 5cd2b459d3
			
		
	
	
	5cd2b459d3
	
	
	
		
			
			Use WARN() instead of a printk+WARN_ON() pair; this way the message becomes part of the warning section for better reporting/collection. In addition, one of the if() clauses collapes into the WARN() entirely now. Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			282 lines
		
	
	
	
		
			7.4 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			282 lines
		
	
	
	
		
			7.4 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Implement the default iomap interfaces
 | |
|  *
 | |
|  * (C) Copyright 2004 Linus Torvalds
 | |
|  */
 | |
| #include <linux/pci.h>
 | |
| #include <linux/io.h>
 | |
| 
 | |
| #include <linux/module.h>
 | |
| 
 | |
| /*
 | |
|  * Read/write from/to an (offsettable) iomem cookie. It might be a PIO
 | |
|  * access or a MMIO access, these functions don't care. The info is
 | |
|  * encoded in the hardware mapping set up by the mapping functions
 | |
|  * (or the cookie itself, depending on implementation and hw).
 | |
|  *
 | |
|  * The generic routines don't assume any hardware mappings, and just
 | |
|  * encode the PIO/MMIO as part of the cookie. They coldly assume that
 | |
|  * the MMIO IO mappings are not in the low address range.
 | |
|  *
 | |
|  * Architectures for which this is not true can't use this generic
 | |
|  * implementation and should do their own copy.
 | |
|  */
 | |
| 
 | |
| #ifndef HAVE_ARCH_PIO_SIZE
 | |
| /*
 | |
|  * We encode the physical PIO addresses (0-0xffff) into the
 | |
|  * pointer by offsetting them with a constant (0x10000) and
 | |
|  * assuming that all the low addresses are always PIO. That means
 | |
|  * we can do some sanity checks on the low bits, and don't
 | |
|  * need to just take things for granted.
 | |
|  */
 | |
| #define PIO_OFFSET	0x10000UL
 | |
| #define PIO_MASK	0x0ffffUL
 | |
| #define PIO_RESERVED	0x40000UL
 | |
| #endif
 | |
| 
 | |
| static void bad_io_access(unsigned long port, const char *access)
 | |
| {
 | |
| 	static int count = 10;
 | |
| 	if (count) {
 | |
| 		count--;
 | |
| 		WARN(1, KERN_ERR "Bad IO access at port %#lx (%s)\n", port, access);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ugly macros are a way of life.
 | |
|  */
 | |
| #define IO_COND(addr, is_pio, is_mmio) do {			\
 | |
| 	unsigned long port = (unsigned long __force)addr;	\
 | |
| 	if (port >= PIO_RESERVED) {				\
 | |
| 		is_mmio;					\
 | |
| 	} else if (port > PIO_OFFSET) {				\
 | |
| 		port &= PIO_MASK;				\
 | |
| 		is_pio;						\
 | |
| 	} else							\
 | |
| 		bad_io_access(port, #is_pio );			\
 | |
| } while (0)
 | |
| 
 | |
| #ifndef pio_read16be
 | |
| #define pio_read16be(port) swab16(inw(port))
 | |
| #define pio_read32be(port) swab32(inl(port))
 | |
| #endif
 | |
| 
 | |
| #ifndef mmio_read16be
 | |
| #define mmio_read16be(addr) be16_to_cpu(__raw_readw(addr))
 | |
| #define mmio_read32be(addr) be32_to_cpu(__raw_readl(addr))
 | |
| #endif
 | |
| 
 | |
| unsigned int ioread8(void __iomem *addr)
 | |
| {
 | |
| 	IO_COND(addr, return inb(port), return readb(addr));
 | |
| 	return 0xff;
 | |
| }
 | |
| unsigned int ioread16(void __iomem *addr)
 | |
| {
 | |
| 	IO_COND(addr, return inw(port), return readw(addr));
 | |
| 	return 0xffff;
 | |
| }
 | |
| unsigned int ioread16be(void __iomem *addr)
 | |
| {
 | |
| 	IO_COND(addr, return pio_read16be(port), return mmio_read16be(addr));
 | |
| 	return 0xffff;
 | |
| }
 | |
| unsigned int ioread32(void __iomem *addr)
 | |
| {
 | |
| 	IO_COND(addr, return inl(port), return readl(addr));
 | |
| 	return 0xffffffff;
 | |
| }
 | |
| unsigned int ioread32be(void __iomem *addr)
 | |
| {
 | |
| 	IO_COND(addr, return pio_read32be(port), return mmio_read32be(addr));
 | |
| 	return 0xffffffff;
 | |
| }
 | |
| EXPORT_SYMBOL(ioread8);
 | |
| EXPORT_SYMBOL(ioread16);
 | |
| EXPORT_SYMBOL(ioread16be);
 | |
| EXPORT_SYMBOL(ioread32);
 | |
| EXPORT_SYMBOL(ioread32be);
 | |
| 
 | |
| #ifndef pio_write16be
 | |
| #define pio_write16be(val,port) outw(swab16(val),port)
 | |
| #define pio_write32be(val,port) outl(swab32(val),port)
 | |
| #endif
 | |
| 
 | |
| #ifndef mmio_write16be
 | |
| #define mmio_write16be(val,port) __raw_writew(be16_to_cpu(val),port)
 | |
| #define mmio_write32be(val,port) __raw_writel(be32_to_cpu(val),port)
 | |
| #endif
 | |
| 
 | |
| void iowrite8(u8 val, void __iomem *addr)
 | |
| {
 | |
| 	IO_COND(addr, outb(val,port), writeb(val, addr));
 | |
| }
 | |
| void iowrite16(u16 val, void __iomem *addr)
 | |
| {
 | |
| 	IO_COND(addr, outw(val,port), writew(val, addr));
 | |
| }
 | |
| void iowrite16be(u16 val, void __iomem *addr)
 | |
| {
 | |
| 	IO_COND(addr, pio_write16be(val,port), mmio_write16be(val, addr));
 | |
| }
 | |
| void iowrite32(u32 val, void __iomem *addr)
 | |
| {
 | |
| 	IO_COND(addr, outl(val,port), writel(val, addr));
 | |
| }
 | |
| void iowrite32be(u32 val, void __iomem *addr)
 | |
| {
 | |
| 	IO_COND(addr, pio_write32be(val,port), mmio_write32be(val, addr));
 | |
| }
 | |
| EXPORT_SYMBOL(iowrite8);
 | |
| EXPORT_SYMBOL(iowrite16);
 | |
| EXPORT_SYMBOL(iowrite16be);
 | |
| EXPORT_SYMBOL(iowrite32);
 | |
| EXPORT_SYMBOL(iowrite32be);
 | |
| 
 | |
| /*
 | |
|  * These are the "repeat MMIO read/write" functions.
 | |
|  * Note the "__raw" accesses, since we don't want to
 | |
|  * convert to CPU byte order. We write in "IO byte
 | |
|  * order" (we also don't have IO barriers).
 | |
|  */
 | |
| #ifndef mmio_insb
 | |
| static inline void mmio_insb(void __iomem *addr, u8 *dst, int count)
 | |
| {
 | |
| 	while (--count >= 0) {
 | |
| 		u8 data = __raw_readb(addr);
 | |
| 		*dst = data;
 | |
| 		dst++;
 | |
| 	}
 | |
| }
 | |
| static inline void mmio_insw(void __iomem *addr, u16 *dst, int count)
 | |
| {
 | |
| 	while (--count >= 0) {
 | |
| 		u16 data = __raw_readw(addr);
 | |
| 		*dst = data;
 | |
| 		dst++;
 | |
| 	}
 | |
| }
 | |
| static inline void mmio_insl(void __iomem *addr, u32 *dst, int count)
 | |
| {
 | |
| 	while (--count >= 0) {
 | |
| 		u32 data = __raw_readl(addr);
 | |
| 		*dst = data;
 | |
| 		dst++;
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef mmio_outsb
 | |
| static inline void mmio_outsb(void __iomem *addr, const u8 *src, int count)
 | |
| {
 | |
| 	while (--count >= 0) {
 | |
| 		__raw_writeb(*src, addr);
 | |
| 		src++;
 | |
| 	}
 | |
| }
 | |
| static inline void mmio_outsw(void __iomem *addr, const u16 *src, int count)
 | |
| {
 | |
| 	while (--count >= 0) {
 | |
| 		__raw_writew(*src, addr);
 | |
| 		src++;
 | |
| 	}
 | |
| }
 | |
| static inline void mmio_outsl(void __iomem *addr, const u32 *src, int count)
 | |
| {
 | |
| 	while (--count >= 0) {
 | |
| 		__raw_writel(*src, addr);
 | |
| 		src++;
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void ioread8_rep(void __iomem *addr, void *dst, unsigned long count)
 | |
| {
 | |
| 	IO_COND(addr, insb(port,dst,count), mmio_insb(addr, dst, count));
 | |
| }
 | |
| void ioread16_rep(void __iomem *addr, void *dst, unsigned long count)
 | |
| {
 | |
| 	IO_COND(addr, insw(port,dst,count), mmio_insw(addr, dst, count));
 | |
| }
 | |
| void ioread32_rep(void __iomem *addr, void *dst, unsigned long count)
 | |
| {
 | |
| 	IO_COND(addr, insl(port,dst,count), mmio_insl(addr, dst, count));
 | |
| }
 | |
| EXPORT_SYMBOL(ioread8_rep);
 | |
| EXPORT_SYMBOL(ioread16_rep);
 | |
| EXPORT_SYMBOL(ioread32_rep);
 | |
| 
 | |
| void iowrite8_rep(void __iomem *addr, const void *src, unsigned long count)
 | |
| {
 | |
| 	IO_COND(addr, outsb(port, src, count), mmio_outsb(addr, src, count));
 | |
| }
 | |
| void iowrite16_rep(void __iomem *addr, const void *src, unsigned long count)
 | |
| {
 | |
| 	IO_COND(addr, outsw(port, src, count), mmio_outsw(addr, src, count));
 | |
| }
 | |
| void iowrite32_rep(void __iomem *addr, const void *src, unsigned long count)
 | |
| {
 | |
| 	IO_COND(addr, outsl(port, src,count), mmio_outsl(addr, src, count));
 | |
| }
 | |
| EXPORT_SYMBOL(iowrite8_rep);
 | |
| EXPORT_SYMBOL(iowrite16_rep);
 | |
| EXPORT_SYMBOL(iowrite32_rep);
 | |
| 
 | |
| /* Create a virtual mapping cookie for an IO port range */
 | |
| void __iomem *ioport_map(unsigned long port, unsigned int nr)
 | |
| {
 | |
| 	if (port > PIO_MASK)
 | |
| 		return NULL;
 | |
| 	return (void __iomem *) (unsigned long) (port + PIO_OFFSET);
 | |
| }
 | |
| 
 | |
| void ioport_unmap(void __iomem *addr)
 | |
| {
 | |
| 	/* Nothing to do */
 | |
| }
 | |
| EXPORT_SYMBOL(ioport_map);
 | |
| EXPORT_SYMBOL(ioport_unmap);
 | |
| 
 | |
| /**
 | |
|  * pci_iomap - create a virtual mapping cookie for a PCI BAR
 | |
|  * @dev: PCI device that owns the BAR
 | |
|  * @bar: BAR number
 | |
|  * @maxlen: length of the memory to map
 | |
|  *
 | |
|  * Using this function you will get a __iomem address to your device BAR.
 | |
|  * You can access it using ioread*() and iowrite*(). These functions hide
 | |
|  * the details if this is a MMIO or PIO address space and will just do what
 | |
|  * you expect from them in the correct way.
 | |
|  *
 | |
|  * @maxlen specifies the maximum length to map. If you want to get access to
 | |
|  * the complete BAR without checking for its length first, pass %0 here.
 | |
|  * */
 | |
| void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
 | |
| {
 | |
| 	resource_size_t start = pci_resource_start(dev, bar);
 | |
| 	resource_size_t len = pci_resource_len(dev, bar);
 | |
| 	unsigned long flags = pci_resource_flags(dev, bar);
 | |
| 
 | |
| 	if (!len || !start)
 | |
| 		return NULL;
 | |
| 	if (maxlen && len > maxlen)
 | |
| 		len = maxlen;
 | |
| 	if (flags & IORESOURCE_IO)
 | |
| 		return ioport_map(start, len);
 | |
| 	if (flags & IORESOURCE_MEM) {
 | |
| 		if (flags & IORESOURCE_CACHEABLE)
 | |
| 			return ioremap(start, len);
 | |
| 		return ioremap_nocache(start, len);
 | |
| 	}
 | |
| 	/* What? */
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void pci_iounmap(struct pci_dev *dev, void __iomem * addr)
 | |
| {
 | |
| 	IO_COND(addr, /* nothing */, iounmap(addr));
 | |
| }
 | |
| EXPORT_SYMBOL(pci_iomap);
 | |
| EXPORT_SYMBOL(pci_iounmap);
 |