | 
						|
			goto validate_head;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Scan beginning of log now.  The last part of the physical
 | 
						|
		 * log is good.  This scan needs to verify that it doesn't find
 | 
						|
		 * the last_half_cycle.
 | 
						|
		 */
 | 
						|
		start_blk = 0;
 | 
						|
		ASSERT(head_blk <= INT_MAX);
 | 
						|
		if ((error = xlog_find_verify_cycle(log,
 | 
						|
					start_blk, (int)head_blk,
 | 
						|
					stop_on_cycle, &new_blk)))
 | 
						|
			goto bp_err;
 | 
						|
		if (new_blk != -1)
 | 
						|
			head_blk = new_blk;
 | 
						|
	}
 | 
						|
 | 
						|
validate_head:
 | 
						|
	/*
 | 
						|
	 * Now we need to make sure head_blk is not pointing to a block in
 | 
						|
	 * the middle of a log record.
 | 
						|
	 */
 | 
						|
	num_scan_bblks = XLOG_REC_SHIFT(log);
 | 
						|
	if (head_blk >= num_scan_bblks) {
 | 
						|
		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
 | 
						|
 | 
						|
		/* start ptr at last block ptr before head_blk */
 | 
						|
		if ((error = xlog_find_verify_log_record(log, start_blk,
 | 
						|
							&head_blk, 0)) == -1) {
 | 
						|
			error = XFS_ERROR(EIO);
 | 
						|
			goto bp_err;
 | 
						|
		} else if (error)
 | 
						|
			goto bp_err;
 | 
						|
	} else {
 | 
						|
		start_blk = 0;
 | 
						|
		ASSERT(head_blk <= INT_MAX);
 | 
						|
		if ((error = xlog_find_verify_log_record(log, start_blk,
 | 
						|
							&head_blk, 0)) == -1) {
 | 
						|
			/* We hit the beginning of the log during our search */
 | 
						|
			start_blk = log_bbnum - (num_scan_bblks - head_blk);
 | 
						|
			new_blk = log_bbnum;
 | 
						|
			ASSERT(start_blk <= INT_MAX &&
 | 
						|
				(xfs_daddr_t) log_bbnum-start_blk >= 0);
 | 
						|
			ASSERT(head_blk <= INT_MAX);
 | 
						|
			if ((error = xlog_find_verify_log_record(log,
 | 
						|
							start_blk, &new_blk,
 | 
						|
							(int)head_blk)) == -1) {
 | 
						|
				error = XFS_ERROR(EIO);
 | 
						|
				goto bp_err;
 | 
						|
			} else if (error)
 | 
						|
				goto bp_err;
 | 
						|
			if (new_blk != log_bbnum)
 | 
						|
				head_blk = new_blk;
 | 
						|
		} else if (error)
 | 
						|
			goto bp_err;
 | 
						|
	}
 | 
						|
 | 
						|
	xlog_put_bp(bp);
 | 
						|
	if (head_blk == log_bbnum)
 | 
						|
		*return_head_blk = 0;
 | 
						|
	else
 | 
						|
		*return_head_blk = head_blk;
 | 
						|
	/*
 | 
						|
	 * When returning here, we have a good block number.  Bad block
 | 
						|
	 * means that during a previous crash, we didn't have a clean break
 | 
						|
	 * from cycle number N to cycle number N-1.  In this case, we need
 | 
						|
	 * to find the first block with cycle number N-1.
 | 
						|
	 */
 | 
						|
	return 0;
 | 
						|
 | 
						|
 bp_err:
 | 
						|
	xlog_put_bp(bp);
 | 
						|
 | 
						|
	if (error)
 | 
						|
		xfs_warn(log->l_mp, "failed to find log head");
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Find the sync block number or the tail of the log.
 | 
						|
 *
 | 
						|
 * This will be the block number of the last record to have its
 | 
						|
 * associated buffers synced to disk.  Every log record header has
 | 
						|
 * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
 | 
						|
 * to get a sync block number.  The only concern is to figure out which
 | 
						|
 * log record header to believe.
 | 
						|
 *
 | 
						|
 * The following algorithm uses the log record header with the largest
 | 
						|
 * lsn.  The entire log record does not need to be valid.  We only care
 | 
						|
 * that the header is valid.
 | 
						|
 *
 | 
						|
 * We could speed up search by using current head_blk buffer, but it is not
 | 
						|
 * available.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_find_tail(
 | 
						|
	struct xlog		*log,
 | 
						|
	xfs_daddr_t		*head_blk,
 | 
						|
	xfs_daddr_t		*tail_blk)
 | 
						|
{
 | 
						|
	xlog_rec_header_t	*rhead;
 | 
						|
	xlog_op_header_t	*op_head;
 | 
						|
	xfs_caddr_t		offset = NULL;
 | 
						|
	xfs_buf_t		*bp;
 | 
						|
	int			error, i, found;
 | 
						|
	xfs_daddr_t		umount_data_blk;
 | 
						|
	xfs_daddr_t		after_umount_blk;
 | 
						|
	xfs_lsn_t		tail_lsn;
 | 
						|
	int			hblks;
 | 
						|
 | 
						|
	found = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Find previous log record
 | 
						|
	 */
 | 
						|
	if ((error = xlog_find_head(log, head_blk)))
 | 
						|
		return error;
 | 
						|
 | 
						|
	bp = xlog_get_bp(log, 1);
 | 
						|
	if (!bp)
 | 
						|
		return ENOMEM;
 | 
						|
	if (*head_blk == 0) {				/* special case */
 | 
						|
		error = xlog_bread(log, 0, 1, bp, &offset);
 | 
						|
		if (error)
 | 
						|
			goto done;
 | 
						|
 | 
						|
		if (xlog_get_cycle(offset) == 0) {
 | 
						|
			*tail_blk = 0;
 | 
						|
			/* leave all other log inited values alone */
 | 
						|
			goto done;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Search backwards looking for log record header block
 | 
						|
	 */
 | 
						|
	ASSERT(*head_blk < INT_MAX);
 | 
						|
	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
 | 
						|
		error = xlog_bread(log, i, 1, bp, &offset);
 | 
						|
		if (error)
 | 
						|
			goto done;
 | 
						|
 | 
						|
		if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 | 
						|
			found = 1;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * If we haven't found the log record header block, start looking
 | 
						|
	 * again from the end of the physical log.  XXXmiken: There should be
 | 
						|
	 * a check here to make sure we didn't search more than N blocks in
 | 
						|
	 * the previous code.
 | 
						|
	 */
 | 
						|
	if (!found) {
 | 
						|
		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
 | 
						|
			error = xlog_bread(log, i, 1, bp, &offset);
 | 
						|
			if (error)
 | 
						|
				goto done;
 | 
						|
 | 
						|
			if (*(__be32 *)offset ==
 | 
						|
			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 | 
						|
				found = 2;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (!found) {
 | 
						|
		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
 | 
						|
		ASSERT(0);
 | 
						|
		return XFS_ERROR(EIO);
 | 
						|
	}
 | 
						|
 | 
						|
	/* find blk_no of tail of log */
 | 
						|
	rhead = (xlog_rec_header_t *)offset;
 | 
						|
	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Reset log values according to the state of the log when we
 | 
						|
	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
 | 
						|
	 * one because the next write starts a new cycle rather than
 | 
						|
	 * continuing the cycle of the last good log record.  At this
 | 
						|
	 * point we have guaranteed that all partial log records have been
 | 
						|
	 * accounted for.  Therefore, we know that the last good log record
 | 
						|
	 * written was complete and ended exactly on the end boundary
 | 
						|
	 * of the physical log.
 | 
						|
	 */
 | 
						|
	log->l_prev_block = i;
 | 
						|
	log->l_curr_block = (int)*head_blk;
 | 
						|
	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
 | 
						|
	if (found == 2)
 | 
						|
		log->l_curr_cycle++;
 | 
						|
	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
 | 
						|
	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
 | 
						|
	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
 | 
						|
					BBTOB(log->l_curr_block));
 | 
						|
	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
 | 
						|
					BBTOB(log->l_curr_block));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Look for unmount record.  If we find it, then we know there
 | 
						|
	 * was a clean unmount.  Since 'i' could be the last block in
 | 
						|
	 * the physical log, we convert to a log block before comparing
 | 
						|
	 * to the head_blk.
 | 
						|
	 *
 | 
						|
	 * Save the current tail lsn to use to pass to
 | 
						|
	 * xlog_clear_stale_blocks() below.  We won't want to clear the
 | 
						|
	 * unmount record if there is one, so we pass the lsn of the
 | 
						|
	 * unmount record rather than the block after it.
 | 
						|
	 */
 | 
						|
	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 | 
						|
		int	h_size = be32_to_cpu(rhead->h_size);
 | 
						|
		int	h_version = be32_to_cpu(rhead->h_version);
 | 
						|
 | 
						|
		if ((h_version & XLOG_VERSION_2) &&
 | 
						|
		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
 | 
						|
			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
 | 
						|
			if (h_size % XLOG_HEADER_CYCLE_SIZE)
 | 
						|
				hblks++;
 | 
						|
		} else {
 | 
						|
			hblks = 1;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		hblks = 1;
 | 
						|
	}
 | 
						|
	after_umount_blk = (i + hblks + (int)
 | 
						|
		BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
 | 
						|
	tail_lsn = atomic64_read(&log->l_tail_lsn);
 | 
						|
	if (*head_blk == after_umount_blk &&
 | 
						|
	    be32_to_cpu(rhead->h_num_logops) == 1) {
 | 
						|
		umount_data_blk = (i + hblks) % log->l_logBBsize;
 | 
						|
		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
 | 
						|
		if (error)
 | 
						|
			goto done;
 | 
						|
 | 
						|
		op_head = (xlog_op_header_t *)offset;
 | 
						|
		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
 | 
						|
			/*
 | 
						|
			 * Set tail and last sync so that newly written
 | 
						|
			 * log records will point recovery to after the
 | 
						|
			 * current unmount record.
 | 
						|
			 */
 | 
						|
			xlog_assign_atomic_lsn(&log->l_tail_lsn,
 | 
						|
					log->l_curr_cycle, after_umount_blk);
 | 
						|
			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
 | 
						|
					log->l_curr_cycle, after_umount_blk);
 | 
						|
			*tail_blk = after_umount_blk;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Note that the unmount was clean. If the unmount
 | 
						|
			 * was not clean, we need to know this to rebuild the
 | 
						|
			 * superblock counters from the perag headers if we
 | 
						|
			 * have a filesystem using non-persistent counters.
 | 
						|
			 */
 | 
						|
			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make sure that there are no blocks in front of the head
 | 
						|
	 * with the same cycle number as the head.  This can happen
 | 
						|
	 * because we allow multiple outstanding log writes concurrently,
 | 
						|
	 * and the later writes might make it out before earlier ones.
 | 
						|
	 *
 | 
						|
	 * We use the lsn from before modifying it so that we'll never
 | 
						|
	 * overwrite the unmount record after a clean unmount.
 | 
						|
	 *
 | 
						|
	 * Do this only if we are going to recover the filesystem
 | 
						|
	 *
 | 
						|
	 * NOTE: This used to say "if (!readonly)"
 | 
						|
	 * However on Linux, we can & do recover a read-only filesystem.
 | 
						|
	 * We only skip recovery if NORECOVERY is specified on mount,
 | 
						|
	 * in which case we would not be here.
 | 
						|
	 *
 | 
						|
	 * But... if the -device- itself is readonly, just skip this.
 | 
						|
	 * We can't recover this device anyway, so it won't matter.
 | 
						|
	 */
 | 
						|
	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
 | 
						|
		error = xlog_clear_stale_blocks(log, tail_lsn);
 | 
						|
 | 
						|
done:
 | 
						|
	xlog_put_bp(bp);
 | 
						|
 | 
						|
	if (error)
 | 
						|
		xfs_warn(log->l_mp, "failed to locate log tail");
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Is the log zeroed at all?
 | 
						|
 *
 | 
						|
 * The last binary search should be changed to perform an X block read
 | 
						|
 * once X becomes small enough.  You can then search linearly through
 | 
						|
 * the X blocks.  This will cut down on the number of reads we need to do.
 | 
						|
 *
 | 
						|
 * If the log is partially zeroed, this routine will pass back the blkno
 | 
						|
 * of the first block with cycle number 0.  It won't have a complete LR
 | 
						|
 * preceding it.
 | 
						|
 *
 | 
						|
 * Return:
 | 
						|
 *	0  => the log is completely written to
 | 
						|
 *	-1 => use *blk_no as the first block of the log
 | 
						|
 *	>0 => error has occurred
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_find_zeroed(
 | 
						|
	struct xlog	*log,
 | 
						|
	xfs_daddr_t	*blk_no)
 | 
						|
{
 | 
						|
	xfs_buf_t	*bp;
 | 
						|
	xfs_caddr_t	offset;
 | 
						|
	uint	        first_cycle, last_cycle;
 | 
						|
	xfs_daddr_t	new_blk, last_blk, start_blk;
 | 
						|
	xfs_daddr_t     num_scan_bblks;
 | 
						|
	int	        error, log_bbnum = log->l_logBBsize;
 | 
						|
 | 
						|
	*blk_no = 0;
 | 
						|
 | 
						|
	/* check totally zeroed log */
 | 
						|
	bp = xlog_get_bp(log, 1);
 | 
						|
	if (!bp)
 | 
						|
		return ENOMEM;
 | 
						|
	error = xlog_bread(log, 0, 1, bp, &offset);
 | 
						|
	if (error)
 | 
						|
		goto bp_err;
 | 
						|
 | 
						|
	first_cycle = xlog_get_cycle(offset);
 | 
						|
	if (first_cycle == 0) {		/* completely zeroed log */
 | 
						|
		*blk_no = 0;
 | 
						|
		xlog_put_bp(bp);
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* check partially zeroed log */
 | 
						|
	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
 | 
						|
	if (error)
 | 
						|
		goto bp_err;
 | 
						|
 | 
						|
	last_cycle = xlog_get_cycle(offset);
 | 
						|
	if (last_cycle != 0) {		/* log completely written to */
 | 
						|
		xlog_put_bp(bp);
 | 
						|
		return 0;
 | 
						|
	} else if (first_cycle != 1) {
 | 
						|
		/*
 | 
						|
		 * If the cycle of the last block is zero, the cycle of
 | 
						|
		 * the first block must be 1. If it's not, maybe we're
 | 
						|
		 * not looking at a log... Bail out.
 | 
						|
		 */
 | 
						|
		xfs_warn(log->l_mp,
 | 
						|
			"Log inconsistent or not a log (last==0, first!=1)");
 | 
						|
		return XFS_ERROR(EINVAL);
 | 
						|
	}
 | 
						|
 | 
						|
	/* we have a partially zeroed log */
 | 
						|
	last_blk = log_bbnum-1;
 | 
						|
	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
 | 
						|
		goto bp_err;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Validate the answer.  Because there is no way to guarantee that
 | 
						|
	 * the entire log is made up of log records which are the same size,
 | 
						|
	 * we scan over the defined maximum blocks.  At this point, the maximum
 | 
						|
	 * is not chosen to mean anything special.   XXXmiken
 | 
						|
	 */
 | 
						|
	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
 | 
						|
	ASSERT(num_scan_bblks <= INT_MAX);
 | 
						|
 | 
						|
	if (last_blk < num_scan_bblks)
 | 
						|
		num_scan_bblks = last_blk;
 | 
						|
	start_blk = last_blk - num_scan_bblks;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We search for any instances of cycle number 0 that occur before
 | 
						|
	 * our current estimate of the head.  What we're trying to detect is
 | 
						|
	 *        1 ... | 0 | 1 | 0...
 | 
						|
	 *                       ^ binary search ends here
 | 
						|
	 */
 | 
						|
	if ((error = xlog_find_verify_cycle(log, start_blk,
 | 
						|
					 (int)num_scan_bblks, 0, &new_blk)))
 | 
						|
		goto bp_err;
 | 
						|
	if (new_blk != -1)
 | 
						|
		last_blk = new_blk;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Potentially backup over partial log record write.  We don't need
 | 
						|
	 * to search the end of the log because we know it is zero.
 | 
						|
	 */
 | 
						|
	if ((error = xlog_find_verify_log_record(log, start_blk,
 | 
						|
				&last_blk, 0)) == -1) {
 | 
						|
	    error = XFS_ERROR(EIO);
 | 
						|
	    goto bp_err;
 | 
						|
	} else if (error)
 | 
						|
	    goto bp_err;
 | 
						|
 | 
						|
	*blk_no = last_blk;
 | 
						|
bp_err:
 | 
						|
	xlog_put_bp(bp);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * These are simple subroutines used by xlog_clear_stale_blocks() below
 | 
						|
 * to initialize a buffer full of empty log record headers and write
 | 
						|
 * them into the log.
 | 
						|
 */
 | 
						|
STATIC void
 | 
						|
xlog_add_record(
 | 
						|
	struct xlog		*log,
 | 
						|
	xfs_caddr_t		buf,
 | 
						|
	int			cycle,
 | 
						|
	int			block,
 | 
						|
	int			tail_cycle,
 | 
						|
	int			tail_block)
 | 
						|
{
 | 
						|
	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
 | 
						|
 | 
						|
	memset(buf, 0, BBSIZE);
 | 
						|
	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
 | 
						|
	recp->h_cycle = cpu_to_be32(cycle);
 | 
						|
	recp->h_version = cpu_to_be32(
 | 
						|
			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
 | 
						|
	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
 | 
						|
	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
 | 
						|
	recp->h_fmt = cpu_to_be32(XLOG_FMT);
 | 
						|
	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xlog_write_log_records(
 | 
						|
	struct xlog	*log,
 | 
						|
	int		cycle,
 | 
						|
	int		start_block,
 | 
						|
	int		blocks,
 | 
						|
	int		tail_cycle,
 | 
						|
	int		tail_block)
 | 
						|
{
 | 
						|
	xfs_caddr_t	offset;
 | 
						|
	xfs_buf_t	*bp;
 | 
						|
	int		balign, ealign;
 | 
						|
	int		sectbb = log->l_sectBBsize;
 | 
						|
	int		end_block = start_block + blocks;
 | 
						|
	int		bufblks;
 | 
						|
	int		error = 0;
 | 
						|
	int		i, j = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Greedily allocate a buffer big enough to handle the full
 | 
						|
	 * range of basic blocks to be written.  If that fails, try
 | 
						|
	 * a smaller size.  We need to be able to write at least a
 | 
						|
	 * log sector, or we're out of luck.
 | 
						|
	 */
 | 
						|
	bufblks = 1 << ffs(blocks);
 | 
						|
	while (bufblks > log->l_logBBsize)
 | 
						|
		bufblks >>= 1;
 | 
						|
	while (!(bp = xlog_get_bp(log, bufblks))) {
 | 
						|
		bufblks >>= 1;
 | 
						|
		if (bufblks < sectbb)
 | 
						|
			return ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	/* We may need to do a read at the start to fill in part of
 | 
						|
	 * the buffer in the starting sector not covered by the first
 | 
						|
	 * write below.
 | 
						|
	 */
 | 
						|
	balign = round_down(start_block, sectbb);
 | 
						|
	if (balign != start_block) {
 | 
						|
		error = xlog_bread_noalign(log, start_block, 1, bp);
 | 
						|
		if (error)
 | 
						|
			goto out_put_bp;
 | 
						|
 | 
						|
		j = start_block - balign;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = start_block; i < end_block; i += bufblks) {
 | 
						|
		int		bcount, endcount;
 | 
						|
 | 
						|
		bcount = min(bufblks, end_block - start_block);
 | 
						|
		endcount = bcount - j;
 | 
						|
 | 
						|
		/* We may need to do a read at the end to fill in part of
 | 
						|
		 * the buffer in the final sector not covered by the write.
 | 
						|
		 * If this is the same sector as the above read, skip it.
 | 
						|
		 */
 | 
						|
		ealign = round_down(end_block, sectbb);
 | 
						|
		if (j == 0 && (start_block + endcount > ealign)) {
 | 
						|
			offset = bp->b_addr + BBTOB(ealign - start_block);
 | 
						|
			error = xlog_bread_offset(log, ealign, sectbb,
 | 
						|
							bp, offset);
 | 
						|
			if (error)
 | 
						|
				break;
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		offset = xlog_align(log, start_block, endcount, bp);
 | 
						|
		for (; j < endcount; j++) {
 | 
						|
			xlog_add_record(log, offset, cycle, i+j,
 | 
						|
					tail_cycle, tail_block);
 | 
						|
			offset += BBSIZE;
 | 
						|
		}
 | 
						|
		error = xlog_bwrite(log, start_block, endcount, bp);
 | 
						|
		if (error)
 | 
						|
			break;
 | 
						|
		start_block += endcount;
 | 
						|
		j = 0;
 | 
						|
	}
 | 
						|
 | 
						|
 out_put_bp:
 | 
						|
	xlog_put_bp(bp);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This routine is called to blow away any incomplete log writes out
 | 
						|
 * in front of the log head.  We do this so that we won't become confused
 | 
						|
 * if we come up, write only a little bit more, and then crash again.
 | 
						|
 * If we leave the partial log records out there, this situation could
 | 
						|
 * cause us to think those partial writes are valid blocks since they
 | 
						|
 * have the current cycle number.  We get rid of them by overwriting them
 | 
						|
 * with empty log records with the old cycle number rather than the
 | 
						|
 * current one.
 | 
						|
 *
 | 
						|
 * The tail lsn is passed in rather than taken from
 | 
						|
 * the log so that we will not write over the unmount record after a
 | 
						|
 * clean unmount in a 512 block log.  Doing so would leave the log without
 | 
						|
 * any valid log records in it until a new one was written.  If we crashed
 | 
						|
 * during that time we would not be able to recover.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_clear_stale_blocks(
 | 
						|
	struct xlog	*log,
 | 
						|
	xfs_lsn_t	tail_lsn)
 | 
						|
{
 | 
						|
	int		tail_cycle, head_cycle;
 | 
						|
	int		tail_block, head_block;
 | 
						|
	int		tail_distance, max_distance;
 | 
						|
	int		distance;
 | 
						|
	int		error;
 | 
						|
 | 
						|
	tail_cycle = CYCLE_LSN(tail_lsn);
 | 
						|
	tail_block = BLOCK_LSN(tail_lsn);
 | 
						|
	head_cycle = log->l_curr_cycle;
 | 
						|
	head_block = log->l_curr_block;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Figure out the distance between the new head of the log
 | 
						|
	 * and the tail.  We want to write over any blocks beyond the
 | 
						|
	 * head that we may have written just before the crash, but
 | 
						|
	 * we don't want to overwrite the tail of the log.
 | 
						|
	 */
 | 
						|
	if (head_cycle == tail_cycle) {
 | 
						|
		/*
 | 
						|
		 * The tail is behind the head in the physical log,
 | 
						|
		 * so the distance from the head to the tail is the
 | 
						|
		 * distance from the head to the end of the log plus
 | 
						|
		 * the distance from the beginning of the log to the
 | 
						|
		 * tail.
 | 
						|
		 */
 | 
						|
		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
 | 
						|
			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
 | 
						|
					 XFS_ERRLEVEL_LOW, log->l_mp);
 | 
						|
			return XFS_ERROR(EFSCORRUPTED);
 | 
						|
		}
 | 
						|
		tail_distance = tail_block + (log->l_logBBsize - head_block);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * The head is behind the tail in the physical log,
 | 
						|
		 * so the distance from the head to the tail is just
 | 
						|
		 * the tail block minus the head block.
 | 
						|
		 */
 | 
						|
		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
 | 
						|
			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
 | 
						|
					 XFS_ERRLEVEL_LOW, log->l_mp);
 | 
						|
			return XFS_ERROR(EFSCORRUPTED);
 | 
						|
		}
 | 
						|
		tail_distance = tail_block - head_block;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the head is right up against the tail, we can't clear
 | 
						|
	 * anything.
 | 
						|
	 */
 | 
						|
	if (tail_distance <= 0) {
 | 
						|
		ASSERT(tail_distance == 0);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	max_distance = XLOG_TOTAL_REC_SHIFT(log);
 | 
						|
	/*
 | 
						|
	 * Take the smaller of the maximum amount of outstanding I/O
 | 
						|
	 * we could have and the distance to the tail to clear out.
 | 
						|
	 * We take the smaller so that we don't overwrite the tail and
 | 
						|
	 * we don't waste all day writing from the head to the tail
 | 
						|
	 * for no reason.
 | 
						|
	 */
 | 
						|
	max_distance = MIN(max_distance, tail_distance);
 | 
						|
 | 
						|
	if ((head_block + max_distance) <= log->l_logBBsize) {
 | 
						|
		/*
 | 
						|
		 * We can stomp all the blocks we need to without
 | 
						|
		 * wrapping around the end of the log.  Just do it
 | 
						|
		 * in a single write.  Use the cycle number of the
 | 
						|
		 * current cycle minus one so that the log will look like:
 | 
						|
		 *     n ... | n - 1 ...
 | 
						|
		 */
 | 
						|
		error = xlog_write_log_records(log, (head_cycle - 1),
 | 
						|
				head_block, max_distance, tail_cycle,
 | 
						|
				tail_block);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * We need to wrap around the end of the physical log in
 | 
						|
		 * order to clear all the blocks.  Do it in two separate
 | 
						|
		 * I/Os.  The first write should be from the head to the
 | 
						|
		 * end of the physical log, and it should use the current
 | 
						|
		 * cycle number minus one just like above.
 | 
						|
		 */
 | 
						|
		distance = log->l_logBBsize - head_block;
 | 
						|
		error = xlog_write_log_records(log, (head_cycle - 1),
 | 
						|
				head_block, distance, tail_cycle,
 | 
						|
				tail_block);
 | 
						|
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Now write the blocks at the start of the physical log.
 | 
						|
		 * This writes the remainder of the blocks we want to clear.
 | 
						|
		 * It uses the current cycle number since we're now on the
 | 
						|
		 * same cycle as the head so that we get:
 | 
						|
		 *    n ... n ... | n - 1 ...
 | 
						|
		 *    ^^^^^ blocks we're writing
 | 
						|
		 */
 | 
						|
		distance = max_distance - (log->l_logBBsize - head_block);
 | 
						|
		error = xlog_write_log_records(log, head_cycle, 0, distance,
 | 
						|
				tail_cycle, tail_block);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/******************************************************************************
 | 
						|
 *
 | 
						|
 *		Log recover routines
 | 
						|
 *
 | 
						|
 ******************************************************************************
 | 
						|
 */
 | 
						|
 | 
						|
STATIC xlog_recover_t *
 | 
						|
xlog_recover_find_tid(
 | 
						|
	struct hlist_head	*head,
 | 
						|
	xlog_tid_t		tid)
 | 
						|
{
 | 
						|
	xlog_recover_t		*trans;
 | 
						|
	struct hlist_node	*n;
 | 
						|
 | 
						|
	hlist_for_each_entry(trans, n, head, r_list) {
 | 
						|
		if (trans->r_log_tid == tid)
 | 
						|
			return trans;
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
STATIC void
 | 
						|
xlog_recover_new_tid(
 | 
						|
	struct hlist_head	*head,
 | 
						|
	xlog_tid_t		tid,
 | 
						|
	xfs_lsn_t		lsn)
 | 
						|
{
 | 
						|
	xlog_recover_t		*trans;
 | 
						|
 | 
						|
	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
 | 
						|
	trans->r_log_tid   = tid;
 | 
						|
	trans->r_lsn	   = lsn;
 | 
						|
	INIT_LIST_HEAD(&trans->r_itemq);
 | 
						|
 | 
						|
	INIT_HLIST_NODE(&trans->r_list);
 | 
						|
	hlist_add_head(&trans->r_list, head);
 | 
						|
}
 | 
						|
 | 
						|
STATIC void
 | 
						|
xlog_recover_add_item(
 | 
						|
	struct list_head	*head)
 | 
						|
{
 | 
						|
	xlog_recover_item_t	*item;
 | 
						|
 | 
						|
	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
 | 
						|
	INIT_LIST_HEAD(&item->ri_list);
 | 
						|
	list_add_tail(&item->ri_list, head);
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xlog_recover_add_to_cont_trans(
 | 
						|
	struct xlog		*log,
 | 
						|
	struct xlog_recover	*trans,
 | 
						|
	xfs_caddr_t		dp,
 | 
						|
	int			len)
 | 
						|
{
 | 
						|
	xlog_recover_item_t	*item;
 | 
						|
	xfs_caddr_t		ptr, old_ptr;
 | 
						|
	int			old_len;
 | 
						|
 | 
						|
	if (list_empty(&trans->r_itemq)) {
 | 
						|
		/* finish copying rest of trans header */
 | 
						|
		xlog_recover_add_item(&trans->r_itemq);
 | 
						|
		ptr = (xfs_caddr_t) &trans->r_theader +
 | 
						|
				sizeof(xfs_trans_header_t) - len;
 | 
						|
		memcpy(ptr, dp, len); /* d, s, l */
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	/* take the tail entry */
 | 
						|
	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
 | 
						|
 | 
						|
	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
 | 
						|
	old_len = item->ri_buf[item->ri_cnt-1].i_len;
 | 
						|
 | 
						|
	ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
 | 
						|
	memcpy(&ptr[old_len], dp, len); /* d, s, l */
 | 
						|
	item->ri_buf[item->ri_cnt-1].i_len += len;
 | 
						|
	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
 | 
						|
	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The next region to add is the start of a new region.  It could be
 | 
						|
 * a whole region or it could be the first part of a new region.  Because
 | 
						|
 * of this, the assumption here is that the type and size fields of all
 | 
						|
 * format structures fit into the first 32 bits of the structure.
 | 
						|
 *
 | 
						|
 * This works because all regions must be 32 bit aligned.  Therefore, we
 | 
						|
 * either have both fields or we have neither field.  In the case we have
 | 
						|
 * neither field, the data part of the region is zero length.  We only have
 | 
						|
 * a log_op_header and can throw away the header since a new one will appear
 | 
						|
 * later.  If we have at least 4 bytes, then we can determine how many regions
 | 
						|
 * will appear in the current log item.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_recover_add_to_trans(
 | 
						|
	struct xlog		*log,
 | 
						|
	struct xlog_recover	*trans,
 | 
						|
	xfs_caddr_t		dp,
 | 
						|
	int			len)
 | 
						|
{
 | 
						|
	xfs_inode_log_format_t	*in_f;			/* any will do */
 | 
						|
	xlog_recover_item_t	*item;
 | 
						|
	xfs_caddr_t		ptr;
 | 
						|
 | 
						|
	if (!len)
 | 
						|
		return 0;
 | 
						|
	if (list_empty(&trans->r_itemq)) {
 | 
						|
		/* we need to catch log corruptions here */
 | 
						|
		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
 | 
						|
			xfs_warn(log->l_mp, "%s: bad header magic number",
 | 
						|
				__func__);
 | 
						|
			ASSERT(0);
 | 
						|
			return XFS_ERROR(EIO);
 | 
						|
		}
 | 
						|
		if (len == sizeof(xfs_trans_header_t))
 | 
						|
			xlog_recover_add_item(&trans->r_itemq);
 | 
						|
		memcpy(&trans->r_theader, dp, len); /* d, s, l */
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	ptr = kmem_alloc(len, KM_SLEEP);
 | 
						|
	memcpy(ptr, dp, len);
 | 
						|
	in_f = (xfs_inode_log_format_t *)ptr;
 | 
						|
 | 
						|
	/* take the tail entry */
 | 
						|
	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
 | 
						|
	if (item->ri_total != 0 &&
 | 
						|
	     item->ri_total == item->ri_cnt) {
 | 
						|
		/* tail item is in use, get a new one */
 | 
						|
		xlog_recover_add_item(&trans->r_itemq);
 | 
						|
		item = list_entry(trans->r_itemq.prev,
 | 
						|
					xlog_recover_item_t, ri_list);
 | 
						|
	}
 | 
						|
 | 
						|
	if (item->ri_total == 0) {		/* first region to be added */
 | 
						|
		if (in_f->ilf_size == 0 ||
 | 
						|
		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
 | 
						|
			xfs_warn(log->l_mp,
 | 
						|
		"bad number of regions (%d) in inode log format",
 | 
						|
				  in_f->ilf_size);
 | 
						|
			ASSERT(0);
 | 
						|
			return XFS_ERROR(EIO);
 | 
						|
		}
 | 
						|
 | 
						|
		item->ri_total = in_f->ilf_size;
 | 
						|
		item->ri_buf =
 | 
						|
			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
 | 
						|
				    KM_SLEEP);
 | 
						|
	}
 | 
						|
	ASSERT(item->ri_total > item->ri_cnt);
 | 
						|
	/* Description region is ri_buf[0] */
 | 
						|
	item->ri_buf[item->ri_cnt].i_addr = ptr;
 | 
						|
	item->ri_buf[item->ri_cnt].i_len  = len;
 | 
						|
	item->ri_cnt++;
 | 
						|
	trace_xfs_log_recover_item_add(log, trans, item, 0);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Sort the log items in the transaction. Cancelled buffers need
 | 
						|
 * to be put first so they are processed before any items that might
 | 
						|
 * modify the buffers. If they are cancelled, then the modifications
 | 
						|
 * don't need to be replayed.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_recover_reorder_trans(
 | 
						|
	struct xlog		*log,
 | 
						|
	struct xlog_recover	*trans,
 | 
						|
	int			pass)
 | 
						|
{
 | 
						|
	xlog_recover_item_t	*item, *n;
 | 
						|
	LIST_HEAD(sort_list);
 | 
						|
 | 
						|
	list_splice_init(&trans->r_itemq, &sort_list);
 | 
						|
	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
 | 
						|
		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
 | 
						|
 | 
						|
		switch (ITEM_TYPE(item)) {
 | 
						|
		case XFS_LI_BUF:
 | 
						|
			if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
 | 
						|
				trace_xfs_log_recover_item_reorder_head(log,
 | 
						|
							trans, item, pass);
 | 
						|
				list_move(&item->ri_list, &trans->r_itemq);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		case XFS_LI_INODE:
 | 
						|
		case XFS_LI_DQUOT:
 | 
						|
		case XFS_LI_QUOTAOFF:
 | 
						|
		case XFS_LI_EFD:
 | 
						|
		case XFS_LI_EFI:
 | 
						|
			trace_xfs_log_recover_item_reorder_tail(log,
 | 
						|
							trans, item, pass);
 | 
						|
			list_move_tail(&item->ri_list, &trans->r_itemq);
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			xfs_warn(log->l_mp,
 | 
						|
				"%s: unrecognized type of log operation",
 | 
						|
				__func__);
 | 
						|
			ASSERT(0);
 | 
						|
			return XFS_ERROR(EIO);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	ASSERT(list_empty(&sort_list));
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Build up the table of buf cancel records so that we don't replay
 | 
						|
 * cancelled data in the second pass.  For buffer records that are
 | 
						|
 * not cancel records, there is nothing to do here so we just return.
 | 
						|
 *
 | 
						|
 * If we get a cancel record which is already in the table, this indicates
 | 
						|
 * that the buffer was cancelled multiple times.  In order to ensure
 | 
						|
 * that during pass 2 we keep the record in the table until we reach its
 | 
						|
 * last occurrence in the log, we keep a reference count in the cancel
 | 
						|
 * record in the table to tell us how many times we expect to see this
 | 
						|
 * record during the second pass.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_recover_buffer_pass1(
 | 
						|
	struct xlog			*log,
 | 
						|
	struct xlog_recover_item	*item)
 | 
						|
{
 | 
						|
	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
 | 
						|
	struct list_head	*bucket;
 | 
						|
	struct xfs_buf_cancel	*bcp;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this isn't a cancel buffer item, then just return.
 | 
						|
	 */
 | 
						|
	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
 | 
						|
		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Insert an xfs_buf_cancel record into the hash table of them.
 | 
						|
	 * If there is already an identical record, bump its reference count.
 | 
						|
	 */
 | 
						|
	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
 | 
						|
	list_for_each_entry(bcp, bucket, bc_list) {
 | 
						|
		if (bcp->bc_blkno == buf_f->blf_blkno &&
 | 
						|
		    bcp->bc_len == buf_f->blf_len) {
 | 
						|
			bcp->bc_refcount++;
 | 
						|
			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
 | 
						|
	bcp->bc_blkno = buf_f->blf_blkno;
 | 
						|
	bcp->bc_len = buf_f->blf_len;
 | 
						|
	bcp->bc_refcount = 1;
 | 
						|
	list_add_tail(&bcp->bc_list, bucket);
 | 
						|
 | 
						|
	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check to see whether the buffer being recovered has a corresponding
 | 
						|
 * entry in the buffer cancel record table.  If it does then return 1
 | 
						|
 * so that it will be cancelled, otherwise return 0.  If the buffer is
 | 
						|
 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
 | 
						|
 * the refcount on the entry in the table and remove it from the table
 | 
						|
 * if this is the last reference.
 | 
						|
 *
 | 
						|
 * We remove the cancel record from the table when we encounter its
 | 
						|
 * last occurrence in the log so that if the same buffer is re-used
 | 
						|
 * again after its last cancellation we actually replay the changes
 | 
						|
 * made at that point.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_check_buffer_cancelled(
 | 
						|
	struct xlog		*log,
 | 
						|
	xfs_daddr_t		blkno,
 | 
						|
	uint			len,
 | 
						|
	ushort			flags)
 | 
						|
{
 | 
						|
	struct list_head	*bucket;
 | 
						|
	struct xfs_buf_cancel	*bcp;
 | 
						|
 | 
						|
	if (log->l_buf_cancel_table == NULL) {
 | 
						|
		/*
 | 
						|
		 * There is nothing in the table built in pass one,
 | 
						|
		 * so this buffer must not be cancelled.
 | 
						|
		 */
 | 
						|
		ASSERT(!(flags & XFS_BLF_CANCEL));
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Search for an entry in the  cancel table that matches our buffer.
 | 
						|
	 */
 | 
						|
	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
 | 
						|
	list_for_each_entry(bcp, bucket, bc_list) {
 | 
						|
		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
 | 
						|
			goto found;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We didn't find a corresponding entry in the table, so return 0 so
 | 
						|
	 * that the buffer is NOT cancelled.
 | 
						|
	 */
 | 
						|
	ASSERT(!(flags & XFS_BLF_CANCEL));
 | 
						|
	return 0;
 | 
						|
 | 
						|
found:
 | 
						|
	/*
 | 
						|
	 * We've go a match, so return 1 so that the recovery of this buffer
 | 
						|
	 * is cancelled.  If this buffer is actually a buffer cancel log
 | 
						|
	 * item, then decrement the refcount on the one in the table and
 | 
						|
	 * remove it if this is the last reference.
 | 
						|
	 */
 | 
						|
	if (flags & XFS_BLF_CANCEL) {
 | 
						|
		if (--bcp->bc_refcount == 0) {
 | 
						|
			list_del(&bcp->bc_list);
 | 
						|
			kmem_free(bcp);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Perform recovery for a buffer full of inodes.  In these buffers, the only
 | 
						|
 * data which should be recovered is that which corresponds to the
 | 
						|
 * di_next_unlinked pointers in the on disk inode structures.  The rest of the
 | 
						|
 * data for the inodes is always logged through the inodes themselves rather
 | 
						|
 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
 | 
						|
 *
 | 
						|
 * The only time when buffers full of inodes are fully recovered is when the
 | 
						|
 * buffer is full of newly allocated inodes.  In this case the buffer will
 | 
						|
 * not be marked as an inode buffer and so will be sent to
 | 
						|
 * xlog_recover_do_reg_buffer() below during recovery.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_recover_do_inode_buffer(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	xlog_recover_item_t	*item,
 | 
						|
	struct xfs_buf		*bp,
 | 
						|
	xfs_buf_log_format_t	*buf_f)
 | 
						|
{
 | 
						|
	int			i;
 | 
						|
	int			item_index = 0;
 | 
						|
	int			bit = 0;
 | 
						|
	int			nbits = 0;
 | 
						|
	int			reg_buf_offset = 0;
 | 
						|
	int			reg_buf_bytes = 0;
 | 
						|
	int			next_unlinked_offset;
 | 
						|
	int			inodes_per_buf;
 | 
						|
	xfs_agino_t		*logged_nextp;
 | 
						|
	xfs_agino_t		*buffer_nextp;
 | 
						|
 | 
						|
	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
 | 
						|
 | 
						|
	inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
 | 
						|
	for (i = 0; i < inodes_per_buf; i++) {
 | 
						|
		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
 | 
						|
			offsetof(xfs_dinode_t, di_next_unlinked);
 | 
						|
 | 
						|
		while (next_unlinked_offset >=
 | 
						|
		       (reg_buf_offset + reg_buf_bytes)) {
 | 
						|
			/*
 | 
						|
			 * The next di_next_unlinked field is beyond
 | 
						|
			 * the current logged region.  Find the next
 | 
						|
			 * logged region that contains or is beyond
 | 
						|
			 * the current di_next_unlinked field.
 | 
						|
			 */
 | 
						|
			bit += nbits;
 | 
						|
			bit = xfs_next_bit(buf_f->blf_data_map,
 | 
						|
					   buf_f->blf_map_size, bit);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * If there are no more logged regions in the
 | 
						|
			 * buffer, then we're done.
 | 
						|
			 */
 | 
						|
			if (bit == -1)
 | 
						|
				return 0;
 | 
						|
 | 
						|
			nbits = xfs_contig_bits(buf_f->blf_data_map,
 | 
						|
						buf_f->blf_map_size, bit);
 | 
						|
			ASSERT(nbits > 0);
 | 
						|
			reg_buf_offset = bit << XFS_BLF_SHIFT;
 | 
						|
			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
 | 
						|
			item_index++;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If the current logged region starts after the current
 | 
						|
		 * di_next_unlinked field, then move on to the next
 | 
						|
		 * di_next_unlinked field.
 | 
						|
		 */
 | 
						|
		if (next_unlinked_offset < reg_buf_offset)
 | 
						|
			continue;
 | 
						|
 | 
						|
		ASSERT(item->ri_buf[item_index].i_addr != NULL);
 | 
						|
		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
 | 
						|
		ASSERT((reg_buf_offset + reg_buf_bytes) <=
 | 
						|
							BBTOB(bp->b_io_length));
 | 
						|
 | 
						|
		/*
 | 
						|
		 * The current logged region contains a copy of the
 | 
						|
		 * current di_next_unlinked field.  Extract its value
 | 
						|
		 * and copy it to the buffer copy.
 | 
						|
		 */
 | 
						|
		logged_nextp = item->ri_buf[item_index].i_addr +
 | 
						|
				next_unlinked_offset - reg_buf_offset;
 | 
						|
		if (unlikely(*logged_nextp == 0)) {
 | 
						|
			xfs_alert(mp,
 | 
						|
		"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
 | 
						|
		"Trying to replay bad (0) inode di_next_unlinked field.",
 | 
						|
				item, bp);
 | 
						|
			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
 | 
						|
					 XFS_ERRLEVEL_LOW, mp);
 | 
						|
			return XFS_ERROR(EFSCORRUPTED);
 | 
						|
		}
 | 
						|
 | 
						|
		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
 | 
						|
					      next_unlinked_offset);
 | 
						|
		*buffer_nextp = *logged_nextp;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Perform a 'normal' buffer recovery.  Each logged region of the
 | 
						|
 * buffer should be copied over the corresponding region in the
 | 
						|
 * given buffer.  The bitmap in the buf log format structure indicates
 | 
						|
 * where to place the logged data.
 | 
						|
 */
 | 
						|
STATIC void
 | 
						|
xlog_recover_do_reg_buffer(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	xlog_recover_item_t	*item,
 | 
						|
	struct xfs_buf		*bp,
 | 
						|
	xfs_buf_log_format_t	*buf_f)
 | 
						|
{
 | 
						|
	int			i;
 | 
						|
	int			bit;
 | 
						|
	int			nbits;
 | 
						|
	int                     error;
 | 
						|
 | 
						|
	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
 | 
						|
 | 
						|
	bit = 0;
 | 
						|
	i = 1;  /* 0 is the buf format structure */
 | 
						|
	while (1) {
 | 
						|
		bit = xfs_next_bit(buf_f->blf_data_map,
 | 
						|
				   buf_f->blf_map_size, bit);
 | 
						|
		if (bit == -1)
 | 
						|
			break;
 | 
						|
		nbits = xfs_contig_bits(buf_f->blf_data_map,
 | 
						|
					buf_f->blf_map_size, bit);
 | 
						|
		ASSERT(nbits > 0);
 | 
						|
		ASSERT(item->ri_buf[i].i_addr != NULL);
 | 
						|
		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
 | 
						|
		ASSERT(BBTOB(bp->b_io_length) >=
 | 
						|
		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Do a sanity check if this is a dquot buffer. Just checking
 | 
						|
		 * the first dquot in the buffer should do. XXXThis is
 | 
						|
		 * probably a good thing to do for other buf types also.
 | 
						|
		 */
 | 
						|
		error = 0;
 | 
						|
		if (buf_f->blf_flags &
 | 
						|
		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
 | 
						|
			if (item->ri_buf[i].i_addr == NULL) {
 | 
						|
				xfs_alert(mp,
 | 
						|
					"XFS: NULL dquot in %s.", __func__);
 | 
						|
				goto next;
 | 
						|
			}
 | 
						|
			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
 | 
						|
				xfs_alert(mp,
 | 
						|
					"XFS: dquot too small (%d) in %s.",
 | 
						|
					item->ri_buf[i].i_len, __func__);
 | 
						|
				goto next;
 | 
						|
			}
 | 
						|
			error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
 | 
						|
					       -1, 0, XFS_QMOPT_DOWARN,
 | 
						|
					       "dquot_buf_recover");
 | 
						|
			if (error)
 | 
						|
				goto next;
 | 
						|
		}
 | 
						|
 | 
						|
		memcpy(xfs_buf_offset(bp,
 | 
						|
			(uint)bit << XFS_BLF_SHIFT),	/* dest */
 | 
						|
			item->ri_buf[i].i_addr,		/* source */
 | 
						|
			nbits<<XFS_BLF_SHIFT);		/* length */
 | 
						|
 next:
 | 
						|
		i++;
 | 
						|
		bit += nbits;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Shouldn't be any more regions */
 | 
						|
	ASSERT(i == item->ri_total);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Do some primitive error checking on ondisk dquot data structures.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_qm_dqcheck(
 | 
						|
	struct xfs_mount *mp,
 | 
						|
	xfs_disk_dquot_t *ddq,
 | 
						|
	xfs_dqid_t	 id,
 | 
						|
	uint		 type,	  /* used only when IO_dorepair is true */
 | 
						|
	uint		 flags,
 | 
						|
	char		 *str)
 | 
						|
{
 | 
						|
	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
 | 
						|
	int		errs = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We can encounter an uninitialized dquot buffer for 2 reasons:
 | 
						|
	 * 1. If we crash while deleting the quotainode(s), and those blks got
 | 
						|
	 *    used for user data. This is because we take the path of regular
 | 
						|
	 *    file deletion; however, the size field of quotainodes is never
 | 
						|
	 *    updated, so all the tricks that we play in itruncate_finish
 | 
						|
	 *    don't quite matter.
 | 
						|
	 *
 | 
						|
	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
 | 
						|
	 *    But the allocation will be replayed so we'll end up with an
 | 
						|
	 *    uninitialized quota block.
 | 
						|
	 *
 | 
						|
	 * This is all fine; things are still consistent, and we haven't lost
 | 
						|
	 * any quota information. Just don't complain about bad dquot blks.
 | 
						|
	 */
 | 
						|
	if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
 | 
						|
		if (flags & XFS_QMOPT_DOWARN)
 | 
						|
			xfs_alert(mp,
 | 
						|
			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
 | 
						|
			str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
 | 
						|
		errs++;
 | 
						|
	}
 | 
						|
	if (ddq->d_version != XFS_DQUOT_VERSION) {
 | 
						|
		if (flags & XFS_QMOPT_DOWARN)
 | 
						|
			xfs_alert(mp,
 | 
						|
			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
 | 
						|
			str, id, ddq->d_version, XFS_DQUOT_VERSION);
 | 
						|
		errs++;
 | 
						|
	}
 | 
						|
 | 
						|
	if (ddq->d_flags != XFS_DQ_USER &&
 | 
						|
	    ddq->d_flags != XFS_DQ_PROJ &&
 | 
						|
	    ddq->d_flags != XFS_DQ_GROUP) {
 | 
						|
		if (flags & XFS_QMOPT_DOWARN)
 | 
						|
			xfs_alert(mp,
 | 
						|
			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
 | 
						|
			str, id, ddq->d_flags);
 | 
						|
		errs++;
 | 
						|
	}
 | 
						|
 | 
						|
	if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
 | 
						|
		if (flags & XFS_QMOPT_DOWARN)
 | 
						|
			xfs_alert(mp,
 | 
						|
			"%s : ondisk-dquot 0x%p, ID mismatch: "
 | 
						|
			"0x%x expected, found id 0x%x",
 | 
						|
			str, ddq, id, be32_to_cpu(ddq->d_id));
 | 
						|
		errs++;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!errs && ddq->d_id) {
 | 
						|
		if (ddq->d_blk_softlimit &&
 | 
						|
		    be64_to_cpu(ddq->d_bcount) >
 | 
						|
				be64_to_cpu(ddq->d_blk_softlimit)) {
 | 
						|
			if (!ddq->d_btimer) {
 | 
						|
				if (flags & XFS_QMOPT_DOWARN)
 | 
						|
					xfs_alert(mp,
 | 
						|
			"%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
 | 
						|
					str, (int)be32_to_cpu(ddq->d_id), ddq);
 | 
						|
				errs++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (ddq->d_ino_softlimit &&
 | 
						|
		    be64_to_cpu(ddq->d_icount) >
 | 
						|
				be64_to_cpu(ddq->d_ino_softlimit)) {
 | 
						|
			if (!ddq->d_itimer) {
 | 
						|
				if (flags & XFS_QMOPT_DOWARN)
 | 
						|
					xfs_alert(mp,
 | 
						|
			"%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
 | 
						|
					str, (int)be32_to_cpu(ddq->d_id), ddq);
 | 
						|
				errs++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (ddq->d_rtb_softlimit &&
 | 
						|
		    be64_to_cpu(ddq->d_rtbcount) >
 | 
						|
				be64_to_cpu(ddq->d_rtb_softlimit)) {
 | 
						|
			if (!ddq->d_rtbtimer) {
 | 
						|
				if (flags & XFS_QMOPT_DOWARN)
 | 
						|
					xfs_alert(mp,
 | 
						|
			"%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
 | 
						|
					str, (int)be32_to_cpu(ddq->d_id), ddq);
 | 
						|
				errs++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
 | 
						|
		return errs;
 | 
						|
 | 
						|
	if (flags & XFS_QMOPT_DOWARN)
 | 
						|
		xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Typically, a repair is only requested by quotacheck.
 | 
						|
	 */
 | 
						|
	ASSERT(id != -1);
 | 
						|
	ASSERT(flags & XFS_QMOPT_DQREPAIR);
 | 
						|
	memset(d, 0, sizeof(xfs_dqblk_t));
 | 
						|
 | 
						|
	d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
 | 
						|
	d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
 | 
						|
	d->dd_diskdq.d_flags = type;
 | 
						|
	d->dd_diskdq.d_id = cpu_to_be32(id);
 | 
						|
 | 
						|
	return errs;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Perform a dquot buffer recovery.
 | 
						|
 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
 | 
						|
 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
 | 
						|
 * Else, treat it as a regular buffer and do recovery.
 | 
						|
 */
 | 
						|
STATIC void
 | 
						|
xlog_recover_do_dquot_buffer(
 | 
						|
	struct xfs_mount		*mp,
 | 
						|
	struct xlog			*log,
 | 
						|
	struct xlog_recover_item	*item,
 | 
						|
	struct xfs_buf			*bp,
 | 
						|
	struct xfs_buf_log_format	*buf_f)
 | 
						|
{
 | 
						|
	uint			type;
 | 
						|
 | 
						|
	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Filesystems are required to send in quota flags at mount time.
 | 
						|
	 */
 | 
						|
	if (mp->m_qflags == 0) {
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	type = 0;
 | 
						|
	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
 | 
						|
		type |= XFS_DQ_USER;
 | 
						|
	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
 | 
						|
		type |= XFS_DQ_PROJ;
 | 
						|
	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
 | 
						|
		type |= XFS_DQ_GROUP;
 | 
						|
	/*
 | 
						|
	 * This type of quotas was turned off, so ignore this buffer
 | 
						|
	 */
 | 
						|
	if (log->l_quotaoffs_flag & type)
 | 
						|
		return;
 | 
						|
 | 
						|
	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This routine replays a modification made to a buffer at runtime.
 | 
						|
 * There are actually two types of buffer, regular and inode, which
 | 
						|
 * are handled differently.  Inode buffers are handled differently
 | 
						|
 * in that we only recover a specific set of data from them, namely
 | 
						|
 * the inode di_next_unlinked fields.  This is because all other inode
 | 
						|
 * data is actually logged via inode records and any data we replay
 | 
						|
 * here which overlaps that may be stale.
 | 
						|
 *
 | 
						|
 * When meta-data buffers are freed at run time we log a buffer item
 | 
						|
 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
 | 
						|
 * of the buffer in the log should not be replayed at recovery time.
 | 
						|
 * This is so that if the blocks covered by the buffer are reused for
 | 
						|
 * file data before we crash we don't end up replaying old, freed
 | 
						|
 * meta-data into a user's file.
 | 
						|
 *
 | 
						|
 * To handle the cancellation of buffer log items, we make two passes
 | 
						|
 * over the log during recovery.  During the first we build a table of
 | 
						|
 * those buffers which have been cancelled, and during the second we
 | 
						|
 * only replay those buffers which do not have corresponding cancel
 | 
						|
 * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
 | 
						|
 * for more details on the implementation of the table of cancel records.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_recover_buffer_pass2(
 | 
						|
	struct xlog			*log,
 | 
						|
	struct list_head		*buffer_list,
 | 
						|
	struct xlog_recover_item	*item)
 | 
						|
{
 | 
						|
	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
 | 
						|
	xfs_mount_t		*mp = log->l_mp;
 | 
						|
	xfs_buf_t		*bp;
 | 
						|
	int			error;
 | 
						|
	uint			buf_flags;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In this pass we only want to recover all the buffers which have
 | 
						|
	 * not been cancelled and are not cancellation buffers themselves.
 | 
						|
	 */
 | 
						|
	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
 | 
						|
			buf_f->blf_len, buf_f->blf_flags)) {
 | 
						|
		trace_xfs_log_recover_buf_cancel(log, buf_f);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	trace_xfs_log_recover_buf_recover(log, buf_f);
 | 
						|
 | 
						|
	buf_flags = 0;
 | 
						|
	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
 | 
						|
		buf_flags |= XBF_UNMAPPED;
 | 
						|
 | 
						|
	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
 | 
						|
			  buf_flags);
 | 
						|
	if (!bp)
 | 
						|
		return XFS_ERROR(ENOMEM);
 | 
						|
	error = bp->b_error;
 | 
						|
	if (error) {
 | 
						|
		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
 | 
						|
		xfs_buf_relse(bp);
 | 
						|
		return error;
 | 
						|
	}
 | 
						|
 | 
						|
	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
 | 
						|
		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
 | 
						|
	} else if (buf_f->blf_flags &
 | 
						|
		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
 | 
						|
		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
 | 
						|
	} else {
 | 
						|
		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
 | 
						|
	}
 | 
						|
	if (error)
 | 
						|
		return XFS_ERROR(error);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Perform delayed write on the buffer.  Asynchronous writes will be
 | 
						|
	 * slower when taking into account all the buffers to be flushed.
 | 
						|
	 *
 | 
						|
	 * Also make sure that only inode buffers with good sizes stay in
 | 
						|
	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
 | 
						|
	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
 | 
						|
	 * buffers in the log can be a different size if the log was generated
 | 
						|
	 * by an older kernel using unclustered inode buffers or a newer kernel
 | 
						|
	 * running with a different inode cluster size.  Regardless, if the
 | 
						|
	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
 | 
						|
	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
 | 
						|
	 * the buffer out of the buffer cache so that the buffer won't
 | 
						|
	 * overlap with future reads of those inodes.
 | 
						|
	 */
 | 
						|
	if (XFS_DINODE_MAGIC ==
 | 
						|
	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
 | 
						|
	    (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
 | 
						|
			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
 | 
						|
		xfs_buf_stale(bp);
 | 
						|
		error = xfs_bwrite(bp);
 | 
						|
	} else {
 | 
						|
		ASSERT(bp->b_target->bt_mount == mp);
 | 
						|
		bp->b_iodone = xlog_recover_iodone;
 | 
						|
		xfs_buf_delwri_queue(bp, buffer_list);
 | 
						|
	}
 | 
						|
 | 
						|
	xfs_buf_relse(bp);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xlog_recover_inode_pass2(
 | 
						|
	struct xlog			*log,
 | 
						|
	struct list_head		*buffer_list,
 | 
						|
	struct xlog_recover_item	*item)
 | 
						|
{
 | 
						|
	xfs_inode_log_format_t	*in_f;
 | 
						|
	xfs_mount_t		*mp = log->l_mp;
 | 
						|
	xfs_buf_t		*bp;
 | 
						|
	xfs_dinode_t		*dip;
 | 
						|
	int			len;
 | 
						|
	xfs_caddr_t		src;
 | 
						|
	xfs_caddr_t		dest;
 | 
						|
	int			error;
 | 
						|
	int			attr_index;
 | 
						|
	uint			fields;
 | 
						|
	xfs_icdinode_t		*dicp;
 | 
						|
	int			need_free = 0;
 | 
						|
 | 
						|
	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
 | 
						|
		in_f = item->ri_buf[0].i_addr;
 | 
						|
	} else {
 | 
						|
		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
 | 
						|
		need_free = 1;
 | 
						|
		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
 | 
						|
		if (error)
 | 
						|
			goto error;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Inode buffers can be freed, look out for it,
 | 
						|
	 * and do not replay the inode.
 | 
						|
	 */
 | 
						|
	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
 | 
						|
					in_f->ilf_len, 0)) {
 | 
						|
		error = 0;
 | 
						|
		trace_xfs_log_recover_inode_cancel(log, in_f);
 | 
						|
		goto error;
 | 
						|
	}
 | 
						|
	trace_xfs_log_recover_inode_recover(log, in_f);
 | 
						|
 | 
						|
	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0);
 | 
						|
	if (!bp) {
 | 
						|
		error = ENOMEM;
 | 
						|
		goto error;
 | 
						|
	}
 | 
						|
	error = bp->b_error;
 | 
						|
	if (error) {
 | 
						|
		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
 | 
						|
		xfs_buf_relse(bp);
 | 
						|
		goto error;
 | 
						|
	}
 | 
						|
	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
 | 
						|
	dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make sure the place we're flushing out to really looks
 | 
						|
	 * like an inode!
 | 
						|
	 */
 | 
						|
	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
 | 
						|
		xfs_buf_relse(bp);
 | 
						|
		xfs_alert(mp,
 | 
						|
	"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
 | 
						|
			__func__, dip, bp, in_f->ilf_ino);
 | 
						|
		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
 | 
						|
				 XFS_ERRLEVEL_LOW, mp);
 | 
						|
		error = EFSCORRUPTED;
 | 
						|
		goto error;
 | 
						|
	}
 | 
						|
	dicp = item->ri_buf[1].i_addr;
 | 
						|
	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
 | 
						|
		xfs_buf_relse(bp);
 | 
						|
		xfs_alert(mp,
 | 
						|
			"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
 | 
						|
			__func__, item, in_f->ilf_ino);
 | 
						|
		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
 | 
						|
				 XFS_ERRLEVEL_LOW, mp);
 | 
						|
		error = EFSCORRUPTED;
 | 
						|
		goto error;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Skip replay when the on disk inode is newer than the log one */
 | 
						|
	if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
 | 
						|
		/*
 | 
						|
		 * Deal with the wrap case, DI_MAX_FLUSH is less
 | 
						|
		 * than smaller numbers
 | 
						|
		 */
 | 
						|
		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
 | 
						|
		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
 | 
						|
			/* do nothing */
 | 
						|
		} else {
 | 
						|
			xfs_buf_relse(bp);
 | 
						|
			trace_xfs_log_recover_inode_skip(log, in_f);
 | 
						|
			error = 0;
 | 
						|
			goto error;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/* Take the opportunity to reset the flush iteration count */
 | 
						|
	dicp->di_flushiter = 0;
 | 
						|
 | 
						|
	if (unlikely(S_ISREG(dicp->di_mode))) {
 | 
						|
		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
 | 
						|
		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
 | 
						|
			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
 | 
						|
					 XFS_ERRLEVEL_LOW, mp, dicp);
 | 
						|
			xfs_buf_relse(bp);
 | 
						|
			xfs_alert(mp,
 | 
						|
		"%s: Bad regular inode log record, rec ptr 0x%p, "
 | 
						|
		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
 | 
						|
				__func__, item, dip, bp, in_f->ilf_ino);
 | 
						|
			error = EFSCORRUPTED;
 | 
						|
			goto error;
 | 
						|
		}
 | 
						|
	} else if (unlikely(S_ISDIR(dicp->di_mode))) {
 | 
						|
		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
 | 
						|
		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
 | 
						|
		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
 | 
						|
			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
 | 
						|
					     XFS_ERRLEVEL_LOW, mp, dicp);
 | 
						|
			xfs_buf_relse(bp);
 | 
						|
			xfs_alert(mp,
 | 
						|
		"%s: Bad dir inode log record, rec ptr 0x%p, "
 | 
						|
		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
 | 
						|
				__func__, item, dip, bp, in_f->ilf_ino);
 | 
						|
			error = EFSCORRUPTED;
 | 
						|
			goto error;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
 | 
						|
		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
 | 
						|
				     XFS_ERRLEVEL_LOW, mp, dicp);
 | 
						|
		xfs_buf_relse(bp);
 | 
						|
		xfs_alert(mp,
 | 
						|
	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
 | 
						|
	"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
 | 
						|
			__func__, item, dip, bp, in_f->ilf_ino,
 | 
						|
			dicp->di_nextents + dicp->di_anextents,
 | 
						|
			dicp->di_nblocks);
 | 
						|
		error = EFSCORRUPTED;
 | 
						|
		goto error;
 | 
						|
	}
 | 
						|
	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
 | 
						|
		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
 | 
						|
				     XFS_ERRLEVEL_LOW, mp, dicp);
 | 
						|
		xfs_buf_relse(bp);
 | 
						|
		xfs_alert(mp,
 | 
						|
	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
 | 
						|
	"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
 | 
						|
			item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
 | 
						|
		error = EFSCORRUPTED;
 | 
						|
		goto error;
 | 
						|
	}
 | 
						|
	if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
 | 
						|
		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
 | 
						|
				     XFS_ERRLEVEL_LOW, mp, dicp);
 | 
						|
		xfs_buf_relse(bp);
 | 
						|
		xfs_alert(mp,
 | 
						|
			"%s: Bad inode log record length %d, rec ptr 0x%p",
 | 
						|
			__func__, item->ri_buf[1].i_len, item);
 | 
						|
		error = EFSCORRUPTED;
 | 
						|
		goto error;
 | 
						|
	}
 | 
						|
 | 
						|
	/* The core is in in-core format */
 | 
						|
	xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
 | 
						|
 | 
						|
	/* the rest is in on-disk format */
 | 
						|
	if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
 | 
						|
		memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
 | 
						|
			item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
 | 
						|
			item->ri_buf[1].i_len  - sizeof(struct xfs_icdinode));
 | 
						|
	}
 | 
						|
 | 
						|
	fields = in_f->ilf_fields;
 | 
						|
	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
 | 
						|
	case XFS_ILOG_DEV:
 | 
						|
		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
 | 
						|
		break;
 | 
						|
	case XFS_ILOG_UUID:
 | 
						|
		memcpy(XFS_DFORK_DPTR(dip),
 | 
						|
		       &in_f->ilf_u.ilfu_uuid,
 | 
						|
		       sizeof(uuid_t));
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (in_f->ilf_size == 2)
 | 
						|
		goto write_inode_buffer;
 | 
						|
	len = item->ri_buf[2].i_len;
 | 
						|
	src = item->ri_buf[2].i_addr;
 | 
						|
	ASSERT(in_f->ilf_size <= 4);
 | 
						|
	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
 | 
						|
	ASSERT(!(fields & XFS_ILOG_DFORK) ||
 | 
						|
	       (len == in_f->ilf_dsize));
 | 
						|
 | 
						|
	switch (fields & XFS_ILOG_DFORK) {
 | 
						|
	case XFS_ILOG_DDATA:
 | 
						|
	case XFS_ILOG_DEXT:
 | 
						|
		memcpy(XFS_DFORK_DPTR(dip), src, len);
 | 
						|
		break;
 | 
						|
 | 
						|
	case XFS_ILOG_DBROOT:
 | 
						|
		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
 | 
						|
				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
 | 
						|
				 XFS_DFORK_DSIZE(dip, mp));
 | 
						|
		break;
 | 
						|
 | 
						|
	default:
 | 
						|
		/*
 | 
						|
		 * There are no data fork flags set.
 | 
						|
		 */
 | 
						|
		ASSERT((fields & XFS_ILOG_DFORK) == 0);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we logged any attribute data, recover it.  There may or
 | 
						|
	 * may not have been any other non-core data logged in this
 | 
						|
	 * transaction.
 | 
						|
	 */
 | 
						|
	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
 | 
						|
		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
 | 
						|
			attr_index = 3;
 | 
						|
		} else {
 | 
						|
			attr_index = 2;
 | 
						|
		}
 | 
						|
		len = item->ri_buf[attr_index].i_len;
 | 
						|
		src = item->ri_buf[attr_index].i_addr;
 | 
						|
		ASSERT(len == in_f->ilf_asize);
 | 
						|
 | 
						|
		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
 | 
						|
		case XFS_ILOG_ADATA:
 | 
						|
		case XFS_ILOG_AEXT:
 | 
						|
			dest = XFS_DFORK_APTR(dip);
 | 
						|
			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
 | 
						|
			memcpy(dest, src, len);
 | 
						|
			break;
 | 
						|
 | 
						|
		case XFS_ILOG_ABROOT:
 | 
						|
			dest = XFS_DFORK_APTR(dip);
 | 
						|
			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
 | 
						|
					 len, (xfs_bmdr_block_t*)dest,
 | 
						|
					 XFS_DFORK_ASIZE(dip, mp));
 | 
						|
			break;
 | 
						|
 | 
						|
		default:
 | 
						|
			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
 | 
						|
			ASSERT(0);
 | 
						|
			xfs_buf_relse(bp);
 | 
						|
			error = EIO;
 | 
						|
			goto error;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
write_inode_buffer:
 | 
						|
	ASSERT(bp->b_target->bt_mount == mp);
 | 
						|
	bp->b_iodone = xlog_recover_iodone;
 | 
						|
	xfs_buf_delwri_queue(bp, buffer_list);
 | 
						|
	xfs_buf_relse(bp);
 | 
						|
error:
 | 
						|
	if (need_free)
 | 
						|
		kmem_free(in_f);
 | 
						|
	return XFS_ERROR(error);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Recover QUOTAOFF records. We simply make a note of it in the xlog
 | 
						|
 * structure, so that we know not to do any dquot item or dquot buffer recovery,
 | 
						|
 * of that type.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_recover_quotaoff_pass1(
 | 
						|
	struct xlog			*log,
 | 
						|
	struct xlog_recover_item	*item)
 | 
						|
{
 | 
						|
	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
 | 
						|
	ASSERT(qoff_f);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The logitem format's flag tells us if this was user quotaoff,
 | 
						|
	 * group/project quotaoff or both.
 | 
						|
	 */
 | 
						|
	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
 | 
						|
		log->l_quotaoffs_flag |= XFS_DQ_USER;
 | 
						|
	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
 | 
						|
		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
 | 
						|
	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
 | 
						|
		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Recover a dquot record
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_recover_dquot_pass2(
 | 
						|
	struct xlog			*log,
 | 
						|
	struct list_head		*buffer_list,
 | 
						|
	struct xlog_recover_item	*item)
 | 
						|
{
 | 
						|
	xfs_mount_t		*mp = log->l_mp;
 | 
						|
	xfs_buf_t		*bp;
 | 
						|
	struct xfs_disk_dquot	*ddq, *recddq;
 | 
						|
	int			error;
 | 
						|
	xfs_dq_logformat_t	*dq_f;
 | 
						|
	uint			type;
 | 
						|
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Filesystems are required to send in quota flags at mount time.
 | 
						|
	 */
 | 
						|
	if (mp->m_qflags == 0)
 | 
						|
		return (0);
 | 
						|
 | 
						|
	recddq = item->ri_buf[1].i_addr;
 | 
						|
	if (recddq == NULL) {
 | 
						|
		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
 | 
						|
		return XFS_ERROR(EIO);
 | 
						|
	}
 | 
						|
	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
 | 
						|
		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
 | 
						|
			item->ri_buf[1].i_len, __func__);
 | 
						|
		return XFS_ERROR(EIO);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This type of quotas was turned off, so ignore this record.
 | 
						|
	 */
 | 
						|
	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
 | 
						|
	ASSERT(type);
 | 
						|
	if (log->l_quotaoffs_flag & type)
 | 
						|
		return (0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * At this point we know that quota was _not_ turned off.
 | 
						|
	 * Since the mount flags are not indicating to us otherwise, this
 | 
						|
	 * must mean that quota is on, and the dquot needs to be replayed.
 | 
						|
	 * Remember that we may not have fully recovered the superblock yet,
 | 
						|
	 * so we can't do the usual trick of looking at the SB quota bits.
 | 
						|
	 *
 | 
						|
	 * The other possibility, of course, is that the quota subsystem was
 | 
						|
	 * removed since the last mount - ENOSYS.
 | 
						|
	 */
 | 
						|
	dq_f = item->ri_buf[0].i_addr;
 | 
						|
	ASSERT(dq_f);
 | 
						|
	error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
 | 
						|
			   "xlog_recover_dquot_pass2 (log copy)");
 | 
						|
	if (error)
 | 
						|
		return XFS_ERROR(EIO);
 | 
						|
	ASSERT(dq_f->qlf_len == 1);
 | 
						|
 | 
						|
	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
 | 
						|
				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	ASSERT(bp);
 | 
						|
	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * At least the magic num portion should be on disk because this
 | 
						|
	 * was among a chunk of dquots created earlier, and we did some
 | 
						|
	 * minimal initialization then.
 | 
						|
	 */
 | 
						|
	error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
 | 
						|
			   "xlog_recover_dquot_pass2");
 | 
						|
	if (error) {
 | 
						|
		xfs_buf_relse(bp);
 | 
						|
		return XFS_ERROR(EIO);
 | 
						|
	}
 | 
						|
 | 
						|
	memcpy(ddq, recddq, item->ri_buf[1].i_len);
 | 
						|
 | 
						|
	ASSERT(dq_f->qlf_size == 2);
 | 
						|
	ASSERT(bp->b_target->bt_mount == mp);
 | 
						|
	bp->b_iodone = xlog_recover_iodone;
 | 
						|
	xfs_buf_delwri_queue(bp, buffer_list);
 | 
						|
	xfs_buf_relse(bp);
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This routine is called to create an in-core extent free intent
 | 
						|
 * item from the efi format structure which was logged on disk.
 | 
						|
 * It allocates an in-core efi, copies the extents from the format
 | 
						|
 * structure into it, and adds the efi to the AIL with the given
 | 
						|
 * LSN.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_recover_efi_pass2(
 | 
						|
	struct xlog			*log,
 | 
						|
	struct xlog_recover_item	*item,
 | 
						|
	xfs_lsn_t			lsn)
 | 
						|
{
 | 
						|
	int			error;
 | 
						|
	xfs_mount_t		*mp = log->l_mp;
 | 
						|
	xfs_efi_log_item_t	*efip;
 | 
						|
	xfs_efi_log_format_t	*efi_formatp;
 | 
						|
 | 
						|
	efi_formatp = item->ri_buf[0].i_addr;
 | 
						|
 | 
						|
	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
 | 
						|
	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
 | 
						|
					 &(efip->efi_format)))) {
 | 
						|
		xfs_efi_item_free(efip);
 | 
						|
		return error;
 | 
						|
	}
 | 
						|
	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
 | 
						|
 | 
						|
	spin_lock(&log->l_ailp->xa_lock);
 | 
						|
	/*
 | 
						|
	 * xfs_trans_ail_update() drops the AIL lock.
 | 
						|
	 */
 | 
						|
	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * This routine is called when an efd format structure is found in
 | 
						|
 * a committed transaction in the log.  It's purpose is to cancel
 | 
						|
 * the corresponding efi if it was still in the log.  To do this
 | 
						|
 * it searches the AIL for the efi with an id equal to that in the
 | 
						|
 * efd format structure.  If we find it, we remove the efi from the
 | 
						|
 * AIL and free it.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_recover_efd_pass2(
 | 
						|
	struct xlog			*log,
 | 
						|
	struct xlog_recover_item	*item)
 | 
						|
{
 | 
						|
	xfs_efd_log_format_t	*efd_formatp;
 | 
						|
	xfs_efi_log_item_t	*efip = NULL;
 | 
						|
	xfs_log_item_t		*lip;
 | 
						|
	__uint64_t		efi_id;
 | 
						|
	struct xfs_ail_cursor	cur;
 | 
						|
	struct xfs_ail		*ailp = log->l_ailp;
 | 
						|
 | 
						|
	efd_formatp = item->ri_buf[0].i_addr;
 | 
						|
	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
 | 
						|
		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
 | 
						|
	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
 | 
						|
		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
 | 
						|
	efi_id = efd_formatp->efd_efi_id;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Search for the efi with the id in the efd format structure
 | 
						|
	 * in the AIL.
 | 
						|
	 */
 | 
						|
	spin_lock(&ailp->xa_lock);
 | 
						|
	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
 | 
						|
	while (lip != NULL) {
 | 
						|
		if (lip->li_type == XFS_LI_EFI) {
 | 
						|
			efip = (xfs_efi_log_item_t *)lip;
 | 
						|
			if (efip->efi_format.efi_id == efi_id) {
 | 
						|
				/*
 | 
						|
				 * xfs_trans_ail_delete() drops the
 | 
						|
				 * AIL lock.
 | 
						|
				 */
 | 
						|
				xfs_trans_ail_delete(ailp, lip,
 | 
						|
						     SHUTDOWN_CORRUPT_INCORE);
 | 
						|
				xfs_efi_item_free(efip);
 | 
						|
				spin_lock(&ailp->xa_lock);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		lip = xfs_trans_ail_cursor_next(ailp, &cur);
 | 
						|
	}
 | 
						|
	xfs_trans_ail_cursor_done(ailp, &cur);
 | 
						|
	spin_unlock(&ailp->xa_lock);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free up any resources allocated by the transaction
 | 
						|
 *
 | 
						|
 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
 | 
						|
 */
 | 
						|
STATIC void
 | 
						|
xlog_recover_free_trans(
 | 
						|
	struct xlog_recover	*trans)
 | 
						|
{
 | 
						|
	xlog_recover_item_t	*item, *n;
 | 
						|
	int			i;
 | 
						|
 | 
						|
	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
 | 
						|
		/* Free the regions in the item. */
 | 
						|
		list_del(&item->ri_list);
 | 
						|
		for (i = 0; i < item->ri_cnt; i++)
 | 
						|
			kmem_free(item->ri_buf[i].i_addr);
 | 
						|
		/* Free the item itself */
 | 
						|
		kmem_free(item->ri_buf);
 | 
						|
		kmem_free(item);
 | 
						|
	}
 | 
						|
	/* Free the transaction recover structure */
 | 
						|
	kmem_free(trans);
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xlog_recover_commit_pass1(
 | 
						|
	struct xlog			*log,
 | 
						|
	struct xlog_recover		*trans,
 | 
						|
	struct xlog_recover_item	*item)
 | 
						|
{
 | 
						|
	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
 | 
						|
 | 
						|
	switch (ITEM_TYPE(item)) {
 | 
						|
	case XFS_LI_BUF:
 | 
						|
		return xlog_recover_buffer_pass1(log, item);
 | 
						|
	case XFS_LI_QUOTAOFF:
 | 
						|
		return xlog_recover_quotaoff_pass1(log, item);
 | 
						|
	case XFS_LI_INODE:
 | 
						|
	case XFS_LI_EFI:
 | 
						|
	case XFS_LI_EFD:
 | 
						|
	case XFS_LI_DQUOT:
 | 
						|
		/* nothing to do in pass 1 */
 | 
						|
		return 0;
 | 
						|
	default:
 | 
						|
		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
 | 
						|
			__func__, ITEM_TYPE(item));
 | 
						|
		ASSERT(0);
 | 
						|
		return XFS_ERROR(EIO);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xlog_recover_commit_pass2(
 | 
						|
	struct xlog			*log,
 | 
						|
	struct xlog_recover		*trans,
 | 
						|
	struct list_head		*buffer_list,
 | 
						|
	struct xlog_recover_item	*item)
 | 
						|
{
 | 
						|
	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
 | 
						|
 | 
						|
	switch (ITEM_TYPE(item)) {
 | 
						|
	case XFS_LI_BUF:
 | 
						|
		return xlog_recover_buffer_pass2(log, buffer_list, item);
 | 
						|
	case XFS_LI_INODE:
 | 
						|
		return xlog_recover_inode_pass2(log, buffer_list, item);
 | 
						|
	case XFS_LI_EFI:
 | 
						|
		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
 | 
						|
	case XFS_LI_EFD:
 | 
						|
		return xlog_recover_efd_pass2(log, item);
 | 
						|
	case XFS_LI_DQUOT:
 | 
						|
		return xlog_recover_dquot_pass2(log, buffer_list, item);
 | 
						|
	case XFS_LI_QUOTAOFF:
 | 
						|
		/* nothing to do in pass2 */
 | 
						|
		return 0;
 | 
						|
	default:
 | 
						|
		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
 | 
						|
			__func__, ITEM_TYPE(item));
 | 
						|
		ASSERT(0);
 | 
						|
		return XFS_ERROR(EIO);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Perform the transaction.
 | 
						|
 *
 | 
						|
 * If the transaction modifies a buffer or inode, do it now.  Otherwise,
 | 
						|
 * EFIs and EFDs get queued up by adding entries into the AIL for them.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_recover_commit_trans(
 | 
						|
	struct xlog		*log,
 | 
						|
	struct xlog_recover	*trans,
 | 
						|
	int			pass)
 | 
						|
{
 | 
						|
	int			error = 0, error2;
 | 
						|
	xlog_recover_item_t	*item;
 | 
						|
	LIST_HEAD		(buffer_list);
 | 
						|
 | 
						|
	hlist_del(&trans->r_list);
 | 
						|
 | 
						|
	error = xlog_recover_reorder_trans(log, trans, pass);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	list_for_each_entry(item, &trans->r_itemq, ri_list) {
 | 
						|
		switch (pass) {
 | 
						|
		case XLOG_RECOVER_PASS1:
 | 
						|
			error = xlog_recover_commit_pass1(log, trans, item);
 | 
						|
			break;
 | 
						|
		case XLOG_RECOVER_PASS2:
 | 
						|
			error = xlog_recover_commit_pass2(log, trans,
 | 
						|
							  &buffer_list, item);
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			ASSERT(0);
 | 
						|
		}
 | 
						|
 | 
						|
		if (error)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	xlog_recover_free_trans(trans);
 | 
						|
 | 
						|
out:
 | 
						|
	error2 = xfs_buf_delwri_submit(&buffer_list);
 | 
						|
	return error ? error : error2;
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xlog_recover_unmount_trans(
 | 
						|
	struct xlog		*log,
 | 
						|
	struct xlog_recover	*trans)
 | 
						|
{
 | 
						|
	/* Do nothing now */
 | 
						|
	xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * There are two valid states of the r_state field.  0 indicates that the
 | 
						|
 * transaction structure is in a normal state.  We have either seen the
 | 
						|
 * start of the transaction or the last operation we added was not a partial
 | 
						|
 * operation.  If the last operation we added to the transaction was a
 | 
						|
 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
 | 
						|
 *
 | 
						|
 * NOTE: skip LRs with 0 data length.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_recover_process_data(
 | 
						|
	struct xlog		*log,
 | 
						|
	struct hlist_head	rhash[],
 | 
						|
	struct xlog_rec_header	*rhead,
 | 
						|
	xfs_caddr_t		dp,
 | 
						|
	int			pass)
 | 
						|
{
 | 
						|
	xfs_caddr_t		lp;
 | 
						|
	int			num_logops;
 | 
						|
	xlog_op_header_t	*ohead;
 | 
						|
	xlog_recover_t		*trans;
 | 
						|
	xlog_tid_t		tid;
 | 
						|
	int			error;
 | 
						|
	unsigned long		hash;
 | 
						|
	uint			flags;
 | 
						|
 | 
						|
	lp = dp + be32_to_cpu(rhead->h_len);
 | 
						|
	num_logops = be32_to_cpu(rhead->h_num_logops);
 | 
						|
 | 
						|
	/* check the log format matches our own - else we can't recover */
 | 
						|
	if (xlog_header_check_recover(log->l_mp, rhead))
 | 
						|
		return (XFS_ERROR(EIO));
 | 
						|
 | 
						|
	while ((dp < lp) && num_logops) {
 | 
						|
		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
 | 
						|
		ohead = (xlog_op_header_t *)dp;
 | 
						|
		dp += sizeof(xlog_op_header_t);
 | 
						|
		if (ohead->oh_clientid != XFS_TRANSACTION &&
 | 
						|
		    ohead->oh_clientid != XFS_LOG) {
 | 
						|
			xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
 | 
						|
					__func__, ohead->oh_clientid);
 | 
						|
			ASSERT(0);
 | 
						|
			return (XFS_ERROR(EIO));
 | 
						|
		}
 | 
						|
		tid = be32_to_cpu(ohead->oh_tid);
 | 
						|
		hash = XLOG_RHASH(tid);
 | 
						|
		trans = xlog_recover_find_tid(&rhash[hash], tid);
 | 
						|
		if (trans == NULL) {		   /* not found; add new tid */
 | 
						|
			if (ohead->oh_flags & XLOG_START_TRANS)
 | 
						|
				xlog_recover_new_tid(&rhash[hash], tid,
 | 
						|
					be64_to_cpu(rhead->h_lsn));
 | 
						|
		} else {
 | 
						|
			if (dp + be32_to_cpu(ohead->oh_len) > lp) {
 | 
						|
				xfs_warn(log->l_mp, "%s: bad length 0x%x",
 | 
						|
					__func__, be32_to_cpu(ohead->oh_len));
 | 
						|
				WARN_ON(1);
 | 
						|
				return (XFS_ERROR(EIO));
 | 
						|
			}
 | 
						|
			flags = ohead->oh_flags & ~XLOG_END_TRANS;
 | 
						|
			if (flags & XLOG_WAS_CONT_TRANS)
 | 
						|
				flags &= ~XLOG_CONTINUE_TRANS;
 | 
						|
			switch (flags) {
 | 
						|
			case XLOG_COMMIT_TRANS:
 | 
						|
				error = xlog_recover_commit_trans(log,
 | 
						|
								trans, pass);
 | 
						|
				break;
 | 
						|
			case XLOG_UNMOUNT_TRANS:
 | 
						|
				error = xlog_recover_unmount_trans(log, trans);
 | 
						|
				break;
 | 
						|
			case XLOG_WAS_CONT_TRANS:
 | 
						|
				error = xlog_recover_add_to_cont_trans(log,
 | 
						|
						trans, dp,
 | 
						|
						be32_to_cpu(ohead->oh_len));
 | 
						|
				break;
 | 
						|
			case XLOG_START_TRANS:
 | 
						|
				xfs_warn(log->l_mp, "%s: bad transaction",
 | 
						|
					__func__);
 | 
						|
				ASSERT(0);
 | 
						|
				error = XFS_ERROR(EIO);
 | 
						|
				break;
 | 
						|
			case 0:
 | 
						|
			case XLOG_CONTINUE_TRANS:
 | 
						|
				error = xlog_recover_add_to_trans(log, trans,
 | 
						|
						dp, be32_to_cpu(ohead->oh_len));
 | 
						|
				break;
 | 
						|
			default:
 | 
						|
				xfs_warn(log->l_mp, "%s: bad flag 0x%x",
 | 
						|
					__func__, flags);
 | 
						|
				ASSERT(0);
 | 
						|
				error = XFS_ERROR(EIO);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			if (error)
 | 
						|
				return error;
 | 
						|
		}
 | 
						|
		dp += be32_to_cpu(ohead->oh_len);
 | 
						|
		num_logops--;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Process an extent free intent item that was recovered from
 | 
						|
 * the log.  We need to free the extents that it describes.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_recover_process_efi(
 | 
						|
	xfs_mount_t		*mp,
 | 
						|
	xfs_efi_log_item_t	*efip)
 | 
						|
{
 | 
						|
	xfs_efd_log_item_t	*efdp;
 | 
						|
	xfs_trans_t		*tp;
 | 
						|
	int			i;
 | 
						|
	int			error = 0;
 | 
						|
	xfs_extent_t		*extp;
 | 
						|
	xfs_fsblock_t		startblock_fsb;
 | 
						|
 | 
						|
	ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * First check the validity of the extents described by the
 | 
						|
	 * EFI.  If any are bad, then assume that all are bad and
 | 
						|
	 * just toss the EFI.
 | 
						|
	 */
 | 
						|
	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
 | 
						|
		extp = &(efip->efi_format.efi_extents[i]);
 | 
						|
		startblock_fsb = XFS_BB_TO_FSB(mp,
 | 
						|
				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
 | 
						|
		if ((startblock_fsb == 0) ||
 | 
						|
		    (extp->ext_len == 0) ||
 | 
						|
		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
 | 
						|
		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
 | 
						|
			/*
 | 
						|
			 * This will pull the EFI from the AIL and
 | 
						|
			 * free the memory associated with it.
 | 
						|
			 */
 | 
						|
			xfs_efi_release(efip, efip->efi_format.efi_nextents);
 | 
						|
			return XFS_ERROR(EIO);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	tp = xfs_trans_alloc(mp, 0);
 | 
						|
	error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
 | 
						|
	if (error)
 | 
						|
		goto abort_error;
 | 
						|
	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
 | 
						|
 | 
						|
	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
 | 
						|
		extp = &(efip->efi_format.efi_extents[i]);
 | 
						|
		error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
 | 
						|
		if (error)
 | 
						|
			goto abort_error;
 | 
						|
		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
 | 
						|
					 extp->ext_len);
 | 
						|
	}
 | 
						|
 | 
						|
	set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
 | 
						|
	error = xfs_trans_commit(tp, 0);
 | 
						|
	return error;
 | 
						|
 | 
						|
abort_error:
 | 
						|
	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * When this is called, all of the EFIs which did not have
 | 
						|
 * corresponding EFDs should be in the AIL.  What we do now
 | 
						|
 * is free the extents associated with each one.
 | 
						|
 *
 | 
						|
 * Since we process the EFIs in normal transactions, they
 | 
						|
 * will be removed at some point after the commit.  This prevents
 | 
						|
 * us from just walking down the list processing each one.
 | 
						|
 * We'll use a flag in the EFI to skip those that we've already
 | 
						|
 * processed and use the AIL iteration mechanism's generation
 | 
						|
 * count to try to speed this up at least a bit.
 | 
						|
 *
 | 
						|
 * When we start, we know that the EFIs are the only things in
 | 
						|
 * the AIL.  As we process them, however, other items are added
 | 
						|
 * to the AIL.  Since everything added to the AIL must come after
 | 
						|
 * everything already in the AIL, we stop processing as soon as
 | 
						|
 * we see something other than an EFI in the AIL.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_recover_process_efis(
 | 
						|
	struct xlog	*log)
 | 
						|
{
 | 
						|
	xfs_log_item_t		*lip;
 | 
						|
	xfs_efi_log_item_t	*efip;
 | 
						|
	int			error = 0;
 | 
						|
	struct xfs_ail_cursor	cur;
 | 
						|
	struct xfs_ail		*ailp;
 | 
						|
 | 
						|
	ailp = log->l_ailp;
 | 
						|
	spin_lock(&ailp->xa_lock);
 | 
						|
	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
 | 
						|
	while (lip != NULL) {
 | 
						|
		/*
 | 
						|
		 * We're done when we see something other than an EFI.
 | 
						|
		 * There should be no EFIs left in the AIL now.
 | 
						|
		 */
 | 
						|
		if (lip->li_type != XFS_LI_EFI) {
 | 
						|
#ifdef DEBUG
 | 
						|
			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
 | 
						|
				ASSERT(lip->li_type != XFS_LI_EFI);
 | 
						|
#endif
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Skip EFIs that we've already processed.
 | 
						|
		 */
 | 
						|
		efip = (xfs_efi_log_item_t *)lip;
 | 
						|
		if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
 | 
						|
			lip = xfs_trans_ail_cursor_next(ailp, &cur);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		spin_unlock(&ailp->xa_lock);
 | 
						|
		error = xlog_recover_process_efi(log->l_mp, efip);
 | 
						|
		spin_lock(&ailp->xa_lock);
 | 
						|
		if (error)
 | 
						|
			goto out;
 | 
						|
		lip = xfs_trans_ail_cursor_next(ailp, &cur);
 | 
						|
	}
 | 
						|
out:
 | 
						|
	xfs_trans_ail_cursor_done(ailp, &cur);
 | 
						|
	spin_unlock(&ailp->xa_lock);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This routine performs a transaction to null out a bad inode pointer
 | 
						|
 * in an agi unlinked inode hash bucket.
 | 
						|
 */
 | 
						|
STATIC void
 | 
						|
xlog_recover_clear_agi_bucket(
 | 
						|
	xfs_mount_t	*mp,
 | 
						|
	xfs_agnumber_t	agno,
 | 
						|
	int		bucket)
 | 
						|
{
 | 
						|
	xfs_trans_t	*tp;
 | 
						|
	xfs_agi_t	*agi;
 | 
						|
	xfs_buf_t	*agibp;
 | 
						|
	int		offset;
 | 
						|
	int		error;
 | 
						|
 | 
						|
	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
 | 
						|
	error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
 | 
						|
				  0, 0, 0);
 | 
						|
	if (error)
 | 
						|
		goto out_abort;
 | 
						|
 | 
						|
	error = xfs_read_agi(mp, tp, agno, &agibp);
 | 
						|
	if (error)
 | 
						|
		goto out_abort;
 | 
						|
 | 
						|
	agi = XFS_BUF_TO_AGI(agibp);
 | 
						|
	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
 | 
						|
	offset = offsetof(xfs_agi_t, agi_unlinked) +
 | 
						|
		 (sizeof(xfs_agino_t) * bucket);
 | 
						|
	xfs_trans_log_buf(tp, agibp, offset,
 | 
						|
			  (offset + sizeof(xfs_agino_t) - 1));
 | 
						|
 | 
						|
	error = xfs_trans_commit(tp, 0);
 | 
						|
	if (error)
 | 
						|
		goto out_error;
 | 
						|
	return;
 | 
						|
 | 
						|
out_abort:
 | 
						|
	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
 | 
						|
out_error:
 | 
						|
	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
STATIC xfs_agino_t
 | 
						|
xlog_recover_process_one_iunlink(
 | 
						|
	struct xfs_mount		*mp,
 | 
						|
	xfs_agnumber_t			agno,
 | 
						|
	xfs_agino_t			agino,
 | 
						|
	int				bucket)
 | 
						|
{
 | 
						|
	struct xfs_buf			*ibp;
 | 
						|
	struct xfs_dinode		*dip;
 | 
						|
	struct xfs_inode		*ip;
 | 
						|
	xfs_ino_t			ino;
 | 
						|
	int				error;
 | 
						|
 | 
						|
	ino = XFS_AGINO_TO_INO(mp, agno, agino);
 | 
						|
	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
 | 
						|
	if (error)
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Get the on disk inode to find the next inode in the bucket.
 | 
						|
	 */
 | 
						|
	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
 | 
						|
	if (error)
 | 
						|
		goto fail_iput;
 | 
						|
 | 
						|
	ASSERT(ip->i_d.di_nlink == 0);
 | 
						|
	ASSERT(ip->i_d.di_mode != 0);
 | 
						|
 | 
						|
	/* setup for the next pass */
 | 
						|
	agino = be32_to_cpu(dip->di_next_unlinked);
 | 
						|
	xfs_buf_relse(ibp);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Prevent any DMAPI event from being sent when the reference on
 | 
						|
	 * the inode is dropped.
 | 
						|
	 */
 | 
						|
	ip->i_d.di_dmevmask = 0;
 | 
						|
 | 
						|
	IRELE(ip);
 | 
						|
	return agino;
 | 
						|
 | 
						|
 fail_iput:
 | 
						|
	IRELE(ip);
 | 
						|
 fail:
 | 
						|
	/*
 | 
						|
	 * We can't read in the inode this bucket points to, or this inode
 | 
						|
	 * is messed up.  Just ditch this bucket of inodes.  We will lose
 | 
						|
	 * some inodes and space, but at least we won't hang.
 | 
						|
	 *
 | 
						|
	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
 | 
						|
	 * clear the inode pointer in the bucket.
 | 
						|
	 */
 | 
						|
	xlog_recover_clear_agi_bucket(mp, agno, bucket);
 | 
						|
	return NULLAGINO;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * xlog_iunlink_recover
 | 
						|
 *
 | 
						|
 * This is called during recovery to process any inodes which
 | 
						|
 * we unlinked but not freed when the system crashed.  These
 | 
						|
 * inodes will be on the lists in the AGI blocks.  What we do
 | 
						|
 * here is scan all the AGIs and fully truncate and free any
 | 
						|
 * inodes found on the lists.  Each inode is removed from the
 | 
						|
 * lists when it has been fully truncated and is freed.  The
 | 
						|
 * freeing of the inode and its removal from the list must be
 | 
						|
 * atomic.
 | 
						|
 */
 | 
						|
STATIC void
 | 
						|
xlog_recover_process_iunlinks(
 | 
						|
	struct xlog	*log)
 | 
						|
{
 | 
						|
	xfs_mount_t	*mp;
 | 
						|
	xfs_agnumber_t	agno;
 | 
						|
	xfs_agi_t	*agi;
 | 
						|
	xfs_buf_t	*agibp;
 | 
						|
	xfs_agino_t	agino;
 | 
						|
	int		bucket;
 | 
						|
	int		error;
 | 
						|
	uint		mp_dmevmask;
 | 
						|
 | 
						|
	mp = log->l_mp;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Prevent any DMAPI event from being sent while in this function.
 | 
						|
	 */
 | 
						|
	mp_dmevmask = mp->m_dmevmask;
 | 
						|
	mp->m_dmevmask = 0;
 | 
						|
 | 
						|
	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 | 
						|
		/*
 | 
						|
		 * Find the agi for this ag.
 | 
						|
		 */
 | 
						|
		error = xfs_read_agi(mp, NULL, agno, &agibp);
 | 
						|
		if (error) {
 | 
						|
			/*
 | 
						|
			 * AGI is b0rked. Don't process it.
 | 
						|
			 *
 | 
						|
			 * We should probably mark the filesystem as corrupt
 | 
						|
			 * after we've recovered all the ag's we can....
 | 
						|
			 */
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * Unlock the buffer so that it can be acquired in the normal
 | 
						|
		 * course of the transaction to truncate and free each inode.
 | 
						|
		 * Because we are not racing with anyone else here for the AGI
 | 
						|
		 * buffer, we don't even need to hold it locked to read the
 | 
						|
		 * initial unlinked bucket entries out of the buffer. We keep
 | 
						|
		 * buffer reference though, so that it stays pinned in memory
 | 
						|
		 * while we need the buffer.
 | 
						|
		 */
 | 
						|
		agi = XFS_BUF_TO_AGI(agibp);
 | 
						|
		xfs_buf_unlock(agibp);
 | 
						|
 | 
						|
		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
 | 
						|
			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
 | 
						|
			while (agino != NULLAGINO) {
 | 
						|
				agino = xlog_recover_process_one_iunlink(mp,
 | 
						|
							agno, agino, bucket);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		xfs_buf_rele(agibp);
 | 
						|
	}
 | 
						|
 | 
						|
	mp->m_dmevmask = mp_dmevmask;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#ifdef DEBUG
 | 
						|
STATIC void
 | 
						|
xlog_pack_data_checksum(
 | 
						|
	struct xlog		*log,
 | 
						|
	struct xlog_in_core	*iclog,
 | 
						|
	int			size)
 | 
						|
{
 | 
						|
	int		i;
 | 
						|
	__be32		*up;
 | 
						|
	uint		chksum = 0;
 | 
						|
 | 
						|
	up = (__be32 *)iclog->ic_datap;
 | 
						|
	/* divide length by 4 to get # words */
 | 
						|
	for (i = 0; i < (size >> 2); i++) {
 | 
						|
		chksum ^= be32_to_cpu(*up);
 | 
						|
		up++;
 | 
						|
	}
 | 
						|
	iclog->ic_header.h_chksum = cpu_to_be32(chksum);
 | 
						|
}
 | 
						|
#else
 | 
						|
#define xlog_pack_data_checksum(log, iclog, size)
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Stamp cycle number in every block
 | 
						|
 */
 | 
						|
void
 | 
						|
xlog_pack_data(
 | 
						|
	struct xlog		*log,
 | 
						|
	struct xlog_in_core	*iclog,
 | 
						|
	int			roundoff)
 | 
						|
{
 | 
						|
	int			i, j, k;
 | 
						|
	int			size = iclog->ic_offset + roundoff;
 | 
						|
	__be32			cycle_lsn;
 | 
						|
	xfs_caddr_t		dp;
 | 
						|
 | 
						|
	xlog_pack_data_checksum(log, iclog, size);
 | 
						|
 | 
						|
	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
 | 
						|
 | 
						|
	dp = iclog->ic_datap;
 | 
						|
	for (i = 0; i < BTOBB(size) &&
 | 
						|
		i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
 | 
						|
		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
 | 
						|
		*(__be32 *)dp = cycle_lsn;
 | 
						|
		dp += BBSIZE;
 | 
						|
	}
 | 
						|
 | 
						|
	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 | 
						|
		xlog_in_core_2_t *xhdr = iclog->ic_data;
 | 
						|
 | 
						|
		for ( ; i < BTOBB(size); i++) {
 | 
						|
			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
 | 
						|
			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
 | 
						|
			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
 | 
						|
			*(__be32 *)dp = cycle_lsn;
 | 
						|
			dp += BBSIZE;
 | 
						|
		}
 | 
						|
 | 
						|
		for (i = 1; i < log->l_iclog_heads; i++) {
 | 
						|
			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
STATIC void
 | 
						|
xlog_unpack_data(
 | 
						|
	struct xlog_rec_header	*rhead,
 | 
						|
	xfs_caddr_t		dp,
 | 
						|
	struct xlog		*log)
 | 
						|
{
 | 
						|
	int			i, j, k;
 | 
						|
 | 
						|
	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
 | 
						|
		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
 | 
						|
		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
 | 
						|
		dp += BBSIZE;
 | 
						|
	}
 | 
						|
 | 
						|
	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 | 
						|
		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
 | 
						|
		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
 | 
						|
			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
 | 
						|
			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
 | 
						|
			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
 | 
						|
			dp += BBSIZE;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xlog_valid_rec_header(
 | 
						|
	struct xlog		*log,
 | 
						|
	struct xlog_rec_header	*rhead,
 | 
						|
	xfs_daddr_t		blkno)
 | 
						|
{
 | 
						|
	int			hlen;
 | 
						|
 | 
						|
	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
 | 
						|
		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
 | 
						|
				XFS_ERRLEVEL_LOW, log->l_mp);
 | 
						|
		return XFS_ERROR(EFSCORRUPTED);
 | 
						|
	}
 | 
						|
	if (unlikely(
 | 
						|
	    (!rhead->h_version ||
 | 
						|
	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
 | 
						|
		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
 | 
						|
			__func__, be32_to_cpu(rhead->h_version));
 | 
						|
		return XFS_ERROR(EIO);
 | 
						|
	}
 | 
						|
 | 
						|
	/* LR body must have data or it wouldn't have been written */
 | 
						|
	hlen = be32_to_cpu(rhead->h_len);
 | 
						|
	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
 | 
						|
		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
 | 
						|
				XFS_ERRLEVEL_LOW, log->l_mp);
 | 
						|
		return XFS_ERROR(EFSCORRUPTED);
 | 
						|
	}
 | 
						|
	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
 | 
						|
		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
 | 
						|
				XFS_ERRLEVEL_LOW, log->l_mp);
 | 
						|
		return XFS_ERROR(EFSCORRUPTED);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Read the log from tail to head and process the log records found.
 | 
						|
 * Handle the two cases where the tail and head are in the same cycle
 | 
						|
 * and where the active portion of the log wraps around the end of
 | 
						|
 * the physical log separately.  The pass parameter is passed through
 | 
						|
 * to the routines called to process the data and is not looked at
 | 
						|
 * here.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_do_recovery_pass(
 | 
						|
	struct xlog		*log,
 | 
						|
	xfs_daddr_t		head_blk,
 | 
						|
	xfs_daddr_t		tail_blk,
 | 
						|
	int			pass)
 | 
						|
{
 | 
						|
	xlog_rec_header_t	*rhead;
 | 
						|
	xfs_daddr_t		blk_no;
 | 
						|
	xfs_caddr_t		offset;
 | 
						|
	xfs_buf_t		*hbp, *dbp;
 | 
						|
	int			error = 0, h_size;
 | 
						|
	int			bblks, split_bblks;
 | 
						|
	int			hblks, split_hblks, wrapped_hblks;
 | 
						|
	struct hlist_head	rhash[XLOG_RHASH_SIZE];
 | 
						|
 | 
						|
	ASSERT(head_blk != tail_blk);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Read the header of the tail block and get the iclog buffer size from
 | 
						|
	 * h_size.  Use this to tell how many sectors make up the log header.
 | 
						|
	 */
 | 
						|
	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 | 
						|
		/*
 | 
						|
		 * When using variable length iclogs, read first sector of
 | 
						|
		 * iclog header and extract the header size from it.  Get a
 | 
						|
		 * new hbp that is the correct size.
 | 
						|
		 */
 | 
						|
		hbp = xlog_get_bp(log, 1);
 | 
						|
		if (!hbp)
 | 
						|
			return ENOMEM;
 | 
						|
 | 
						|
		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
 | 
						|
		if (error)
 | 
						|
			goto bread_err1;
 | 
						|
 | 
						|
		rhead = (xlog_rec_header_t *)offset;
 | 
						|
		error = xlog_valid_rec_header(log, rhead, tail_blk);
 | 
						|
		if (error)
 | 
						|
			goto bread_err1;
 | 
						|
		h_size = be32_to_cpu(rhead->h_size);
 | 
						|
		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
 | 
						|
		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
 | 
						|
			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
 | 
						|
			if (h_size % XLOG_HEADER_CYCLE_SIZE)
 | 
						|
				hblks++;
 | 
						|
			xlog_put_bp(hbp);
 | 
						|
			hbp = xlog_get_bp(log, hblks);
 | 
						|
		} else {
 | 
						|
			hblks = 1;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		ASSERT(log->l_sectBBsize == 1);
 | 
						|
		hblks = 1;
 | 
						|
		hbp = xlog_get_bp(log, 1);
 | 
						|
		h_size = XLOG_BIG_RECORD_BSIZE;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!hbp)
 | 
						|
		return ENOMEM;
 | 
						|
	dbp = xlog_get_bp(log, BTOBB(h_size));
 | 
						|
	if (!dbp) {
 | 
						|
		xlog_put_bp(hbp);
 | 
						|
		return ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	memset(rhash, 0, sizeof(rhash));
 | 
						|
	if (tail_blk <= head_blk) {
 | 
						|
		for (blk_no = tail_blk; blk_no < head_blk; ) {
 | 
						|
			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
 | 
						|
			if (error)
 | 
						|
				goto bread_err2;
 | 
						|
 | 
						|
			rhead = (xlog_rec_header_t *)offset;
 | 
						|
			error = xlog_valid_rec_header(log, rhead, blk_no);
 | 
						|
			if (error)
 | 
						|
				goto bread_err2;
 | 
						|
 | 
						|
			/* blocks in data section */
 | 
						|
			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
 | 
						|
			error = xlog_bread(log, blk_no + hblks, bblks, dbp,
 | 
						|
					   &offset);
 | 
						|
			if (error)
 | 
						|
				goto bread_err2;
 | 
						|
 | 
						|
			xlog_unpack_data(rhead, offset, log);
 | 
						|
			if ((error = xlog_recover_process_data(log,
 | 
						|
						rhash, rhead, offset, pass)))
 | 
						|
				goto bread_err2;
 | 
						|
			blk_no += bblks + hblks;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * Perform recovery around the end of the physical log.
 | 
						|
		 * When the head is not on the same cycle number as the tail,
 | 
						|
		 * we can't do a sequential recovery as above.
 | 
						|
		 */
 | 
						|
		blk_no = tail_blk;
 | 
						|
		while (blk_no < log->l_logBBsize) {
 | 
						|
			/*
 | 
						|
			 * Check for header wrapping around physical end-of-log
 | 
						|
			 */
 | 
						|
			offset = hbp->b_addr;
 | 
						|
			split_hblks = 0;
 | 
						|
			wrapped_hblks = 0;
 | 
						|
			if (blk_no + hblks <= log->l_logBBsize) {
 | 
						|
				/* Read header in one read */
 | 
						|
				error = xlog_bread(log, blk_no, hblks, hbp,
 | 
						|
						   &offset);
 | 
						|
				if (error)
 | 
						|
					goto bread_err2;
 | 
						|
			} else {
 | 
						|
				/* This LR is split across physical log end */
 | 
						|
				if (blk_no != log->l_logBBsize) {
 | 
						|
					/* some data before physical log end */
 | 
						|
					ASSERT(blk_no <= INT_MAX);
 | 
						|
					split_hblks = log->l_logBBsize - (int)blk_no;
 | 
						|
					ASSERT(split_hblks > 0);
 | 
						|
					error = xlog_bread(log, blk_no,
 | 
						|
							   split_hblks, hbp,
 | 
						|
							   &offset);
 | 
						|
					if (error)
 | 
						|
						goto bread_err2;
 | 
						|
				}
 | 
						|
 | 
						|
				/*
 | 
						|
				 * Note: this black magic still works with
 | 
						|
				 * large sector sizes (non-512) only because:
 | 
						|
				 * - we increased the buffer size originally
 | 
						|
				 *   by 1 sector giving us enough extra space
 | 
						|
				 *   for the second read;
 | 
						|
				 * - the log start is guaranteed to be sector
 | 
						|
				 *   aligned;
 | 
						|
				 * - we read the log end (LR header start)
 | 
						|
				 *   _first_, then the log start (LR header end)
 | 
						|
				 *   - order is important.
 | 
						|
				 */
 | 
						|
				wrapped_hblks = hblks - split_hblks;
 | 
						|
				error = xlog_bread_offset(log, 0,
 | 
						|
						wrapped_hblks, hbp,
 | 
						|
						offset + BBTOB(split_hblks));
 | 
						|
				if (error)
 | 
						|
					goto bread_err2;
 | 
						|
			}
 | 
						|
			rhead = (xlog_rec_header_t *)offset;
 | 
						|
			error = xlog_valid_rec_header(log, rhead,
 | 
						|
						split_hblks ? blk_no : 0);
 | 
						|
			if (error)
 | 
						|
				goto bread_err2;
 | 
						|
 | 
						|
			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
 | 
						|
			blk_no += hblks;
 | 
						|
 | 
						|
			/* Read in data for log record */
 | 
						|
			if (blk_no + bblks <= log->l_logBBsize) {
 | 
						|
				error = xlog_bread(log, blk_no, bblks, dbp,
 | 
						|
						   &offset);
 | 
						|
				if (error)
 | 
						|
					goto bread_err2;
 | 
						|
			} else {
 | 
						|
				/* This log record is split across the
 | 
						|
				 * physical end of log */
 | 
						|
				offset = dbp->b_addr;
 | 
						|
				split_bblks = 0;
 | 
						|
				if (blk_no != log->l_logBBsize) {
 | 
						|
					/* some data is before the physical
 | 
						|
					 * end of log */
 | 
						|
					ASSERT(!wrapped_hblks);
 | 
						|
					ASSERT(blk_no <= INT_MAX);
 | 
						|
					split_bblks =
 | 
						|
						log->l_logBBsize - (int)blk_no;
 | 
						|
					ASSERT(split_bblks > 0);
 | 
						|
					error = xlog_bread(log, blk_no,
 | 
						|
							split_bblks, dbp,
 | 
						|
							&offset);
 | 
						|
					if (error)
 | 
						|
						goto bread_err2;
 | 
						|
				}
 | 
						|
 | 
						|
				/*
 | 
						|
				 * Note: this black magic still works with
 | 
						|
				 * large sector sizes (non-512) only because:
 | 
						|
				 * - we increased the buffer size originally
 | 
						|
				 *   by 1 sector giving us enough extra space
 | 
						|
				 *   for the second read;
 | 
						|
				 * - the log start is guaranteed to be sector
 | 
						|
				 *   aligned;
 | 
						|
				 * - we read the log end (LR header start)
 | 
						|
				 *   _first_, then the log start (LR header end)
 | 
						|
				 *   - order is important.
 | 
						|
				 */
 | 
						|
				error = xlog_bread_offset(log, 0,
 | 
						|
						bblks - split_bblks, hbp,
 | 
						|
						offset + BBTOB(split_bblks));
 | 
						|
				if (error)
 | 
						|
					goto bread_err2;
 | 
						|
			}
 | 
						|
			xlog_unpack_data(rhead, offset, log);
 | 
						|
			if ((error = xlog_recover_process_data(log, rhash,
 | 
						|
							rhead, offset, pass)))
 | 
						|
				goto bread_err2;
 | 
						|
			blk_no += bblks;
 | 
						|
		}
 | 
						|
 | 
						|
		ASSERT(blk_no >= log->l_logBBsize);
 | 
						|
		blk_no -= log->l_logBBsize;
 | 
						|
 | 
						|
		/* read first part of physical log */
 | 
						|
		while (blk_no < head_blk) {
 | 
						|
			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
 | 
						|
			if (error)
 | 
						|
				goto bread_err2;
 | 
						|
 | 
						|
			rhead = (xlog_rec_header_t *)offset;
 | 
						|
			error = xlog_valid_rec_header(log, rhead, blk_no);
 | 
						|
			if (error)
 | 
						|
				goto bread_err2;
 | 
						|
 | 
						|
			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
 | 
						|
			error = xlog_bread(log, blk_no+hblks, bblks, dbp,
 | 
						|
					   &offset);
 | 
						|
			if (error)
 | 
						|
				goto bread_err2;
 | 
						|
 | 
						|
			xlog_unpack_data(rhead, offset, log);
 | 
						|
			if ((error = xlog_recover_process_data(log, rhash,
 | 
						|
							rhead, offset, pass)))
 | 
						|
				goto bread_err2;
 | 
						|
			blk_no += bblks + hblks;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
 bread_err2:
 | 
						|
	xlog_put_bp(dbp);
 | 
						|
 bread_err1:
 | 
						|
	xlog_put_bp(hbp);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Do the recovery of the log.  We actually do this in two phases.
 | 
						|
 * The two passes are necessary in order to implement the function
 | 
						|
 * of cancelling a record written into the log.  The first pass
 | 
						|
 * determines those things which have been cancelled, and the
 | 
						|
 * second pass replays log items normally except for those which
 | 
						|
 * have been cancelled.  The handling of the replay and cancellations
 | 
						|
 * takes place in the log item type specific routines.
 | 
						|
 *
 | 
						|
 * The table of items which have cancel records in the log is allocated
 | 
						|
 * and freed at this level, since only here do we know when all of
 | 
						|
 * the log recovery has been completed.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_do_log_recovery(
 | 
						|
	struct xlog	*log,
 | 
						|
	xfs_daddr_t	head_blk,
 | 
						|
	xfs_daddr_t	tail_blk)
 | 
						|
{
 | 
						|
	int		error, i;
 | 
						|
 | 
						|
	ASSERT(head_blk != tail_blk);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * First do a pass to find all of the cancelled buf log items.
 | 
						|
	 * Store them in the buf_cancel_table for use in the second pass.
 | 
						|
	 */
 | 
						|
	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
 | 
						|
						 sizeof(struct list_head),
 | 
						|
						 KM_SLEEP);
 | 
						|
	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
 | 
						|
		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
 | 
						|
 | 
						|
	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
 | 
						|
				      XLOG_RECOVER_PASS1);
 | 
						|
	if (error != 0) {
 | 
						|
		kmem_free(log->l_buf_cancel_table);
 | 
						|
		log->l_buf_cancel_table = NULL;
 | 
						|
		return error;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Then do a second pass to actually recover the items in the log.
 | 
						|
	 * When it is complete free the table of buf cancel items.
 | 
						|
	 */
 | 
						|
	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
 | 
						|
				      XLOG_RECOVER_PASS2);
 | 
						|
#ifdef DEBUG
 | 
						|
	if (!error) {
 | 
						|
		int	i;
 | 
						|
 | 
						|
		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
 | 
						|
			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
 | 
						|
	}
 | 
						|
#endif	/* DEBUG */
 | 
						|
 | 
						|
	kmem_free(log->l_buf_cancel_table);
 | 
						|
	log->l_buf_cancel_table = NULL;
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Do the actual recovery
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xlog_do_recover(
 | 
						|
	struct xlog	*log,
 | 
						|
	xfs_daddr_t	head_blk,
 | 
						|
	xfs_daddr_t	tail_blk)
 | 
						|
{
 | 
						|
	int		error;
 | 
						|
	xfs_buf_t	*bp;
 | 
						|
	xfs_sb_t	*sbp;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * First replay the images in the log.
 | 
						|
	 */
 | 
						|
	error = xlog_do_log_recovery(log, head_blk, tail_blk);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If IO errors happened during recovery, bail out.
 | 
						|
	 */
 | 
						|
	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
 | 
						|
		return (EIO);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We now update the tail_lsn since much of the recovery has completed
 | 
						|
	 * and there may be space available to use.  If there were no extent
 | 
						|
	 * or iunlinks, we can free up the entire log and set the tail_lsn to
 | 
						|
	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
 | 
						|
	 * lsn of the last known good LR on disk.  If there are extent frees
 | 
						|
	 * or iunlinks they will have some entries in the AIL; so we look at
 | 
						|
	 * the AIL to determine how to set the tail_lsn.
 | 
						|
	 */
 | 
						|
	xlog_assign_tail_lsn(log->l_mp);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now that we've finished replaying all buffer and inode
 | 
						|
	 * updates, re-read in the superblock.
 | 
						|
	 */
 | 
						|
	bp = xfs_getsb(log->l_mp, 0);
 | 
						|
	XFS_BUF_UNDONE(bp);
 | 
						|
	ASSERT(!(XFS_BUF_ISWRITE(bp)));
 | 
						|
	XFS_BUF_READ(bp);
 | 
						|
	XFS_BUF_UNASYNC(bp);
 | 
						|
	xfsbdstrat(log->l_mp, bp);
 | 
						|
	error = xfs_buf_iowait(bp);
 | 
						|
	if (error) {
 | 
						|
		xfs_buf_ioerror_alert(bp, __func__);
 | 
						|
		ASSERT(0);
 | 
						|
		xfs_buf_relse(bp);
 | 
						|
		return error;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Convert superblock from on-disk format */
 | 
						|
	sbp = &log->l_mp->m_sb;
 | 
						|
	xfs_sb_from_disk(log->l_mp, XFS_BUF_TO_SBP(bp));
 | 
						|
	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
 | 
						|
	ASSERT(xfs_sb_good_version(sbp));
 | 
						|
	xfs_buf_relse(bp);
 | 
						|
 | 
						|
	/* We've re-read the superblock so re-initialize per-cpu counters */
 | 
						|
	xfs_icsb_reinit_counters(log->l_mp);
 | 
						|
 | 
						|
	xlog_recover_check_summary(log);
 | 
						|
 | 
						|
	/* Normal transactions can now occur */
 | 
						|
	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Perform recovery and re-initialize some log variables in xlog_find_tail.
 | 
						|
 *
 | 
						|
 * Return error or zero.
 | 
						|
 */
 | 
						|
int
 | 
						|
xlog_recover(
 | 
						|
	struct xlog	*log)
 | 
						|
{
 | 
						|
	xfs_daddr_t	head_blk, tail_blk;
 | 
						|
	int		error;
 | 
						|
 | 
						|
	/* find the tail of the log */
 | 
						|
	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
 | 
						|
		return error;
 | 
						|
 | 
						|
	if (tail_blk != head_blk) {
 | 
						|
		/* There used to be a comment here:
 | 
						|
		 *
 | 
						|
		 * disallow recovery on read-only mounts.  note -- mount
 | 
						|
		 * checks for ENOSPC and turns it into an intelligent
 | 
						|
		 * error message.
 | 
						|
		 * ...but this is no longer true.  Now, unless you specify
 | 
						|
		 * NORECOVERY (in which case this function would never be
 | 
						|
		 * called), we just go ahead and recover.  We do this all
 | 
						|
		 * under the vfs layer, so we can get away with it unless
 | 
						|
		 * the device itself is read-only, in which case we fail.
 | 
						|
		 */
 | 
						|
		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
 | 
						|
			return error;
 | 
						|
		}
 | 
						|
 | 
						|
		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
 | 
						|
				log->l_mp->m_logname ? log->l_mp->m_logname
 | 
						|
						     : "internal");
 | 
						|
 | 
						|
		error = xlog_do_recover(log, head_blk, tail_blk);
 | 
						|
		log->l_flags |= XLOG_RECOVERY_NEEDED;
 | 
						|
	}
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * In the first part of recovery we replay inodes and buffers and build
 | 
						|
 * up the list of extent free items which need to be processed.  Here
 | 
						|
 * we process the extent free items and clean up the on disk unlinked
 | 
						|
 * inode lists.  This is separated from the first part of recovery so
 | 
						|
 * that the root and real-time bitmap inodes can be read in from disk in
 | 
						|
 * between the two stages.  This is necessary so that we can free space
 | 
						|
 * in the real-time portion of the file system.
 | 
						|
 */
 | 
						|
int
 | 
						|
xlog_recover_finish(
 | 
						|
	struct xlog	*log)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Now we're ready to do the transactions needed for the
 | 
						|
	 * rest of recovery.  Start with completing all the extent
 | 
						|
	 * free intent records and then process the unlinked inode
 | 
						|
	 * lists.  At this point, we essentially run in normal mode
 | 
						|
	 * except that we're still performing recovery actions
 | 
						|
	 * rather than accepting new requests.
 | 
						|
	 */
 | 
						|
	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
 | 
						|
		int	error;
 | 
						|
		error = xlog_recover_process_efis(log);
 | 
						|
		if (error) {
 | 
						|
			xfs_alert(log->l_mp, "Failed to recover EFIs");
 | 
						|
			return error;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * Sync the log to get all the EFIs out of the AIL.
 | 
						|
		 * This isn't absolutely necessary, but it helps in
 | 
						|
		 * case the unlink transactions would have problems
 | 
						|
		 * pushing the EFIs out of the way.
 | 
						|
		 */
 | 
						|
		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
 | 
						|
 | 
						|
		xlog_recover_process_iunlinks(log);
 | 
						|
 | 
						|
		xlog_recover_check_summary(log);
 | 
						|
 | 
						|
		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
 | 
						|
				log->l_mp->m_logname ? log->l_mp->m_logname
 | 
						|
						     : "internal");
 | 
						|
		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
 | 
						|
	} else {
 | 
						|
		xfs_info(log->l_mp, "Ending clean mount");
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#if defined(DEBUG)
 | 
						|
/*
 | 
						|
 * Read all of the agf and agi counters and check that they
 | 
						|
 * are consistent with the superblock counters.
 | 
						|
 */
 | 
						|
void
 | 
						|
xlog_recover_check_summary(
 | 
						|
	struct xlog	*log)
 | 
						|
{
 | 
						|
	xfs_mount_t	*mp;
 | 
						|
	xfs_agf_t	*agfp;
 | 
						|
	xfs_buf_t	*agfbp;
 | 
						|
	xfs_buf_t	*agibp;
 | 
						|
	xfs_agnumber_t	agno;
 | 
						|
	__uint64_t	freeblks;
 | 
						|
	__uint64_t	itotal;
 | 
						|
	__uint64_t	ifree;
 | 
						|
	int		error;
 | 
						|
 | 
						|
	mp = log->l_mp;
 | 
						|
 | 
						|
	freeblks = 0LL;
 | 
						|
	itotal = 0LL;
 | 
						|
	ifree = 0LL;
 | 
						|
	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 | 
						|
		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
 | 
						|
		if (error) {
 | 
						|
			xfs_alert(mp, "%s agf read failed agno %d error %d",
 | 
						|
						__func__, agno, error);
 | 
						|
		} else {
 | 
						|
			agfp = XFS_BUF_TO_AGF(agfbp);
 | 
						|
			freeblks += be32_to_cpu(agfp->agf_freeblks) +
 | 
						|
				    be32_to_cpu(agfp->agf_flcount);
 | 
						|
			xfs_buf_relse(agfbp);
 | 
						|
		}
 | 
						|
 | 
						|
		error = xfs_read_agi(mp, NULL, agno, &agibp);
 | 
						|
		if (error) {
 | 
						|
			xfs_alert(mp, "%s agi read failed agno %d error %d",
 | 
						|
						__func__, agno, error);
 | 
						|
		} else {
 | 
						|
			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
 | 
						|
 | 
						|
			itotal += be32_to_cpu(agi->agi_count);
 | 
						|
			ifree += be32_to_cpu(agi->agi_freecount);
 | 
						|
			xfs_buf_relse(agibp);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif /* DEBUG */
 |