 5bf1723723
			
		
	
	
	5bf1723723
	
	
	
		
			
			After choosing new c->nextblock, don't leave the wbuf offset field occasionally pointing at the start of the next physical eraseblock. This was causing a BUG() on NOR-ECC (Sibley) flash, where we start writing after the cleanmarker. Among other this fix should cover write buffer offset adjustment after flushing the last page of an eraseblock. Signed-off-by: Alexander Belyakov <abelyako@googlemail.com> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
		
			
				
	
	
		
			1300 lines
		
	
	
	
		
			36 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1300 lines
		
	
	
	
		
			36 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * JFFS2 -- Journalling Flash File System, Version 2.
 | |
|  *
 | |
|  * Copyright © 2001-2007 Red Hat, Inc.
 | |
|  * Copyright © 2004 Thomas Gleixner <tglx@linutronix.de>
 | |
|  *
 | |
|  * Created by David Woodhouse <dwmw2@infradead.org>
 | |
|  * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
 | |
|  *
 | |
|  * For licensing information, see the file 'LICENCE' in this directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/crc32.h>
 | |
| #include <linux/mtd/nand.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/sched.h>
 | |
| 
 | |
| #include "nodelist.h"
 | |
| 
 | |
| /* For testing write failures */
 | |
| #undef BREAKME
 | |
| #undef BREAKMEHEADER
 | |
| 
 | |
| #ifdef BREAKME
 | |
| static unsigned char *brokenbuf;
 | |
| #endif
 | |
| 
 | |
| #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
 | |
| #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
 | |
| 
 | |
| /* max. erase failures before we mark a block bad */
 | |
| #define MAX_ERASE_FAILURES 	2
 | |
| 
 | |
| struct jffs2_inodirty {
 | |
| 	uint32_t ino;
 | |
| 	struct jffs2_inodirty *next;
 | |
| };
 | |
| 
 | |
| static struct jffs2_inodirty inodirty_nomem;
 | |
| 
 | |
| static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
 | |
| {
 | |
| 	struct jffs2_inodirty *this = c->wbuf_inodes;
 | |
| 
 | |
| 	/* If a malloc failed, consider _everything_ dirty */
 | |
| 	if (this == &inodirty_nomem)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* If ino == 0, _any_ non-GC writes mean 'yes' */
 | |
| 	if (this && !ino)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Look to see if the inode in question is pending in the wbuf */
 | |
| 	while (this) {
 | |
| 		if (this->ino == ino)
 | |
| 			return 1;
 | |
| 		this = this->next;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
 | |
| {
 | |
| 	struct jffs2_inodirty *this;
 | |
| 
 | |
| 	this = c->wbuf_inodes;
 | |
| 
 | |
| 	if (this != &inodirty_nomem) {
 | |
| 		while (this) {
 | |
| 			struct jffs2_inodirty *next = this->next;
 | |
| 			kfree(this);
 | |
| 			this = next;
 | |
| 		}
 | |
| 	}
 | |
| 	c->wbuf_inodes = NULL;
 | |
| }
 | |
| 
 | |
| static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
 | |
| {
 | |
| 	struct jffs2_inodirty *new;
 | |
| 
 | |
| 	/* Mark the superblock dirty so that kupdated will flush... */
 | |
| 	jffs2_erase_pending_trigger(c);
 | |
| 
 | |
| 	if (jffs2_wbuf_pending_for_ino(c, ino))
 | |
| 		return;
 | |
| 
 | |
| 	new = kmalloc(sizeof(*new), GFP_KERNEL);
 | |
| 	if (!new) {
 | |
| 		D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
 | |
| 		jffs2_clear_wbuf_ino_list(c);
 | |
| 		c->wbuf_inodes = &inodirty_nomem;
 | |
| 		return;
 | |
| 	}
 | |
| 	new->ino = ino;
 | |
| 	new->next = c->wbuf_inodes;
 | |
| 	c->wbuf_inodes = new;
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
 | |
| {
 | |
| 	struct list_head *this, *next;
 | |
| 	static int n;
 | |
| 
 | |
| 	if (list_empty(&c->erasable_pending_wbuf_list))
 | |
| 		return;
 | |
| 
 | |
| 	list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
 | |
| 		struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
 | |
| 
 | |
| 		D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
 | |
| 		list_del(this);
 | |
| 		if ((jiffies + (n++)) & 127) {
 | |
| 			/* Most of the time, we just erase it immediately. Otherwise we
 | |
| 			   spend ages scanning it on mount, etc. */
 | |
| 			D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
 | |
| 			list_add_tail(&jeb->list, &c->erase_pending_list);
 | |
| 			c->nr_erasing_blocks++;
 | |
| 			jffs2_erase_pending_trigger(c);
 | |
| 		} else {
 | |
| 			/* Sometimes, however, we leave it elsewhere so it doesn't get
 | |
| 			   immediately reused, and we spread the load a bit. */
 | |
| 			D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
 | |
| 			list_add_tail(&jeb->list, &c->erasable_list);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define REFILE_NOTEMPTY 0
 | |
| #define REFILE_ANYWAY   1
 | |
| 
 | |
| static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
 | |
| {
 | |
| 	D1(printk("About to refile bad block at %08x\n", jeb->offset));
 | |
| 
 | |
| 	/* File the existing block on the bad_used_list.... */
 | |
| 	if (c->nextblock == jeb)
 | |
| 		c->nextblock = NULL;
 | |
| 	else /* Not sure this should ever happen... need more coffee */
 | |
| 		list_del(&jeb->list);
 | |
| 	if (jeb->first_node) {
 | |
| 		D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
 | |
| 		list_add(&jeb->list, &c->bad_used_list);
 | |
| 	} else {
 | |
| 		BUG_ON(allow_empty == REFILE_NOTEMPTY);
 | |
| 		/* It has to have had some nodes or we couldn't be here */
 | |
| 		D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
 | |
| 		list_add(&jeb->list, &c->erase_pending_list);
 | |
| 		c->nr_erasing_blocks++;
 | |
| 		jffs2_erase_pending_trigger(c);
 | |
| 	}
 | |
| 
 | |
| 	if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
 | |
| 		uint32_t oldfree = jeb->free_size;
 | |
| 
 | |
| 		jffs2_link_node_ref(c, jeb, 
 | |
| 				    (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
 | |
| 				    oldfree, NULL);
 | |
| 		/* convert to wasted */
 | |
| 		c->wasted_size += oldfree;
 | |
| 		jeb->wasted_size += oldfree;
 | |
| 		c->dirty_size -= oldfree;
 | |
| 		jeb->dirty_size -= oldfree;
 | |
| 	}
 | |
| 
 | |
| 	jffs2_dbg_dump_block_lists_nolock(c);
 | |
| 	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
 | |
| 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
 | |
| }
 | |
| 
 | |
| static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
 | |
| 							    struct jffs2_inode_info *f,
 | |
| 							    struct jffs2_raw_node_ref *raw,
 | |
| 							    union jffs2_node_union *node)
 | |
| {
 | |
| 	struct jffs2_node_frag *frag;
 | |
| 	struct jffs2_full_dirent *fd;
 | |
| 
 | |
| 	dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
 | |
| 		    node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
 | |
| 
 | |
| 	BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
 | |
| 	       je16_to_cpu(node->u.magic) != 0);
 | |
| 
 | |
| 	switch (je16_to_cpu(node->u.nodetype)) {
 | |
| 	case JFFS2_NODETYPE_INODE:
 | |
| 		if (f->metadata && f->metadata->raw == raw) {
 | |
| 			dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
 | |
| 			return &f->metadata->raw;
 | |
| 		}
 | |
| 		frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
 | |
| 		BUG_ON(!frag);
 | |
| 		/* Find a frag which refers to the full_dnode we want to modify */
 | |
| 		while (!frag->node || frag->node->raw != raw) {
 | |
| 			frag = frag_next(frag);
 | |
| 			BUG_ON(!frag);
 | |
| 		}
 | |
| 		dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
 | |
| 		return &frag->node->raw;
 | |
| 
 | |
| 	case JFFS2_NODETYPE_DIRENT:
 | |
| 		for (fd = f->dents; fd; fd = fd->next) {
 | |
| 			if (fd->raw == raw) {
 | |
| 				dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
 | |
| 				return &fd->raw;
 | |
| 			}
 | |
| 		}
 | |
| 		BUG();
 | |
| 
 | |
| 	default:
 | |
| 		dbg_noderef("Don't care about replacing raw for nodetype %x\n",
 | |
| 			    je16_to_cpu(node->u.nodetype));
 | |
| 		break;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
 | |
| static int jffs2_verify_write(struct jffs2_sb_info *c, unsigned char *buf,
 | |
| 			      uint32_t ofs)
 | |
| {
 | |
| 	int ret;
 | |
| 	size_t retlen;
 | |
| 	char *eccstr;
 | |
| 
 | |
| 	ret = c->mtd->read(c->mtd, ofs, c->wbuf_pagesize, &retlen, c->wbuf_verify);
 | |
| 	if (ret && ret != -EUCLEAN && ret != -EBADMSG) {
 | |
| 		printk(KERN_WARNING "jffs2_verify_write(): Read back of page at %08x failed: %d\n", c->wbuf_ofs, ret);
 | |
| 		return ret;
 | |
| 	} else if (retlen != c->wbuf_pagesize) {
 | |
| 		printk(KERN_WARNING "jffs2_verify_write(): Read back of page at %08x gave short read: %zd not %d.\n", ofs, retlen, c->wbuf_pagesize);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	if (!memcmp(buf, c->wbuf_verify, c->wbuf_pagesize))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (ret == -EUCLEAN)
 | |
| 		eccstr = "corrected";
 | |
| 	else if (ret == -EBADMSG)
 | |
| 		eccstr = "correction failed";
 | |
| 	else
 | |
| 		eccstr = "OK or unused";
 | |
| 
 | |
| 	printk(KERN_WARNING "Write verify error (ECC %s) at %08x. Wrote:\n",
 | |
| 	       eccstr, c->wbuf_ofs);
 | |
| 	print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
 | |
| 		       c->wbuf, c->wbuf_pagesize, 0);
 | |
| 
 | |
| 	printk(KERN_WARNING "Read back:\n");
 | |
| 	print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
 | |
| 		       c->wbuf_verify, c->wbuf_pagesize, 0);
 | |
| 
 | |
| 	return -EIO;
 | |
| }
 | |
| #else
 | |
| #define jffs2_verify_write(c,b,o) (0)
 | |
| #endif
 | |
| 
 | |
| /* Recover from failure to write wbuf. Recover the nodes up to the
 | |
|  * wbuf, not the one which we were starting to try to write. */
 | |
| 
 | |
| static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
 | |
| {
 | |
| 	struct jffs2_eraseblock *jeb, *new_jeb;
 | |
| 	struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
 | |
| 	size_t retlen;
 | |
| 	int ret;
 | |
| 	int nr_refile = 0;
 | |
| 	unsigned char *buf;
 | |
| 	uint32_t start, end, ofs, len;
 | |
| 
 | |
| 	jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
 | |
| 
 | |
| 	spin_lock(&c->erase_completion_lock);
 | |
| 	if (c->wbuf_ofs % c->mtd->erasesize)
 | |
| 		jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
 | |
| 	else
 | |
| 		jffs2_block_refile(c, jeb, REFILE_ANYWAY);
 | |
| 	spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 	BUG_ON(!ref_obsolete(jeb->last_node));
 | |
| 
 | |
| 	/* Find the first node to be recovered, by skipping over every
 | |
| 	   node which ends before the wbuf starts, or which is obsolete. */
 | |
| 	for (next = raw = jeb->first_node; next; raw = next) {
 | |
| 		next = ref_next(raw);
 | |
| 
 | |
| 		if (ref_obsolete(raw) || 
 | |
| 		    (next && ref_offset(next) <= c->wbuf_ofs)) {
 | |
| 			dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
 | |
| 				    ref_offset(raw), ref_flags(raw),
 | |
| 				    (ref_offset(raw) + ref_totlen(c, jeb, raw)),
 | |
| 				    c->wbuf_ofs);
 | |
| 			continue;
 | |
| 		}
 | |
| 		dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
 | |
| 			    ref_offset(raw), ref_flags(raw),
 | |
| 			    (ref_offset(raw) + ref_totlen(c, jeb, raw)));
 | |
| 
 | |
| 		first_raw = raw;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (!first_raw) {
 | |
| 		/* All nodes were obsolete. Nothing to recover. */
 | |
| 		D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
 | |
| 		c->wbuf_len = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	start = ref_offset(first_raw);
 | |
| 	end = ref_offset(jeb->last_node);
 | |
| 	nr_refile = 1;
 | |
| 
 | |
| 	/* Count the number of refs which need to be copied */
 | |
| 	while ((raw = ref_next(raw)) != jeb->last_node)
 | |
| 		nr_refile++;
 | |
| 
 | |
| 	dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
 | |
| 		    start, end, end - start, nr_refile);
 | |
| 
 | |
| 	buf = NULL;
 | |
| 	if (start < c->wbuf_ofs) {
 | |
| 		/* First affected node was already partially written.
 | |
| 		 * Attempt to reread the old data into our buffer. */
 | |
| 
 | |
| 		buf = kmalloc(end - start, GFP_KERNEL);
 | |
| 		if (!buf) {
 | |
| 			printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
 | |
| 
 | |
| 			goto read_failed;
 | |
| 		}
 | |
| 
 | |
| 		/* Do the read... */
 | |
| 		ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
 | |
| 
 | |
| 		/* ECC recovered ? */
 | |
| 		if ((ret == -EUCLEAN || ret == -EBADMSG) &&
 | |
| 		    (retlen == c->wbuf_ofs - start))
 | |
| 			ret = 0;
 | |
| 
 | |
| 		if (ret || retlen != c->wbuf_ofs - start) {
 | |
| 			printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
 | |
| 
 | |
| 			kfree(buf);
 | |
| 			buf = NULL;
 | |
| 		read_failed:
 | |
| 			first_raw = ref_next(first_raw);
 | |
| 			nr_refile--;
 | |
| 			while (first_raw && ref_obsolete(first_raw)) {
 | |
| 				first_raw = ref_next(first_raw);
 | |
| 				nr_refile--;
 | |
| 			}
 | |
| 
 | |
| 			/* If this was the only node to be recovered, give up */
 | |
| 			if (!first_raw) {
 | |
| 				c->wbuf_len = 0;
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			/* It wasn't. Go on and try to recover nodes complete in the wbuf */
 | |
| 			start = ref_offset(first_raw);
 | |
| 			dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
 | |
| 				    start, end, end - start, nr_refile);
 | |
| 
 | |
| 		} else {
 | |
| 			/* Read succeeded. Copy the remaining data from the wbuf */
 | |
| 			memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
 | |
| 		}
 | |
| 	}
 | |
| 	/* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
 | |
| 	   Either 'buf' contains the data, or we find it in the wbuf */
 | |
| 
 | |
| 	/* ... and get an allocation of space from a shiny new block instead */
 | |
| 	ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
 | |
| 	if (ret) {
 | |
| 		printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
 | |
| 		kfree(buf);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* The summary is not recovered, so it must be disabled for this erase block */
 | |
| 	jffs2_sum_disable_collecting(c->summary);
 | |
| 
 | |
| 	ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
 | |
| 	if (ret) {
 | |
| 		printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
 | |
| 		kfree(buf);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ofs = write_ofs(c);
 | |
| 
 | |
| 	if (end-start >= c->wbuf_pagesize) {
 | |
| 		/* Need to do another write immediately, but it's possible
 | |
| 		   that this is just because the wbuf itself is completely
 | |
| 		   full, and there's nothing earlier read back from the
 | |
| 		   flash. Hence 'buf' isn't necessarily what we're writing
 | |
| 		   from. */
 | |
| 		unsigned char *rewrite_buf = buf?:c->wbuf;
 | |
| 		uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
 | |
| 
 | |
| 		D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
 | |
| 			  towrite, ofs));
 | |
| 
 | |
| #ifdef BREAKMEHEADER
 | |
| 		static int breakme;
 | |
| 		if (breakme++ == 20) {
 | |
| 			printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
 | |
| 			breakme = 0;
 | |
| 			c->mtd->write(c->mtd, ofs, towrite, &retlen,
 | |
| 				      brokenbuf);
 | |
| 			ret = -EIO;
 | |
| 		} else
 | |
| #endif
 | |
| 			ret = c->mtd->write(c->mtd, ofs, towrite, &retlen,
 | |
| 					    rewrite_buf);
 | |
| 
 | |
| 		if (ret || retlen != towrite || jffs2_verify_write(c, rewrite_buf, ofs)) {
 | |
| 			/* Argh. We tried. Really we did. */
 | |
| 			printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
 | |
| 			kfree(buf);
 | |
| 
 | |
| 			if (retlen)
 | |
| 				jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
 | |
| 
 | |
| 			return;
 | |
| 		}
 | |
| 		printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
 | |
| 
 | |
| 		c->wbuf_len = (end - start) - towrite;
 | |
| 		c->wbuf_ofs = ofs + towrite;
 | |
| 		memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
 | |
| 		/* Don't muck about with c->wbuf_inodes. False positives are harmless. */
 | |
| 	} else {
 | |
| 		/* OK, now we're left with the dregs in whichever buffer we're using */
 | |
| 		if (buf) {
 | |
| 			memcpy(c->wbuf, buf, end-start);
 | |
| 		} else {
 | |
| 			memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
 | |
| 		}
 | |
| 		c->wbuf_ofs = ofs;
 | |
| 		c->wbuf_len = end - start;
 | |
| 	}
 | |
| 
 | |
| 	/* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
 | |
| 	new_jeb = &c->blocks[ofs / c->sector_size];
 | |
| 
 | |
| 	spin_lock(&c->erase_completion_lock);
 | |
| 	for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
 | |
| 		uint32_t rawlen = ref_totlen(c, jeb, raw);
 | |
| 		struct jffs2_inode_cache *ic;
 | |
| 		struct jffs2_raw_node_ref *new_ref;
 | |
| 		struct jffs2_raw_node_ref **adjust_ref = NULL;
 | |
| 		struct jffs2_inode_info *f = NULL;
 | |
| 
 | |
| 		D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
 | |
| 			  rawlen, ref_offset(raw), ref_flags(raw), ofs));
 | |
| 
 | |
| 		ic = jffs2_raw_ref_to_ic(raw);
 | |
| 
 | |
| 		/* Ick. This XATTR mess should be fixed shortly... */
 | |
| 		if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
 | |
| 			struct jffs2_xattr_datum *xd = (void *)ic;
 | |
| 			BUG_ON(xd->node != raw);
 | |
| 			adjust_ref = &xd->node;
 | |
| 			raw->next_in_ino = NULL;
 | |
| 			ic = NULL;
 | |
| 		} else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
 | |
| 			struct jffs2_xattr_datum *xr = (void *)ic;
 | |
| 			BUG_ON(xr->node != raw);
 | |
| 			adjust_ref = &xr->node;
 | |
| 			raw->next_in_ino = NULL;
 | |
| 			ic = NULL;
 | |
| 		} else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
 | |
| 			struct jffs2_raw_node_ref **p = &ic->nodes;
 | |
| 
 | |
| 			/* Remove the old node from the per-inode list */
 | |
| 			while (*p && *p != (void *)ic) {
 | |
| 				if (*p == raw) {
 | |
| 					(*p) = (raw->next_in_ino);
 | |
| 					raw->next_in_ino = NULL;
 | |
| 					break;
 | |
| 				}
 | |
| 				p = &((*p)->next_in_ino);
 | |
| 			}
 | |
| 
 | |
| 			if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
 | |
| 				/* If it's an in-core inode, then we have to adjust any
 | |
| 				   full_dirent or full_dnode structure to point to the
 | |
| 				   new version instead of the old */
 | |
| 				f = jffs2_gc_fetch_inode(c, ic->ino, !ic->pino_nlink);
 | |
| 				if (IS_ERR(f)) {
 | |
| 					/* Should never happen; it _must_ be present */
 | |
| 					JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
 | |
| 						    ic->ino, PTR_ERR(f));
 | |
| 					BUG();
 | |
| 				}
 | |
| 				/* We don't lock f->sem. There's a number of ways we could
 | |
| 				   end up in here with it already being locked, and nobody's
 | |
| 				   going to modify it on us anyway because we hold the
 | |
| 				   alloc_sem. We're only changing one ->raw pointer too,
 | |
| 				   which we can get away with without upsetting readers. */
 | |
| 				adjust_ref = jffs2_incore_replace_raw(c, f, raw,
 | |
| 								      (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
 | |
| 			} else if (unlikely(ic->state != INO_STATE_PRESENT &&
 | |
| 					    ic->state != INO_STATE_CHECKEDABSENT &&
 | |
| 					    ic->state != INO_STATE_GC)) {
 | |
| 				JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
 | |
| 				BUG();
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
 | |
| 
 | |
| 		if (adjust_ref) {
 | |
| 			BUG_ON(*adjust_ref != raw);
 | |
| 			*adjust_ref = new_ref;
 | |
| 		}
 | |
| 		if (f)
 | |
| 			jffs2_gc_release_inode(c, f);
 | |
| 
 | |
| 		if (!ref_obsolete(raw)) {
 | |
| 			jeb->dirty_size += rawlen;
 | |
| 			jeb->used_size  -= rawlen;
 | |
| 			c->dirty_size += rawlen;
 | |
| 			c->used_size -= rawlen;
 | |
| 			raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
 | |
| 			BUG_ON(raw->next_in_ino);
 | |
| 		}
 | |
| 		ofs += rawlen;
 | |
| 	}
 | |
| 
 | |
| 	kfree(buf);
 | |
| 
 | |
| 	/* Fix up the original jeb now it's on the bad_list */
 | |
| 	if (first_raw == jeb->first_node) {
 | |
| 		D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
 | |
| 		list_move(&jeb->list, &c->erase_pending_list);
 | |
| 		c->nr_erasing_blocks++;
 | |
| 		jffs2_erase_pending_trigger(c);
 | |
| 	}
 | |
| 
 | |
| 	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
 | |
| 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
 | |
| 
 | |
| 	jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
 | |
| 	jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
 | |
| 
 | |
| 	spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len));
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Meaning of pad argument:
 | |
|    0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
 | |
|    1: Pad, do not adjust nextblock free_size
 | |
|    2: Pad, adjust nextblock free_size
 | |
| */
 | |
| #define NOPAD		0
 | |
| #define PAD_NOACCOUNT	1
 | |
| #define PAD_ACCOUNTING	2
 | |
| 
 | |
| static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
 | |
| {
 | |
| 	struct jffs2_eraseblock *wbuf_jeb;
 | |
| 	int ret;
 | |
| 	size_t retlen;
 | |
| 
 | |
| 	/* Nothing to do if not write-buffering the flash. In particular, we shouldn't
 | |
| 	   del_timer() the timer we never initialised. */
 | |
| 	if (!jffs2_is_writebuffered(c))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (mutex_trylock(&c->alloc_sem)) {
 | |
| 		mutex_unlock(&c->alloc_sem);
 | |
| 		printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	if (!c->wbuf_len)	/* already checked c->wbuf above */
 | |
| 		return 0;
 | |
| 
 | |
| 	wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
 | |
| 	if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* claim remaining space on the page
 | |
| 	   this happens, if we have a change to a new block,
 | |
| 	   or if fsync forces us to flush the writebuffer.
 | |
| 	   if we have a switch to next page, we will not have
 | |
| 	   enough remaining space for this.
 | |
| 	*/
 | |
| 	if (pad ) {
 | |
| 		c->wbuf_len = PAD(c->wbuf_len);
 | |
| 
 | |
| 		/* Pad with JFFS2_DIRTY_BITMASK initially.  this helps out ECC'd NOR
 | |
| 		   with 8 byte page size */
 | |
| 		memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
 | |
| 
 | |
| 		if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
 | |
| 			struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
 | |
| 			padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
 | |
| 			padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
 | |
| 			padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
 | |
| 			padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
 | |
| 		}
 | |
| 	}
 | |
| 	/* else jffs2_flash_writev has actually filled in the rest of the
 | |
| 	   buffer for us, and will deal with the node refs etc. later. */
 | |
| 
 | |
| #ifdef BREAKME
 | |
| 	static int breakme;
 | |
| 	if (breakme++ == 20) {
 | |
| 		printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
 | |
| 		breakme = 0;
 | |
| 		c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
 | |
| 			      brokenbuf);
 | |
| 		ret = -EIO;
 | |
| 	} else
 | |
| #endif
 | |
| 
 | |
| 		ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n", ret);
 | |
| 		goto wfail;
 | |
| 	} else if (retlen != c->wbuf_pagesize) {
 | |
| 		printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
 | |
| 		       retlen, c->wbuf_pagesize);
 | |
| 		ret = -EIO;
 | |
| 		goto wfail;
 | |
| 	} else if ((ret = jffs2_verify_write(c, c->wbuf, c->wbuf_ofs))) {
 | |
| 	wfail:
 | |
| 		jffs2_wbuf_recover(c);
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Adjust free size of the block if we padded. */
 | |
| 	if (pad) {
 | |
| 		uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
 | |
| 
 | |
| 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
 | |
| 			  (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset));
 | |
| 
 | |
| 		/* wbuf_pagesize - wbuf_len is the amount of space that's to be
 | |
| 		   padded. If there is less free space in the block than that,
 | |
| 		   something screwed up */
 | |
| 		if (wbuf_jeb->free_size < waste) {
 | |
| 			printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
 | |
| 			       c->wbuf_ofs, c->wbuf_len, waste);
 | |
| 			printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
 | |
| 			       wbuf_jeb->offset, wbuf_jeb->free_size);
 | |
| 			BUG();
 | |
| 		}
 | |
| 
 | |
| 		spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 		jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
 | |
| 		/* FIXME: that made it count as dirty. Convert to wasted */
 | |
| 		wbuf_jeb->dirty_size -= waste;
 | |
| 		c->dirty_size -= waste;
 | |
| 		wbuf_jeb->wasted_size += waste;
 | |
| 		c->wasted_size += waste;
 | |
| 	} else
 | |
| 		spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 	/* Stick any now-obsoleted blocks on the erase_pending_list */
 | |
| 	jffs2_refile_wbuf_blocks(c);
 | |
| 	jffs2_clear_wbuf_ino_list(c);
 | |
| 	spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 	memset(c->wbuf,0xff,c->wbuf_pagesize);
 | |
| 	/* adjust write buffer offset, else we get a non contiguous write bug */
 | |
| 	c->wbuf_ofs += c->wbuf_pagesize;
 | |
| 	c->wbuf_len = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Trigger garbage collection to flush the write-buffer.
 | |
|    If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
 | |
|    outstanding. If ino arg non-zero, do it only if a write for the
 | |
|    given inode is outstanding. */
 | |
| int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
 | |
| {
 | |
| 	uint32_t old_wbuf_ofs;
 | |
| 	uint32_t old_wbuf_len;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
 | |
| 
 | |
| 	if (!c->wbuf)
 | |
| 		return 0;
 | |
| 
 | |
| 	mutex_lock(&c->alloc_sem);
 | |
| 	if (!jffs2_wbuf_pending_for_ino(c, ino)) {
 | |
| 		D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
 | |
| 		mutex_unlock(&c->alloc_sem);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	old_wbuf_ofs = c->wbuf_ofs;
 | |
| 	old_wbuf_len = c->wbuf_len;
 | |
| 
 | |
| 	if (c->unchecked_size) {
 | |
| 		/* GC won't make any progress for a while */
 | |
| 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
 | |
| 		down_write(&c->wbuf_sem);
 | |
| 		ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
 | |
| 		/* retry flushing wbuf in case jffs2_wbuf_recover
 | |
| 		   left some data in the wbuf */
 | |
| 		if (ret)
 | |
| 			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
 | |
| 		up_write(&c->wbuf_sem);
 | |
| 	} else while (old_wbuf_len &&
 | |
| 		      old_wbuf_ofs == c->wbuf_ofs) {
 | |
| 
 | |
| 		mutex_unlock(&c->alloc_sem);
 | |
| 
 | |
| 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
 | |
| 
 | |
| 		ret = jffs2_garbage_collect_pass(c);
 | |
| 		if (ret) {
 | |
| 			/* GC failed. Flush it with padding instead */
 | |
| 			mutex_lock(&c->alloc_sem);
 | |
| 			down_write(&c->wbuf_sem);
 | |
| 			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
 | |
| 			/* retry flushing wbuf in case jffs2_wbuf_recover
 | |
| 			   left some data in the wbuf */
 | |
| 			if (ret)
 | |
| 				ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
 | |
| 			up_write(&c->wbuf_sem);
 | |
| 			break;
 | |
| 		}
 | |
| 		mutex_lock(&c->alloc_sem);
 | |
| 	}
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
 | |
| 
 | |
| 	mutex_unlock(&c->alloc_sem);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Pad write-buffer to end and write it, wasting space. */
 | |
| int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!c->wbuf)
 | |
| 		return 0;
 | |
| 
 | |
| 	down_write(&c->wbuf_sem);
 | |
| 	ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
 | |
| 	/* retry - maybe wbuf recover left some data in wbuf. */
 | |
| 	if (ret)
 | |
| 		ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
 | |
| 	up_write(&c->wbuf_sem);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
 | |
| 			      size_t len)
 | |
| {
 | |
| 	if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (len > (c->wbuf_pagesize - c->wbuf_len))
 | |
| 		len = c->wbuf_pagesize - c->wbuf_len;
 | |
| 	memcpy(c->wbuf + c->wbuf_len, buf, len);
 | |
| 	c->wbuf_len += (uint32_t) len;
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
 | |
| 		       unsigned long count, loff_t to, size_t *retlen,
 | |
| 		       uint32_t ino)
 | |
| {
 | |
| 	struct jffs2_eraseblock *jeb;
 | |
| 	size_t wbuf_retlen, donelen = 0;
 | |
| 	uint32_t outvec_to = to;
 | |
| 	int ret, invec;
 | |
| 
 | |
| 	/* If not writebuffered flash, don't bother */
 | |
| 	if (!jffs2_is_writebuffered(c))
 | |
| 		return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
 | |
| 
 | |
| 	down_write(&c->wbuf_sem);
 | |
| 
 | |
| 	/* If wbuf_ofs is not initialized, set it to target address */
 | |
| 	if (c->wbuf_ofs == 0xFFFFFFFF) {
 | |
| 		c->wbuf_ofs = PAGE_DIV(to);
 | |
| 		c->wbuf_len = PAGE_MOD(to);
 | |
| 		memset(c->wbuf,0xff,c->wbuf_pagesize);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Sanity checks on target address.  It's permitted to write
 | |
| 	 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
 | |
| 	 * write at the beginning of a new erase block. Anything else,
 | |
| 	 * and you die.  New block starts at xxx000c (0-b = block
 | |
| 	 * header)
 | |
| 	 */
 | |
| 	if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
 | |
| 		/* It's a write to a new block */
 | |
| 		if (c->wbuf_len) {
 | |
| 			D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx "
 | |
| 				  "causes flush of wbuf at 0x%08x\n",
 | |
| 				  (unsigned long)to, c->wbuf_ofs));
 | |
| 			ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
 | |
| 			if (ret)
 | |
| 				goto outerr;
 | |
| 		}
 | |
| 		/* set pointer to new block */
 | |
| 		c->wbuf_ofs = PAGE_DIV(to);
 | |
| 		c->wbuf_len = PAGE_MOD(to);
 | |
| 	}
 | |
| 
 | |
| 	if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
 | |
| 		/* We're not writing immediately after the writebuffer. Bad. */
 | |
| 		printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write "
 | |
| 		       "to %08lx\n", (unsigned long)to);
 | |
| 		if (c->wbuf_len)
 | |
| 			printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
 | |
| 			       c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	/* adjust alignment offset */
 | |
| 	if (c->wbuf_len != PAGE_MOD(to)) {
 | |
| 		c->wbuf_len = PAGE_MOD(to);
 | |
| 		/* take care of alignment to next page */
 | |
| 		if (!c->wbuf_len) {
 | |
| 			c->wbuf_len = c->wbuf_pagesize;
 | |
| 			ret = __jffs2_flush_wbuf(c, NOPAD);
 | |
| 			if (ret)
 | |
| 				goto outerr;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (invec = 0; invec < count; invec++) {
 | |
| 		int vlen = invecs[invec].iov_len;
 | |
| 		uint8_t *v = invecs[invec].iov_base;
 | |
| 
 | |
| 		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
 | |
| 
 | |
| 		if (c->wbuf_len == c->wbuf_pagesize) {
 | |
| 			ret = __jffs2_flush_wbuf(c, NOPAD);
 | |
| 			if (ret)
 | |
| 				goto outerr;
 | |
| 		}
 | |
| 		vlen -= wbuf_retlen;
 | |
| 		outvec_to += wbuf_retlen;
 | |
| 		donelen += wbuf_retlen;
 | |
| 		v += wbuf_retlen;
 | |
| 
 | |
| 		if (vlen >= c->wbuf_pagesize) {
 | |
| 			ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen),
 | |
| 					    &wbuf_retlen, v);
 | |
| 			if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
 | |
| 				goto outfile;
 | |
| 
 | |
| 			vlen -= wbuf_retlen;
 | |
| 			outvec_to += wbuf_retlen;
 | |
| 			c->wbuf_ofs = outvec_to;
 | |
| 			donelen += wbuf_retlen;
 | |
| 			v += wbuf_retlen;
 | |
| 		}
 | |
| 
 | |
| 		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
 | |
| 		if (c->wbuf_len == c->wbuf_pagesize) {
 | |
| 			ret = __jffs2_flush_wbuf(c, NOPAD);
 | |
| 			if (ret)
 | |
| 				goto outerr;
 | |
| 		}
 | |
| 
 | |
| 		outvec_to += wbuf_retlen;
 | |
| 		donelen += wbuf_retlen;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If there's a remainder in the wbuf and it's a non-GC write,
 | |
| 	 * remember that the wbuf affects this ino
 | |
| 	 */
 | |
| 	*retlen = donelen;
 | |
| 
 | |
| 	if (jffs2_sum_active()) {
 | |
| 		int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
 | |
| 		if (res)
 | |
| 			return res;
 | |
| 	}
 | |
| 
 | |
| 	if (c->wbuf_len && ino)
 | |
| 		jffs2_wbuf_dirties_inode(c, ino);
 | |
| 
 | |
| 	ret = 0;
 | |
| 	up_write(&c->wbuf_sem);
 | |
| 	return ret;
 | |
| 
 | |
| outfile:
 | |
| 	/*
 | |
| 	 * At this point we have no problem, c->wbuf is empty. However
 | |
| 	 * refile nextblock to avoid writing again to same address.
 | |
| 	 */
 | |
| 
 | |
| 	spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 	jeb = &c->blocks[outvec_to / c->sector_size];
 | |
| 	jffs2_block_refile(c, jeb, REFILE_ANYWAY);
 | |
| 
 | |
| 	spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| outerr:
 | |
| 	*retlen = 0;
 | |
| 	up_write(&c->wbuf_sem);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	This is the entry for flash write.
 | |
|  *	Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
 | |
| */
 | |
| int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
 | |
| 		      size_t *retlen, const u_char *buf)
 | |
| {
 | |
| 	struct kvec vecs[1];
 | |
| 
 | |
| 	if (!jffs2_is_writebuffered(c))
 | |
| 		return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
 | |
| 
 | |
| 	vecs[0].iov_base = (unsigned char *) buf;
 | |
| 	vecs[0].iov_len = len;
 | |
| 	return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| 	Handle readback from writebuffer and ECC failure return
 | |
| */
 | |
| int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
 | |
| {
 | |
| 	loff_t	orbf = 0, owbf = 0, lwbf = 0;
 | |
| 	int	ret;
 | |
| 
 | |
| 	if (!jffs2_is_writebuffered(c))
 | |
| 		return c->mtd->read(c->mtd, ofs, len, retlen, buf);
 | |
| 
 | |
| 	/* Read flash */
 | |
| 	down_read(&c->wbuf_sem);
 | |
| 	ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
 | |
| 
 | |
| 	if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
 | |
| 		if (ret == -EBADMSG)
 | |
| 			printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx)"
 | |
| 			       " returned ECC error\n", len, ofs);
 | |
| 		/*
 | |
| 		 * We have the raw data without ECC correction in the buffer,
 | |
| 		 * maybe we are lucky and all data or parts are correct. We
 | |
| 		 * check the node.  If data are corrupted node check will sort
 | |
| 		 * it out.  We keep this block, it will fail on write or erase
 | |
| 		 * and the we mark it bad. Or should we do that now? But we
 | |
| 		 * should give him a chance.  Maybe we had a system crash or
 | |
| 		 * power loss before the ecc write or a erase was completed.
 | |
| 		 * So we return success. :)
 | |
| 		 */
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* if no writebuffer available or write buffer empty, return */
 | |
| 	if (!c->wbuf_pagesize || !c->wbuf_len)
 | |
| 		goto exit;
 | |
| 
 | |
| 	/* if we read in a different block, return */
 | |
| 	if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
 | |
| 		goto exit;
 | |
| 
 | |
| 	if (ofs >= c->wbuf_ofs) {
 | |
| 		owbf = (ofs - c->wbuf_ofs);	/* offset in write buffer */
 | |
| 		if (owbf > c->wbuf_len)		/* is read beyond write buffer ? */
 | |
| 			goto exit;
 | |
| 		lwbf = c->wbuf_len - owbf;	/* number of bytes to copy */
 | |
| 		if (lwbf > len)
 | |
| 			lwbf = len;
 | |
| 	} else {
 | |
| 		orbf = (c->wbuf_ofs - ofs);	/* offset in read buffer */
 | |
| 		if (orbf > len)			/* is write beyond write buffer ? */
 | |
| 			goto exit;
 | |
| 		lwbf = len - orbf;		/* number of bytes to copy */
 | |
| 		if (lwbf > c->wbuf_len)
 | |
| 			lwbf = c->wbuf_len;
 | |
| 	}
 | |
| 	if (lwbf > 0)
 | |
| 		memcpy(buf+orbf,c->wbuf+owbf,lwbf);
 | |
| 
 | |
| exit:
 | |
| 	up_read(&c->wbuf_sem);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define NR_OOB_SCAN_PAGES 4
 | |
| 
 | |
| /* For historical reasons we use only 8 bytes for OOB clean marker */
 | |
| #define OOB_CM_SIZE 8
 | |
| 
 | |
| static const struct jffs2_unknown_node oob_cleanmarker =
 | |
| {
 | |
| 	.magic = constant_cpu_to_je16(JFFS2_MAGIC_BITMASK),
 | |
| 	.nodetype = constant_cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER),
 | |
| 	.totlen = constant_cpu_to_je32(8)
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Check, if the out of band area is empty. This function knows about the clean
 | |
|  * marker and if it is present in OOB, treats the OOB as empty anyway.
 | |
|  */
 | |
| int jffs2_check_oob_empty(struct jffs2_sb_info *c,
 | |
| 			  struct jffs2_eraseblock *jeb, int mode)
 | |
| {
 | |
| 	int i, ret;
 | |
| 	int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
 | |
| 	struct mtd_oob_ops ops;
 | |
| 
 | |
| 	ops.mode = MTD_OOB_AUTO;
 | |
| 	ops.ooblen = NR_OOB_SCAN_PAGES * c->oobavail;
 | |
| 	ops.oobbuf = c->oobbuf;
 | |
| 	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
 | |
| 	ops.datbuf = NULL;
 | |
| 
 | |
| 	ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
 | |
| 	if (ret || ops.oobretlen != ops.ooblen) {
 | |
| 		printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
 | |
| 				" bytes, read %zd bytes, error %d\n",
 | |
| 				jeb->offset, ops.ooblen, ops.oobretlen, ret);
 | |
| 		if (!ret)
 | |
| 			ret = -EIO;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	for(i = 0; i < ops.ooblen; i++) {
 | |
| 		if (mode && i < cmlen)
 | |
| 			/* Yeah, we know about the cleanmarker */
 | |
| 			continue;
 | |
| 
 | |
| 		if (ops.oobbuf[i] != 0xFF) {
 | |
| 			D2(printk(KERN_DEBUG "Found %02x at %x in OOB for "
 | |
| 				  "%08x\n", ops.oobbuf[i], i, jeb->offset));
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for a valid cleanmarker.
 | |
|  * Returns: 0 if a valid cleanmarker was found
 | |
|  *	    1 if no cleanmarker was found
 | |
|  *	    negative error code if an error occurred
 | |
|  */
 | |
| int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c,
 | |
| 				 struct jffs2_eraseblock *jeb)
 | |
| {
 | |
| 	struct mtd_oob_ops ops;
 | |
| 	int ret, cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
 | |
| 
 | |
| 	ops.mode = MTD_OOB_AUTO;
 | |
| 	ops.ooblen = cmlen;
 | |
| 	ops.oobbuf = c->oobbuf;
 | |
| 	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
 | |
| 	ops.datbuf = NULL;
 | |
| 
 | |
| 	ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
 | |
| 	if (ret || ops.oobretlen != ops.ooblen) {
 | |
| 		printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
 | |
| 				" bytes, read %zd bytes, error %d\n",
 | |
| 				jeb->offset, ops.ooblen, ops.oobretlen, ret);
 | |
| 		if (!ret)
 | |
| 			ret = -EIO;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return !!memcmp(&oob_cleanmarker, c->oobbuf, cmlen);
 | |
| }
 | |
| 
 | |
| int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
 | |
| 				 struct jffs2_eraseblock *jeb)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct mtd_oob_ops ops;
 | |
| 	int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
 | |
| 
 | |
| 	ops.mode = MTD_OOB_AUTO;
 | |
| 	ops.ooblen = cmlen;
 | |
| 	ops.oobbuf = (uint8_t *)&oob_cleanmarker;
 | |
| 	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
 | |
| 	ops.datbuf = NULL;
 | |
| 
 | |
| 	ret = c->mtd->write_oob(c->mtd, jeb->offset, &ops);
 | |
| 	if (ret || ops.oobretlen != ops.ooblen) {
 | |
| 		printk(KERN_ERR "cannot write OOB for EB at %08x, requested %zd"
 | |
| 				" bytes, read %zd bytes, error %d\n",
 | |
| 				jeb->offset, ops.ooblen, ops.oobretlen, ret);
 | |
| 		if (!ret)
 | |
| 			ret = -EIO;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On NAND we try to mark this block bad. If the block was erased more
 | |
|  * than MAX_ERASE_FAILURES we mark it finaly bad.
 | |
|  * Don't care about failures. This block remains on the erase-pending
 | |
|  * or badblock list as long as nobody manipulates the flash with
 | |
|  * a bootloader or something like that.
 | |
|  */
 | |
| 
 | |
| int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
 | |
| {
 | |
| 	int 	ret;
 | |
| 
 | |
| 	/* if the count is < max, we try to write the counter to the 2nd page oob area */
 | |
| 	if( ++jeb->bad_count < MAX_ERASE_FAILURES)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!c->mtd->block_markbad)
 | |
| 		return 1; // What else can we do?
 | |
| 
 | |
| 	printk(KERN_WARNING "JFFS2: marking eraseblock at %08x\n as bad", bad_offset);
 | |
| 	ret = c->mtd->block_markbad(c->mtd, bad_offset);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
 | |
| 		return ret;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
 | |
| {
 | |
| 	struct nand_ecclayout *oinfo = c->mtd->ecclayout;
 | |
| 
 | |
| 	if (!c->mtd->oobsize)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Cleanmarker is out-of-band, so inline size zero */
 | |
| 	c->cleanmarker_size = 0;
 | |
| 
 | |
| 	if (!oinfo || oinfo->oobavail == 0) {
 | |
| 		printk(KERN_ERR "inconsistent device description\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "JFFS2 using OOB on NAND\n"));
 | |
| 
 | |
| 	c->oobavail = oinfo->oobavail;
 | |
| 
 | |
| 	/* Initialise write buffer */
 | |
| 	init_rwsem(&c->wbuf_sem);
 | |
| 	c->wbuf_pagesize = c->mtd->writesize;
 | |
| 	c->wbuf_ofs = 0xFFFFFFFF;
 | |
| 
 | |
| 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
 | |
| 	if (!c->wbuf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->oobavail, GFP_KERNEL);
 | |
| 	if (!c->oobbuf) {
 | |
| 		kfree(c->wbuf);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
 | |
| 	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
 | |
| 	if (!c->wbuf_verify) {
 | |
| 		kfree(c->oobbuf);
 | |
| 		kfree(c->wbuf);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
 | |
| {
 | |
| #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
 | |
| 	kfree(c->wbuf_verify);
 | |
| #endif
 | |
| 	kfree(c->wbuf);
 | |
| 	kfree(c->oobbuf);
 | |
| }
 | |
| 
 | |
| int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
 | |
| 	c->cleanmarker_size = 0;		/* No cleanmarkers needed */
 | |
| 
 | |
| 	/* Initialize write buffer */
 | |
| 	init_rwsem(&c->wbuf_sem);
 | |
| 
 | |
| 
 | |
| 	c->wbuf_pagesize =  c->mtd->erasesize;
 | |
| 
 | |
| 	/* Find a suitable c->sector_size
 | |
| 	 * - Not too much sectors
 | |
| 	 * - Sectors have to be at least 4 K + some bytes
 | |
| 	 * - All known dataflashes have erase sizes of 528 or 1056
 | |
| 	 * - we take at least 8 eraseblocks and want to have at least 8K size
 | |
| 	 * - The concatenation should be a power of 2
 | |
| 	*/
 | |
| 
 | |
| 	c->sector_size = 8 * c->mtd->erasesize;
 | |
| 
 | |
| 	while (c->sector_size < 8192) {
 | |
| 		c->sector_size *= 2;
 | |
| 	}
 | |
| 
 | |
| 	/* It may be necessary to adjust the flash size */
 | |
| 	c->flash_size = c->mtd->size;
 | |
| 
 | |
| 	if ((c->flash_size % c->sector_size) != 0) {
 | |
| 		c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
 | |
| 		printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size);
 | |
| 	};
 | |
| 
 | |
| 	c->wbuf_ofs = 0xFFFFFFFF;
 | |
| 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
 | |
| 	if (!c->wbuf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
 | |
| 	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
 | |
| 	if (!c->wbuf_verify) {
 | |
| 		kfree(c->oobbuf);
 | |
| 		kfree(c->wbuf);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
 | |
| #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
 | |
| 	kfree(c->wbuf_verify);
 | |
| #endif
 | |
| 	kfree(c->wbuf);
 | |
| }
 | |
| 
 | |
| int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
 | |
| 	/* Cleanmarker currently occupies whole programming regions,
 | |
| 	 * either one or 2 for 8Byte STMicro flashes. */
 | |
| 	c->cleanmarker_size = max(16u, c->mtd->writesize);
 | |
| 
 | |
| 	/* Initialize write buffer */
 | |
| 	init_rwsem(&c->wbuf_sem);
 | |
| 	c->wbuf_pagesize = c->mtd->writesize;
 | |
| 	c->wbuf_ofs = 0xFFFFFFFF;
 | |
| 
 | |
| 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
 | |
| 	if (!c->wbuf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
 | |
| 	kfree(c->wbuf);
 | |
| }
 | |
| 
 | |
| int jffs2_ubivol_setup(struct jffs2_sb_info *c) {
 | |
| 	c->cleanmarker_size = 0;
 | |
| 
 | |
| 	if (c->mtd->writesize == 1)
 | |
| 		/* We do not need write-buffer */
 | |
| 		return 0;
 | |
| 
 | |
| 	init_rwsem(&c->wbuf_sem);
 | |
| 
 | |
| 	c->wbuf_pagesize =  c->mtd->writesize;
 | |
| 	c->wbuf_ofs = 0xFFFFFFFF;
 | |
| 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
 | |
| 	if (!c->wbuf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void jffs2_ubivol_cleanup(struct jffs2_sb_info *c) {
 | |
| 	kfree(c->wbuf);
 | |
| }
 |