In kernel profiling requires that we be able to allocate "local" memory for each cpu. Use "cpu_to_mem()" instead of "cpu_to_node()" to support memoryless nodes. Depends on the "numa_mem_id()" patch. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Tejun Heo <tj@kernel.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Nick Piggin <npiggin@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			630 lines
		
	
	
	
		
			17 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			630 lines
		
	
	
	
		
			17 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  linux/kernel/profile.c
 | 
						|
 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
 | 
						|
 *  with configurable resolution, support for restricting the cpus on
 | 
						|
 *  which profiling is done, and switching between cpu time and
 | 
						|
 *  schedule() calls via kernel command line parameters passed at boot.
 | 
						|
 *
 | 
						|
 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
 | 
						|
 *	Red Hat, July 2004
 | 
						|
 *  Consolidation of architecture support code for profiling,
 | 
						|
 *	William Irwin, Oracle, July 2004
 | 
						|
 *  Amortized hit count accounting via per-cpu open-addressed hashtables
 | 
						|
 *	to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/profile.h>
 | 
						|
#include <linux/bootmem.h>
 | 
						|
#include <linux/notifier.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/cpumask.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
#include <linux/mutex.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
#include <asm/sections.h>
 | 
						|
#include <asm/irq_regs.h>
 | 
						|
#include <asm/ptrace.h>
 | 
						|
 | 
						|
struct profile_hit {
 | 
						|
	u32 pc, hits;
 | 
						|
};
 | 
						|
#define PROFILE_GRPSHIFT	3
 | 
						|
#define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
 | 
						|
#define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
 | 
						|
#define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
 | 
						|
 | 
						|
/* Oprofile timer tick hook */
 | 
						|
static int (*timer_hook)(struct pt_regs *) __read_mostly;
 | 
						|
 | 
						|
static atomic_t *prof_buffer;
 | 
						|
static unsigned long prof_len, prof_shift;
 | 
						|
 | 
						|
int prof_on __read_mostly;
 | 
						|
EXPORT_SYMBOL_GPL(prof_on);
 | 
						|
 | 
						|
static cpumask_var_t prof_cpu_mask;
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
 | 
						|
static DEFINE_PER_CPU(int, cpu_profile_flip);
 | 
						|
static DEFINE_MUTEX(profile_flip_mutex);
 | 
						|
#endif /* CONFIG_SMP */
 | 
						|
 | 
						|
int profile_setup(char *str)
 | 
						|
{
 | 
						|
	static char schedstr[] = "schedule";
 | 
						|
	static char sleepstr[] = "sleep";
 | 
						|
	static char kvmstr[] = "kvm";
 | 
						|
	int par;
 | 
						|
 | 
						|
	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
 | 
						|
#ifdef CONFIG_SCHEDSTATS
 | 
						|
		prof_on = SLEEP_PROFILING;
 | 
						|
		if (str[strlen(sleepstr)] == ',')
 | 
						|
			str += strlen(sleepstr) + 1;
 | 
						|
		if (get_option(&str, &par))
 | 
						|
			prof_shift = par;
 | 
						|
		printk(KERN_INFO
 | 
						|
			"kernel sleep profiling enabled (shift: %ld)\n",
 | 
						|
			prof_shift);
 | 
						|
#else
 | 
						|
		printk(KERN_WARNING
 | 
						|
			"kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
 | 
						|
#endif /* CONFIG_SCHEDSTATS */
 | 
						|
	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
 | 
						|
		prof_on = SCHED_PROFILING;
 | 
						|
		if (str[strlen(schedstr)] == ',')
 | 
						|
			str += strlen(schedstr) + 1;
 | 
						|
		if (get_option(&str, &par))
 | 
						|
			prof_shift = par;
 | 
						|
		printk(KERN_INFO
 | 
						|
			"kernel schedule profiling enabled (shift: %ld)\n",
 | 
						|
			prof_shift);
 | 
						|
	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
 | 
						|
		prof_on = KVM_PROFILING;
 | 
						|
		if (str[strlen(kvmstr)] == ',')
 | 
						|
			str += strlen(kvmstr) + 1;
 | 
						|
		if (get_option(&str, &par))
 | 
						|
			prof_shift = par;
 | 
						|
		printk(KERN_INFO
 | 
						|
			"kernel KVM profiling enabled (shift: %ld)\n",
 | 
						|
			prof_shift);
 | 
						|
	} else if (get_option(&str, &par)) {
 | 
						|
		prof_shift = par;
 | 
						|
		prof_on = CPU_PROFILING;
 | 
						|
		printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
 | 
						|
			prof_shift);
 | 
						|
	}
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("profile=", profile_setup);
 | 
						|
 | 
						|
 | 
						|
int __ref profile_init(void)
 | 
						|
{
 | 
						|
	int buffer_bytes;
 | 
						|
	if (!prof_on)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* only text is profiled */
 | 
						|
	prof_len = (_etext - _stext) >> prof_shift;
 | 
						|
	buffer_bytes = prof_len*sizeof(atomic_t);
 | 
						|
 | 
						|
	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
 | 
						|
 | 
						|
	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
 | 
						|
	if (prof_buffer)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	prof_buffer = alloc_pages_exact(buffer_bytes,
 | 
						|
					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
 | 
						|
	if (prof_buffer)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	prof_buffer = vmalloc(buffer_bytes);
 | 
						|
	if (prof_buffer) {
 | 
						|
		memset(prof_buffer, 0, buffer_bytes);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	free_cpumask_var(prof_cpu_mask);
 | 
						|
	return -ENOMEM;
 | 
						|
}
 | 
						|
 | 
						|
/* Profile event notifications */
 | 
						|
 | 
						|
static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
 | 
						|
static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
 | 
						|
static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
 | 
						|
 | 
						|
void profile_task_exit(struct task_struct *task)
 | 
						|
{
 | 
						|
	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
 | 
						|
}
 | 
						|
 | 
						|
int profile_handoff_task(struct task_struct *task)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
 | 
						|
	return (ret == NOTIFY_OK) ? 1 : 0;
 | 
						|
}
 | 
						|
 | 
						|
void profile_munmap(unsigned long addr)
 | 
						|
{
 | 
						|
	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
 | 
						|
}
 | 
						|
 | 
						|
int task_handoff_register(struct notifier_block *n)
 | 
						|
{
 | 
						|
	return atomic_notifier_chain_register(&task_free_notifier, n);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(task_handoff_register);
 | 
						|
 | 
						|
int task_handoff_unregister(struct notifier_block *n)
 | 
						|
{
 | 
						|
	return atomic_notifier_chain_unregister(&task_free_notifier, n);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(task_handoff_unregister);
 | 
						|
 | 
						|
int profile_event_register(enum profile_type type, struct notifier_block *n)
 | 
						|
{
 | 
						|
	int err = -EINVAL;
 | 
						|
 | 
						|
	switch (type) {
 | 
						|
	case PROFILE_TASK_EXIT:
 | 
						|
		err = blocking_notifier_chain_register(
 | 
						|
				&task_exit_notifier, n);
 | 
						|
		break;
 | 
						|
	case PROFILE_MUNMAP:
 | 
						|
		err = blocking_notifier_chain_register(
 | 
						|
				&munmap_notifier, n);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(profile_event_register);
 | 
						|
 | 
						|
int profile_event_unregister(enum profile_type type, struct notifier_block *n)
 | 
						|
{
 | 
						|
	int err = -EINVAL;
 | 
						|
 | 
						|
	switch (type) {
 | 
						|
	case PROFILE_TASK_EXIT:
 | 
						|
		err = blocking_notifier_chain_unregister(
 | 
						|
				&task_exit_notifier, n);
 | 
						|
		break;
 | 
						|
	case PROFILE_MUNMAP:
 | 
						|
		err = blocking_notifier_chain_unregister(
 | 
						|
				&munmap_notifier, n);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(profile_event_unregister);
 | 
						|
 | 
						|
int register_timer_hook(int (*hook)(struct pt_regs *))
 | 
						|
{
 | 
						|
	if (timer_hook)
 | 
						|
		return -EBUSY;
 | 
						|
	timer_hook = hook;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(register_timer_hook);
 | 
						|
 | 
						|
void unregister_timer_hook(int (*hook)(struct pt_regs *))
 | 
						|
{
 | 
						|
	WARN_ON(hook != timer_hook);
 | 
						|
	timer_hook = NULL;
 | 
						|
	/* make sure all CPUs see the NULL hook */
 | 
						|
	synchronize_sched();  /* Allow ongoing interrupts to complete. */
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(unregister_timer_hook);
 | 
						|
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
/*
 | 
						|
 * Each cpu has a pair of open-addressed hashtables for pending
 | 
						|
 * profile hits. read_profile() IPI's all cpus to request them
 | 
						|
 * to flip buffers and flushes their contents to prof_buffer itself.
 | 
						|
 * Flip requests are serialized by the profile_flip_mutex. The sole
 | 
						|
 * use of having a second hashtable is for avoiding cacheline
 | 
						|
 * contention that would otherwise happen during flushes of pending
 | 
						|
 * profile hits required for the accuracy of reported profile hits
 | 
						|
 * and so resurrect the interrupt livelock issue.
 | 
						|
 *
 | 
						|
 * The open-addressed hashtables are indexed by profile buffer slot
 | 
						|
 * and hold the number of pending hits to that profile buffer slot on
 | 
						|
 * a cpu in an entry. When the hashtable overflows, all pending hits
 | 
						|
 * are accounted to their corresponding profile buffer slots with
 | 
						|
 * atomic_add() and the hashtable emptied. As numerous pending hits
 | 
						|
 * may be accounted to a profile buffer slot in a hashtable entry,
 | 
						|
 * this amortizes a number of atomic profile buffer increments likely
 | 
						|
 * to be far larger than the number of entries in the hashtable,
 | 
						|
 * particularly given that the number of distinct profile buffer
 | 
						|
 * positions to which hits are accounted during short intervals (e.g.
 | 
						|
 * several seconds) is usually very small. Exclusion from buffer
 | 
						|
 * flipping is provided by interrupt disablement (note that for
 | 
						|
 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
 | 
						|
 * process context).
 | 
						|
 * The hash function is meant to be lightweight as opposed to strong,
 | 
						|
 * and was vaguely inspired by ppc64 firmware-supported inverted
 | 
						|
 * pagetable hash functions, but uses a full hashtable full of finite
 | 
						|
 * collision chains, not just pairs of them.
 | 
						|
 *
 | 
						|
 * -- wli
 | 
						|
 */
 | 
						|
static void __profile_flip_buffers(void *unused)
 | 
						|
{
 | 
						|
	int cpu = smp_processor_id();
 | 
						|
 | 
						|
	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
 | 
						|
}
 | 
						|
 | 
						|
static void profile_flip_buffers(void)
 | 
						|
{
 | 
						|
	int i, j, cpu;
 | 
						|
 | 
						|
	mutex_lock(&profile_flip_mutex);
 | 
						|
	j = per_cpu(cpu_profile_flip, get_cpu());
 | 
						|
	put_cpu();
 | 
						|
	on_each_cpu(__profile_flip_buffers, NULL, 1);
 | 
						|
	for_each_online_cpu(cpu) {
 | 
						|
		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
 | 
						|
		for (i = 0; i < NR_PROFILE_HIT; ++i) {
 | 
						|
			if (!hits[i].hits) {
 | 
						|
				if (hits[i].pc)
 | 
						|
					hits[i].pc = 0;
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
 | 
						|
			hits[i].hits = hits[i].pc = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	mutex_unlock(&profile_flip_mutex);
 | 
						|
}
 | 
						|
 | 
						|
static void profile_discard_flip_buffers(void)
 | 
						|
{
 | 
						|
	int i, cpu;
 | 
						|
 | 
						|
	mutex_lock(&profile_flip_mutex);
 | 
						|
	i = per_cpu(cpu_profile_flip, get_cpu());
 | 
						|
	put_cpu();
 | 
						|
	on_each_cpu(__profile_flip_buffers, NULL, 1);
 | 
						|
	for_each_online_cpu(cpu) {
 | 
						|
		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
 | 
						|
		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
 | 
						|
	}
 | 
						|
	mutex_unlock(&profile_flip_mutex);
 | 
						|
}
 | 
						|
 | 
						|
void profile_hits(int type, void *__pc, unsigned int nr_hits)
 | 
						|
{
 | 
						|
	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
 | 
						|
	int i, j, cpu;
 | 
						|
	struct profile_hit *hits;
 | 
						|
 | 
						|
	if (prof_on != type || !prof_buffer)
 | 
						|
		return;
 | 
						|
	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
 | 
						|
	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
 | 
						|
	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
 | 
						|
	cpu = get_cpu();
 | 
						|
	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
 | 
						|
	if (!hits) {
 | 
						|
		put_cpu();
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * We buffer the global profiler buffer into a per-CPU
 | 
						|
	 * queue and thus reduce the number of global (and possibly
 | 
						|
	 * NUMA-alien) accesses. The write-queue is self-coalescing:
 | 
						|
	 */
 | 
						|
	local_irq_save(flags);
 | 
						|
	do {
 | 
						|
		for (j = 0; j < PROFILE_GRPSZ; ++j) {
 | 
						|
			if (hits[i + j].pc == pc) {
 | 
						|
				hits[i + j].hits += nr_hits;
 | 
						|
				goto out;
 | 
						|
			} else if (!hits[i + j].hits) {
 | 
						|
				hits[i + j].pc = pc;
 | 
						|
				hits[i + j].hits = nr_hits;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		i = (i + secondary) & (NR_PROFILE_HIT - 1);
 | 
						|
	} while (i != primary);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Add the current hit(s) and flush the write-queue out
 | 
						|
	 * to the global buffer:
 | 
						|
	 */
 | 
						|
	atomic_add(nr_hits, &prof_buffer[pc]);
 | 
						|
	for (i = 0; i < NR_PROFILE_HIT; ++i) {
 | 
						|
		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
 | 
						|
		hits[i].pc = hits[i].hits = 0;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	local_irq_restore(flags);
 | 
						|
	put_cpu();
 | 
						|
}
 | 
						|
 | 
						|
static int __cpuinit profile_cpu_callback(struct notifier_block *info,
 | 
						|
					unsigned long action, void *__cpu)
 | 
						|
{
 | 
						|
	int node, cpu = (unsigned long)__cpu;
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	switch (action) {
 | 
						|
	case CPU_UP_PREPARE:
 | 
						|
	case CPU_UP_PREPARE_FROZEN:
 | 
						|
		node = cpu_to_mem(cpu);
 | 
						|
		per_cpu(cpu_profile_flip, cpu) = 0;
 | 
						|
		if (!per_cpu(cpu_profile_hits, cpu)[1]) {
 | 
						|
			page = alloc_pages_exact_node(node,
 | 
						|
					GFP_KERNEL | __GFP_ZERO,
 | 
						|
					0);
 | 
						|
			if (!page)
 | 
						|
				return notifier_from_errno(-ENOMEM);
 | 
						|
			per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
 | 
						|
		}
 | 
						|
		if (!per_cpu(cpu_profile_hits, cpu)[0]) {
 | 
						|
			page = alloc_pages_exact_node(node,
 | 
						|
					GFP_KERNEL | __GFP_ZERO,
 | 
						|
					0);
 | 
						|
			if (!page)
 | 
						|
				goto out_free;
 | 
						|
			per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
 | 
						|
		}
 | 
						|
		break;
 | 
						|
out_free:
 | 
						|
		page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 | 
						|
		per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 | 
						|
		__free_page(page);
 | 
						|
		return notifier_from_errno(-ENOMEM);
 | 
						|
	case CPU_ONLINE:
 | 
						|
	case CPU_ONLINE_FROZEN:
 | 
						|
		if (prof_cpu_mask != NULL)
 | 
						|
			cpumask_set_cpu(cpu, prof_cpu_mask);
 | 
						|
		break;
 | 
						|
	case CPU_UP_CANCELED:
 | 
						|
	case CPU_UP_CANCELED_FROZEN:
 | 
						|
	case CPU_DEAD:
 | 
						|
	case CPU_DEAD_FROZEN:
 | 
						|
		if (prof_cpu_mask != NULL)
 | 
						|
			cpumask_clear_cpu(cpu, prof_cpu_mask);
 | 
						|
		if (per_cpu(cpu_profile_hits, cpu)[0]) {
 | 
						|
			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
 | 
						|
			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
 | 
						|
			__free_page(page);
 | 
						|
		}
 | 
						|
		if (per_cpu(cpu_profile_hits, cpu)[1]) {
 | 
						|
			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 | 
						|
			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 | 
						|
			__free_page(page);
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	return NOTIFY_OK;
 | 
						|
}
 | 
						|
#else /* !CONFIG_SMP */
 | 
						|
#define profile_flip_buffers()		do { } while (0)
 | 
						|
#define profile_discard_flip_buffers()	do { } while (0)
 | 
						|
#define profile_cpu_callback		NULL
 | 
						|
 | 
						|
void profile_hits(int type, void *__pc, unsigned int nr_hits)
 | 
						|
{
 | 
						|
	unsigned long pc;
 | 
						|
 | 
						|
	if (prof_on != type || !prof_buffer)
 | 
						|
		return;
 | 
						|
	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
 | 
						|
	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
 | 
						|
}
 | 
						|
#endif /* !CONFIG_SMP */
 | 
						|
EXPORT_SYMBOL_GPL(profile_hits);
 | 
						|
 | 
						|
void profile_tick(int type)
 | 
						|
{
 | 
						|
	struct pt_regs *regs = get_irq_regs();
 | 
						|
 | 
						|
	if (type == CPU_PROFILING && timer_hook)
 | 
						|
		timer_hook(regs);
 | 
						|
	if (!user_mode(regs) && prof_cpu_mask != NULL &&
 | 
						|
	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
 | 
						|
		profile_hit(type, (void *)profile_pc(regs));
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_PROC_FS
 | 
						|
#include <linux/proc_fs.h>
 | 
						|
#include <linux/seq_file.h>
 | 
						|
#include <asm/uaccess.h>
 | 
						|
 | 
						|
static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
 | 
						|
{
 | 
						|
	seq_cpumask(m, prof_cpu_mask);
 | 
						|
	seq_putc(m, '\n');
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
 | 
						|
{
 | 
						|
	return single_open(file, prof_cpu_mask_proc_show, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t prof_cpu_mask_proc_write(struct file *file,
 | 
						|
	const char __user *buffer, size_t count, loff_t *pos)
 | 
						|
{
 | 
						|
	cpumask_var_t new_value;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	err = cpumask_parse_user(buffer, count, new_value);
 | 
						|
	if (!err) {
 | 
						|
		cpumask_copy(prof_cpu_mask, new_value);
 | 
						|
		err = count;
 | 
						|
	}
 | 
						|
	free_cpumask_var(new_value);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static const struct file_operations prof_cpu_mask_proc_fops = {
 | 
						|
	.open		= prof_cpu_mask_proc_open,
 | 
						|
	.read		= seq_read,
 | 
						|
	.llseek		= seq_lseek,
 | 
						|
	.release	= single_release,
 | 
						|
	.write		= prof_cpu_mask_proc_write,
 | 
						|
};
 | 
						|
 | 
						|
void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
 | 
						|
{
 | 
						|
	/* create /proc/irq/prof_cpu_mask */
 | 
						|
	proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function accesses profiling information. The returned data is
 | 
						|
 * binary: the sampling step and the actual contents of the profile
 | 
						|
 * buffer. Use of the program readprofile is recommended in order to
 | 
						|
 * get meaningful info out of these data.
 | 
						|
 */
 | 
						|
static ssize_t
 | 
						|
read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
 | 
						|
{
 | 
						|
	unsigned long p = *ppos;
 | 
						|
	ssize_t read;
 | 
						|
	char *pnt;
 | 
						|
	unsigned int sample_step = 1 << prof_shift;
 | 
						|
 | 
						|
	profile_flip_buffers();
 | 
						|
	if (p >= (prof_len+1)*sizeof(unsigned int))
 | 
						|
		return 0;
 | 
						|
	if (count > (prof_len+1)*sizeof(unsigned int) - p)
 | 
						|
		count = (prof_len+1)*sizeof(unsigned int) - p;
 | 
						|
	read = 0;
 | 
						|
 | 
						|
	while (p < sizeof(unsigned int) && count > 0) {
 | 
						|
		if (put_user(*((char *)(&sample_step)+p), buf))
 | 
						|
			return -EFAULT;
 | 
						|
		buf++; p++; count--; read++;
 | 
						|
	}
 | 
						|
	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
 | 
						|
	if (copy_to_user(buf, (void *)pnt, count))
 | 
						|
		return -EFAULT;
 | 
						|
	read += count;
 | 
						|
	*ppos += read;
 | 
						|
	return read;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Writing to /proc/profile resets the counters
 | 
						|
 *
 | 
						|
 * Writing a 'profiling multiplier' value into it also re-sets the profiling
 | 
						|
 * interrupt frequency, on architectures that support this.
 | 
						|
 */
 | 
						|
static ssize_t write_profile(struct file *file, const char __user *buf,
 | 
						|
			     size_t count, loff_t *ppos)
 | 
						|
{
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	extern int setup_profiling_timer(unsigned int multiplier);
 | 
						|
 | 
						|
	if (count == sizeof(int)) {
 | 
						|
		unsigned int multiplier;
 | 
						|
 | 
						|
		if (copy_from_user(&multiplier, buf, sizeof(int)))
 | 
						|
			return -EFAULT;
 | 
						|
 | 
						|
		if (setup_profiling_timer(multiplier))
 | 
						|
			return -EINVAL;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	profile_discard_flip_buffers();
 | 
						|
	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
 | 
						|
	return count;
 | 
						|
}
 | 
						|
 | 
						|
static const struct file_operations proc_profile_operations = {
 | 
						|
	.read		= read_profile,
 | 
						|
	.write		= write_profile,
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
static void profile_nop(void *unused)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static int create_hash_tables(void)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	for_each_online_cpu(cpu) {
 | 
						|
		int node = cpu_to_mem(cpu);
 | 
						|
		struct page *page;
 | 
						|
 | 
						|
		page = alloc_pages_exact_node(node,
 | 
						|
				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
 | 
						|
				0);
 | 
						|
		if (!page)
 | 
						|
			goto out_cleanup;
 | 
						|
		per_cpu(cpu_profile_hits, cpu)[1]
 | 
						|
				= (struct profile_hit *)page_address(page);
 | 
						|
		page = alloc_pages_exact_node(node,
 | 
						|
				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
 | 
						|
				0);
 | 
						|
		if (!page)
 | 
						|
			goto out_cleanup;
 | 
						|
		per_cpu(cpu_profile_hits, cpu)[0]
 | 
						|
				= (struct profile_hit *)page_address(page);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
out_cleanup:
 | 
						|
	prof_on = 0;
 | 
						|
	smp_mb();
 | 
						|
	on_each_cpu(profile_nop, NULL, 1);
 | 
						|
	for_each_online_cpu(cpu) {
 | 
						|
		struct page *page;
 | 
						|
 | 
						|
		if (per_cpu(cpu_profile_hits, cpu)[0]) {
 | 
						|
			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
 | 
						|
			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
 | 
						|
			__free_page(page);
 | 
						|
		}
 | 
						|
		if (per_cpu(cpu_profile_hits, cpu)[1]) {
 | 
						|
			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 | 
						|
			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 | 
						|
			__free_page(page);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
#else
 | 
						|
#define create_hash_tables()			({ 0; })
 | 
						|
#endif
 | 
						|
 | 
						|
int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
 | 
						|
{
 | 
						|
	struct proc_dir_entry *entry;
 | 
						|
 | 
						|
	if (!prof_on)
 | 
						|
		return 0;
 | 
						|
	if (create_hash_tables())
 | 
						|
		return -ENOMEM;
 | 
						|
	entry = proc_create("profile", S_IWUSR | S_IRUGO,
 | 
						|
			    NULL, &proc_profile_operations);
 | 
						|
	if (!entry)
 | 
						|
		return 0;
 | 
						|
	entry->size = (1+prof_len) * sizeof(atomic_t);
 | 
						|
	hotcpu_notifier(profile_cpu_callback, 0);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
module_init(create_proc_profile);
 | 
						|
#endif /* CONFIG_PROC_FS */
 |