* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: x86: Fix keeping track of AMD C1E x86, cpu: Package Level Thermal Control, Power Limit Notification definitions x86, cpu: Export AMD errata definitions x86, cpu: Use AMD errata checking framework for erratum 383 x86, cpu: Clean up AMD erratum 400 workaround x86, cpu: AMD errata checking framework x86, cpu: Split addon_cpuid_features.c x86, cpu: Clean up formatting in cpufeature.h, remove override x86, cpu: Enumerate xsaveopt x86, cpu: Add xsaveopt cpufeature x86, cpu: Make init_scattered_cpuid_features() consider cpuid subleaves x86, cpu: Support the features flags in new CPUID leaf 7 x86, cpu: Add CPU flags for F16C and RDRND x86: Look for IA32_ENERGY_PERF_BIAS support x86, AMD: Extend support to future families x86, cacheinfo: Carve out L3 cache slot accessors x86, xsave: Cleanup return codes in check_for_xstate()
		
			
				
	
	
		
			673 lines
		
	
	
	
		
			15 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			673 lines
		
	
	
	
		
			15 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
#include <linux/errno.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/smp.h>
 | 
						|
#include <linux/prctl.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/pm.h>
 | 
						|
#include <linux/clockchips.h>
 | 
						|
#include <linux/random.h>
 | 
						|
#include <linux/user-return-notifier.h>
 | 
						|
#include <linux/dmi.h>
 | 
						|
#include <linux/utsname.h>
 | 
						|
#include <trace/events/power.h>
 | 
						|
#include <linux/hw_breakpoint.h>
 | 
						|
#include <asm/system.h>
 | 
						|
#include <asm/apic.h>
 | 
						|
#include <asm/syscalls.h>
 | 
						|
#include <asm/idle.h>
 | 
						|
#include <asm/uaccess.h>
 | 
						|
#include <asm/i387.h>
 | 
						|
#include <asm/debugreg.h>
 | 
						|
 | 
						|
unsigned long idle_halt;
 | 
						|
EXPORT_SYMBOL(idle_halt);
 | 
						|
unsigned long idle_nomwait;
 | 
						|
EXPORT_SYMBOL(idle_nomwait);
 | 
						|
 | 
						|
struct kmem_cache *task_xstate_cachep;
 | 
						|
EXPORT_SYMBOL_GPL(task_xstate_cachep);
 | 
						|
 | 
						|
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	*dst = *src;
 | 
						|
	if (fpu_allocated(&src->thread.fpu)) {
 | 
						|
		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
 | 
						|
		ret = fpu_alloc(&dst->thread.fpu);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void free_thread_xstate(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	fpu_free(&tsk->thread.fpu);
 | 
						|
}
 | 
						|
 | 
						|
void free_thread_info(struct thread_info *ti)
 | 
						|
{
 | 
						|
	free_thread_xstate(ti->task);
 | 
						|
	free_pages((unsigned long)ti, get_order(THREAD_SIZE));
 | 
						|
}
 | 
						|
 | 
						|
void arch_task_cache_init(void)
 | 
						|
{
 | 
						|
        task_xstate_cachep =
 | 
						|
        	kmem_cache_create("task_xstate", xstate_size,
 | 
						|
				  __alignof__(union thread_xstate),
 | 
						|
				  SLAB_PANIC | SLAB_NOTRACK, NULL);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free current thread data structures etc..
 | 
						|
 */
 | 
						|
void exit_thread(void)
 | 
						|
{
 | 
						|
	struct task_struct *me = current;
 | 
						|
	struct thread_struct *t = &me->thread;
 | 
						|
	unsigned long *bp = t->io_bitmap_ptr;
 | 
						|
 | 
						|
	if (bp) {
 | 
						|
		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
 | 
						|
 | 
						|
		t->io_bitmap_ptr = NULL;
 | 
						|
		clear_thread_flag(TIF_IO_BITMAP);
 | 
						|
		/*
 | 
						|
		 * Careful, clear this in the TSS too:
 | 
						|
		 */
 | 
						|
		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
 | 
						|
		t->io_bitmap_max = 0;
 | 
						|
		put_cpu();
 | 
						|
		kfree(bp);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void show_regs(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	show_registers(regs);
 | 
						|
	show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs),
 | 
						|
		   regs->bp);
 | 
						|
}
 | 
						|
 | 
						|
void show_regs_common(void)
 | 
						|
{
 | 
						|
	const char *board, *product;
 | 
						|
 | 
						|
	board = dmi_get_system_info(DMI_BOARD_NAME);
 | 
						|
	if (!board)
 | 
						|
		board = "";
 | 
						|
	product = dmi_get_system_info(DMI_PRODUCT_NAME);
 | 
						|
	if (!product)
 | 
						|
		product = "";
 | 
						|
 | 
						|
	printk(KERN_CONT "\n");
 | 
						|
	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n",
 | 
						|
		current->pid, current->comm, print_tainted(),
 | 
						|
		init_utsname()->release,
 | 
						|
		(int)strcspn(init_utsname()->version, " "),
 | 
						|
		init_utsname()->version, board, product);
 | 
						|
}
 | 
						|
 | 
						|
void flush_thread(void)
 | 
						|
{
 | 
						|
	struct task_struct *tsk = current;
 | 
						|
 | 
						|
	flush_ptrace_hw_breakpoint(tsk);
 | 
						|
	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 | 
						|
	/*
 | 
						|
	 * Forget coprocessor state..
 | 
						|
	 */
 | 
						|
	tsk->fpu_counter = 0;
 | 
						|
	clear_fpu(tsk);
 | 
						|
	clear_used_math();
 | 
						|
}
 | 
						|
 | 
						|
static void hard_disable_TSC(void)
 | 
						|
{
 | 
						|
	write_cr4(read_cr4() | X86_CR4_TSD);
 | 
						|
}
 | 
						|
 | 
						|
void disable_TSC(void)
 | 
						|
{
 | 
						|
	preempt_disable();
 | 
						|
	if (!test_and_set_thread_flag(TIF_NOTSC))
 | 
						|
		/*
 | 
						|
		 * Must flip the CPU state synchronously with
 | 
						|
		 * TIF_NOTSC in the current running context.
 | 
						|
		 */
 | 
						|
		hard_disable_TSC();
 | 
						|
	preempt_enable();
 | 
						|
}
 | 
						|
 | 
						|
static void hard_enable_TSC(void)
 | 
						|
{
 | 
						|
	write_cr4(read_cr4() & ~X86_CR4_TSD);
 | 
						|
}
 | 
						|
 | 
						|
static void enable_TSC(void)
 | 
						|
{
 | 
						|
	preempt_disable();
 | 
						|
	if (test_and_clear_thread_flag(TIF_NOTSC))
 | 
						|
		/*
 | 
						|
		 * Must flip the CPU state synchronously with
 | 
						|
		 * TIF_NOTSC in the current running context.
 | 
						|
		 */
 | 
						|
		hard_enable_TSC();
 | 
						|
	preempt_enable();
 | 
						|
}
 | 
						|
 | 
						|
int get_tsc_mode(unsigned long adr)
 | 
						|
{
 | 
						|
	unsigned int val;
 | 
						|
 | 
						|
	if (test_thread_flag(TIF_NOTSC))
 | 
						|
		val = PR_TSC_SIGSEGV;
 | 
						|
	else
 | 
						|
		val = PR_TSC_ENABLE;
 | 
						|
 | 
						|
	return put_user(val, (unsigned int __user *)adr);
 | 
						|
}
 | 
						|
 | 
						|
int set_tsc_mode(unsigned int val)
 | 
						|
{
 | 
						|
	if (val == PR_TSC_SIGSEGV)
 | 
						|
		disable_TSC();
 | 
						|
	else if (val == PR_TSC_ENABLE)
 | 
						|
		enable_TSC();
 | 
						|
	else
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
 | 
						|
		      struct tss_struct *tss)
 | 
						|
{
 | 
						|
	struct thread_struct *prev, *next;
 | 
						|
 | 
						|
	prev = &prev_p->thread;
 | 
						|
	next = &next_p->thread;
 | 
						|
 | 
						|
	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
 | 
						|
	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
 | 
						|
		unsigned long debugctl = get_debugctlmsr();
 | 
						|
 | 
						|
		debugctl &= ~DEBUGCTLMSR_BTF;
 | 
						|
		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
 | 
						|
			debugctl |= DEBUGCTLMSR_BTF;
 | 
						|
 | 
						|
		update_debugctlmsr(debugctl);
 | 
						|
	}
 | 
						|
 | 
						|
	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
 | 
						|
	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
 | 
						|
		/* prev and next are different */
 | 
						|
		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
 | 
						|
			hard_disable_TSC();
 | 
						|
		else
 | 
						|
			hard_enable_TSC();
 | 
						|
	}
 | 
						|
 | 
						|
	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
 | 
						|
		/*
 | 
						|
		 * Copy the relevant range of the IO bitmap.
 | 
						|
		 * Normally this is 128 bytes or less:
 | 
						|
		 */
 | 
						|
		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
 | 
						|
		       max(prev->io_bitmap_max, next->io_bitmap_max));
 | 
						|
	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
 | 
						|
		/*
 | 
						|
		 * Clear any possible leftover bits:
 | 
						|
		 */
 | 
						|
		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
 | 
						|
	}
 | 
						|
	propagate_user_return_notify(prev_p, next_p);
 | 
						|
}
 | 
						|
 | 
						|
int sys_fork(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is trivial, and on the face of it looks like it
 | 
						|
 * could equally well be done in user mode.
 | 
						|
 *
 | 
						|
 * Not so, for quite unobvious reasons - register pressure.
 | 
						|
 * In user mode vfork() cannot have a stack frame, and if
 | 
						|
 * done by calling the "clone()" system call directly, you
 | 
						|
 * do not have enough call-clobbered registers to hold all
 | 
						|
 * the information you need.
 | 
						|
 */
 | 
						|
int sys_vfork(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
 | 
						|
		       NULL, NULL);
 | 
						|
}
 | 
						|
 | 
						|
long
 | 
						|
sys_clone(unsigned long clone_flags, unsigned long newsp,
 | 
						|
	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	if (!newsp)
 | 
						|
		newsp = regs->sp;
 | 
						|
	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This gets run with %si containing the
 | 
						|
 * function to call, and %di containing
 | 
						|
 * the "args".
 | 
						|
 */
 | 
						|
extern void kernel_thread_helper(void);
 | 
						|
 | 
						|
/*
 | 
						|
 * Create a kernel thread
 | 
						|
 */
 | 
						|
int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
 | 
						|
{
 | 
						|
	struct pt_regs regs;
 | 
						|
 | 
						|
	memset(®s, 0, sizeof(regs));
 | 
						|
 | 
						|
	regs.si = (unsigned long) fn;
 | 
						|
	regs.di = (unsigned long) arg;
 | 
						|
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
	regs.ds = __USER_DS;
 | 
						|
	regs.es = __USER_DS;
 | 
						|
	regs.fs = __KERNEL_PERCPU;
 | 
						|
	regs.gs = __KERNEL_STACK_CANARY;
 | 
						|
#else
 | 
						|
	regs.ss = __KERNEL_DS;
 | 
						|
#endif
 | 
						|
 | 
						|
	regs.orig_ax = -1;
 | 
						|
	regs.ip = (unsigned long) kernel_thread_helper;
 | 
						|
	regs.cs = __KERNEL_CS | get_kernel_rpl();
 | 
						|
	regs.flags = X86_EFLAGS_IF | 0x2;
 | 
						|
 | 
						|
	/* Ok, create the new process.. */
 | 
						|
	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kernel_thread);
 | 
						|
 | 
						|
/*
 | 
						|
 * sys_execve() executes a new program.
 | 
						|
 */
 | 
						|
long sys_execve(char __user *name, char __user * __user *argv,
 | 
						|
		char __user * __user *envp, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	long error;
 | 
						|
	char *filename;
 | 
						|
 | 
						|
	filename = getname(name);
 | 
						|
	error = PTR_ERR(filename);
 | 
						|
	if (IS_ERR(filename))
 | 
						|
		return error;
 | 
						|
	error = do_execve(filename, argv, envp, regs);
 | 
						|
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
	if (error == 0) {
 | 
						|
		/* Make sure we don't return using sysenter.. */
 | 
						|
                set_thread_flag(TIF_IRET);
 | 
						|
        }
 | 
						|
#endif
 | 
						|
 | 
						|
	putname(filename);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Idle related variables and functions
 | 
						|
 */
 | 
						|
unsigned long boot_option_idle_override = 0;
 | 
						|
EXPORT_SYMBOL(boot_option_idle_override);
 | 
						|
 | 
						|
/*
 | 
						|
 * Powermanagement idle function, if any..
 | 
						|
 */
 | 
						|
void (*pm_idle)(void);
 | 
						|
EXPORT_SYMBOL(pm_idle);
 | 
						|
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
/*
 | 
						|
 * This halt magic was a workaround for ancient floppy DMA
 | 
						|
 * wreckage. It should be safe to remove.
 | 
						|
 */
 | 
						|
static int hlt_counter;
 | 
						|
void disable_hlt(void)
 | 
						|
{
 | 
						|
	hlt_counter++;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(disable_hlt);
 | 
						|
 | 
						|
void enable_hlt(void)
 | 
						|
{
 | 
						|
	hlt_counter--;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(enable_hlt);
 | 
						|
 | 
						|
static inline int hlt_use_halt(void)
 | 
						|
{
 | 
						|
	return (!hlt_counter && boot_cpu_data.hlt_works_ok);
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline int hlt_use_halt(void)
 | 
						|
{
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * We use this if we don't have any better
 | 
						|
 * idle routine..
 | 
						|
 */
 | 
						|
void default_idle(void)
 | 
						|
{
 | 
						|
	if (hlt_use_halt()) {
 | 
						|
		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
 | 
						|
		current_thread_info()->status &= ~TS_POLLING;
 | 
						|
		/*
 | 
						|
		 * TS_POLLING-cleared state must be visible before we
 | 
						|
		 * test NEED_RESCHED:
 | 
						|
		 */
 | 
						|
		smp_mb();
 | 
						|
 | 
						|
		if (!need_resched())
 | 
						|
			safe_halt();	/* enables interrupts racelessly */
 | 
						|
		else
 | 
						|
			local_irq_enable();
 | 
						|
		current_thread_info()->status |= TS_POLLING;
 | 
						|
	} else {
 | 
						|
		local_irq_enable();
 | 
						|
		/* loop is done by the caller */
 | 
						|
		cpu_relax();
 | 
						|
	}
 | 
						|
}
 | 
						|
#ifdef CONFIG_APM_MODULE
 | 
						|
EXPORT_SYMBOL(default_idle);
 | 
						|
#endif
 | 
						|
 | 
						|
void stop_this_cpu(void *dummy)
 | 
						|
{
 | 
						|
	local_irq_disable();
 | 
						|
	/*
 | 
						|
	 * Remove this CPU:
 | 
						|
	 */
 | 
						|
	set_cpu_online(smp_processor_id(), false);
 | 
						|
	disable_local_APIC();
 | 
						|
 | 
						|
	for (;;) {
 | 
						|
		if (hlt_works(smp_processor_id()))
 | 
						|
			halt();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void do_nothing(void *unused)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
 | 
						|
 * pm_idle and update to new pm_idle value. Required while changing pm_idle
 | 
						|
 * handler on SMP systems.
 | 
						|
 *
 | 
						|
 * Caller must have changed pm_idle to the new value before the call. Old
 | 
						|
 * pm_idle value will not be used by any CPU after the return of this function.
 | 
						|
 */
 | 
						|
void cpu_idle_wait(void)
 | 
						|
{
 | 
						|
	smp_mb();
 | 
						|
	/* kick all the CPUs so that they exit out of pm_idle */
 | 
						|
	smp_call_function(do_nothing, NULL, 1);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(cpu_idle_wait);
 | 
						|
 | 
						|
/*
 | 
						|
 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
 | 
						|
 * which can obviate IPI to trigger checking of need_resched.
 | 
						|
 * We execute MONITOR against need_resched and enter optimized wait state
 | 
						|
 * through MWAIT. Whenever someone changes need_resched, we would be woken
 | 
						|
 * up from MWAIT (without an IPI).
 | 
						|
 *
 | 
						|
 * New with Core Duo processors, MWAIT can take some hints based on CPU
 | 
						|
 * capability.
 | 
						|
 */
 | 
						|
void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
 | 
						|
{
 | 
						|
	trace_power_start(POWER_CSTATE, (ax>>4)+1, smp_processor_id());
 | 
						|
	if (!need_resched()) {
 | 
						|
		if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
 | 
						|
			clflush((void *)¤t_thread_info()->flags);
 | 
						|
 | 
						|
		__monitor((void *)¤t_thread_info()->flags, 0, 0);
 | 
						|
		smp_mb();
 | 
						|
		if (!need_resched())
 | 
						|
			__mwait(ax, cx);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Default MONITOR/MWAIT with no hints, used for default C1 state */
 | 
						|
static void mwait_idle(void)
 | 
						|
{
 | 
						|
	if (!need_resched()) {
 | 
						|
		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
 | 
						|
		if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
 | 
						|
			clflush((void *)¤t_thread_info()->flags);
 | 
						|
 | 
						|
		__monitor((void *)¤t_thread_info()->flags, 0, 0);
 | 
						|
		smp_mb();
 | 
						|
		if (!need_resched())
 | 
						|
			__sti_mwait(0, 0);
 | 
						|
		else
 | 
						|
			local_irq_enable();
 | 
						|
	} else
 | 
						|
		local_irq_enable();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * On SMP it's slightly faster (but much more power-consuming!)
 | 
						|
 * to poll the ->work.need_resched flag instead of waiting for the
 | 
						|
 * cross-CPU IPI to arrive. Use this option with caution.
 | 
						|
 */
 | 
						|
static void poll_idle(void)
 | 
						|
{
 | 
						|
	trace_power_start(POWER_CSTATE, 0, smp_processor_id());
 | 
						|
	local_irq_enable();
 | 
						|
	while (!need_resched())
 | 
						|
		cpu_relax();
 | 
						|
	trace_power_end(0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * mwait selection logic:
 | 
						|
 *
 | 
						|
 * It depends on the CPU. For AMD CPUs that support MWAIT this is
 | 
						|
 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
 | 
						|
 * then depend on a clock divisor and current Pstate of the core. If
 | 
						|
 * all cores of a processor are in halt state (C1) the processor can
 | 
						|
 * enter the C1E (C1 enhanced) state. If mwait is used this will never
 | 
						|
 * happen.
 | 
						|
 *
 | 
						|
 * idle=mwait overrides this decision and forces the usage of mwait.
 | 
						|
 */
 | 
						|
static int __cpuinitdata force_mwait;
 | 
						|
 | 
						|
#define MWAIT_INFO			0x05
 | 
						|
#define MWAIT_ECX_EXTENDED_INFO		0x01
 | 
						|
#define MWAIT_EDX_C1			0xf0
 | 
						|
 | 
						|
static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	u32 eax, ebx, ecx, edx;
 | 
						|
 | 
						|
	if (force_mwait)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	if (c->cpuid_level < MWAIT_INFO)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
 | 
						|
	/* Check, whether EDX has extended info about MWAIT */
 | 
						|
	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
 | 
						|
	 * C1  supports MWAIT
 | 
						|
	 */
 | 
						|
	return (edx & MWAIT_EDX_C1);
 | 
						|
}
 | 
						|
 | 
						|
bool c1e_detected;
 | 
						|
EXPORT_SYMBOL(c1e_detected);
 | 
						|
 | 
						|
static cpumask_var_t c1e_mask;
 | 
						|
 | 
						|
void c1e_remove_cpu(int cpu)
 | 
						|
{
 | 
						|
	if (c1e_mask != NULL)
 | 
						|
		cpumask_clear_cpu(cpu, c1e_mask);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * C1E aware idle routine. We check for C1E active in the interrupt
 | 
						|
 * pending message MSR. If we detect C1E, then we handle it the same
 | 
						|
 * way as C3 power states (local apic timer and TSC stop)
 | 
						|
 */
 | 
						|
static void c1e_idle(void)
 | 
						|
{
 | 
						|
	if (need_resched())
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!c1e_detected) {
 | 
						|
		u32 lo, hi;
 | 
						|
 | 
						|
		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
 | 
						|
 | 
						|
		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
 | 
						|
			c1e_detected = true;
 | 
						|
			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 | 
						|
				mark_tsc_unstable("TSC halt in AMD C1E");
 | 
						|
			printk(KERN_INFO "System has AMD C1E enabled\n");
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (c1e_detected) {
 | 
						|
		int cpu = smp_processor_id();
 | 
						|
 | 
						|
		if (!cpumask_test_cpu(cpu, c1e_mask)) {
 | 
						|
			cpumask_set_cpu(cpu, c1e_mask);
 | 
						|
			/*
 | 
						|
			 * Force broadcast so ACPI can not interfere.
 | 
						|
			 */
 | 
						|
			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
 | 
						|
					   &cpu);
 | 
						|
			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
 | 
						|
			       cpu);
 | 
						|
		}
 | 
						|
		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
 | 
						|
 | 
						|
		default_idle();
 | 
						|
 | 
						|
		/*
 | 
						|
		 * The switch back from broadcast mode needs to be
 | 
						|
		 * called with interrupts disabled.
 | 
						|
		 */
 | 
						|
		 local_irq_disable();
 | 
						|
		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
 | 
						|
		 local_irq_enable();
 | 
						|
	} else
 | 
						|
		default_idle();
 | 
						|
}
 | 
						|
 | 
						|
void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	if (pm_idle == poll_idle && smp_num_siblings > 1) {
 | 
						|
		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
 | 
						|
			" performance may degrade.\n");
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	if (pm_idle)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
 | 
						|
		/*
 | 
						|
		 * One CPU supports mwait => All CPUs supports mwait
 | 
						|
		 */
 | 
						|
		printk(KERN_INFO "using mwait in idle threads.\n");
 | 
						|
		pm_idle = mwait_idle;
 | 
						|
	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
 | 
						|
		/* E400: APIC timer interrupt does not wake up CPU from C1e */
 | 
						|
		printk(KERN_INFO "using C1E aware idle routine\n");
 | 
						|
		pm_idle = c1e_idle;
 | 
						|
	} else
 | 
						|
		pm_idle = default_idle;
 | 
						|
}
 | 
						|
 | 
						|
void __init init_c1e_mask(void)
 | 
						|
{
 | 
						|
	/* If we're using c1e_idle, we need to allocate c1e_mask. */
 | 
						|
	if (pm_idle == c1e_idle)
 | 
						|
		zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
 | 
						|
}
 | 
						|
 | 
						|
static int __init idle_setup(char *str)
 | 
						|
{
 | 
						|
	if (!str)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (!strcmp(str, "poll")) {
 | 
						|
		printk("using polling idle threads.\n");
 | 
						|
		pm_idle = poll_idle;
 | 
						|
	} else if (!strcmp(str, "mwait"))
 | 
						|
		force_mwait = 1;
 | 
						|
	else if (!strcmp(str, "halt")) {
 | 
						|
		/*
 | 
						|
		 * When the boot option of idle=halt is added, halt is
 | 
						|
		 * forced to be used for CPU idle. In such case CPU C2/C3
 | 
						|
		 * won't be used again.
 | 
						|
		 * To continue to load the CPU idle driver, don't touch
 | 
						|
		 * the boot_option_idle_override.
 | 
						|
		 */
 | 
						|
		pm_idle = default_idle;
 | 
						|
		idle_halt = 1;
 | 
						|
		return 0;
 | 
						|
	} else if (!strcmp(str, "nomwait")) {
 | 
						|
		/*
 | 
						|
		 * If the boot option of "idle=nomwait" is added,
 | 
						|
		 * it means that mwait will be disabled for CPU C2/C3
 | 
						|
		 * states. In such case it won't touch the variable
 | 
						|
		 * of boot_option_idle_override.
 | 
						|
		 */
 | 
						|
		idle_nomwait = 1;
 | 
						|
		return 0;
 | 
						|
	} else
 | 
						|
		return -1;
 | 
						|
 | 
						|
	boot_option_idle_override = 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
early_param("idle", idle_setup);
 | 
						|
 | 
						|
unsigned long arch_align_stack(unsigned long sp)
 | 
						|
{
 | 
						|
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 | 
						|
		sp -= get_random_int() % 8192;
 | 
						|
	return sp & ~0xf;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long arch_randomize_brk(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	unsigned long range_end = mm->brk + 0x02000000;
 | 
						|
	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
 | 
						|
}
 | 
						|
 |