 27c72b040c
			
		
	
	
	27c72b040c
	
	
	
		
			
			To support NFS export, we need to know the parent inode of directories. Rather than growing the jffs2_inode_cache structure, share space with the nlink field -- which was always set to 1 for directories anyway. Signed-off-by: David Woodhouse <dwmw2@infradead.org>
		
			
				
	
	
		
			1310 lines
		
	
	
	
		
			43 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1310 lines
		
	
	
	
		
			43 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * JFFS2 -- Journalling Flash File System, Version 2.
 | |
|  *
 | |
|  * Copyright © 2001-2007 Red Hat, Inc.
 | |
|  *
 | |
|  * Created by David Woodhouse <dwmw2@infradead.org>
 | |
|  *
 | |
|  * For licensing information, see the file 'LICENCE' in this directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/crc32.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/stat.h>
 | |
| #include "nodelist.h"
 | |
| #include "compr.h"
 | |
| 
 | |
| static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
 | |
| 					  struct jffs2_inode_cache *ic,
 | |
| 					  struct jffs2_raw_node_ref *raw);
 | |
| static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 | |
| 					struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
 | |
| static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 | |
| 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
 | |
| static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 | |
| 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
 | |
| static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 | |
| 				      struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
 | |
| 				      uint32_t start, uint32_t end);
 | |
| static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 | |
| 				       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
 | |
| 				       uint32_t start, uint32_t end);
 | |
| static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
 | |
| 			       struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
 | |
| 
 | |
| /* Called with erase_completion_lock held */
 | |
| static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
 | |
| {
 | |
| 	struct jffs2_eraseblock *ret;
 | |
| 	struct list_head *nextlist = NULL;
 | |
| 	int n = jiffies % 128;
 | |
| 
 | |
| 	/* Pick an eraseblock to garbage collect next. This is where we'll
 | |
| 	   put the clever wear-levelling algorithms. Eventually.  */
 | |
| 	/* We possibly want to favour the dirtier blocks more when the
 | |
| 	   number of free blocks is low. */
 | |
| again:
 | |
| 	if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
 | |
| 		D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
 | |
| 		nextlist = &c->bad_used_list;
 | |
| 	} else if (n < 50 && !list_empty(&c->erasable_list)) {
 | |
| 		/* Note that most of them will have gone directly to be erased.
 | |
| 		   So don't favour the erasable_list _too_ much. */
 | |
| 		D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
 | |
| 		nextlist = &c->erasable_list;
 | |
| 	} else if (n < 110 && !list_empty(&c->very_dirty_list)) {
 | |
| 		/* Most of the time, pick one off the very_dirty list */
 | |
| 		D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
 | |
| 		nextlist = &c->very_dirty_list;
 | |
| 	} else if (n < 126 && !list_empty(&c->dirty_list)) {
 | |
| 		D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
 | |
| 		nextlist = &c->dirty_list;
 | |
| 	} else if (!list_empty(&c->clean_list)) {
 | |
| 		D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
 | |
| 		nextlist = &c->clean_list;
 | |
| 	} else if (!list_empty(&c->dirty_list)) {
 | |
| 		D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
 | |
| 
 | |
| 		nextlist = &c->dirty_list;
 | |
| 	} else if (!list_empty(&c->very_dirty_list)) {
 | |
| 		D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
 | |
| 		nextlist = &c->very_dirty_list;
 | |
| 	} else if (!list_empty(&c->erasable_list)) {
 | |
| 		D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
 | |
| 
 | |
| 		nextlist = &c->erasable_list;
 | |
| 	} else if (!list_empty(&c->erasable_pending_wbuf_list)) {
 | |
| 		/* There are blocks are wating for the wbuf sync */
 | |
| 		D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 		jffs2_flush_wbuf_pad(c);
 | |
| 		spin_lock(&c->erase_completion_lock);
 | |
| 		goto again;
 | |
| 	} else {
 | |
| 		/* Eep. All were empty */
 | |
| 		D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
 | |
| 	list_del(&ret->list);
 | |
| 	c->gcblock = ret;
 | |
| 	ret->gc_node = ret->first_node;
 | |
| 	if (!ret->gc_node) {
 | |
| 		printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	/* Have we accidentally picked a clean block with wasted space ? */
 | |
| 	if (ret->wasted_size) {
 | |
| 		D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
 | |
| 		ret->dirty_size += ret->wasted_size;
 | |
| 		c->wasted_size -= ret->wasted_size;
 | |
| 		c->dirty_size += ret->wasted_size;
 | |
| 		ret->wasted_size = 0;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* jffs2_garbage_collect_pass
 | |
|  * Make a single attempt to progress GC. Move one node, and possibly
 | |
|  * start erasing one eraseblock.
 | |
|  */
 | |
| int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
 | |
| {
 | |
| 	struct jffs2_inode_info *f;
 | |
| 	struct jffs2_inode_cache *ic;
 | |
| 	struct jffs2_eraseblock *jeb;
 | |
| 	struct jffs2_raw_node_ref *raw;
 | |
| 	uint32_t gcblock_dirty;
 | |
| 	int ret = 0, inum, nlink;
 | |
| 	int xattr = 0;
 | |
| 
 | |
| 	if (mutex_lock_interruptible(&c->alloc_sem))
 | |
| 		return -EINTR;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		spin_lock(&c->erase_completion_lock);
 | |
| 		if (!c->unchecked_size)
 | |
| 			break;
 | |
| 
 | |
| 		/* We can't start doing GC yet. We haven't finished checking
 | |
| 		   the node CRCs etc. Do it now. */
 | |
| 
 | |
| 		/* checked_ino is protected by the alloc_sem */
 | |
| 		if (c->checked_ino > c->highest_ino && xattr) {
 | |
| 			printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
 | |
| 			       c->unchecked_size);
 | |
| 			jffs2_dbg_dump_block_lists_nolock(c);
 | |
| 			spin_unlock(&c->erase_completion_lock);
 | |
| 			mutex_unlock(&c->alloc_sem);
 | |
| 			return -ENOSPC;
 | |
| 		}
 | |
| 
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 		if (!xattr)
 | |
| 			xattr = jffs2_verify_xattr(c);
 | |
| 
 | |
| 		spin_lock(&c->inocache_lock);
 | |
| 
 | |
| 		ic = jffs2_get_ino_cache(c, c->checked_ino++);
 | |
| 
 | |
| 		if (!ic) {
 | |
| 			spin_unlock(&c->inocache_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!ic->pino_nlink) {
 | |
| 			D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink/pino zero\n",
 | |
| 				  ic->ino));
 | |
| 			spin_unlock(&c->inocache_lock);
 | |
| 			jffs2_xattr_delete_inode(c, ic);
 | |
| 			continue;
 | |
| 		}
 | |
| 		switch(ic->state) {
 | |
| 		case INO_STATE_CHECKEDABSENT:
 | |
| 		case INO_STATE_PRESENT:
 | |
| 			D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
 | |
| 			spin_unlock(&c->inocache_lock);
 | |
| 			continue;
 | |
| 
 | |
| 		case INO_STATE_GC:
 | |
| 		case INO_STATE_CHECKING:
 | |
| 			printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
 | |
| 			spin_unlock(&c->inocache_lock);
 | |
| 			BUG();
 | |
| 
 | |
| 		case INO_STATE_READING:
 | |
| 			/* We need to wait for it to finish, lest we move on
 | |
| 			   and trigger the BUG() above while we haven't yet
 | |
| 			   finished checking all its nodes */
 | |
| 			D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
 | |
| 			/* We need to come back again for the _same_ inode. We've
 | |
| 			 made no progress in this case, but that should be OK */
 | |
| 			c->checked_ino--;
 | |
| 
 | |
| 			mutex_unlock(&c->alloc_sem);
 | |
| 			sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
 | |
| 			return 0;
 | |
| 
 | |
| 		default:
 | |
| 			BUG();
 | |
| 
 | |
| 		case INO_STATE_UNCHECKED:
 | |
| 			;
 | |
| 		}
 | |
| 		ic->state = INO_STATE_CHECKING;
 | |
| 		spin_unlock(&c->inocache_lock);
 | |
| 
 | |
| 		D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
 | |
| 
 | |
| 		ret = jffs2_do_crccheck_inode(c, ic);
 | |
| 		if (ret)
 | |
| 			printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
 | |
| 
 | |
| 		jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
 | |
| 		mutex_unlock(&c->alloc_sem);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* First, work out which block we're garbage-collecting */
 | |
| 	jeb = c->gcblock;
 | |
| 
 | |
| 	if (!jeb)
 | |
| 		jeb = jffs2_find_gc_block(c);
 | |
| 
 | |
| 	if (!jeb) {
 | |
| 		/* Couldn't find a free block. But maybe we can just erase one and make 'progress'? */
 | |
| 		if (!list_empty(&c->erase_pending_list)) {
 | |
| 			spin_unlock(&c->erase_completion_lock);
 | |
| 			mutex_unlock(&c->alloc_sem);
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 		D1(printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 		mutex_unlock(&c->alloc_sem);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
 | |
| 	D1(if (c->nextblock)
 | |
| 	   printk(KERN_DEBUG "Nextblock at  %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
 | |
| 
 | |
| 	if (!jeb->used_size) {
 | |
| 		mutex_unlock(&c->alloc_sem);
 | |
| 		goto eraseit;
 | |
| 	}
 | |
| 
 | |
| 	raw = jeb->gc_node;
 | |
| 	gcblock_dirty = jeb->dirty_size;
 | |
| 
 | |
| 	while(ref_obsolete(raw)) {
 | |
| 		D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
 | |
| 		raw = ref_next(raw);
 | |
| 		if (unlikely(!raw)) {
 | |
| 			printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
 | |
| 			printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
 | |
| 			       jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
 | |
| 			jeb->gc_node = raw;
 | |
| 			spin_unlock(&c->erase_completion_lock);
 | |
| 			mutex_unlock(&c->alloc_sem);
 | |
| 			BUG();
 | |
| 		}
 | |
| 	}
 | |
| 	jeb->gc_node = raw;
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
 | |
| 
 | |
| 	if (!raw->next_in_ino) {
 | |
| 		/* Inode-less node. Clean marker, snapshot or something like that */
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 		if (ref_flags(raw) == REF_PRISTINE) {
 | |
| 			/* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */
 | |
| 			jffs2_garbage_collect_pristine(c, NULL, raw);
 | |
| 		} else {
 | |
| 			/* Just mark it obsolete */
 | |
| 			jffs2_mark_node_obsolete(c, raw);
 | |
| 		}
 | |
| 		mutex_unlock(&c->alloc_sem);
 | |
| 		goto eraseit_lock;
 | |
| 	}
 | |
| 
 | |
| 	ic = jffs2_raw_ref_to_ic(raw);
 | |
| 
 | |
| #ifdef CONFIG_JFFS2_FS_XATTR
 | |
| 	/* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr.
 | |
| 	 * We can decide whether this node is inode or xattr by ic->class.     */
 | |
| 	if (ic->class == RAWNODE_CLASS_XATTR_DATUM
 | |
| 	    || ic->class == RAWNODE_CLASS_XATTR_REF) {
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 		if (ic->class == RAWNODE_CLASS_XATTR_DATUM) {
 | |
| 			ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic, raw);
 | |
| 		} else {
 | |
| 			ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic, raw);
 | |
| 		}
 | |
| 		goto test_gcnode;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* We need to hold the inocache. Either the erase_completion_lock or
 | |
| 	   the inocache_lock are sufficient; we trade down since the inocache_lock
 | |
| 	   causes less contention. */
 | |
| 	spin_lock(&c->inocache_lock);
 | |
| 
 | |
| 	spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
 | |
| 
 | |
| 	/* Three possibilities:
 | |
| 	   1. Inode is already in-core. We must iget it and do proper
 | |
| 	      updating to its fragtree, etc.
 | |
| 	   2. Inode is not in-core, node is REF_PRISTINE. We lock the
 | |
| 	      inocache to prevent a read_inode(), copy the node intact.
 | |
| 	   3. Inode is not in-core, node is not pristine. We must iget()
 | |
| 	      and take the slow path.
 | |
| 	*/
 | |
| 
 | |
| 	switch(ic->state) {
 | |
| 	case INO_STATE_CHECKEDABSENT:
 | |
| 		/* It's been checked, but it's not currently in-core.
 | |
| 		   We can just copy any pristine nodes, but have
 | |
| 		   to prevent anyone else from doing read_inode() while
 | |
| 		   we're at it, so we set the state accordingly */
 | |
| 		if (ref_flags(raw) == REF_PRISTINE)
 | |
| 			ic->state = INO_STATE_GC;
 | |
| 		else {
 | |
| 			D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
 | |
| 				  ic->ino));
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case INO_STATE_PRESENT:
 | |
| 		/* It's in-core. GC must iget() it. */
 | |
| 		break;
 | |
| 
 | |
| 	case INO_STATE_UNCHECKED:
 | |
| 	case INO_STATE_CHECKING:
 | |
| 	case INO_STATE_GC:
 | |
| 		/* Should never happen. We should have finished checking
 | |
| 		   by the time we actually start doing any GC, and since
 | |
| 		   we're holding the alloc_sem, no other garbage collection
 | |
| 		   can happen.
 | |
| 		*/
 | |
| 		printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
 | |
| 		       ic->ino, ic->state);
 | |
| 		mutex_unlock(&c->alloc_sem);
 | |
| 		spin_unlock(&c->inocache_lock);
 | |
| 		BUG();
 | |
| 
 | |
| 	case INO_STATE_READING:
 | |
| 		/* Someone's currently trying to read it. We must wait for
 | |
| 		   them to finish and then go through the full iget() route
 | |
| 		   to do the GC. However, sometimes read_inode() needs to get
 | |
| 		   the alloc_sem() (for marking nodes invalid) so we must
 | |
| 		   drop the alloc_sem before sleeping. */
 | |
| 
 | |
| 		mutex_unlock(&c->alloc_sem);
 | |
| 		D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
 | |
| 			  ic->ino, ic->state));
 | |
| 		sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
 | |
| 		/* And because we dropped the alloc_sem we must start again from the
 | |
| 		   beginning. Ponder chance of livelock here -- we're returning success
 | |
| 		   without actually making any progress.
 | |
| 
 | |
| 		   Q: What are the chances that the inode is back in INO_STATE_READING
 | |
| 		   again by the time we next enter this function? And that this happens
 | |
| 		   enough times to cause a real delay?
 | |
| 
 | |
| 		   A: Small enough that I don't care :)
 | |
| 		*/
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
 | |
| 	   node intact, and we don't have to muck about with the fragtree etc.
 | |
| 	   because we know it's not in-core. If it _was_ in-core, we go through
 | |
| 	   all the iget() crap anyway */
 | |
| 
 | |
| 	if (ic->state == INO_STATE_GC) {
 | |
| 		spin_unlock(&c->inocache_lock);
 | |
| 
 | |
| 		ret = jffs2_garbage_collect_pristine(c, ic, raw);
 | |
| 
 | |
| 		spin_lock(&c->inocache_lock);
 | |
| 		ic->state = INO_STATE_CHECKEDABSENT;
 | |
| 		wake_up(&c->inocache_wq);
 | |
| 
 | |
| 		if (ret != -EBADFD) {
 | |
| 			spin_unlock(&c->inocache_lock);
 | |
| 			goto test_gcnode;
 | |
| 		}
 | |
| 
 | |
| 		/* Fall through if it wanted us to, with inocache_lock held */
 | |
| 	}
 | |
| 
 | |
| 	/* Prevent the fairly unlikely race where the gcblock is
 | |
| 	   entirely obsoleted by the final close of a file which had
 | |
| 	   the only valid nodes in the block, followed by erasure,
 | |
| 	   followed by freeing of the ic because the erased block(s)
 | |
| 	   held _all_ the nodes of that inode.... never been seen but
 | |
| 	   it's vaguely possible. */
 | |
| 
 | |
| 	inum = ic->ino;
 | |
| 	nlink = ic->pino_nlink;
 | |
| 	spin_unlock(&c->inocache_lock);
 | |
| 
 | |
| 	f = jffs2_gc_fetch_inode(c, inum, !nlink);
 | |
| 	if (IS_ERR(f)) {
 | |
| 		ret = PTR_ERR(f);
 | |
| 		goto release_sem;
 | |
| 	}
 | |
| 	if (!f) {
 | |
| 		ret = 0;
 | |
| 		goto release_sem;
 | |
| 	}
 | |
| 
 | |
| 	ret = jffs2_garbage_collect_live(c, jeb, raw, f);
 | |
| 
 | |
| 	jffs2_gc_release_inode(c, f);
 | |
| 
 | |
|  test_gcnode:
 | |
| 	if (jeb->dirty_size == gcblock_dirty && !ref_obsolete(jeb->gc_node)) {
 | |
| 		/* Eep. This really should never happen. GC is broken */
 | |
| 		printk(KERN_ERR "Error garbage collecting node at %08x!\n", ref_offset(jeb->gc_node));
 | |
| 		ret = -ENOSPC;
 | |
| 	}
 | |
|  release_sem:
 | |
| 	mutex_unlock(&c->alloc_sem);
 | |
| 
 | |
|  eraseit_lock:
 | |
| 	/* If we've finished this block, start it erasing */
 | |
| 	spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
|  eraseit:
 | |
| 	if (c->gcblock && !c->gcblock->used_size) {
 | |
| 		D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
 | |
| 		/* We're GC'ing an empty block? */
 | |
| 		list_add_tail(&c->gcblock->list, &c->erase_pending_list);
 | |
| 		c->gcblock = NULL;
 | |
| 		c->nr_erasing_blocks++;
 | |
| 		jffs2_erase_pending_trigger(c);
 | |
| 	}
 | |
| 	spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
 | |
| 				      struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
 | |
| {
 | |
| 	struct jffs2_node_frag *frag;
 | |
| 	struct jffs2_full_dnode *fn = NULL;
 | |
| 	struct jffs2_full_dirent *fd;
 | |
| 	uint32_t start = 0, end = 0, nrfrags = 0;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&f->sem);
 | |
| 
 | |
| 	/* Now we have the lock for this inode. Check that it's still the one at the head
 | |
| 	   of the list. */
 | |
| 
 | |
| 	spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 	if (c->gcblock != jeb) {
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 		D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
 | |
| 		goto upnout;
 | |
| 	}
 | |
| 	if (ref_obsolete(raw)) {
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 		D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
 | |
| 		/* They'll call again */
 | |
| 		goto upnout;
 | |
| 	}
 | |
| 	spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 	/* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
 | |
| 	if (f->metadata && f->metadata->raw == raw) {
 | |
| 		fn = f->metadata;
 | |
| 		ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
 | |
| 		goto upnout;
 | |
| 	}
 | |
| 
 | |
| 	/* FIXME. Read node and do lookup? */
 | |
| 	for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
 | |
| 		if (frag->node && frag->node->raw == raw) {
 | |
| 			fn = frag->node;
 | |
| 			end = frag->ofs + frag->size;
 | |
| 			if (!nrfrags++)
 | |
| 				start = frag->ofs;
 | |
| 			if (nrfrags == frag->node->frags)
 | |
| 				break; /* We've found them all */
 | |
| 		}
 | |
| 	}
 | |
| 	if (fn) {
 | |
| 		if (ref_flags(raw) == REF_PRISTINE) {
 | |
| 			ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
 | |
| 			if (!ret) {
 | |
| 				/* Urgh. Return it sensibly. */
 | |
| 				frag->node->raw = f->inocache->nodes;
 | |
| 			}
 | |
| 			if (ret != -EBADFD)
 | |
| 				goto upnout;
 | |
| 		}
 | |
| 		/* We found a datanode. Do the GC */
 | |
| 		if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
 | |
| 			/* It crosses a page boundary. Therefore, it must be a hole. */
 | |
| 			ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
 | |
| 		} else {
 | |
| 			/* It could still be a hole. But we GC the page this way anyway */
 | |
| 			ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
 | |
| 		}
 | |
| 		goto upnout;
 | |
| 	}
 | |
| 
 | |
| 	/* Wasn't a dnode. Try dirent */
 | |
| 	for (fd = f->dents; fd; fd=fd->next) {
 | |
| 		if (fd->raw == raw)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (fd && fd->ino) {
 | |
| 		ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
 | |
| 	} else if (fd) {
 | |
| 		ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
 | |
| 	} else {
 | |
| 		printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
 | |
| 		       ref_offset(raw), f->inocache->ino);
 | |
| 		if (ref_obsolete(raw)) {
 | |
| 			printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
 | |
| 		} else {
 | |
| 			jffs2_dbg_dump_node(c, ref_offset(raw));
 | |
| 			BUG();
 | |
| 		}
 | |
| 	}
 | |
|  upnout:
 | |
| 	mutex_unlock(&f->sem);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
 | |
| 					  struct jffs2_inode_cache *ic,
 | |
| 					  struct jffs2_raw_node_ref *raw)
 | |
| {
 | |
| 	union jffs2_node_union *node;
 | |
| 	size_t retlen;
 | |
| 	int ret;
 | |
| 	uint32_t phys_ofs, alloclen;
 | |
| 	uint32_t crc, rawlen;
 | |
| 	int retried = 0;
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
 | |
| 
 | |
| 	alloclen = rawlen = ref_totlen(c, c->gcblock, raw);
 | |
| 
 | |
| 	/* Ask for a small amount of space (or the totlen if smaller) because we
 | |
| 	   don't want to force wastage of the end of a block if splitting would
 | |
| 	   work. */
 | |
| 	if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
 | |
| 		alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN;
 | |
| 
 | |
| 	ret = jffs2_reserve_space_gc(c, alloclen, &alloclen, rawlen);
 | |
| 	/* 'rawlen' is not the exact summary size; it is only an upper estimation */
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (alloclen < rawlen) {
 | |
| 		/* Doesn't fit untouched. We'll go the old route and split it */
 | |
| 		return -EBADFD;
 | |
| 	}
 | |
| 
 | |
| 	node = kmalloc(rawlen, GFP_KERNEL);
 | |
| 	if (!node)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
 | |
| 	if (!ret && retlen != rawlen)
 | |
| 		ret = -EIO;
 | |
| 	if (ret)
 | |
| 		goto out_node;
 | |
| 
 | |
| 	crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
 | |
| 	if (je32_to_cpu(node->u.hdr_crc) != crc) {
 | |
| 		printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 | |
| 		       ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	switch(je16_to_cpu(node->u.nodetype)) {
 | |
| 	case JFFS2_NODETYPE_INODE:
 | |
| 		crc = crc32(0, node, sizeof(node->i)-8);
 | |
| 		if (je32_to_cpu(node->i.node_crc) != crc) {
 | |
| 			printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 | |
| 			       ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
 | |
| 			goto bail;
 | |
| 		}
 | |
| 
 | |
| 		if (je32_to_cpu(node->i.dsize)) {
 | |
| 			crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
 | |
| 			if (je32_to_cpu(node->i.data_crc) != crc) {
 | |
| 				printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 | |
| 				       ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
 | |
| 				goto bail;
 | |
| 			}
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case JFFS2_NODETYPE_DIRENT:
 | |
| 		crc = crc32(0, node, sizeof(node->d)-8);
 | |
| 		if (je32_to_cpu(node->d.node_crc) != crc) {
 | |
| 			printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 | |
| 			       ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
 | |
| 			goto bail;
 | |
| 		}
 | |
| 
 | |
| 		if (strnlen(node->d.name, node->d.nsize) != node->d.nsize) {
 | |
| 			printk(KERN_WARNING "Name in dirent node at 0x%08x contains zeroes\n", ref_offset(raw));
 | |
| 			goto bail;
 | |
| 		}
 | |
| 
 | |
| 		if (node->d.nsize) {
 | |
| 			crc = crc32(0, node->d.name, node->d.nsize);
 | |
| 			if (je32_to_cpu(node->d.name_crc) != crc) {
 | |
| 				printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 | |
| 				       ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
 | |
| 				goto bail;
 | |
| 			}
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* If it's inode-less, we don't _know_ what it is. Just copy it intact */
 | |
| 		if (ic) {
 | |
| 			printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
 | |
| 			       ref_offset(raw), je16_to_cpu(node->u.nodetype));
 | |
| 			goto bail;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* OK, all the CRCs are good; this node can just be copied as-is. */
 | |
|  retry:
 | |
| 	phys_ofs = write_ofs(c);
 | |
| 
 | |
| 	ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
 | |
| 
 | |
| 	if (ret || (retlen != rawlen)) {
 | |
| 		printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
 | |
| 		       rawlen, phys_ofs, ret, retlen);
 | |
| 		if (retlen) {
 | |
| 			jffs2_add_physical_node_ref(c, phys_ofs | REF_OBSOLETE, rawlen, NULL);
 | |
| 		} else {
 | |
| 			printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", phys_ofs);
 | |
| 		}
 | |
| 		if (!retried) {
 | |
| 			/* Try to reallocate space and retry */
 | |
| 			uint32_t dummy;
 | |
| 			struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
 | |
| 
 | |
| 			retried = 1;
 | |
| 
 | |
| 			D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
 | |
| 
 | |
| 			jffs2_dbg_acct_sanity_check(c,jeb);
 | |
| 			jffs2_dbg_acct_paranoia_check(c, jeb);
 | |
| 
 | |
| 			ret = jffs2_reserve_space_gc(c, rawlen, &dummy, rawlen);
 | |
| 						/* this is not the exact summary size of it,
 | |
| 							it is only an upper estimation */
 | |
| 
 | |
| 			if (!ret) {
 | |
| 				D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
 | |
| 
 | |
| 				jffs2_dbg_acct_sanity_check(c,jeb);
 | |
| 				jffs2_dbg_acct_paranoia_check(c, jeb);
 | |
| 
 | |
| 				goto retry;
 | |
| 			}
 | |
| 			D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
 | |
| 		}
 | |
| 
 | |
| 		if (!ret)
 | |
| 			ret = -EIO;
 | |
| 		goto out_node;
 | |
| 	}
 | |
| 	jffs2_add_physical_node_ref(c, phys_ofs | REF_PRISTINE, rawlen, ic);
 | |
| 
 | |
| 	jffs2_mark_node_obsolete(c, raw);
 | |
| 	D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
 | |
| 
 | |
|  out_node:
 | |
| 	kfree(node);
 | |
| 	return ret;
 | |
|  bail:
 | |
| 	ret = -EBADFD;
 | |
| 	goto out_node;
 | |
| }
 | |
| 
 | |
| static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 | |
| 					struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
 | |
| {
 | |
| 	struct jffs2_full_dnode *new_fn;
 | |
| 	struct jffs2_raw_inode ri;
 | |
| 	struct jffs2_node_frag *last_frag;
 | |
| 	union jffs2_device_node dev;
 | |
| 	char *mdata = NULL, mdatalen = 0;
 | |
| 	uint32_t alloclen, ilen;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
 | |
| 	    S_ISCHR(JFFS2_F_I_MODE(f)) ) {
 | |
| 		/* For these, we don't actually need to read the old node */
 | |
| 		mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f));
 | |
| 		mdata = (char *)&dev;
 | |
| 		D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
 | |
| 	} else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
 | |
| 		mdatalen = fn->size;
 | |
| 		mdata = kmalloc(fn->size, GFP_KERNEL);
 | |
| 		if (!mdata) {
 | |
| 			printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
 | |
| 		if (ret) {
 | |
| 			printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
 | |
| 			kfree(mdata);
 | |
| 			return ret;
 | |
| 		}
 | |
| 		D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &alloclen,
 | |
| 				JFFS2_SUMMARY_INODE_SIZE);
 | |
| 	if (ret) {
 | |
| 		printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
 | |
| 		       sizeof(ri)+ mdatalen, ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	last_frag = frag_last(&f->fragtree);
 | |
| 	if (last_frag)
 | |
| 		/* Fetch the inode length from the fragtree rather then
 | |
| 		 * from i_size since i_size may have not been updated yet */
 | |
| 		ilen = last_frag->ofs + last_frag->size;
 | |
| 	else
 | |
| 		ilen = JFFS2_F_I_SIZE(f);
 | |
| 
 | |
| 	memset(&ri, 0, sizeof(ri));
 | |
| 	ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
 | |
| 	ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
 | |
| 	ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
 | |
| 	ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
 | |
| 
 | |
| 	ri.ino = cpu_to_je32(f->inocache->ino);
 | |
| 	ri.version = cpu_to_je32(++f->highest_version);
 | |
| 	ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
 | |
| 	ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
 | |
| 	ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
 | |
| 	ri.isize = cpu_to_je32(ilen);
 | |
| 	ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
 | |
| 	ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
 | |
| 	ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
 | |
| 	ri.offset = cpu_to_je32(0);
 | |
| 	ri.csize = cpu_to_je32(mdatalen);
 | |
| 	ri.dsize = cpu_to_je32(mdatalen);
 | |
| 	ri.compr = JFFS2_COMPR_NONE;
 | |
| 	ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
 | |
| 	ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
 | |
| 
 | |
| 	new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, ALLOC_GC);
 | |
| 
 | |
| 	if (IS_ERR(new_fn)) {
 | |
| 		printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
 | |
| 		ret = PTR_ERR(new_fn);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	jffs2_mark_node_obsolete(c, fn->raw);
 | |
| 	jffs2_free_full_dnode(fn);
 | |
| 	f->metadata = new_fn;
 | |
|  out:
 | |
| 	if (S_ISLNK(JFFS2_F_I_MODE(f)))
 | |
| 		kfree(mdata);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 | |
| 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
 | |
| {
 | |
| 	struct jffs2_full_dirent *new_fd;
 | |
| 	struct jffs2_raw_dirent rd;
 | |
| 	uint32_t alloclen;
 | |
| 	int ret;
 | |
| 
 | |
| 	rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
 | |
| 	rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
 | |
| 	rd.nsize = strlen(fd->name);
 | |
| 	rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
 | |
| 	rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
 | |
| 
 | |
| 	rd.pino = cpu_to_je32(f->inocache->ino);
 | |
| 	rd.version = cpu_to_je32(++f->highest_version);
 | |
| 	rd.ino = cpu_to_je32(fd->ino);
 | |
| 	/* If the times on this inode were set by explicit utime() they can be different,
 | |
| 	   so refrain from splatting them. */
 | |
| 	if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
 | |
| 		rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
 | |
| 	else
 | |
| 		rd.mctime = cpu_to_je32(0);
 | |
| 	rd.type = fd->type;
 | |
| 	rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
 | |
| 	rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
 | |
| 
 | |
| 	ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &alloclen,
 | |
| 				JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
 | |
| 	if (ret) {
 | |
| 		printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
 | |
| 		       sizeof(rd)+rd.nsize, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, ALLOC_GC);
 | |
| 
 | |
| 	if (IS_ERR(new_fd)) {
 | |
| 		printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
 | |
| 		return PTR_ERR(new_fd);
 | |
| 	}
 | |
| 	jffs2_add_fd_to_list(c, new_fd, &f->dents);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 | |
| 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
 | |
| {
 | |
| 	struct jffs2_full_dirent **fdp = &f->dents;
 | |
| 	int found = 0;
 | |
| 
 | |
| 	/* On a medium where we can't actually mark nodes obsolete
 | |
| 	   pernamently, such as NAND flash, we need to work out
 | |
| 	   whether this deletion dirent is still needed to actively
 | |
| 	   delete a 'real' dirent with the same name that's still
 | |
| 	   somewhere else on the flash. */
 | |
| 	if (!jffs2_can_mark_obsolete(c)) {
 | |
| 		struct jffs2_raw_dirent *rd;
 | |
| 		struct jffs2_raw_node_ref *raw;
 | |
| 		int ret;
 | |
| 		size_t retlen;
 | |
| 		int name_len = strlen(fd->name);
 | |
| 		uint32_t name_crc = crc32(0, fd->name, name_len);
 | |
| 		uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
 | |
| 
 | |
| 		rd = kmalloc(rawlen, GFP_KERNEL);
 | |
| 		if (!rd)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		/* Prevent the erase code from nicking the obsolete node refs while
 | |
| 		   we're looking at them. I really don't like this extra lock but
 | |
| 		   can't see any alternative. Suggestions on a postcard to... */
 | |
| 		mutex_lock(&c->erase_free_sem);
 | |
| 
 | |
| 		for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
 | |
| 
 | |
| 			cond_resched();
 | |
| 
 | |
| 			/* We only care about obsolete ones */
 | |
| 			if (!(ref_obsolete(raw)))
 | |
| 				continue;
 | |
| 
 | |
| 			/* Any dirent with the same name is going to have the same length... */
 | |
| 			if (ref_totlen(c, NULL, raw) != rawlen)
 | |
| 				continue;
 | |
| 
 | |
| 			/* Doesn't matter if there's one in the same erase block. We're going to
 | |
| 			   delete it too at the same time. */
 | |
| 			if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
 | |
| 				continue;
 | |
| 
 | |
| 			D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
 | |
| 
 | |
| 			/* This is an obsolete node belonging to the same directory, and it's of the right
 | |
| 			   length. We need to take a closer look...*/
 | |
| 			ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
 | |
| 			if (ret) {
 | |
| 				printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
 | |
| 				/* If we can't read it, we don't need to continue to obsolete it. Continue */
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (retlen != rawlen) {
 | |
| 				printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
 | |
| 				       retlen, rawlen, ref_offset(raw));
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
 | |
| 				continue;
 | |
| 
 | |
| 			/* If the name CRC doesn't match, skip */
 | |
| 			if (je32_to_cpu(rd->name_crc) != name_crc)
 | |
| 				continue;
 | |
| 
 | |
| 			/* If the name length doesn't match, or it's another deletion dirent, skip */
 | |
| 			if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
 | |
| 				continue;
 | |
| 
 | |
| 			/* OK, check the actual name now */
 | |
| 			if (memcmp(rd->name, fd->name, name_len))
 | |
| 				continue;
 | |
| 
 | |
| 			/* OK. The name really does match. There really is still an older node on
 | |
| 			   the flash which our deletion dirent obsoletes. So we have to write out
 | |
| 			   a new deletion dirent to replace it */
 | |
| 			mutex_unlock(&c->erase_free_sem);
 | |
| 
 | |
| 			D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
 | |
| 				  ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
 | |
| 			kfree(rd);
 | |
| 
 | |
| 			return jffs2_garbage_collect_dirent(c, jeb, f, fd);
 | |
| 		}
 | |
| 
 | |
| 		mutex_unlock(&c->erase_free_sem);
 | |
| 		kfree(rd);
 | |
| 	}
 | |
| 
 | |
| 	/* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
 | |
| 	   we should update the metadata node with those times accordingly */
 | |
| 
 | |
| 	/* No need for it any more. Just mark it obsolete and remove it from the list */
 | |
| 	while (*fdp) {
 | |
| 		if ((*fdp) == fd) {
 | |
| 			found = 1;
 | |
| 			*fdp = fd->next;
 | |
| 			break;
 | |
| 		}
 | |
| 		fdp = &(*fdp)->next;
 | |
| 	}
 | |
| 	if (!found) {
 | |
| 		printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
 | |
| 	}
 | |
| 	jffs2_mark_node_obsolete(c, fd->raw);
 | |
| 	jffs2_free_full_dirent(fd);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 | |
| 				      struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
 | |
| 				      uint32_t start, uint32_t end)
 | |
| {
 | |
| 	struct jffs2_raw_inode ri;
 | |
| 	struct jffs2_node_frag *frag;
 | |
| 	struct jffs2_full_dnode *new_fn;
 | |
| 	uint32_t alloclen, ilen;
 | |
| 	int ret;
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
 | |
| 		  f->inocache->ino, start, end));
 | |
| 
 | |
| 	memset(&ri, 0, sizeof(ri));
 | |
| 
 | |
| 	if(fn->frags > 1) {
 | |
| 		size_t readlen;
 | |
| 		uint32_t crc;
 | |
| 		/* It's partially obsoleted by a later write. So we have to
 | |
| 		   write it out again with the _same_ version as before */
 | |
| 		ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
 | |
| 		if (readlen != sizeof(ri) || ret) {
 | |
| 			printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
 | |
| 			goto fill;
 | |
| 		}
 | |
| 		if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
 | |
| 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
 | |
| 			       ref_offset(fn->raw),
 | |
| 			       je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
 | |
| 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
 | |
| 			       ref_offset(fn->raw),
 | |
| 			       je32_to_cpu(ri.totlen), sizeof(ri));
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		crc = crc32(0, &ri, sizeof(ri)-8);
 | |
| 		if (crc != je32_to_cpu(ri.node_crc)) {
 | |
| 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
 | |
| 			       ref_offset(fn->raw),
 | |
| 			       je32_to_cpu(ri.node_crc), crc);
 | |
| 			/* FIXME: We could possibly deal with this by writing new holes for each frag */
 | |
| 			printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
 | |
| 			       start, end, f->inocache->ino);
 | |
| 			goto fill;
 | |
| 		}
 | |
| 		if (ri.compr != JFFS2_COMPR_ZERO) {
 | |
| 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
 | |
| 			printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
 | |
| 			       start, end, f->inocache->ino);
 | |
| 			goto fill;
 | |
| 		}
 | |
| 	} else {
 | |
| 	fill:
 | |
| 		ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
 | |
| 		ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
 | |
| 		ri.totlen = cpu_to_je32(sizeof(ri));
 | |
| 		ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
 | |
| 
 | |
| 		ri.ino = cpu_to_je32(f->inocache->ino);
 | |
| 		ri.version = cpu_to_je32(++f->highest_version);
 | |
| 		ri.offset = cpu_to_je32(start);
 | |
| 		ri.dsize = cpu_to_je32(end - start);
 | |
| 		ri.csize = cpu_to_je32(0);
 | |
| 		ri.compr = JFFS2_COMPR_ZERO;
 | |
| 	}
 | |
| 
 | |
| 	frag = frag_last(&f->fragtree);
 | |
| 	if (frag)
 | |
| 		/* Fetch the inode length from the fragtree rather then
 | |
| 		 * from i_size since i_size may have not been updated yet */
 | |
| 		ilen = frag->ofs + frag->size;
 | |
| 	else
 | |
| 		ilen = JFFS2_F_I_SIZE(f);
 | |
| 
 | |
| 	ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
 | |
| 	ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
 | |
| 	ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
 | |
| 	ri.isize = cpu_to_je32(ilen);
 | |
| 	ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
 | |
| 	ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
 | |
| 	ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
 | |
| 	ri.data_crc = cpu_to_je32(0);
 | |
| 	ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
 | |
| 
 | |
| 	ret = jffs2_reserve_space_gc(c, sizeof(ri), &alloclen,
 | |
| 				     JFFS2_SUMMARY_INODE_SIZE);
 | |
| 	if (ret) {
 | |
| 		printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
 | |
| 		       sizeof(ri), ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_GC);
 | |
| 
 | |
| 	if (IS_ERR(new_fn)) {
 | |
| 		printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
 | |
| 		return PTR_ERR(new_fn);
 | |
| 	}
 | |
| 	if (je32_to_cpu(ri.version) == f->highest_version) {
 | |
| 		jffs2_add_full_dnode_to_inode(c, f, new_fn);
 | |
| 		if (f->metadata) {
 | |
| 			jffs2_mark_node_obsolete(c, f->metadata->raw);
 | |
| 			jffs2_free_full_dnode(f->metadata);
 | |
| 			f->metadata = NULL;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We should only get here in the case where the node we are
 | |
| 	 * replacing had more than one frag, so we kept the same version
 | |
| 	 * number as before. (Except in case of error -- see 'goto fill;'
 | |
| 	 * above.)
 | |
| 	 */
 | |
| 	D1(if(unlikely(fn->frags <= 1)) {
 | |
| 		printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
 | |
| 		       fn->frags, je32_to_cpu(ri.version), f->highest_version,
 | |
| 		       je32_to_cpu(ri.ino));
 | |
| 	});
 | |
| 
 | |
| 	/* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
 | |
| 	mark_ref_normal(new_fn->raw);
 | |
| 
 | |
| 	for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
 | |
| 	     frag; frag = frag_next(frag)) {
 | |
| 		if (frag->ofs > fn->size + fn->ofs)
 | |
| 			break;
 | |
| 		if (frag->node == fn) {
 | |
| 			frag->node = new_fn;
 | |
| 			new_fn->frags++;
 | |
| 			fn->frags--;
 | |
| 		}
 | |
| 	}
 | |
| 	if (fn->frags) {
 | |
| 		printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
 | |
| 		BUG();
 | |
| 	}
 | |
| 	if (!new_fn->frags) {
 | |
| 		printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	jffs2_mark_node_obsolete(c, fn->raw);
 | |
| 	jffs2_free_full_dnode(fn);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *orig_jeb,
 | |
| 				       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
 | |
| 				       uint32_t start, uint32_t end)
 | |
| {
 | |
| 	struct jffs2_full_dnode *new_fn;
 | |
| 	struct jffs2_raw_inode ri;
 | |
| 	uint32_t alloclen, offset, orig_end, orig_start;
 | |
| 	int ret = 0;
 | |
| 	unsigned char *comprbuf = NULL, *writebuf;
 | |
| 	unsigned long pg;
 | |
| 	unsigned char *pg_ptr;
 | |
| 
 | |
| 	memset(&ri, 0, sizeof(ri));
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
 | |
| 		  f->inocache->ino, start, end));
 | |
| 
 | |
| 	orig_end = end;
 | |
| 	orig_start = start;
 | |
| 
 | |
| 	if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
 | |
| 		/* Attempt to do some merging. But only expand to cover logically
 | |
| 		   adjacent frags if the block containing them is already considered
 | |
| 		   to be dirty. Otherwise we end up with GC just going round in
 | |
| 		   circles dirtying the nodes it already wrote out, especially
 | |
| 		   on NAND where we have small eraseblocks and hence a much higher
 | |
| 		   chance of nodes having to be split to cross boundaries. */
 | |
| 
 | |
| 		struct jffs2_node_frag *frag;
 | |
| 		uint32_t min, max;
 | |
| 
 | |
| 		min = start & ~(PAGE_CACHE_SIZE-1);
 | |
| 		max = min + PAGE_CACHE_SIZE;
 | |
| 
 | |
| 		frag = jffs2_lookup_node_frag(&f->fragtree, start);
 | |
| 
 | |
| 		/* BUG_ON(!frag) but that'll happen anyway... */
 | |
| 
 | |
| 		BUG_ON(frag->ofs != start);
 | |
| 
 | |
| 		/* First grow down... */
 | |
| 		while((frag = frag_prev(frag)) && frag->ofs >= min) {
 | |
| 
 | |
| 			/* If the previous frag doesn't even reach the beginning, there's
 | |
| 			   excessive fragmentation. Just merge. */
 | |
| 			if (frag->ofs > min) {
 | |
| 				D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
 | |
| 					  frag->ofs, frag->ofs+frag->size));
 | |
| 				start = frag->ofs;
 | |
| 				continue;
 | |
| 			}
 | |
| 			/* OK. This frag holds the first byte of the page. */
 | |
| 			if (!frag->node || !frag->node->raw) {
 | |
| 				D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
 | |
| 					  frag->ofs, frag->ofs+frag->size));
 | |
| 				break;
 | |
| 			} else {
 | |
| 
 | |
| 				/* OK, it's a frag which extends to the beginning of the page. Does it live
 | |
| 				   in a block which is still considered clean? If so, don't obsolete it.
 | |
| 				   If not, cover it anyway. */
 | |
| 
 | |
| 				struct jffs2_raw_node_ref *raw = frag->node->raw;
 | |
| 				struct jffs2_eraseblock *jeb;
 | |
| 
 | |
| 				jeb = &c->blocks[raw->flash_offset / c->sector_size];
 | |
| 
 | |
| 				if (jeb == c->gcblock) {
 | |
| 					D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
 | |
| 						  frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
 | |
| 					start = frag->ofs;
 | |
| 					break;
 | |
| 				}
 | |
| 				if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
 | |
| 					D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
 | |
| 						  frag->ofs, frag->ofs+frag->size, jeb->offset));
 | |
| 					break;
 | |
| 				}
 | |
| 
 | |
| 				D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
 | |
| 						  frag->ofs, frag->ofs+frag->size, jeb->offset));
 | |
| 				start = frag->ofs;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* ... then up */
 | |
| 
 | |
| 		/* Find last frag which is actually part of the node we're to GC. */
 | |
| 		frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
 | |
| 
 | |
| 		while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
 | |
| 
 | |
| 			/* If the previous frag doesn't even reach the beginning, there's lots
 | |
| 			   of fragmentation. Just merge. */
 | |
| 			if (frag->ofs+frag->size < max) {
 | |
| 				D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
 | |
| 					  frag->ofs, frag->ofs+frag->size));
 | |
| 				end = frag->ofs + frag->size;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (!frag->node || !frag->node->raw) {
 | |
| 				D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
 | |
| 					  frag->ofs, frag->ofs+frag->size));
 | |
| 				break;
 | |
| 			} else {
 | |
| 
 | |
| 				/* OK, it's a frag which extends to the beginning of the page. Does it live
 | |
| 				   in a block which is still considered clean? If so, don't obsolete it.
 | |
| 				   If not, cover it anyway. */
 | |
| 
 | |
| 				struct jffs2_raw_node_ref *raw = frag->node->raw;
 | |
| 				struct jffs2_eraseblock *jeb;
 | |
| 
 | |
| 				jeb = &c->blocks[raw->flash_offset / c->sector_size];
 | |
| 
 | |
| 				if (jeb == c->gcblock) {
 | |
| 					D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
 | |
| 						  frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
 | |
| 					end = frag->ofs + frag->size;
 | |
| 					break;
 | |
| 				}
 | |
| 				if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
 | |
| 					D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
 | |
| 						  frag->ofs, frag->ofs+frag->size, jeb->offset));
 | |
| 					break;
 | |
| 				}
 | |
| 
 | |
| 				D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
 | |
| 						  frag->ofs, frag->ofs+frag->size, jeb->offset));
 | |
| 				end = frag->ofs + frag->size;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
 | |
| 			  orig_start, orig_end, start, end));
 | |
| 
 | |
| 		D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
 | |
| 		BUG_ON(end < orig_end);
 | |
| 		BUG_ON(start > orig_start);
 | |
| 	}
 | |
| 
 | |
| 	/* First, use readpage() to read the appropriate page into the page cache */
 | |
| 	/* Q: What happens if we actually try to GC the _same_ page for which commit_write()
 | |
| 	 *    triggered garbage collection in the first place?
 | |
| 	 * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
 | |
| 	 *    page OK. We'll actually write it out again in commit_write, which is a little
 | |
| 	 *    suboptimal, but at least we're correct.
 | |
| 	 */
 | |
| 	pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
 | |
| 
 | |
| 	if (IS_ERR(pg_ptr)) {
 | |
| 		printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
 | |
| 		return PTR_ERR(pg_ptr);
 | |
| 	}
 | |
| 
 | |
| 	offset = start;
 | |
| 	while(offset < orig_end) {
 | |
| 		uint32_t datalen;
 | |
| 		uint32_t cdatalen;
 | |
| 		uint16_t comprtype = JFFS2_COMPR_NONE;
 | |
| 
 | |
| 		ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN,
 | |
| 					&alloclen, JFFS2_SUMMARY_INODE_SIZE);
 | |
| 
 | |
| 		if (ret) {
 | |
| 			printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
 | |
| 			       sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
 | |
| 			break;
 | |
| 		}
 | |
| 		cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
 | |
| 		datalen = end - offset;
 | |
| 
 | |
| 		writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
 | |
| 
 | |
| 		comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
 | |
| 
 | |
| 		ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
 | |
| 		ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
 | |
| 		ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
 | |
| 		ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
 | |
| 
 | |
| 		ri.ino = cpu_to_je32(f->inocache->ino);
 | |
| 		ri.version = cpu_to_je32(++f->highest_version);
 | |
| 		ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
 | |
| 		ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
 | |
| 		ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
 | |
| 		ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
 | |
| 		ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
 | |
| 		ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
 | |
| 		ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
 | |
| 		ri.offset = cpu_to_je32(offset);
 | |
| 		ri.csize = cpu_to_je32(cdatalen);
 | |
| 		ri.dsize = cpu_to_je32(datalen);
 | |
| 		ri.compr = comprtype & 0xff;
 | |
| 		ri.usercompr = (comprtype >> 8) & 0xff;
 | |
| 		ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
 | |
| 		ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
 | |
| 
 | |
| 		new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, ALLOC_GC);
 | |
| 
 | |
| 		jffs2_free_comprbuf(comprbuf, writebuf);
 | |
| 
 | |
| 		if (IS_ERR(new_fn)) {
 | |
| 			printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
 | |
| 			ret = PTR_ERR(new_fn);
 | |
| 			break;
 | |
| 		}
 | |
| 		ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
 | |
| 		offset += datalen;
 | |
| 		if (f->metadata) {
 | |
| 			jffs2_mark_node_obsolete(c, f->metadata->raw);
 | |
| 			jffs2_free_full_dnode(f->metadata);
 | |
| 			f->metadata = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	jffs2_gc_release_page(c, pg_ptr, &pg);
 | |
| 	return ret;
 | |
| }
 |