 a98889f3d8
			
		
	
	
	a98889f3d8
	
	
	
		
			
			Adding the ability to get a physical address from point() in addition to virtual address. This physical address is required for XIP of userspace code from flash. Signed-off-by: Jared Hulbert <jaredeh@gmail.com> Reviewed-by: Jörn Engel <joern@logfs.org> Acked-by: Nicolas Pitre <nico@cam.org> Acked-by: Greg Ungerer <gerg@uclinux.org> Signed-off-by: David Woodhouse <dwmw2@infradead.org>
		
			
				
	
	
		
			1139 lines
		
	
	
	
		
			35 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1139 lines
		
	
	
	
		
			35 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * JFFS2 -- Journalling Flash File System, Version 2.
 | |
|  *
 | |
|  * Copyright © 2001-2007 Red Hat, Inc.
 | |
|  *
 | |
|  * Created by David Woodhouse <dwmw2@infradead.org>
 | |
|  *
 | |
|  * For licensing information, see the file 'LICENCE' in this directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/crc32.h>
 | |
| #include <linux/compiler.h>
 | |
| #include "nodelist.h"
 | |
| #include "summary.h"
 | |
| #include "debug.h"
 | |
| 
 | |
| #define DEFAULT_EMPTY_SCAN_SIZE 1024
 | |
| 
 | |
| #define noisy_printk(noise, args...) do { \
 | |
| 	if (*(noise)) { \
 | |
| 		printk(KERN_NOTICE args); \
 | |
| 		 (*(noise))--; \
 | |
| 		 if (!(*(noise))) { \
 | |
| 			 printk(KERN_NOTICE "Further such events for this erase block will not be printed\n"); \
 | |
| 		 } \
 | |
| 	} \
 | |
| } while(0)
 | |
| 
 | |
| static uint32_t pseudo_random;
 | |
| 
 | |
| static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 | |
| 				  unsigned char *buf, uint32_t buf_size, struct jffs2_summary *s);
 | |
| 
 | |
| /* These helper functions _must_ increase ofs and also do the dirty/used space accounting.
 | |
|  * Returning an error will abort the mount - bad checksums etc. should just mark the space
 | |
|  * as dirty.
 | |
|  */
 | |
| static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 | |
| 				 struct jffs2_raw_inode *ri, uint32_t ofs, struct jffs2_summary *s);
 | |
| static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 | |
| 				 struct jffs2_raw_dirent *rd, uint32_t ofs, struct jffs2_summary *s);
 | |
| 
 | |
| static inline int min_free(struct jffs2_sb_info *c)
 | |
| {
 | |
| 	uint32_t min = 2 * sizeof(struct jffs2_raw_inode);
 | |
| #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
 | |
| 	if (!jffs2_can_mark_obsolete(c) && min < c->wbuf_pagesize)
 | |
| 		return c->wbuf_pagesize;
 | |
| #endif
 | |
| 	return min;
 | |
| 
 | |
| }
 | |
| 
 | |
| static inline uint32_t EMPTY_SCAN_SIZE(uint32_t sector_size) {
 | |
| 	if (sector_size < DEFAULT_EMPTY_SCAN_SIZE)
 | |
| 		return sector_size;
 | |
| 	else
 | |
| 		return DEFAULT_EMPTY_SCAN_SIZE;
 | |
| }
 | |
| 
 | |
| static int file_dirty(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if ((ret = jffs2_prealloc_raw_node_refs(c, jeb, 1)))
 | |
| 		return ret;
 | |
| 	if ((ret = jffs2_scan_dirty_space(c, jeb, jeb->free_size)))
 | |
| 		return ret;
 | |
| 	/* Turned wasted size into dirty, since we apparently 
 | |
| 	   think it's recoverable now. */
 | |
| 	jeb->dirty_size += jeb->wasted_size;
 | |
| 	c->dirty_size += jeb->wasted_size;
 | |
| 	c->wasted_size -= jeb->wasted_size;
 | |
| 	jeb->wasted_size = 0;
 | |
| 	if (VERYDIRTY(c, jeb->dirty_size)) {
 | |
| 		list_add(&jeb->list, &c->very_dirty_list);
 | |
| 	} else {
 | |
| 		list_add(&jeb->list, &c->dirty_list);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int jffs2_scan_medium(struct jffs2_sb_info *c)
 | |
| {
 | |
| 	int i, ret;
 | |
| 	uint32_t empty_blocks = 0, bad_blocks = 0;
 | |
| 	unsigned char *flashbuf = NULL;
 | |
| 	uint32_t buf_size = 0;
 | |
| 	struct jffs2_summary *s = NULL; /* summary info collected by the scan process */
 | |
| #ifndef __ECOS
 | |
| 	size_t pointlen;
 | |
| 
 | |
| 	if (c->mtd->point) {
 | |
| 		ret = c->mtd->point(c->mtd, 0, c->mtd->size, &pointlen,
 | |
| 				    (void **)&flashbuf, NULL);
 | |
| 		if (!ret && pointlen < c->mtd->size) {
 | |
| 			/* Don't muck about if it won't let us point to the whole flash */
 | |
| 			D1(printk(KERN_DEBUG "MTD point returned len too short: 0x%zx\n", pointlen));
 | |
| 			c->mtd->unpoint(c->mtd, 0, pointlen);
 | |
| 			flashbuf = NULL;
 | |
| 		}
 | |
| 		if (ret)
 | |
| 			D1(printk(KERN_DEBUG "MTD point failed %d\n", ret));
 | |
| 	}
 | |
| #endif
 | |
| 	if (!flashbuf) {
 | |
| 		/* For NAND it's quicker to read a whole eraseblock at a time,
 | |
| 		   apparently */
 | |
| 		if (jffs2_cleanmarker_oob(c))
 | |
| 			buf_size = c->sector_size;
 | |
| 		else
 | |
| 			buf_size = PAGE_SIZE;
 | |
| 
 | |
| 		/* Respect kmalloc limitations */
 | |
| 		if (buf_size > 128*1024)
 | |
| 			buf_size = 128*1024;
 | |
| 
 | |
| 		D1(printk(KERN_DEBUG "Allocating readbuf of %d bytes\n", buf_size));
 | |
| 		flashbuf = kmalloc(buf_size, GFP_KERNEL);
 | |
| 		if (!flashbuf)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	if (jffs2_sum_active()) {
 | |
| 		s = kzalloc(sizeof(struct jffs2_summary), GFP_KERNEL);
 | |
| 		if (!s) {
 | |
| 			kfree(flashbuf);
 | |
| 			JFFS2_WARNING("Can't allocate memory for summary\n");
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i=0; i<c->nr_blocks; i++) {
 | |
| 		struct jffs2_eraseblock *jeb = &c->blocks[i];
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		/* reset summary info for next eraseblock scan */
 | |
| 		jffs2_sum_reset_collected(s);
 | |
| 
 | |
| 		ret = jffs2_scan_eraseblock(c, jeb, buf_size?flashbuf:(flashbuf+jeb->offset),
 | |
| 						buf_size, s);
 | |
| 
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
 | |
| 
 | |
| 		/* Now decide which list to put it on */
 | |
| 		switch(ret) {
 | |
| 		case BLK_STATE_ALLFF:
 | |
| 			/*
 | |
| 			 * Empty block.   Since we can't be sure it
 | |
| 			 * was entirely erased, we just queue it for erase
 | |
| 			 * again.  It will be marked as such when the erase
 | |
| 			 * is complete.  Meanwhile we still count it as empty
 | |
| 			 * for later checks.
 | |
| 			 */
 | |
| 			empty_blocks++;
 | |
| 			list_add(&jeb->list, &c->erase_pending_list);
 | |
| 			c->nr_erasing_blocks++;
 | |
| 			break;
 | |
| 
 | |
| 		case BLK_STATE_CLEANMARKER:
 | |
| 			/* Only a CLEANMARKER node is valid */
 | |
| 			if (!jeb->dirty_size) {
 | |
| 				/* It's actually free */
 | |
| 				list_add(&jeb->list, &c->free_list);
 | |
| 				c->nr_free_blocks++;
 | |
| 			} else {
 | |
| 				/* Dirt */
 | |
| 				D1(printk(KERN_DEBUG "Adding all-dirty block at 0x%08x to erase_pending_list\n", jeb->offset));
 | |
| 				list_add(&jeb->list, &c->erase_pending_list);
 | |
| 				c->nr_erasing_blocks++;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case BLK_STATE_CLEAN:
 | |
| 			/* Full (or almost full) of clean data. Clean list */
 | |
| 			list_add(&jeb->list, &c->clean_list);
 | |
| 			break;
 | |
| 
 | |
| 		case BLK_STATE_PARTDIRTY:
 | |
| 			/* Some data, but not full. Dirty list. */
 | |
| 			/* We want to remember the block with most free space
 | |
| 			and stick it in the 'nextblock' position to start writing to it. */
 | |
| 			if (jeb->free_size > min_free(c) &&
 | |
| 					(!c->nextblock || c->nextblock->free_size < jeb->free_size)) {
 | |
| 				/* Better candidate for the next writes to go to */
 | |
| 				if (c->nextblock) {
 | |
| 					ret = file_dirty(c, c->nextblock);
 | |
| 					if (ret)
 | |
| 						return ret;
 | |
| 					/* deleting summary information of the old nextblock */
 | |
| 					jffs2_sum_reset_collected(c->summary);
 | |
| 				}
 | |
| 				/* update collected summary information for the current nextblock */
 | |
| 				jffs2_sum_move_collected(c, s);
 | |
| 				D1(printk(KERN_DEBUG "jffs2_scan_medium(): new nextblock = 0x%08x\n", jeb->offset));
 | |
| 				c->nextblock = jeb;
 | |
| 			} else {
 | |
| 				ret = file_dirty(c, jeb);
 | |
| 				if (ret)
 | |
| 					return ret;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case BLK_STATE_ALLDIRTY:
 | |
| 			/* Nothing valid - not even a clean marker. Needs erasing. */
 | |
| 			/* For now we just put it on the erasing list. We'll start the erases later */
 | |
| 			D1(printk(KERN_NOTICE "JFFS2: Erase block at 0x%08x is not formatted. It will be erased\n", jeb->offset));
 | |
| 			list_add(&jeb->list, &c->erase_pending_list);
 | |
| 			c->nr_erasing_blocks++;
 | |
| 			break;
 | |
| 
 | |
| 		case BLK_STATE_BADBLOCK:
 | |
| 			D1(printk(KERN_NOTICE "JFFS2: Block at 0x%08x is bad\n", jeb->offset));
 | |
| 			list_add(&jeb->list, &c->bad_list);
 | |
| 			c->bad_size += c->sector_size;
 | |
| 			c->free_size -= c->sector_size;
 | |
| 			bad_blocks++;
 | |
| 			break;
 | |
| 		default:
 | |
| 			printk(KERN_WARNING "jffs2_scan_medium(): unknown block state\n");
 | |
| 			BUG();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Nextblock dirty is always seen as wasted, because we cannot recycle it now */
 | |
| 	if (c->nextblock && (c->nextblock->dirty_size)) {
 | |
| 		c->nextblock->wasted_size += c->nextblock->dirty_size;
 | |
| 		c->wasted_size += c->nextblock->dirty_size;
 | |
| 		c->dirty_size -= c->nextblock->dirty_size;
 | |
| 		c->nextblock->dirty_size = 0;
 | |
| 	}
 | |
| #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
 | |
| 	if (!jffs2_can_mark_obsolete(c) && c->wbuf_pagesize && c->nextblock && (c->nextblock->free_size % c->wbuf_pagesize)) {
 | |
| 		/* If we're going to start writing into a block which already
 | |
| 		   contains data, and the end of the data isn't page-aligned,
 | |
| 		   skip a little and align it. */
 | |
| 
 | |
| 		uint32_t skip = c->nextblock->free_size % c->wbuf_pagesize;
 | |
| 
 | |
| 		D1(printk(KERN_DEBUG "jffs2_scan_medium(): Skipping %d bytes in nextblock to ensure page alignment\n",
 | |
| 			  skip));
 | |
| 		jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
 | |
| 		jffs2_scan_dirty_space(c, c->nextblock, skip);
 | |
| 	}
 | |
| #endif
 | |
| 	if (c->nr_erasing_blocks) {
 | |
| 		if ( !c->used_size && ((c->nr_free_blocks+empty_blocks+bad_blocks)!= c->nr_blocks || bad_blocks == c->nr_blocks) ) {
 | |
| 			printk(KERN_NOTICE "Cowardly refusing to erase blocks on filesystem with no valid JFFS2 nodes\n");
 | |
| 			printk(KERN_NOTICE "empty_blocks %d, bad_blocks %d, c->nr_blocks %d\n",empty_blocks,bad_blocks,c->nr_blocks);
 | |
| 			ret = -EIO;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		jffs2_erase_pending_trigger(c);
 | |
| 	}
 | |
| 	ret = 0;
 | |
|  out:
 | |
| 	if (buf_size)
 | |
| 		kfree(flashbuf);
 | |
| #ifndef __ECOS
 | |
| 	else
 | |
| 		c->mtd->unpoint(c->mtd, 0, c->mtd->size);
 | |
| #endif
 | |
| 	if (s)
 | |
| 		kfree(s);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int jffs2_fill_scan_buf(struct jffs2_sb_info *c, void *buf,
 | |
| 			       uint32_t ofs, uint32_t len)
 | |
| {
 | |
| 	int ret;
 | |
| 	size_t retlen;
 | |
| 
 | |
| 	ret = jffs2_flash_read(c, ofs, len, &retlen, buf);
 | |
| 	if (ret) {
 | |
| 		D1(printk(KERN_WARNING "mtd->read(0x%x bytes from 0x%x) returned %d\n", len, ofs, ret));
 | |
| 		return ret;
 | |
| 	}
 | |
| 	if (retlen < len) {
 | |
| 		D1(printk(KERN_WARNING "Read at 0x%x gave only 0x%zx bytes\n", ofs, retlen));
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int jffs2_scan_classify_jeb(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
 | |
| {
 | |
| 	if ((jeb->used_size + jeb->unchecked_size) == PAD(c->cleanmarker_size) && !jeb->dirty_size
 | |
| 	    && (!jeb->first_node || !ref_next(jeb->first_node)) )
 | |
| 		return BLK_STATE_CLEANMARKER;
 | |
| 
 | |
| 	/* move blocks with max 4 byte dirty space to cleanlist */
 | |
| 	else if (!ISDIRTY(c->sector_size - (jeb->used_size + jeb->unchecked_size))) {
 | |
| 		c->dirty_size -= jeb->dirty_size;
 | |
| 		c->wasted_size += jeb->dirty_size;
 | |
| 		jeb->wasted_size += jeb->dirty_size;
 | |
| 		jeb->dirty_size = 0;
 | |
| 		return BLK_STATE_CLEAN;
 | |
| 	} else if (jeb->used_size || jeb->unchecked_size)
 | |
| 		return BLK_STATE_PARTDIRTY;
 | |
| 	else
 | |
| 		return BLK_STATE_ALLDIRTY;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_JFFS2_FS_XATTR
 | |
| static int jffs2_scan_xattr_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 | |
| 				 struct jffs2_raw_xattr *rx, uint32_t ofs,
 | |
| 				 struct jffs2_summary *s)
 | |
| {
 | |
| 	struct jffs2_xattr_datum *xd;
 | |
| 	uint32_t xid, version, totlen, crc;
 | |
| 	int err;
 | |
| 
 | |
| 	crc = crc32(0, rx, sizeof(struct jffs2_raw_xattr) - 4);
 | |
| 	if (crc != je32_to_cpu(rx->node_crc)) {
 | |
| 		JFFS2_WARNING("node CRC failed at %#08x, read=%#08x, calc=%#08x\n",
 | |
| 			      ofs, je32_to_cpu(rx->node_crc), crc);
 | |
| 		if ((err = jffs2_scan_dirty_space(c, jeb, je32_to_cpu(rx->totlen))))
 | |
| 			return err;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	xid = je32_to_cpu(rx->xid);
 | |
| 	version = je32_to_cpu(rx->version);
 | |
| 
 | |
| 	totlen = PAD(sizeof(struct jffs2_raw_xattr)
 | |
| 			+ rx->name_len + 1 + je16_to_cpu(rx->value_len));
 | |
| 	if (totlen != je32_to_cpu(rx->totlen)) {
 | |
| 		JFFS2_WARNING("node length mismatch at %#08x, read=%u, calc=%u\n",
 | |
| 			      ofs, je32_to_cpu(rx->totlen), totlen);
 | |
| 		if ((err = jffs2_scan_dirty_space(c, jeb, je32_to_cpu(rx->totlen))))
 | |
| 			return err;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	xd = jffs2_setup_xattr_datum(c, xid, version);
 | |
| 	if (IS_ERR(xd))
 | |
| 		return PTR_ERR(xd);
 | |
| 
 | |
| 	if (xd->version > version) {
 | |
| 		struct jffs2_raw_node_ref *raw
 | |
| 			= jffs2_link_node_ref(c, jeb, ofs | REF_PRISTINE, totlen, NULL);
 | |
| 		raw->next_in_ino = xd->node->next_in_ino;
 | |
| 		xd->node->next_in_ino = raw;
 | |
| 	} else {
 | |
| 		xd->version = version;
 | |
| 		xd->xprefix = rx->xprefix;
 | |
| 		xd->name_len = rx->name_len;
 | |
| 		xd->value_len = je16_to_cpu(rx->value_len);
 | |
| 		xd->data_crc = je32_to_cpu(rx->data_crc);
 | |
| 
 | |
| 		jffs2_link_node_ref(c, jeb, ofs | REF_PRISTINE, totlen, (void *)xd);
 | |
| 	}
 | |
| 
 | |
| 	if (jffs2_sum_active())
 | |
| 		jffs2_sum_add_xattr_mem(s, rx, ofs - jeb->offset);
 | |
| 	dbg_xattr("scaning xdatum at %#08x (xid=%u, version=%u)\n",
 | |
| 		  ofs, xd->xid, xd->version);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int jffs2_scan_xref_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 | |
| 				struct jffs2_raw_xref *rr, uint32_t ofs,
 | |
| 				struct jffs2_summary *s)
 | |
| {
 | |
| 	struct jffs2_xattr_ref *ref;
 | |
| 	uint32_t crc;
 | |
| 	int err;
 | |
| 
 | |
| 	crc = crc32(0, rr, sizeof(*rr) - 4);
 | |
| 	if (crc != je32_to_cpu(rr->node_crc)) {
 | |
| 		JFFS2_WARNING("node CRC failed at %#08x, read=%#08x, calc=%#08x\n",
 | |
| 			      ofs, je32_to_cpu(rr->node_crc), crc);
 | |
| 		if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(rr->totlen)))))
 | |
| 			return err;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (PAD(sizeof(struct jffs2_raw_xref)) != je32_to_cpu(rr->totlen)) {
 | |
| 		JFFS2_WARNING("node length mismatch at %#08x, read=%u, calc=%zd\n",
 | |
| 			      ofs, je32_to_cpu(rr->totlen),
 | |
| 			      PAD(sizeof(struct jffs2_raw_xref)));
 | |
| 		if ((err = jffs2_scan_dirty_space(c, jeb, je32_to_cpu(rr->totlen))))
 | |
| 			return err;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ref = jffs2_alloc_xattr_ref();
 | |
| 	if (!ref)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* BEFORE jffs2_build_xattr_subsystem() called, 
 | |
| 	 * and AFTER xattr_ref is marked as a dead xref,
 | |
| 	 * ref->xid is used to store 32bit xid, xd is not used
 | |
| 	 * ref->ino is used to store 32bit inode-number, ic is not used
 | |
| 	 * Thoes variables are declared as union, thus using those
 | |
| 	 * are exclusive. In a similar way, ref->next is temporarily
 | |
| 	 * used to chain all xattr_ref object. It's re-chained to
 | |
| 	 * jffs2_inode_cache in jffs2_build_xattr_subsystem() correctly.
 | |
| 	 */
 | |
| 	ref->ino = je32_to_cpu(rr->ino);
 | |
| 	ref->xid = je32_to_cpu(rr->xid);
 | |
| 	ref->xseqno = je32_to_cpu(rr->xseqno);
 | |
| 	if (ref->xseqno > c->highest_xseqno)
 | |
| 		c->highest_xseqno = (ref->xseqno & ~XREF_DELETE_MARKER);
 | |
| 	ref->next = c->xref_temp;
 | |
| 	c->xref_temp = ref;
 | |
| 
 | |
| 	jffs2_link_node_ref(c, jeb, ofs | REF_PRISTINE, PAD(je32_to_cpu(rr->totlen)), (void *)ref);
 | |
| 
 | |
| 	if (jffs2_sum_active())
 | |
| 		jffs2_sum_add_xref_mem(s, rr, ofs - jeb->offset);
 | |
| 	dbg_xattr("scan xref at %#08x (xid=%u, ino=%u)\n",
 | |
| 		  ofs, ref->xid, ref->ino);
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Called with 'buf_size == 0' if buf is in fact a pointer _directly_ into
 | |
|    the flash, XIP-style */
 | |
| static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 | |
| 				  unsigned char *buf, uint32_t buf_size, struct jffs2_summary *s) {
 | |
| 	struct jffs2_unknown_node *node;
 | |
| 	struct jffs2_unknown_node crcnode;
 | |
| 	uint32_t ofs, prevofs;
 | |
| 	uint32_t hdr_crc, buf_ofs, buf_len;
 | |
| 	int err;
 | |
| 	int noise = 0;
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
 | |
| 	int cleanmarkerfound = 0;
 | |
| #endif
 | |
| 
 | |
| 	ofs = jeb->offset;
 | |
| 	prevofs = jeb->offset - 1;
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "jffs2_scan_eraseblock(): Scanning block at 0x%x\n", ofs));
 | |
| 
 | |
| #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
 | |
| 	if (jffs2_cleanmarker_oob(c)) {
 | |
| 		int ret;
 | |
| 
 | |
| 		if (c->mtd->block_isbad(c->mtd, jeb->offset))
 | |
| 			return BLK_STATE_BADBLOCK;
 | |
| 
 | |
| 		ret = jffs2_check_nand_cleanmarker(c, jeb);
 | |
| 		D2(printk(KERN_NOTICE "jffs_check_nand_cleanmarker returned %d\n",ret));
 | |
| 
 | |
| 		/* Even if it's not found, we still scan to see
 | |
| 		   if the block is empty. We use this information
 | |
| 		   to decide whether to erase it or not. */
 | |
| 		switch (ret) {
 | |
| 		case 0:		cleanmarkerfound = 1; break;
 | |
| 		case 1: 	break;
 | |
| 		default: 	return ret;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (jffs2_sum_active()) {
 | |
| 		struct jffs2_sum_marker *sm;
 | |
| 		void *sumptr = NULL;
 | |
| 		uint32_t sumlen;
 | |
| 	      
 | |
| 		if (!buf_size) {
 | |
| 			/* XIP case. Just look, point at the summary if it's there */
 | |
| 			sm = (void *)buf + c->sector_size - sizeof(*sm);
 | |
| 			if (je32_to_cpu(sm->magic) == JFFS2_SUM_MAGIC) {
 | |
| 				sumptr = buf + je32_to_cpu(sm->offset);
 | |
| 				sumlen = c->sector_size - je32_to_cpu(sm->offset);
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* If NAND flash, read a whole page of it. Else just the end */
 | |
| 			if (c->wbuf_pagesize)
 | |
| 				buf_len = c->wbuf_pagesize;
 | |
| 			else
 | |
| 				buf_len = sizeof(*sm);
 | |
| 
 | |
| 			/* Read as much as we want into the _end_ of the preallocated buffer */
 | |
| 			err = jffs2_fill_scan_buf(c, buf + buf_size - buf_len, 
 | |
| 						  jeb->offset + c->sector_size - buf_len,
 | |
| 						  buf_len);				
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 
 | |
| 			sm = (void *)buf + buf_size - sizeof(*sm);
 | |
| 			if (je32_to_cpu(sm->magic) == JFFS2_SUM_MAGIC) {
 | |
| 				sumlen = c->sector_size - je32_to_cpu(sm->offset);
 | |
| 				sumptr = buf + buf_size - sumlen;
 | |
| 
 | |
| 				/* Now, make sure the summary itself is available */
 | |
| 				if (sumlen > buf_size) {
 | |
| 					/* Need to kmalloc for this. */
 | |
| 					sumptr = kmalloc(sumlen, GFP_KERNEL);
 | |
| 					if (!sumptr)
 | |
| 						return -ENOMEM;
 | |
| 					memcpy(sumptr + sumlen - buf_len, buf + buf_size - buf_len, buf_len);
 | |
| 				}
 | |
| 				if (buf_len < sumlen) {
 | |
| 					/* Need to read more so that the entire summary node is present */
 | |
| 					err = jffs2_fill_scan_buf(c, sumptr, 
 | |
| 								  jeb->offset + c->sector_size - sumlen,
 | |
| 								  sumlen - buf_len);				
 | |
| 					if (err)
 | |
| 						return err;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		if (sumptr) {
 | |
| 			err = jffs2_sum_scan_sumnode(c, jeb, sumptr, sumlen, &pseudo_random);
 | |
| 
 | |
| 			if (buf_size && sumlen > buf_size)
 | |
| 				kfree(sumptr);
 | |
| 			/* If it returns with a real error, bail. 
 | |
| 			   If it returns positive, that's a block classification
 | |
| 			   (i.e. BLK_STATE_xxx) so return that too.
 | |
| 			   If it returns zero, fall through to full scan. */
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	buf_ofs = jeb->offset;
 | |
| 
 | |
| 	if (!buf_size) {
 | |
| 		/* This is the XIP case -- we're reading _directly_ from the flash chip */
 | |
| 		buf_len = c->sector_size;
 | |
| 	} else {
 | |
| 		buf_len = EMPTY_SCAN_SIZE(c->sector_size);
 | |
| 		err = jffs2_fill_scan_buf(c, buf, buf_ofs, buf_len);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	/* We temporarily use 'ofs' as a pointer into the buffer/jeb */
 | |
| 	ofs = 0;
 | |
| 
 | |
| 	/* Scan only 4KiB of 0xFF before declaring it's empty */
 | |
| 	while(ofs < EMPTY_SCAN_SIZE(c->sector_size) && *(uint32_t *)(&buf[ofs]) == 0xFFFFFFFF)
 | |
| 		ofs += 4;
 | |
| 
 | |
| 	if (ofs == EMPTY_SCAN_SIZE(c->sector_size)) {
 | |
| #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
 | |
| 		if (jffs2_cleanmarker_oob(c)) {
 | |
| 			/* scan oob, take care of cleanmarker */
 | |
| 			int ret = jffs2_check_oob_empty(c, jeb, cleanmarkerfound);
 | |
| 			D2(printk(KERN_NOTICE "jffs2_check_oob_empty returned %d\n",ret));
 | |
| 			switch (ret) {
 | |
| 			case 0:		return cleanmarkerfound ? BLK_STATE_CLEANMARKER : BLK_STATE_ALLFF;
 | |
| 			case 1: 	return BLK_STATE_ALLDIRTY;
 | |
| 			default: 	return ret;
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 		D1(printk(KERN_DEBUG "Block at 0x%08x is empty (erased)\n", jeb->offset));
 | |
| 		if (c->cleanmarker_size == 0)
 | |
| 			return BLK_STATE_CLEANMARKER;	/* don't bother with re-erase */
 | |
| 		else
 | |
| 			return BLK_STATE_ALLFF;	/* OK to erase if all blocks are like this */
 | |
| 	}
 | |
| 	if (ofs) {
 | |
| 		D1(printk(KERN_DEBUG "Free space at %08x ends at %08x\n", jeb->offset,
 | |
| 			  jeb->offset + ofs));
 | |
| 		if ((err = jffs2_prealloc_raw_node_refs(c, jeb, 1)))
 | |
| 			return err;
 | |
| 		if ((err = jffs2_scan_dirty_space(c, jeb, ofs)))
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	/* Now ofs is a complete physical flash offset as it always was... */
 | |
| 	ofs += jeb->offset;
 | |
| 
 | |
| 	noise = 10;
 | |
| 
 | |
| 	dbg_summary("no summary found in jeb 0x%08x. Apply original scan.\n",jeb->offset);
 | |
| 
 | |
| scan_more:
 | |
| 	while(ofs < jeb->offset + c->sector_size) {
 | |
| 
 | |
| 		jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
 | |
| 
 | |
| 		/* Make sure there are node refs available for use */
 | |
| 		err = jffs2_prealloc_raw_node_refs(c, jeb, 2);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (ofs & 3) {
 | |
| 			printk(KERN_WARNING "Eep. ofs 0x%08x not word-aligned!\n", ofs);
 | |
| 			ofs = PAD(ofs);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (ofs == prevofs) {
 | |
| 			printk(KERN_WARNING "ofs 0x%08x has already been seen. Skipping\n", ofs);
 | |
| 			if ((err = jffs2_scan_dirty_space(c, jeb, 4)))
 | |
| 				return err;
 | |
| 			ofs += 4;
 | |
| 			continue;
 | |
| 		}
 | |
| 		prevofs = ofs;
 | |
| 
 | |
| 		if (jeb->offset + c->sector_size < ofs + sizeof(*node)) {
 | |
| 			D1(printk(KERN_DEBUG "Fewer than %zd bytes left to end of block. (%x+%x<%x+%zx) Not reading\n", sizeof(struct jffs2_unknown_node),
 | |
| 				  jeb->offset, c->sector_size, ofs, sizeof(*node)));
 | |
| 			if ((err = jffs2_scan_dirty_space(c, jeb, (jeb->offset + c->sector_size)-ofs)))
 | |
| 				return err;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (buf_ofs + buf_len < ofs + sizeof(*node)) {
 | |
| 			buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
 | |
| 			D1(printk(KERN_DEBUG "Fewer than %zd bytes (node header) left to end of buf. Reading 0x%x at 0x%08x\n",
 | |
| 				  sizeof(struct jffs2_unknown_node), buf_len, ofs));
 | |
| 			err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			buf_ofs = ofs;
 | |
| 		}
 | |
| 
 | |
| 		node = (struct jffs2_unknown_node *)&buf[ofs-buf_ofs];
 | |
| 
 | |
| 		if (*(uint32_t *)(&buf[ofs-buf_ofs]) == 0xffffffff) {
 | |
| 			uint32_t inbuf_ofs;
 | |
| 			uint32_t empty_start, scan_end;
 | |
| 
 | |
| 			empty_start = ofs;
 | |
| 			ofs += 4;
 | |
| 			scan_end = min_t(uint32_t, EMPTY_SCAN_SIZE(c->sector_size)/8, buf_len);
 | |
| 
 | |
| 			D1(printk(KERN_DEBUG "Found empty flash at 0x%08x\n", ofs));
 | |
| 		more_empty:
 | |
| 			inbuf_ofs = ofs - buf_ofs;
 | |
| 			while (inbuf_ofs < scan_end) {
 | |
| 				if (unlikely(*(uint32_t *)(&buf[inbuf_ofs]) != 0xffffffff)) {
 | |
| 					printk(KERN_WARNING "Empty flash at 0x%08x ends at 0x%08x\n",
 | |
| 					       empty_start, ofs);
 | |
| 					if ((err = jffs2_scan_dirty_space(c, jeb, ofs-empty_start)))
 | |
| 						return err;
 | |
| 					goto scan_more;
 | |
| 				}
 | |
| 
 | |
| 				inbuf_ofs+=4;
 | |
| 				ofs += 4;
 | |
| 			}
 | |
| 			/* Ran off end. */
 | |
| 			D1(printk(KERN_DEBUG "Empty flash to end of buffer at 0x%08x\n", ofs));
 | |
| 
 | |
| 			/* If we're only checking the beginning of a block with a cleanmarker,
 | |
| 			   bail now */
 | |
| 			if (buf_ofs == jeb->offset && jeb->used_size == PAD(c->cleanmarker_size) &&
 | |
| 			    c->cleanmarker_size && !jeb->dirty_size && !ref_next(jeb->first_node)) {
 | |
| 				D1(printk(KERN_DEBUG "%d bytes at start of block seems clean... assuming all clean\n", EMPTY_SCAN_SIZE(c->sector_size)));
 | |
| 				return BLK_STATE_CLEANMARKER;
 | |
| 			}
 | |
| 			if (!buf_size && (scan_end != buf_len)) {/* XIP/point case */
 | |
| 				scan_end = buf_len;
 | |
| 				goto more_empty;
 | |
| 			}
 | |
| 			
 | |
| 			/* See how much more there is to read in this eraseblock... */
 | |
| 			buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
 | |
| 			if (!buf_len) {
 | |
| 				/* No more to read. Break out of main loop without marking
 | |
| 				   this range of empty space as dirty (because it's not) */
 | |
| 				D1(printk(KERN_DEBUG "Empty flash at %08x runs to end of block. Treating as free_space\n",
 | |
| 					  empty_start));
 | |
| 				break;
 | |
| 			}
 | |
| 			/* point never reaches here */
 | |
| 			scan_end = buf_len;
 | |
| 			D1(printk(KERN_DEBUG "Reading another 0x%x at 0x%08x\n", buf_len, ofs));
 | |
| 			err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			buf_ofs = ofs;
 | |
| 			goto more_empty;
 | |
| 		}
 | |
| 
 | |
| 		if (ofs == jeb->offset && je16_to_cpu(node->magic) == KSAMTIB_CIGAM_2SFFJ) {
 | |
| 			printk(KERN_WARNING "Magic bitmask is backwards at offset 0x%08x. Wrong endian filesystem?\n", ofs);
 | |
| 			if ((err = jffs2_scan_dirty_space(c, jeb, 4)))
 | |
| 				return err;
 | |
| 			ofs += 4;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (je16_to_cpu(node->magic) == JFFS2_DIRTY_BITMASK) {
 | |
| 			D1(printk(KERN_DEBUG "Dirty bitmask at 0x%08x\n", ofs));
 | |
| 			if ((err = jffs2_scan_dirty_space(c, jeb, 4)))
 | |
| 				return err;
 | |
| 			ofs += 4;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (je16_to_cpu(node->magic) == JFFS2_OLD_MAGIC_BITMASK) {
 | |
| 			printk(KERN_WARNING "Old JFFS2 bitmask found at 0x%08x\n", ofs);
 | |
| 			printk(KERN_WARNING "You cannot use older JFFS2 filesystems with newer kernels\n");
 | |
| 			if ((err = jffs2_scan_dirty_space(c, jeb, 4)))
 | |
| 				return err;
 | |
| 			ofs += 4;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (je16_to_cpu(node->magic) != JFFS2_MAGIC_BITMASK) {
 | |
| 			/* OK. We're out of possibilities. Whinge and move on */
 | |
| 			noisy_printk(&noise, "jffs2_scan_eraseblock(): Magic bitmask 0x%04x not found at 0x%08x: 0x%04x instead\n",
 | |
| 				     JFFS2_MAGIC_BITMASK, ofs,
 | |
| 				     je16_to_cpu(node->magic));
 | |
| 			if ((err = jffs2_scan_dirty_space(c, jeb, 4)))
 | |
| 				return err;
 | |
| 			ofs += 4;
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* We seem to have a node of sorts. Check the CRC */
 | |
| 		crcnode.magic = node->magic;
 | |
| 		crcnode.nodetype = cpu_to_je16( je16_to_cpu(node->nodetype) | JFFS2_NODE_ACCURATE);
 | |
| 		crcnode.totlen = node->totlen;
 | |
| 		hdr_crc = crc32(0, &crcnode, sizeof(crcnode)-4);
 | |
| 
 | |
| 		if (hdr_crc != je32_to_cpu(node->hdr_crc)) {
 | |
| 			noisy_printk(&noise, "jffs2_scan_eraseblock(): Node at 0x%08x {0x%04x, 0x%04x, 0x%08x) has invalid CRC 0x%08x (calculated 0x%08x)\n",
 | |
| 				     ofs, je16_to_cpu(node->magic),
 | |
| 				     je16_to_cpu(node->nodetype),
 | |
| 				     je32_to_cpu(node->totlen),
 | |
| 				     je32_to_cpu(node->hdr_crc),
 | |
| 				     hdr_crc);
 | |
| 			if ((err = jffs2_scan_dirty_space(c, jeb, 4)))
 | |
| 				return err;
 | |
| 			ofs += 4;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (ofs + je32_to_cpu(node->totlen) > jeb->offset + c->sector_size) {
 | |
| 			/* Eep. Node goes over the end of the erase block. */
 | |
| 			printk(KERN_WARNING "Node at 0x%08x with length 0x%08x would run over the end of the erase block\n",
 | |
| 			       ofs, je32_to_cpu(node->totlen));
 | |
| 			printk(KERN_WARNING "Perhaps the file system was created with the wrong erase size?\n");
 | |
| 			if ((err = jffs2_scan_dirty_space(c, jeb, 4)))
 | |
| 				return err;
 | |
| 			ofs += 4;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!(je16_to_cpu(node->nodetype) & JFFS2_NODE_ACCURATE)) {
 | |
| 			/* Wheee. This is an obsoleted node */
 | |
| 			D2(printk(KERN_DEBUG "Node at 0x%08x is obsolete. Skipping\n", ofs));
 | |
| 			if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(node->totlen)))))
 | |
| 				return err;
 | |
| 			ofs += PAD(je32_to_cpu(node->totlen));
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		switch(je16_to_cpu(node->nodetype)) {
 | |
| 		case JFFS2_NODETYPE_INODE:
 | |
| 			if (buf_ofs + buf_len < ofs + sizeof(struct jffs2_raw_inode)) {
 | |
| 				buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
 | |
| 				D1(printk(KERN_DEBUG "Fewer than %zd bytes (inode node) left to end of buf. Reading 0x%x at 0x%08x\n",
 | |
| 					  sizeof(struct jffs2_raw_inode), buf_len, ofs));
 | |
| 				err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 				buf_ofs = ofs;
 | |
| 				node = (void *)buf;
 | |
| 			}
 | |
| 			err = jffs2_scan_inode_node(c, jeb, (void *)node, ofs, s);
 | |
| 			if (err) return err;
 | |
| 			ofs += PAD(je32_to_cpu(node->totlen));
 | |
| 			break;
 | |
| 
 | |
| 		case JFFS2_NODETYPE_DIRENT:
 | |
| 			if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) {
 | |
| 				buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
 | |
| 				D1(printk(KERN_DEBUG "Fewer than %d bytes (dirent node) left to end of buf. Reading 0x%x at 0x%08x\n",
 | |
| 					  je32_to_cpu(node->totlen), buf_len, ofs));
 | |
| 				err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 				buf_ofs = ofs;
 | |
| 				node = (void *)buf;
 | |
| 			}
 | |
| 			err = jffs2_scan_dirent_node(c, jeb, (void *)node, ofs, s);
 | |
| 			if (err) return err;
 | |
| 			ofs += PAD(je32_to_cpu(node->totlen));
 | |
| 			break;
 | |
| 
 | |
| #ifdef CONFIG_JFFS2_FS_XATTR
 | |
| 		case JFFS2_NODETYPE_XATTR:
 | |
| 			if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) {
 | |
| 				buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
 | |
| 				D1(printk(KERN_DEBUG "Fewer than %d bytes (xattr node)"
 | |
| 					  " left to end of buf. Reading 0x%x at 0x%08x\n",
 | |
| 					  je32_to_cpu(node->totlen), buf_len, ofs));
 | |
| 				err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 				buf_ofs = ofs;
 | |
| 				node = (void *)buf;
 | |
| 			}
 | |
| 			err = jffs2_scan_xattr_node(c, jeb, (void *)node, ofs, s);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			ofs += PAD(je32_to_cpu(node->totlen));
 | |
| 			break;
 | |
| 		case JFFS2_NODETYPE_XREF:
 | |
| 			if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) {
 | |
| 				buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
 | |
| 				D1(printk(KERN_DEBUG "Fewer than %d bytes (xref node)"
 | |
| 					  " left to end of buf. Reading 0x%x at 0x%08x\n",
 | |
| 					  je32_to_cpu(node->totlen), buf_len, ofs));
 | |
| 				err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 				buf_ofs = ofs;
 | |
| 				node = (void *)buf;
 | |
| 			}
 | |
| 			err = jffs2_scan_xref_node(c, jeb, (void *)node, ofs, s);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			ofs += PAD(je32_to_cpu(node->totlen));
 | |
| 			break;
 | |
| #endif	/* CONFIG_JFFS2_FS_XATTR */
 | |
| 
 | |
| 		case JFFS2_NODETYPE_CLEANMARKER:
 | |
| 			D1(printk(KERN_DEBUG "CLEANMARKER node found at 0x%08x\n", ofs));
 | |
| 			if (je32_to_cpu(node->totlen) != c->cleanmarker_size) {
 | |
| 				printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x has totlen 0x%x != normal 0x%x\n",
 | |
| 				       ofs, je32_to_cpu(node->totlen), c->cleanmarker_size);
 | |
| 				if ((err = jffs2_scan_dirty_space(c, jeb, PAD(sizeof(struct jffs2_unknown_node)))))
 | |
| 					return err;
 | |
| 				ofs += PAD(sizeof(struct jffs2_unknown_node));
 | |
| 			} else if (jeb->first_node) {
 | |
| 				printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x, not first node in block (0x%08x)\n", ofs, jeb->offset);
 | |
| 				if ((err = jffs2_scan_dirty_space(c, jeb, PAD(sizeof(struct jffs2_unknown_node)))))
 | |
| 					return err;
 | |
| 				ofs += PAD(sizeof(struct jffs2_unknown_node));
 | |
| 			} else {
 | |
| 				jffs2_link_node_ref(c, jeb, ofs | REF_NORMAL, c->cleanmarker_size, NULL);
 | |
| 
 | |
| 				ofs += PAD(c->cleanmarker_size);
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case JFFS2_NODETYPE_PADDING:
 | |
| 			if (jffs2_sum_active())
 | |
| 				jffs2_sum_add_padding_mem(s, je32_to_cpu(node->totlen));
 | |
| 			if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(node->totlen)))))
 | |
| 				return err;
 | |
| 			ofs += PAD(je32_to_cpu(node->totlen));
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			switch (je16_to_cpu(node->nodetype) & JFFS2_COMPAT_MASK) {
 | |
| 			case JFFS2_FEATURE_ROCOMPAT:
 | |
| 				printk(KERN_NOTICE "Read-only compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs);
 | |
| 				c->flags |= JFFS2_SB_FLAG_RO;
 | |
| 				if (!(jffs2_is_readonly(c)))
 | |
| 					return -EROFS;
 | |
| 				if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(node->totlen)))))
 | |
| 					return err;
 | |
| 				ofs += PAD(je32_to_cpu(node->totlen));
 | |
| 				break;
 | |
| 
 | |
| 			case JFFS2_FEATURE_INCOMPAT:
 | |
| 				printk(KERN_NOTICE "Incompatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs);
 | |
| 				return -EINVAL;
 | |
| 
 | |
| 			case JFFS2_FEATURE_RWCOMPAT_DELETE:
 | |
| 				D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs));
 | |
| 				if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(node->totlen)))))
 | |
| 					return err;
 | |
| 				ofs += PAD(je32_to_cpu(node->totlen));
 | |
| 				break;
 | |
| 
 | |
| 			case JFFS2_FEATURE_RWCOMPAT_COPY: {
 | |
| 				D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs));
 | |
| 
 | |
| 				jffs2_link_node_ref(c, jeb, ofs | REF_PRISTINE, PAD(je32_to_cpu(node->totlen)), NULL);
 | |
| 
 | |
| 				/* We can't summarise nodes we don't grok */
 | |
| 				jffs2_sum_disable_collecting(s);
 | |
| 				ofs += PAD(je32_to_cpu(node->totlen));
 | |
| 				break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (jffs2_sum_active()) {
 | |
| 		if (PAD(s->sum_size + JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size) {
 | |
| 			dbg_summary("There is not enough space for "
 | |
| 				"summary information, disabling for this jeb!\n");
 | |
| 			jffs2_sum_disable_collecting(s);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "Block at 0x%08x: free 0x%08x, dirty 0x%08x, unchecked 0x%08x, used 0x%08x, wasted 0x%08x\n",
 | |
| 		  jeb->offset,jeb->free_size, jeb->dirty_size, jeb->unchecked_size, jeb->used_size, jeb->wasted_size));
 | |
| 	
 | |
| 	/* mark_node_obsolete can add to wasted !! */
 | |
| 	if (jeb->wasted_size) {
 | |
| 		jeb->dirty_size += jeb->wasted_size;
 | |
| 		c->dirty_size += jeb->wasted_size;
 | |
| 		c->wasted_size -= jeb->wasted_size;
 | |
| 		jeb->wasted_size = 0;
 | |
| 	}
 | |
| 
 | |
| 	return jffs2_scan_classify_jeb(c, jeb);
 | |
| }
 | |
| 
 | |
| struct jffs2_inode_cache *jffs2_scan_make_ino_cache(struct jffs2_sb_info *c, uint32_t ino)
 | |
| {
 | |
| 	struct jffs2_inode_cache *ic;
 | |
| 
 | |
| 	ic = jffs2_get_ino_cache(c, ino);
 | |
| 	if (ic)
 | |
| 		return ic;
 | |
| 
 | |
| 	if (ino > c->highest_ino)
 | |
| 		c->highest_ino = ino;
 | |
| 
 | |
| 	ic = jffs2_alloc_inode_cache();
 | |
| 	if (!ic) {
 | |
| 		printk(KERN_NOTICE "jffs2_scan_make_inode_cache(): allocation of inode cache failed\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	memset(ic, 0, sizeof(*ic));
 | |
| 
 | |
| 	ic->ino = ino;
 | |
| 	ic->nodes = (void *)ic;
 | |
| 	jffs2_add_ino_cache(c, ic);
 | |
| 	if (ino == 1)
 | |
| 		ic->pino_nlink = 1;
 | |
| 	return ic;
 | |
| }
 | |
| 
 | |
| static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 | |
| 				 struct jffs2_raw_inode *ri, uint32_t ofs, struct jffs2_summary *s)
 | |
| {
 | |
| 	struct jffs2_inode_cache *ic;
 | |
| 	uint32_t crc, ino = je32_to_cpu(ri->ino);
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "jffs2_scan_inode_node(): Node at 0x%08x\n", ofs));
 | |
| 
 | |
| 	/* We do very little here now. Just check the ino# to which we should attribute
 | |
| 	   this node; we can do all the CRC checking etc. later. There's a tradeoff here --
 | |
| 	   we used to scan the flash once only, reading everything we want from it into
 | |
| 	   memory, then building all our in-core data structures and freeing the extra
 | |
| 	   information. Now we allow the first part of the mount to complete a lot quicker,
 | |
| 	   but we have to go _back_ to the flash in order to finish the CRC checking, etc.
 | |
| 	   Which means that the _full_ amount of time to get to proper write mode with GC
 | |
| 	   operational may actually be _longer_ than before. Sucks to be me. */
 | |
| 
 | |
| 	/* Check the node CRC in any case. */
 | |
| 	crc = crc32(0, ri, sizeof(*ri)-8);
 | |
| 	if (crc != je32_to_cpu(ri->node_crc)) {
 | |
| 		printk(KERN_NOTICE "jffs2_scan_inode_node(): CRC failed on "
 | |
| 		       "node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 | |
| 		       ofs, je32_to_cpu(ri->node_crc), crc);
 | |
| 		/*
 | |
| 		 * We believe totlen because the CRC on the node
 | |
| 		 * _header_ was OK, just the node itself failed.
 | |
| 		 */
 | |
| 		return jffs2_scan_dirty_space(c, jeb,
 | |
| 					      PAD(je32_to_cpu(ri->totlen)));
 | |
| 	}
 | |
| 
 | |
| 	ic = jffs2_get_ino_cache(c, ino);
 | |
| 	if (!ic) {
 | |
| 		ic = jffs2_scan_make_ino_cache(c, ino);
 | |
| 		if (!ic)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* Wheee. It worked */
 | |
| 	jffs2_link_node_ref(c, jeb, ofs | REF_UNCHECKED, PAD(je32_to_cpu(ri->totlen)), ic);
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "Node is ino #%u, version %d. Range 0x%x-0x%x\n",
 | |
| 		  je32_to_cpu(ri->ino), je32_to_cpu(ri->version),
 | |
| 		  je32_to_cpu(ri->offset),
 | |
| 		  je32_to_cpu(ri->offset)+je32_to_cpu(ri->dsize)));
 | |
| 
 | |
| 	pseudo_random += je32_to_cpu(ri->version);
 | |
| 
 | |
| 	if (jffs2_sum_active()) {
 | |
| 		jffs2_sum_add_inode_mem(s, ri, ofs - jeb->offset);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 | |
| 				  struct jffs2_raw_dirent *rd, uint32_t ofs, struct jffs2_summary *s)
 | |
| {
 | |
| 	struct jffs2_full_dirent *fd;
 | |
| 	struct jffs2_inode_cache *ic;
 | |
| 	uint32_t checkedlen;
 | |
| 	uint32_t crc;
 | |
| 	int err;
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "jffs2_scan_dirent_node(): Node at 0x%08x\n", ofs));
 | |
| 
 | |
| 	/* We don't get here unless the node is still valid, so we don't have to
 | |
| 	   mask in the ACCURATE bit any more. */
 | |
| 	crc = crc32(0, rd, sizeof(*rd)-8);
 | |
| 
 | |
| 	if (crc != je32_to_cpu(rd->node_crc)) {
 | |
| 		printk(KERN_NOTICE "jffs2_scan_dirent_node(): Node CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 | |
| 		       ofs, je32_to_cpu(rd->node_crc), crc);
 | |
| 		/* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */
 | |
| 		if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(rd->totlen)))))
 | |
| 			return err;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	pseudo_random += je32_to_cpu(rd->version);
 | |
| 
 | |
| 	/* Should never happen. Did. (OLPC trac #4184)*/
 | |
| 	checkedlen = strnlen(rd->name, rd->nsize);
 | |
| 	if (checkedlen < rd->nsize) {
 | |
| 		printk(KERN_ERR "Dirent at %08x has zeroes in name. Truncating to %d chars\n",
 | |
| 		       ofs, checkedlen);
 | |
| 	}
 | |
| 	fd = jffs2_alloc_full_dirent(checkedlen+1);
 | |
| 	if (!fd) {
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	memcpy(&fd->name, rd->name, checkedlen);
 | |
| 	fd->name[checkedlen] = 0;
 | |
| 
 | |
| 	crc = crc32(0, fd->name, rd->nsize);
 | |
| 	if (crc != je32_to_cpu(rd->name_crc)) {
 | |
| 		printk(KERN_NOTICE "jffs2_scan_dirent_node(): Name CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 | |
| 		       ofs, je32_to_cpu(rd->name_crc), crc);
 | |
| 		D1(printk(KERN_NOTICE "Name for which CRC failed is (now) '%s', ino #%d\n", fd->name, je32_to_cpu(rd->ino)));
 | |
| 		jffs2_free_full_dirent(fd);
 | |
| 		/* FIXME: Why do we believe totlen? */
 | |
| 		/* We believe totlen because the CRC on the node _header_ was OK, just the name failed. */
 | |
| 		if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(rd->totlen)))))
 | |
| 			return err;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	ic = jffs2_scan_make_ino_cache(c, je32_to_cpu(rd->pino));
 | |
| 	if (!ic) {
 | |
| 		jffs2_free_full_dirent(fd);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	fd->raw = jffs2_link_node_ref(c, jeb, ofs | dirent_node_state(rd),
 | |
| 				      PAD(je32_to_cpu(rd->totlen)), ic);
 | |
| 
 | |
| 	fd->next = NULL;
 | |
| 	fd->version = je32_to_cpu(rd->version);
 | |
| 	fd->ino = je32_to_cpu(rd->ino);
 | |
| 	fd->nhash = full_name_hash(fd->name, checkedlen);
 | |
| 	fd->type = rd->type;
 | |
| 	jffs2_add_fd_to_list(c, fd, &ic->scan_dents);
 | |
| 
 | |
| 	if (jffs2_sum_active()) {
 | |
| 		jffs2_sum_add_dirent_mem(s, rd, ofs - jeb->offset);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int count_list(struct list_head *l)
 | |
| {
 | |
| 	uint32_t count = 0;
 | |
| 	struct list_head *tmp;
 | |
| 
 | |
| 	list_for_each(tmp, l) {
 | |
| 		count++;
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /* Note: This breaks if list_empty(head). I don't care. You
 | |
|    might, if you copy this code and use it elsewhere :) */
 | |
| static void rotate_list(struct list_head *head, uint32_t count)
 | |
| {
 | |
| 	struct list_head *n = head->next;
 | |
| 
 | |
| 	list_del(head);
 | |
| 	while(count--) {
 | |
| 		n = n->next;
 | |
| 	}
 | |
| 	list_add(head, n);
 | |
| }
 | |
| 
 | |
| void jffs2_rotate_lists(struct jffs2_sb_info *c)
 | |
| {
 | |
| 	uint32_t x;
 | |
| 	uint32_t rotateby;
 | |
| 
 | |
| 	x = count_list(&c->clean_list);
 | |
| 	if (x) {
 | |
| 		rotateby = pseudo_random % x;
 | |
| 		rotate_list((&c->clean_list), rotateby);
 | |
| 	}
 | |
| 
 | |
| 	x = count_list(&c->very_dirty_list);
 | |
| 	if (x) {
 | |
| 		rotateby = pseudo_random % x;
 | |
| 		rotate_list((&c->very_dirty_list), rotateby);
 | |
| 	}
 | |
| 
 | |
| 	x = count_list(&c->dirty_list);
 | |
| 	if (x) {
 | |
| 		rotateby = pseudo_random % x;
 | |
| 		rotate_list((&c->dirty_list), rotateby);
 | |
| 	}
 | |
| 
 | |
| 	x = count_list(&c->erasable_list);
 | |
| 	if (x) {
 | |
| 		rotateby = pseudo_random % x;
 | |
| 		rotate_list((&c->erasable_list), rotateby);
 | |
| 	}
 | |
| 
 | |
| 	if (c->nr_erasing_blocks) {
 | |
| 		rotateby = pseudo_random % c->nr_erasing_blocks;
 | |
| 		rotate_list((&c->erase_pending_list), rotateby);
 | |
| 	}
 | |
| 
 | |
| 	if (c->nr_free_blocks) {
 | |
| 		rotateby = pseudo_random % c->nr_free_blocks;
 | |
| 		rotate_list((&c->free_list), rotateby);
 | |
| 	}
 | |
| }
 |