 705db3fd46
			
		
	
	
	705db3fd46
	
	
	
		
			
			If we fail to initialise the VFS inode in inode_init_always(), it will call ->delete_inode internally resulting in the inode being freed. Hence we need to delay the call to inode_init_always() until after the XFS inode is sufficient set up to handle a call to ->delete_inode, and then if that fails do not touch the inode again at all as it has been freed. Signed-off-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
		
			
				
	
	
		
			865 lines
		
	
	
	
		
			23 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			865 lines
		
	
	
	
		
			23 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 | |
|  * All Rights Reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it would be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write the Free Software Foundation,
 | |
|  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include "xfs_fs.h"
 | |
| #include "xfs_types.h"
 | |
| #include "xfs_bit.h"
 | |
| #include "xfs_log.h"
 | |
| #include "xfs_inum.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_sb.h"
 | |
| #include "xfs_ag.h"
 | |
| #include "xfs_dir2.h"
 | |
| #include "xfs_dmapi.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_bmap_btree.h"
 | |
| #include "xfs_alloc_btree.h"
 | |
| #include "xfs_ialloc_btree.h"
 | |
| #include "xfs_dir2_sf.h"
 | |
| #include "xfs_attr_sf.h"
 | |
| #include "xfs_dinode.h"
 | |
| #include "xfs_inode.h"
 | |
| #include "xfs_btree.h"
 | |
| #include "xfs_ialloc.h"
 | |
| #include "xfs_quota.h"
 | |
| #include "xfs_utils.h"
 | |
| #include "xfs_trans_priv.h"
 | |
| #include "xfs_inode_item.h"
 | |
| #include "xfs_bmap.h"
 | |
| #include "xfs_btree_trace.h"
 | |
| #include "xfs_dir2_trace.h"
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Allocate and initialise an xfs_inode.
 | |
|  */
 | |
| STATIC struct xfs_inode *
 | |
| xfs_inode_alloc(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	xfs_ino_t		ino)
 | |
| {
 | |
| 	struct xfs_inode	*ip;
 | |
| 
 | |
| 	/*
 | |
| 	 * if this didn't occur in transactions, we could use
 | |
| 	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
 | |
| 	 * code up to do this anyway.
 | |
| 	 */
 | |
| 	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
 | |
| 	if (!ip)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ASSERT(atomic_read(&ip->i_iocount) == 0);
 | |
| 	ASSERT(atomic_read(&ip->i_pincount) == 0);
 | |
| 	ASSERT(!spin_is_locked(&ip->i_flags_lock));
 | |
| 	ASSERT(completion_done(&ip->i_flush));
 | |
| 
 | |
| 	/* initialise the xfs inode */
 | |
| 	ip->i_ino = ino;
 | |
| 	ip->i_mount = mp;
 | |
| 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
 | |
| 	ip->i_afp = NULL;
 | |
| 	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
 | |
| 	ip->i_flags = 0;
 | |
| 	ip->i_update_core = 0;
 | |
| 	ip->i_update_size = 0;
 | |
| 	ip->i_delayed_blks = 0;
 | |
| 	memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
 | |
| 	ip->i_size = 0;
 | |
| 	ip->i_new_size = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize inode's trace buffers.
 | |
| 	 */
 | |
| #ifdef	XFS_INODE_TRACE
 | |
| 	ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS);
 | |
| #endif
 | |
| #ifdef XFS_BMAP_TRACE
 | |
| 	ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS);
 | |
| #endif
 | |
| #ifdef XFS_BTREE_TRACE
 | |
| 	ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS);
 | |
| #endif
 | |
| #ifdef XFS_RW_TRACE
 | |
| 	ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS);
 | |
| #endif
 | |
| #ifdef XFS_ILOCK_TRACE
 | |
| 	ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS);
 | |
| #endif
 | |
| #ifdef XFS_DIR2_TRACE
 | |
| 	ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS);
 | |
| #endif
 | |
| 	/*
 | |
| 	* Now initialise the VFS inode. We do this after the xfs_inode
 | |
| 	* initialisation as internal failures will result in ->destroy_inode
 | |
| 	* being called and that will pass down through the reclaim path and
 | |
| 	* free the XFS inode. This path requires the XFS inode to already be
 | |
| 	* initialised. Hence if this call fails, the xfs_inode has already
 | |
| 	* been freed and we should not reference it at all in the error
 | |
| 	* handling.
 | |
| 	*/
 | |
| 	if (!inode_init_always(mp->m_super, VFS_I(ip)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* prevent anyone from using this yet */
 | |
| 	VFS_I(ip)->i_state = I_NEW|I_LOCK;
 | |
| 
 | |
| 	return ip;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check the validity of the inode we just found it the cache
 | |
|  */
 | |
| static int
 | |
| xfs_iget_cache_hit(
 | |
| 	struct xfs_perag	*pag,
 | |
| 	struct xfs_inode	*ip,
 | |
| 	int			flags,
 | |
| 	int			lock_flags) __releases(pag->pag_ici_lock)
 | |
| {
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	int			error = EAGAIN;
 | |
| 
 | |
| 	/*
 | |
| 	 * If INEW is set this inode is being set up
 | |
| 	 * If IRECLAIM is set this inode is being torn down
 | |
| 	 * Pause and try again.
 | |
| 	 */
 | |
| 	if (xfs_iflags_test(ip, (XFS_INEW|XFS_IRECLAIM))) {
 | |
| 		XFS_STATS_INC(xs_ig_frecycle);
 | |
| 		goto out_error;
 | |
| 	}
 | |
| 
 | |
| 	/* If IRECLAIMABLE is set, we've torn down the vfs inode part */
 | |
| 	if (xfs_iflags_test(ip, XFS_IRECLAIMABLE)) {
 | |
| 
 | |
| 		/*
 | |
| 		 * If lookup is racing with unlink, then we should return an
 | |
| 		 * error immediately so we don't remove it from the reclaim
 | |
| 		 * list and potentially leak the inode.
 | |
| 		 */
 | |
| 		if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
 | |
| 			error = ENOENT;
 | |
| 			goto out_error;
 | |
| 		}
 | |
| 
 | |
| 		xfs_itrace_exit_tag(ip, "xfs_iget.alloc");
 | |
| 
 | |
| 		/*
 | |
| 		 * We need to re-initialise the VFS inode as it has been
 | |
| 		 * 'freed' by the VFS. Do this here so we can deal with
 | |
| 		 * errors cleanly, then tag it so it can be set up correctly
 | |
| 		 * later.
 | |
| 		 */
 | |
| 		if (!inode_init_always(mp->m_super, VFS_I(ip))) {
 | |
| 			error = ENOMEM;
 | |
| 			goto out_error;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We must set the XFS_INEW flag before clearing the
 | |
| 		 * XFS_IRECLAIMABLE flag so that if a racing lookup does
 | |
| 		 * not find the XFS_IRECLAIMABLE above but has the igrab()
 | |
| 		 * below succeed we can safely check XFS_INEW to detect
 | |
| 		 * that this inode is still being initialised.
 | |
| 		 */
 | |
| 		xfs_iflags_set(ip, XFS_INEW);
 | |
| 		xfs_iflags_clear(ip, XFS_IRECLAIMABLE);
 | |
| 
 | |
| 		/* clear the radix tree reclaim flag as well. */
 | |
| 		__xfs_inode_clear_reclaim_tag(mp, pag, ip);
 | |
| 	} else if (!igrab(VFS_I(ip))) {
 | |
| 		/* If the VFS inode is being torn down, pause and try again. */
 | |
| 		XFS_STATS_INC(xs_ig_frecycle);
 | |
| 		goto out_error;
 | |
| 	} else if (xfs_iflags_test(ip, XFS_INEW)) {
 | |
| 		/*
 | |
| 		 * We are racing with another cache hit that is
 | |
| 		 * currently recycling this inode out of the XFS_IRECLAIMABLE
 | |
| 		 * state. Wait for the initialisation to complete before
 | |
| 		 * continuing.
 | |
| 		 */
 | |
| 		wait_on_inode(VFS_I(ip));
 | |
| 	}
 | |
| 
 | |
| 	if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
 | |
| 		error = ENOENT;
 | |
| 		iput(VFS_I(ip));
 | |
| 		goto out_error;
 | |
| 	}
 | |
| 
 | |
| 	/* We've got a live one. */
 | |
| 	read_unlock(&pag->pag_ici_lock);
 | |
| 
 | |
| 	if (lock_flags != 0)
 | |
| 		xfs_ilock(ip, lock_flags);
 | |
| 
 | |
| 	xfs_iflags_clear(ip, XFS_ISTALE);
 | |
| 	xfs_itrace_exit_tag(ip, "xfs_iget.found");
 | |
| 	XFS_STATS_INC(xs_ig_found);
 | |
| 	return 0;
 | |
| 
 | |
| out_error:
 | |
| 	read_unlock(&pag->pag_ici_lock);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| xfs_iget_cache_miss(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_perag	*pag,
 | |
| 	xfs_trans_t		*tp,
 | |
| 	xfs_ino_t		ino,
 | |
| 	struct xfs_inode	**ipp,
 | |
| 	xfs_daddr_t		bno,
 | |
| 	int			flags,
 | |
| 	int			lock_flags) __releases(pag->pag_ici_lock)
 | |
| {
 | |
| 	struct xfs_inode	*ip;
 | |
| 	int			error;
 | |
| 	unsigned long		first_index, mask;
 | |
| 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
 | |
| 
 | |
| 	ip = xfs_inode_alloc(mp, ino);
 | |
| 	if (!ip)
 | |
| 		return ENOMEM;
 | |
| 
 | |
| 	error = xfs_iread(mp, tp, ip, bno, flags);
 | |
| 	if (error)
 | |
| 		goto out_destroy;
 | |
| 
 | |
| 	xfs_itrace_exit_tag(ip, "xfs_iget.alloc");
 | |
| 
 | |
| 	if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
 | |
| 		error = ENOENT;
 | |
| 		goto out_destroy;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Preload the radix tree so we can insert safely under the
 | |
| 	 * write spinlock. Note that we cannot sleep inside the preload
 | |
| 	 * region.
 | |
| 	 */
 | |
| 	if (radix_tree_preload(GFP_KERNEL)) {
 | |
| 		error = EAGAIN;
 | |
| 		goto out_destroy;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Because the inode hasn't been added to the radix-tree yet it can't
 | |
| 	 * be found by another thread, so we can do the non-sleeping lock here.
 | |
| 	 */
 | |
| 	if (lock_flags) {
 | |
| 		if (!xfs_ilock_nowait(ip, lock_flags))
 | |
| 			BUG();
 | |
| 	}
 | |
| 
 | |
| 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
 | |
| 	first_index = agino & mask;
 | |
| 	write_lock(&pag->pag_ici_lock);
 | |
| 
 | |
| 	/* insert the new inode */
 | |
| 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
 | |
| 	if (unlikely(error)) {
 | |
| 		WARN_ON(error != -EEXIST);
 | |
| 		XFS_STATS_INC(xs_ig_dup);
 | |
| 		error = EAGAIN;
 | |
| 		goto out_preload_end;
 | |
| 	}
 | |
| 
 | |
| 	/* These values _must_ be set before releasing the radix tree lock! */
 | |
| 	ip->i_udquot = ip->i_gdquot = NULL;
 | |
| 	xfs_iflags_set(ip, XFS_INEW);
 | |
| 
 | |
| 	write_unlock(&pag->pag_ici_lock);
 | |
| 	radix_tree_preload_end();
 | |
| 	*ipp = ip;
 | |
| 	return 0;
 | |
| 
 | |
| out_preload_end:
 | |
| 	write_unlock(&pag->pag_ici_lock);
 | |
| 	radix_tree_preload_end();
 | |
| 	if (lock_flags)
 | |
| 		xfs_iunlock(ip, lock_flags);
 | |
| out_destroy:
 | |
| 	xfs_destroy_inode(ip);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look up an inode by number in the given file system.
 | |
|  * The inode is looked up in the cache held in each AG.
 | |
|  * If the inode is found in the cache, initialise the vfs inode
 | |
|  * if necessary.
 | |
|  *
 | |
|  * If it is not in core, read it in from the file system's device,
 | |
|  * add it to the cache and initialise the vfs inode.
 | |
|  *
 | |
|  * The inode is locked according to the value of the lock_flags parameter.
 | |
|  * This flag parameter indicates how and if the inode's IO lock and inode lock
 | |
|  * should be taken.
 | |
|  *
 | |
|  * mp -- the mount point structure for the current file system.  It points
 | |
|  *       to the inode hash table.
 | |
|  * tp -- a pointer to the current transaction if there is one.  This is
 | |
|  *       simply passed through to the xfs_iread() call.
 | |
|  * ino -- the number of the inode desired.  This is the unique identifier
 | |
|  *        within the file system for the inode being requested.
 | |
|  * lock_flags -- flags indicating how to lock the inode.  See the comment
 | |
|  *		 for xfs_ilock() for a list of valid values.
 | |
|  * bno -- the block number starting the buffer containing the inode,
 | |
|  *	  if known (as by bulkstat), else 0.
 | |
|  */
 | |
| int
 | |
| xfs_iget(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	xfs_trans_t	*tp,
 | |
| 	xfs_ino_t	ino,
 | |
| 	uint		flags,
 | |
| 	uint		lock_flags,
 | |
| 	xfs_inode_t	**ipp,
 | |
| 	xfs_daddr_t	bno)
 | |
| {
 | |
| 	xfs_inode_t	*ip;
 | |
| 	int		error;
 | |
| 	xfs_perag_t	*pag;
 | |
| 	xfs_agino_t	agino;
 | |
| 
 | |
| 	/* the radix tree exists only in inode capable AGs */
 | |
| 	if (XFS_INO_TO_AGNO(mp, ino) >= mp->m_maxagi)
 | |
| 		return EINVAL;
 | |
| 
 | |
| 	/* get the perag structure and ensure that it's inode capable */
 | |
| 	pag = xfs_get_perag(mp, ino);
 | |
| 	if (!pag->pagi_inodeok)
 | |
| 		return EINVAL;
 | |
| 	ASSERT(pag->pag_ici_init);
 | |
| 	agino = XFS_INO_TO_AGINO(mp, ino);
 | |
| 
 | |
| again:
 | |
| 	error = 0;
 | |
| 	read_lock(&pag->pag_ici_lock);
 | |
| 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
 | |
| 
 | |
| 	if (ip) {
 | |
| 		error = xfs_iget_cache_hit(pag, ip, flags, lock_flags);
 | |
| 		if (error)
 | |
| 			goto out_error_or_again;
 | |
| 	} else {
 | |
| 		read_unlock(&pag->pag_ici_lock);
 | |
| 		XFS_STATS_INC(xs_ig_missed);
 | |
| 
 | |
| 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, bno,
 | |
| 							flags, lock_flags);
 | |
| 		if (error)
 | |
| 			goto out_error_or_again;
 | |
| 	}
 | |
| 	xfs_put_perag(mp, pag);
 | |
| 
 | |
| 	*ipp = ip;
 | |
| 
 | |
| 	ASSERT(ip->i_df.if_ext_max ==
 | |
| 	       XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t));
 | |
| 	/*
 | |
| 	 * If we have a real type for an on-disk inode, we can set ops(&unlock)
 | |
| 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
 | |
| 	 */
 | |
| 	if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
 | |
| 		xfs_setup_inode(ip);
 | |
| 	return 0;
 | |
| 
 | |
| out_error_or_again:
 | |
| 	if (error == EAGAIN) {
 | |
| 		delay(1);
 | |
| 		goto again;
 | |
| 	}
 | |
| 	xfs_put_perag(mp, pag);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Look for the inode corresponding to the given ino in the hash table.
 | |
|  * If it is there and its i_transp pointer matches tp, return it.
 | |
|  * Otherwise, return NULL.
 | |
|  */
 | |
| xfs_inode_t *
 | |
| xfs_inode_incore(xfs_mount_t	*mp,
 | |
| 		 xfs_ino_t	ino,
 | |
| 		 xfs_trans_t	*tp)
 | |
| {
 | |
| 	xfs_inode_t	*ip;
 | |
| 	xfs_perag_t	*pag;
 | |
| 
 | |
| 	pag = xfs_get_perag(mp, ino);
 | |
| 	read_lock(&pag->pag_ici_lock);
 | |
| 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ino));
 | |
| 	read_unlock(&pag->pag_ici_lock);
 | |
| 	xfs_put_perag(mp, pag);
 | |
| 
 | |
| 	/* the returned inode must match the transaction */
 | |
| 	if (ip && (ip->i_transp != tp))
 | |
| 		return NULL;
 | |
| 	return ip;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decrement reference count of an inode structure and unlock it.
 | |
|  *
 | |
|  * ip -- the inode being released
 | |
|  * lock_flags -- this parameter indicates the inode's locks to be
 | |
|  *       to be released.  See the comment on xfs_iunlock() for a list
 | |
|  *	 of valid values.
 | |
|  */
 | |
| void
 | |
| xfs_iput(xfs_inode_t	*ip,
 | |
| 	 uint		lock_flags)
 | |
| {
 | |
| 	xfs_itrace_entry(ip);
 | |
| 	xfs_iunlock(ip, lock_flags);
 | |
| 	IRELE(ip);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Special iput for brand-new inodes that are still locked
 | |
|  */
 | |
| void
 | |
| xfs_iput_new(
 | |
| 	xfs_inode_t	*ip,
 | |
| 	uint		lock_flags)
 | |
| {
 | |
| 	struct inode	*inode = VFS_I(ip);
 | |
| 
 | |
| 	xfs_itrace_entry(ip);
 | |
| 
 | |
| 	if ((ip->i_d.di_mode == 0)) {
 | |
| 		ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
 | |
| 		make_bad_inode(inode);
 | |
| 	}
 | |
| 	if (inode->i_state & I_NEW)
 | |
| 		unlock_new_inode(inode);
 | |
| 	if (lock_flags)
 | |
| 		xfs_iunlock(ip, lock_flags);
 | |
| 	IRELE(ip);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called free all the memory associated with an inode.
 | |
|  * It must free the inode itself and any buffers allocated for
 | |
|  * if_extents/if_data and if_broot.  It must also free the lock
 | |
|  * associated with the inode.
 | |
|  *
 | |
|  * Note: because we don't initialise everything on reallocation out
 | |
|  * of the zone, we must ensure we nullify everything correctly before
 | |
|  * freeing the structure.
 | |
|  */
 | |
| void
 | |
| xfs_ireclaim(
 | |
| 	struct xfs_inode	*ip)
 | |
| {
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	struct xfs_perag	*pag;
 | |
| 
 | |
| 	XFS_STATS_INC(xs_ig_reclaims);
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove the inode from the per-AG radix tree.  It doesn't matter
 | |
| 	 * if it was never added to it because radix_tree_delete can deal
 | |
| 	 * with that case just fine.
 | |
| 	 */
 | |
| 	pag = xfs_get_perag(mp, ip->i_ino);
 | |
| 	write_lock(&pag->pag_ici_lock);
 | |
| 	radix_tree_delete(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino));
 | |
| 	write_unlock(&pag->pag_ici_lock);
 | |
| 	xfs_put_perag(mp, pag);
 | |
| 
 | |
| 	/*
 | |
| 	 * Here we do an (almost) spurious inode lock in order to coordinate
 | |
| 	 * with inode cache radix tree lookups.  This is because the lookup
 | |
| 	 * can reference the inodes in the cache without taking references.
 | |
| 	 *
 | |
| 	 * We make that OK here by ensuring that we wait until the inode is
 | |
| 	 * unlocked after the lookup before we go ahead and free it.  We get
 | |
| 	 * both the ilock and the iolock because the code may need to drop the
 | |
| 	 * ilock one but will still hold the iolock.
 | |
| 	 */
 | |
| 	xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
 | |
| 	/*
 | |
| 	 * Release dquots (and their references) if any.
 | |
| 	 */
 | |
| 	XFS_QM_DQDETACH(ip->i_mount, ip);
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
 | |
| 
 | |
| 	switch (ip->i_d.di_mode & S_IFMT) {
 | |
| 	case S_IFREG:
 | |
| 	case S_IFDIR:
 | |
| 	case S_IFLNK:
 | |
| 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (ip->i_afp)
 | |
| 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
 | |
| 
 | |
| #ifdef XFS_INODE_TRACE
 | |
| 	ktrace_free(ip->i_trace);
 | |
| #endif
 | |
| #ifdef XFS_BMAP_TRACE
 | |
| 	ktrace_free(ip->i_xtrace);
 | |
| #endif
 | |
| #ifdef XFS_BTREE_TRACE
 | |
| 	ktrace_free(ip->i_btrace);
 | |
| #endif
 | |
| #ifdef XFS_RW_TRACE
 | |
| 	ktrace_free(ip->i_rwtrace);
 | |
| #endif
 | |
| #ifdef XFS_ILOCK_TRACE
 | |
| 	ktrace_free(ip->i_lock_trace);
 | |
| #endif
 | |
| #ifdef XFS_DIR2_TRACE
 | |
| 	ktrace_free(ip->i_dir_trace);
 | |
| #endif
 | |
| 	if (ip->i_itemp) {
 | |
| 		/*
 | |
| 		 * Only if we are shutting down the fs will we see an
 | |
| 		 * inode still in the AIL. If it is there, we should remove
 | |
| 		 * it to prevent a use-after-free from occurring.
 | |
| 		 */
 | |
| 		xfs_log_item_t	*lip = &ip->i_itemp->ili_item;
 | |
| 		struct xfs_ail	*ailp = lip->li_ailp;
 | |
| 
 | |
| 		ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
 | |
| 				       XFS_FORCED_SHUTDOWN(ip->i_mount));
 | |
| 		if (lip->li_flags & XFS_LI_IN_AIL) {
 | |
| 			spin_lock(&ailp->xa_lock);
 | |
| 			if (lip->li_flags & XFS_LI_IN_AIL)
 | |
| 				xfs_trans_ail_delete(ailp, lip);
 | |
| 			else
 | |
| 				spin_unlock(&ailp->xa_lock);
 | |
| 		}
 | |
| 		xfs_inode_item_destroy(ip);
 | |
| 		ip->i_itemp = NULL;
 | |
| 	}
 | |
| 	/* asserts to verify all state is correct here */
 | |
| 	ASSERT(atomic_read(&ip->i_iocount) == 0);
 | |
| 	ASSERT(atomic_read(&ip->i_pincount) == 0);
 | |
| 	ASSERT(!spin_is_locked(&ip->i_flags_lock));
 | |
| 	ASSERT(completion_done(&ip->i_flush));
 | |
| 	kmem_zone_free(xfs_inode_zone, ip);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a wrapper routine around the xfs_ilock() routine
 | |
|  * used to centralize some grungy code.  It is used in places
 | |
|  * that wish to lock the inode solely for reading the extents.
 | |
|  * The reason these places can't just call xfs_ilock(SHARED)
 | |
|  * is that the inode lock also guards to bringing in of the
 | |
|  * extents from disk for a file in b-tree format.  If the inode
 | |
|  * is in b-tree format, then we need to lock the inode exclusively
 | |
|  * until the extents are read in.  Locking it exclusively all
 | |
|  * the time would limit our parallelism unnecessarily, though.
 | |
|  * What we do instead is check to see if the extents have been
 | |
|  * read in yet, and only lock the inode exclusively if they
 | |
|  * have not.
 | |
|  *
 | |
|  * The function returns a value which should be given to the
 | |
|  * corresponding xfs_iunlock_map_shared().  This value is
 | |
|  * the mode in which the lock was actually taken.
 | |
|  */
 | |
| uint
 | |
| xfs_ilock_map_shared(
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	uint	lock_mode;
 | |
| 
 | |
| 	if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
 | |
| 	    ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
 | |
| 		lock_mode = XFS_ILOCK_EXCL;
 | |
| 	} else {
 | |
| 		lock_mode = XFS_ILOCK_SHARED;
 | |
| 	}
 | |
| 
 | |
| 	xfs_ilock(ip, lock_mode);
 | |
| 
 | |
| 	return lock_mode;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is simply the unlock routine to go with xfs_ilock_map_shared().
 | |
|  * All it does is call xfs_iunlock() with the given lock_mode.
 | |
|  */
 | |
| void
 | |
| xfs_iunlock_map_shared(
 | |
| 	xfs_inode_t	*ip,
 | |
| 	unsigned int	lock_mode)
 | |
| {
 | |
| 	xfs_iunlock(ip, lock_mode);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The xfs inode contains 2 locks: a multi-reader lock called the
 | |
|  * i_iolock and a multi-reader lock called the i_lock.  This routine
 | |
|  * allows either or both of the locks to be obtained.
 | |
|  *
 | |
|  * The 2 locks should always be ordered so that the IO lock is
 | |
|  * obtained first in order to prevent deadlock.
 | |
|  *
 | |
|  * ip -- the inode being locked
 | |
|  * lock_flags -- this parameter indicates the inode's locks
 | |
|  *       to be locked.  It can be:
 | |
|  *		XFS_IOLOCK_SHARED,
 | |
|  *		XFS_IOLOCK_EXCL,
 | |
|  *		XFS_ILOCK_SHARED,
 | |
|  *		XFS_ILOCK_EXCL,
 | |
|  *		XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
 | |
|  *		XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
 | |
|  *		XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
 | |
|  *		XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
 | |
|  */
 | |
| void
 | |
| xfs_ilock(
 | |
| 	xfs_inode_t		*ip,
 | |
| 	uint			lock_flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * You can't set both SHARED and EXCL for the same lock,
 | |
| 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 | |
| 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 | |
| 	 */
 | |
| 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 | |
| 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 | |
| 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 | |
| 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 | |
| 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
 | |
| 
 | |
| 	if (lock_flags & XFS_IOLOCK_EXCL)
 | |
| 		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 | |
| 	else if (lock_flags & XFS_IOLOCK_SHARED)
 | |
| 		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 | |
| 
 | |
| 	if (lock_flags & XFS_ILOCK_EXCL)
 | |
| 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 | |
| 	else if (lock_flags & XFS_ILOCK_SHARED)
 | |
| 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 | |
| 
 | |
| 	xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)__return_address);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is just like xfs_ilock(), except that the caller
 | |
|  * is guaranteed not to sleep.  It returns 1 if it gets
 | |
|  * the requested locks and 0 otherwise.  If the IO lock is
 | |
|  * obtained but the inode lock cannot be, then the IO lock
 | |
|  * is dropped before returning.
 | |
|  *
 | |
|  * ip -- the inode being locked
 | |
|  * lock_flags -- this parameter indicates the inode's locks to be
 | |
|  *       to be locked.  See the comment for xfs_ilock() for a list
 | |
|  *	 of valid values.
 | |
|  */
 | |
| int
 | |
| xfs_ilock_nowait(
 | |
| 	xfs_inode_t		*ip,
 | |
| 	uint			lock_flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * You can't set both SHARED and EXCL for the same lock,
 | |
| 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 | |
| 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 | |
| 	 */
 | |
| 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 | |
| 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 | |
| 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 | |
| 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 | |
| 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
 | |
| 
 | |
| 	if (lock_flags & XFS_IOLOCK_EXCL) {
 | |
| 		if (!mrtryupdate(&ip->i_iolock))
 | |
| 			goto out;
 | |
| 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 | |
| 		if (!mrtryaccess(&ip->i_iolock))
 | |
| 			goto out;
 | |
| 	}
 | |
| 	if (lock_flags & XFS_ILOCK_EXCL) {
 | |
| 		if (!mrtryupdate(&ip->i_lock))
 | |
| 			goto out_undo_iolock;
 | |
| 	} else if (lock_flags & XFS_ILOCK_SHARED) {
 | |
| 		if (!mrtryaccess(&ip->i_lock))
 | |
| 			goto out_undo_iolock;
 | |
| 	}
 | |
| 	xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address);
 | |
| 	return 1;
 | |
| 
 | |
|  out_undo_iolock:
 | |
| 	if (lock_flags & XFS_IOLOCK_EXCL)
 | |
| 		mrunlock_excl(&ip->i_iolock);
 | |
| 	else if (lock_flags & XFS_IOLOCK_SHARED)
 | |
| 		mrunlock_shared(&ip->i_iolock);
 | |
|  out:
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_iunlock() is used to drop the inode locks acquired with
 | |
|  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 | |
|  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 | |
|  * that we know which locks to drop.
 | |
|  *
 | |
|  * ip -- the inode being unlocked
 | |
|  * lock_flags -- this parameter indicates the inode's locks to be
 | |
|  *       to be unlocked.  See the comment for xfs_ilock() for a list
 | |
|  *	 of valid values for this parameter.
 | |
|  *
 | |
|  */
 | |
| void
 | |
| xfs_iunlock(
 | |
| 	xfs_inode_t		*ip,
 | |
| 	uint			lock_flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * You can't set both SHARED and EXCL for the same lock,
 | |
| 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 | |
| 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 | |
| 	 */
 | |
| 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 | |
| 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 | |
| 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 | |
| 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 | |
| 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY |
 | |
| 			XFS_LOCK_DEP_MASK)) == 0);
 | |
| 	ASSERT(lock_flags != 0);
 | |
| 
 | |
| 	if (lock_flags & XFS_IOLOCK_EXCL)
 | |
| 		mrunlock_excl(&ip->i_iolock);
 | |
| 	else if (lock_flags & XFS_IOLOCK_SHARED)
 | |
| 		mrunlock_shared(&ip->i_iolock);
 | |
| 
 | |
| 	if (lock_flags & XFS_ILOCK_EXCL)
 | |
| 		mrunlock_excl(&ip->i_lock);
 | |
| 	else if (lock_flags & XFS_ILOCK_SHARED)
 | |
| 		mrunlock_shared(&ip->i_lock);
 | |
| 
 | |
| 	if ((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) &&
 | |
| 	    !(lock_flags & XFS_IUNLOCK_NONOTIFY) && ip->i_itemp) {
 | |
| 		/*
 | |
| 		 * Let the AIL know that this item has been unlocked in case
 | |
| 		 * it is in the AIL and anyone is waiting on it.  Don't do
 | |
| 		 * this if the caller has asked us not to.
 | |
| 		 */
 | |
| 		xfs_trans_unlocked_item(ip->i_itemp->ili_item.li_ailp,
 | |
| 					(xfs_log_item_t*)(ip->i_itemp));
 | |
| 	}
 | |
| 	xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * give up write locks.  the i/o lock cannot be held nested
 | |
|  * if it is being demoted.
 | |
|  */
 | |
| void
 | |
| xfs_ilock_demote(
 | |
| 	xfs_inode_t		*ip,
 | |
| 	uint			lock_flags)
 | |
| {
 | |
| 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
 | |
| 	ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 | |
| 
 | |
| 	if (lock_flags & XFS_ILOCK_EXCL)
 | |
| 		mrdemote(&ip->i_lock);
 | |
| 	if (lock_flags & XFS_IOLOCK_EXCL)
 | |
| 		mrdemote(&ip->i_iolock);
 | |
| }
 | |
| 
 | |
| #ifdef DEBUG
 | |
| /*
 | |
|  * Debug-only routine, without additional rw_semaphore APIs, we can
 | |
|  * now only answer requests regarding whether we hold the lock for write
 | |
|  * (reader state is outside our visibility, we only track writer state).
 | |
|  *
 | |
|  * Note: this means !xfs_isilocked would give false positives, so don't do that.
 | |
|  */
 | |
| int
 | |
| xfs_isilocked(
 | |
| 	xfs_inode_t		*ip,
 | |
| 	uint			lock_flags)
 | |
| {
 | |
| 	if ((lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) ==
 | |
| 			XFS_ILOCK_EXCL) {
 | |
| 		if (!ip->i_lock.mr_writer)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	if ((lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) ==
 | |
| 			XFS_IOLOCK_EXCL) {
 | |
| 		if (!ip->i_iolock.mr_writer)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef	XFS_INODE_TRACE
 | |
| 
 | |
| #define KTRACE_ENTER(ip, vk, s, line, ra)			\
 | |
| 	ktrace_enter((ip)->i_trace,				\
 | |
| /*  0 */		(void *)(__psint_t)(vk),		\
 | |
| /*  1 */		(void *)(s),				\
 | |
| /*  2 */		(void *)(__psint_t) line,		\
 | |
| /*  3 */		(void *)(__psint_t)atomic_read(&VFS_I(ip)->i_count), \
 | |
| /*  4 */		(void *)(ra),				\
 | |
| /*  5 */		NULL,					\
 | |
| /*  6 */		(void *)(__psint_t)current_cpu(),	\
 | |
| /*  7 */		(void *)(__psint_t)current_pid(),	\
 | |
| /*  8 */		(void *)__return_address,		\
 | |
| /*  9 */		NULL, NULL, NULL, NULL, NULL, NULL, NULL)
 | |
| 
 | |
| /*
 | |
|  * Vnode tracing code.
 | |
|  */
 | |
| void
 | |
| _xfs_itrace_entry(xfs_inode_t *ip, const char *func, inst_t *ra)
 | |
| {
 | |
| 	KTRACE_ENTER(ip, INODE_KTRACE_ENTRY, func, 0, ra);
 | |
| }
 | |
| 
 | |
| void
 | |
| _xfs_itrace_exit(xfs_inode_t *ip, const char *func, inst_t *ra)
 | |
| {
 | |
| 	KTRACE_ENTER(ip, INODE_KTRACE_EXIT, func, 0, ra);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_itrace_hold(xfs_inode_t *ip, char *file, int line, inst_t *ra)
 | |
| {
 | |
| 	KTRACE_ENTER(ip, INODE_KTRACE_HOLD, file, line, ra);
 | |
| }
 | |
| 
 | |
| void
 | |
| _xfs_itrace_ref(xfs_inode_t *ip, char *file, int line, inst_t *ra)
 | |
| {
 | |
| 	KTRACE_ENTER(ip, INODE_KTRACE_REF, file, line, ra);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_itrace_rele(xfs_inode_t *ip, char *file, int line, inst_t *ra)
 | |
| {
 | |
| 	KTRACE_ENTER(ip, INODE_KTRACE_RELE, file, line, ra);
 | |
| }
 | |
| #endif	/* XFS_INODE_TRACE */
 |