Otherwise the 'Calibration skipped' message gets printed everytime a CPU is hotplugged in, cluttering console for systems that frequently hotplug CPUs. Signed-off-by: Diwakar Tundlam <dtundlam@nvidia.com> Cc: Phil Carmody <ext-phil.2.carmody@nokia.com> Cc: Russell King <rmk+kernel@arm.linux.org.uk> Cc: Greg KH <greg@kroah.com> Cc: Sameer Nanda <snanda@chromium.org> Cc: Peter De Schrijver <pdeschrijver@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			301 lines
		
	
	
	
		
			8.3 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			301 lines
		
	
	
	
		
			8.3 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/* calibrate.c: default delay calibration
 | 
						|
 *
 | 
						|
 * Excised from init/main.c
 | 
						|
 *  Copyright (C) 1991, 1992  Linus Torvalds
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/jiffies.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/timex.h>
 | 
						|
#include <linux/smp.h>
 | 
						|
#include <linux/percpu.h>
 | 
						|
 | 
						|
unsigned long lpj_fine;
 | 
						|
unsigned long preset_lpj;
 | 
						|
static int __init lpj_setup(char *str)
 | 
						|
{
 | 
						|
	preset_lpj = simple_strtoul(str,NULL,0);
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
__setup("lpj=", lpj_setup);
 | 
						|
 | 
						|
#ifdef ARCH_HAS_READ_CURRENT_TIMER
 | 
						|
 | 
						|
/* This routine uses the read_current_timer() routine and gets the
 | 
						|
 * loops per jiffy directly, instead of guessing it using delay().
 | 
						|
 * Also, this code tries to handle non-maskable asynchronous events
 | 
						|
 * (like SMIs)
 | 
						|
 */
 | 
						|
#define DELAY_CALIBRATION_TICKS			((HZ < 100) ? 1 : (HZ/100))
 | 
						|
#define MAX_DIRECT_CALIBRATION_RETRIES		5
 | 
						|
 | 
						|
static unsigned long __cpuinit calibrate_delay_direct(void)
 | 
						|
{
 | 
						|
	unsigned long pre_start, start, post_start;
 | 
						|
	unsigned long pre_end, end, post_end;
 | 
						|
	unsigned long start_jiffies;
 | 
						|
	unsigned long timer_rate_min, timer_rate_max;
 | 
						|
	unsigned long good_timer_sum = 0;
 | 
						|
	unsigned long good_timer_count = 0;
 | 
						|
	unsigned long measured_times[MAX_DIRECT_CALIBRATION_RETRIES];
 | 
						|
	int max = -1; /* index of measured_times with max/min values or not set */
 | 
						|
	int min = -1;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (read_current_timer(&pre_start) < 0 )
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * A simple loop like
 | 
						|
	 *	while ( jiffies < start_jiffies+1)
 | 
						|
	 *		start = read_current_timer();
 | 
						|
	 * will not do. As we don't really know whether jiffy switch
 | 
						|
	 * happened first or timer_value was read first. And some asynchronous
 | 
						|
	 * event can happen between these two events introducing errors in lpj.
 | 
						|
	 *
 | 
						|
	 * So, we do
 | 
						|
	 * 1. pre_start <- When we are sure that jiffy switch hasn't happened
 | 
						|
	 * 2. check jiffy switch
 | 
						|
	 * 3. start <- timer value before or after jiffy switch
 | 
						|
	 * 4. post_start <- When we are sure that jiffy switch has happened
 | 
						|
	 *
 | 
						|
	 * Note, we don't know anything about order of 2 and 3.
 | 
						|
	 * Now, by looking at post_start and pre_start difference, we can
 | 
						|
	 * check whether any asynchronous event happened or not
 | 
						|
	 */
 | 
						|
 | 
						|
	for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
 | 
						|
		pre_start = 0;
 | 
						|
		read_current_timer(&start);
 | 
						|
		start_jiffies = jiffies;
 | 
						|
		while (time_before_eq(jiffies, start_jiffies + 1)) {
 | 
						|
			pre_start = start;
 | 
						|
			read_current_timer(&start);
 | 
						|
		}
 | 
						|
		read_current_timer(&post_start);
 | 
						|
 | 
						|
		pre_end = 0;
 | 
						|
		end = post_start;
 | 
						|
		while (time_before_eq(jiffies, start_jiffies + 1 +
 | 
						|
					       DELAY_CALIBRATION_TICKS)) {
 | 
						|
			pre_end = end;
 | 
						|
			read_current_timer(&end);
 | 
						|
		}
 | 
						|
		read_current_timer(&post_end);
 | 
						|
 | 
						|
		timer_rate_max = (post_end - pre_start) /
 | 
						|
					DELAY_CALIBRATION_TICKS;
 | 
						|
		timer_rate_min = (pre_end - post_start) /
 | 
						|
					DELAY_CALIBRATION_TICKS;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If the upper limit and lower limit of the timer_rate is
 | 
						|
		 * >= 12.5% apart, redo calibration.
 | 
						|
		 */
 | 
						|
		if (start >= post_end)
 | 
						|
			printk(KERN_NOTICE "calibrate_delay_direct() ignoring "
 | 
						|
					"timer_rate as we had a TSC wrap around"
 | 
						|
					" start=%lu >=post_end=%lu\n",
 | 
						|
				start, post_end);
 | 
						|
		if (start < post_end && pre_start != 0 && pre_end != 0 &&
 | 
						|
		    (timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) {
 | 
						|
			good_timer_count++;
 | 
						|
			good_timer_sum += timer_rate_max;
 | 
						|
			measured_times[i] = timer_rate_max;
 | 
						|
			if (max < 0 || timer_rate_max > measured_times[max])
 | 
						|
				max = i;
 | 
						|
			if (min < 0 || timer_rate_max < measured_times[min])
 | 
						|
				min = i;
 | 
						|
		} else
 | 
						|
			measured_times[i] = 0;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Find the maximum & minimum - if they differ too much throw out the
 | 
						|
	 * one with the largest difference from the mean and try again...
 | 
						|
	 */
 | 
						|
	while (good_timer_count > 1) {
 | 
						|
		unsigned long estimate;
 | 
						|
		unsigned long maxdiff;
 | 
						|
 | 
						|
		/* compute the estimate */
 | 
						|
		estimate = (good_timer_sum/good_timer_count);
 | 
						|
		maxdiff = estimate >> 3;
 | 
						|
 | 
						|
		/* if range is within 12% let's take it */
 | 
						|
		if ((measured_times[max] - measured_times[min]) < maxdiff)
 | 
						|
			return estimate;
 | 
						|
 | 
						|
		/* ok - drop the worse value and try again... */
 | 
						|
		good_timer_sum = 0;
 | 
						|
		good_timer_count = 0;
 | 
						|
		if ((measured_times[max] - estimate) <
 | 
						|
				(estimate - measured_times[min])) {
 | 
						|
			printk(KERN_NOTICE "calibrate_delay_direct() dropping "
 | 
						|
					"min bogoMips estimate %d = %lu\n",
 | 
						|
				min, measured_times[min]);
 | 
						|
			measured_times[min] = 0;
 | 
						|
			min = max;
 | 
						|
		} else {
 | 
						|
			printk(KERN_NOTICE "calibrate_delay_direct() dropping "
 | 
						|
					"max bogoMips estimate %d = %lu\n",
 | 
						|
				max, measured_times[max]);
 | 
						|
			measured_times[max] = 0;
 | 
						|
			max = min;
 | 
						|
		}
 | 
						|
 | 
						|
		for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
 | 
						|
			if (measured_times[i] == 0)
 | 
						|
				continue;
 | 
						|
			good_timer_count++;
 | 
						|
			good_timer_sum += measured_times[i];
 | 
						|
			if (measured_times[i] < measured_times[min])
 | 
						|
				min = i;
 | 
						|
			if (measured_times[i] > measured_times[max])
 | 
						|
				max = i;
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	printk(KERN_NOTICE "calibrate_delay_direct() failed to get a good "
 | 
						|
	       "estimate for loops_per_jiffy.\nProbably due to long platform "
 | 
						|
		"interrupts. Consider using \"lpj=\" boot option.\n");
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#else
 | 
						|
static unsigned long __cpuinit calibrate_delay_direct(void) {return 0;}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * This is the number of bits of precision for the loops_per_jiffy.  Each
 | 
						|
 * time we refine our estimate after the first takes 1.5/HZ seconds, so try
 | 
						|
 * to start with a good estimate.
 | 
						|
 * For the boot cpu we can skip the delay calibration and assign it a value
 | 
						|
 * calculated based on the timer frequency.
 | 
						|
 * For the rest of the CPUs we cannot assume that the timer frequency is same as
 | 
						|
 * the cpu frequency, hence do the calibration for those.
 | 
						|
 */
 | 
						|
#define LPS_PREC 8
 | 
						|
 | 
						|
static unsigned long __cpuinit calibrate_delay_converge(void)
 | 
						|
{
 | 
						|
	/* First stage - slowly accelerate to find initial bounds */
 | 
						|
	unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit;
 | 
						|
	int trials = 0, band = 0, trial_in_band = 0;
 | 
						|
 | 
						|
	lpj = (1<<12);
 | 
						|
 | 
						|
	/* wait for "start of" clock tick */
 | 
						|
	ticks = jiffies;
 | 
						|
	while (ticks == jiffies)
 | 
						|
		; /* nothing */
 | 
						|
	/* Go .. */
 | 
						|
	ticks = jiffies;
 | 
						|
	do {
 | 
						|
		if (++trial_in_band == (1<<band)) {
 | 
						|
			++band;
 | 
						|
			trial_in_band = 0;
 | 
						|
		}
 | 
						|
		__delay(lpj * band);
 | 
						|
		trials += band;
 | 
						|
	} while (ticks == jiffies);
 | 
						|
	/*
 | 
						|
	 * We overshot, so retreat to a clear underestimate. Then estimate
 | 
						|
	 * the largest likely undershoot. This defines our chop bounds.
 | 
						|
	 */
 | 
						|
	trials -= band;
 | 
						|
	loopadd_base = lpj * band;
 | 
						|
	lpj_base = lpj * trials;
 | 
						|
 | 
						|
recalibrate:
 | 
						|
	lpj = lpj_base;
 | 
						|
	loopadd = loopadd_base;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Do a binary approximation to get lpj set to
 | 
						|
	 * equal one clock (up to LPS_PREC bits)
 | 
						|
	 */
 | 
						|
	chop_limit = lpj >> LPS_PREC;
 | 
						|
	while (loopadd > chop_limit) {
 | 
						|
		lpj += loopadd;
 | 
						|
		ticks = jiffies;
 | 
						|
		while (ticks == jiffies)
 | 
						|
			; /* nothing */
 | 
						|
		ticks = jiffies;
 | 
						|
		__delay(lpj);
 | 
						|
		if (jiffies != ticks)	/* longer than 1 tick */
 | 
						|
			lpj -= loopadd;
 | 
						|
		loopadd >>= 1;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * If we incremented every single time possible, presume we've
 | 
						|
	 * massively underestimated initially, and retry with a higher
 | 
						|
	 * start, and larger range. (Only seen on x86_64, due to SMIs)
 | 
						|
	 */
 | 
						|
	if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) {
 | 
						|
		lpj_base = lpj;
 | 
						|
		loopadd_base <<= 2;
 | 
						|
		goto recalibrate;
 | 
						|
	}
 | 
						|
 | 
						|
	return lpj;
 | 
						|
}
 | 
						|
 | 
						|
static DEFINE_PER_CPU(unsigned long, cpu_loops_per_jiffy) = { 0 };
 | 
						|
 | 
						|
/*
 | 
						|
 * Check if cpu calibration delay is already known. For example,
 | 
						|
 * some processors with multi-core sockets may have all cores
 | 
						|
 * with the same calibration delay.
 | 
						|
 *
 | 
						|
 * Architectures should override this function if a faster calibration
 | 
						|
 * method is available.
 | 
						|
 */
 | 
						|
unsigned long __attribute__((weak)) __cpuinit calibrate_delay_is_known(void)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void __cpuinit calibrate_delay(void)
 | 
						|
{
 | 
						|
	unsigned long lpj;
 | 
						|
	static bool printed;
 | 
						|
	int this_cpu = smp_processor_id();
 | 
						|
 | 
						|
	if (per_cpu(cpu_loops_per_jiffy, this_cpu)) {
 | 
						|
		lpj = per_cpu(cpu_loops_per_jiffy, this_cpu);
 | 
						|
		if (!printed)
 | 
						|
			pr_info("Calibrating delay loop (skipped) "
 | 
						|
				"already calibrated this CPU");
 | 
						|
	} else if (preset_lpj) {
 | 
						|
		lpj = preset_lpj;
 | 
						|
		if (!printed)
 | 
						|
			pr_info("Calibrating delay loop (skipped) "
 | 
						|
				"preset value.. ");
 | 
						|
	} else if ((!printed) && lpj_fine) {
 | 
						|
		lpj = lpj_fine;
 | 
						|
		pr_info("Calibrating delay loop (skipped), "
 | 
						|
			"value calculated using timer frequency.. ");
 | 
						|
	} else if ((lpj = calibrate_delay_is_known())) {
 | 
						|
		;
 | 
						|
	} else if ((lpj = calibrate_delay_direct()) != 0) {
 | 
						|
		if (!printed)
 | 
						|
			pr_info("Calibrating delay using timer "
 | 
						|
				"specific routine.. ");
 | 
						|
	} else {
 | 
						|
		if (!printed)
 | 
						|
			pr_info("Calibrating delay loop... ");
 | 
						|
		lpj = calibrate_delay_converge();
 | 
						|
	}
 | 
						|
	per_cpu(cpu_loops_per_jiffy, this_cpu) = lpj;
 | 
						|
	if (!printed)
 | 
						|
		pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
 | 
						|
			lpj/(500000/HZ),
 | 
						|
			(lpj/(5000/HZ)) % 100, lpj);
 | 
						|
 | 
						|
	loops_per_jiffy = lpj;
 | 
						|
	printed = true;
 | 
						|
}
 |