 21380931eb
			
		
	
	
	21380931eb
	
	
	
		
			
			Just happened to notice a bunch of %llu vs u64 warnings. Here's a patch to cast them all. Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
		
			
				
	
	
		
			720 lines
		
	
	
	
		
			19 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			720 lines
		
	
	
	
		
			19 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2008 Red Hat.  All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public
 | |
|  * License v2 as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public
 | |
|  * License along with this program; if not, write to the
 | |
|  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
|  * Boston, MA 021110-1307, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include "ctree.h"
 | |
| #include "free-space-cache.h"
 | |
| #include "transaction.h"
 | |
| 
 | |
| struct btrfs_free_space {
 | |
| 	struct rb_node bytes_index;
 | |
| 	struct rb_node offset_index;
 | |
| 	u64 offset;
 | |
| 	u64 bytes;
 | |
| };
 | |
| 
 | |
| static int tree_insert_offset(struct rb_root *root, u64 offset,
 | |
| 			      struct rb_node *node)
 | |
| {
 | |
| 	struct rb_node **p = &root->rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct btrfs_free_space *info;
 | |
| 
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
 | |
| 
 | |
| 		if (offset < info->offset)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else if (offset > info->offset)
 | |
| 			p = &(*p)->rb_right;
 | |
| 		else
 | |
| 			return -EEXIST;
 | |
| 	}
 | |
| 
 | |
| 	rb_link_node(node, parent, p);
 | |
| 	rb_insert_color(node, root);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int tree_insert_bytes(struct rb_root *root, u64 bytes,
 | |
| 			     struct rb_node *node)
 | |
| {
 | |
| 	struct rb_node **p = &root->rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct btrfs_free_space *info;
 | |
| 
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		info = rb_entry(parent, struct btrfs_free_space, bytes_index);
 | |
| 
 | |
| 		if (bytes < info->bytes)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else
 | |
| 			p = &(*p)->rb_right;
 | |
| 	}
 | |
| 
 | |
| 	rb_link_node(node, parent, p);
 | |
| 	rb_insert_color(node, root);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * searches the tree for the given offset.
 | |
|  *
 | |
|  * fuzzy == 1: this is used for allocations where we are given a hint of where
 | |
|  * to look for free space.  Because the hint may not be completely on an offset
 | |
|  * mark, or the hint may no longer point to free space we need to fudge our
 | |
|  * results a bit.  So we look for free space starting at or after offset with at
 | |
|  * least bytes size.  We prefer to find as close to the given offset as we can.
 | |
|  * Also if the offset is within a free space range, then we will return the free
 | |
|  * space that contains the given offset, which means we can return a free space
 | |
|  * chunk with an offset before the provided offset.
 | |
|  *
 | |
|  * fuzzy == 0: this is just a normal tree search.  Give us the free space that
 | |
|  * starts at the given offset which is at least bytes size, and if its not there
 | |
|  * return NULL.
 | |
|  */
 | |
| static struct btrfs_free_space *tree_search_offset(struct rb_root *root,
 | |
| 						   u64 offset, u64 bytes,
 | |
| 						   int fuzzy)
 | |
| {
 | |
| 	struct rb_node *n = root->rb_node;
 | |
| 	struct btrfs_free_space *entry, *ret = NULL;
 | |
| 
 | |
| 	while (n) {
 | |
| 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
 | |
| 
 | |
| 		if (offset < entry->offset) {
 | |
| 			if (fuzzy &&
 | |
| 			    (!ret || entry->offset < ret->offset) &&
 | |
| 			    (bytes <= entry->bytes))
 | |
| 				ret = entry;
 | |
| 			n = n->rb_left;
 | |
| 		} else if (offset > entry->offset) {
 | |
| 			if (fuzzy &&
 | |
| 			    (entry->offset + entry->bytes - 1) >= offset &&
 | |
| 			    bytes <= entry->bytes) {
 | |
| 				ret = entry;
 | |
| 				break;
 | |
| 			}
 | |
| 			n = n->rb_right;
 | |
| 		} else {
 | |
| 			if (bytes > entry->bytes) {
 | |
| 				n = n->rb_right;
 | |
| 				continue;
 | |
| 			}
 | |
| 			ret = entry;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * return a chunk at least bytes size, as close to offset that we can get.
 | |
|  */
 | |
| static struct btrfs_free_space *tree_search_bytes(struct rb_root *root,
 | |
| 						  u64 offset, u64 bytes)
 | |
| {
 | |
| 	struct rb_node *n = root->rb_node;
 | |
| 	struct btrfs_free_space *entry, *ret = NULL;
 | |
| 
 | |
| 	while (n) {
 | |
| 		entry = rb_entry(n, struct btrfs_free_space, bytes_index);
 | |
| 
 | |
| 		if (bytes < entry->bytes) {
 | |
| 			/*
 | |
| 			 * We prefer to get a hole size as close to the size we
 | |
| 			 * are asking for so we don't take small slivers out of
 | |
| 			 * huge holes, but we also want to get as close to the
 | |
| 			 * offset as possible so we don't have a whole lot of
 | |
| 			 * fragmentation.
 | |
| 			 */
 | |
| 			if (offset <= entry->offset) {
 | |
| 				if (!ret)
 | |
| 					ret = entry;
 | |
| 				else if (entry->bytes < ret->bytes)
 | |
| 					ret = entry;
 | |
| 				else if (entry->offset < ret->offset)
 | |
| 					ret = entry;
 | |
| 			}
 | |
| 			n = n->rb_left;
 | |
| 		} else if (bytes > entry->bytes) {
 | |
| 			n = n->rb_right;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Ok we may have multiple chunks of the wanted size,
 | |
| 			 * so we don't want to take the first one we find, we
 | |
| 			 * want to take the one closest to our given offset, so
 | |
| 			 * keep searching just in case theres a better match.
 | |
| 			 */
 | |
| 			n = n->rb_right;
 | |
| 			if (offset > entry->offset)
 | |
| 				continue;
 | |
| 			else if (!ret || entry->offset < ret->offset)
 | |
| 				ret = entry;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void unlink_free_space(struct btrfs_block_group_cache *block_group,
 | |
| 			      struct btrfs_free_space *info)
 | |
| {
 | |
| 	rb_erase(&info->offset_index, &block_group->free_space_offset);
 | |
| 	rb_erase(&info->bytes_index, &block_group->free_space_bytes);
 | |
| }
 | |
| 
 | |
| static int link_free_space(struct btrfs_block_group_cache *block_group,
 | |
| 			   struct btrfs_free_space *info)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 
 | |
| 	BUG_ON(!info->bytes);
 | |
| 	ret = tree_insert_offset(&block_group->free_space_offset, info->offset,
 | |
| 				 &info->offset_index);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = tree_insert_bytes(&block_group->free_space_bytes, info->bytes,
 | |
| 				&info->bytes_index);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
 | |
| 			 u64 offset, u64 bytes)
 | |
| {
 | |
| 	struct btrfs_free_space *right_info;
 | |
| 	struct btrfs_free_space *left_info;
 | |
| 	struct btrfs_free_space *info = NULL;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS);
 | |
| 	if (!info)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	info->offset = offset;
 | |
| 	info->bytes = bytes;
 | |
| 
 | |
| 	spin_lock(&block_group->tree_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * first we want to see if there is free space adjacent to the range we
 | |
| 	 * are adding, if there is remove that struct and add a new one to
 | |
| 	 * cover the entire range
 | |
| 	 */
 | |
| 	right_info = tree_search_offset(&block_group->free_space_offset,
 | |
| 					offset+bytes, 0, 0);
 | |
| 	left_info = tree_search_offset(&block_group->free_space_offset,
 | |
| 				       offset-1, 0, 1);
 | |
| 
 | |
| 	if (right_info) {
 | |
| 		unlink_free_space(block_group, right_info);
 | |
| 		info->bytes += right_info->bytes;
 | |
| 		kfree(right_info);
 | |
| 	}
 | |
| 
 | |
| 	if (left_info && left_info->offset + left_info->bytes == offset) {
 | |
| 		unlink_free_space(block_group, left_info);
 | |
| 		info->offset = left_info->offset;
 | |
| 		info->bytes += left_info->bytes;
 | |
| 		kfree(left_info);
 | |
| 	}
 | |
| 
 | |
| 	ret = link_free_space(block_group, info);
 | |
| 	if (ret)
 | |
| 		kfree(info);
 | |
| 
 | |
| 	spin_unlock(&block_group->tree_lock);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		printk(KERN_ERR "btrfs: unable to add free space :%d\n", ret);
 | |
| 		BUG_ON(ret == -EEXIST);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
 | |
| 			    u64 offset, u64 bytes)
 | |
| {
 | |
| 	struct btrfs_free_space *info;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	spin_lock(&block_group->tree_lock);
 | |
| 
 | |
| 	info = tree_search_offset(&block_group->free_space_offset, offset, 0,
 | |
| 				  1);
 | |
| 	if (info && info->offset == offset) {
 | |
| 		if (info->bytes < bytes) {
 | |
| 			printk(KERN_ERR "Found free space at %llu, size %llu,"
 | |
| 			       "trying to use %llu\n",
 | |
| 			       (unsigned long long)info->offset,
 | |
| 			       (unsigned long long)info->bytes,
 | |
| 			       (unsigned long long)bytes);
 | |
| 			WARN_ON(1);
 | |
| 			ret = -EINVAL;
 | |
| 			spin_unlock(&block_group->tree_lock);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		unlink_free_space(block_group, info);
 | |
| 
 | |
| 		if (info->bytes == bytes) {
 | |
| 			kfree(info);
 | |
| 			spin_unlock(&block_group->tree_lock);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		info->offset += bytes;
 | |
| 		info->bytes -= bytes;
 | |
| 
 | |
| 		ret = link_free_space(block_group, info);
 | |
| 		spin_unlock(&block_group->tree_lock);
 | |
| 		BUG_ON(ret);
 | |
| 	} else if (info && info->offset < offset &&
 | |
| 		   info->offset + info->bytes >= offset + bytes) {
 | |
| 		u64 old_start = info->offset;
 | |
| 		/*
 | |
| 		 * we're freeing space in the middle of the info,
 | |
| 		 * this can happen during tree log replay
 | |
| 		 *
 | |
| 		 * first unlink the old info and then
 | |
| 		 * insert it again after the hole we're creating
 | |
| 		 */
 | |
| 		unlink_free_space(block_group, info);
 | |
| 		if (offset + bytes < info->offset + info->bytes) {
 | |
| 			u64 old_end = info->offset + info->bytes;
 | |
| 
 | |
| 			info->offset = offset + bytes;
 | |
| 			info->bytes = old_end - info->offset;
 | |
| 			ret = link_free_space(block_group, info);
 | |
| 			BUG_ON(ret);
 | |
| 		} else {
 | |
| 			/* the hole we're creating ends at the end
 | |
| 			 * of the info struct, just free the info
 | |
| 			 */
 | |
| 			kfree(info);
 | |
| 		}
 | |
| 		spin_unlock(&block_group->tree_lock);
 | |
| 		/* step two, insert a new info struct to cover anything
 | |
| 		 * before the hole
 | |
| 		 */
 | |
| 		ret = btrfs_add_free_space(block_group, old_start,
 | |
| 					   offset - old_start);
 | |
| 		BUG_ON(ret);
 | |
| 	} else {
 | |
| 		spin_unlock(&block_group->tree_lock);
 | |
| 		if (!info) {
 | |
| 			printk(KERN_ERR "couldn't find space %llu to free\n",
 | |
| 			       (unsigned long long)offset);
 | |
| 			printk(KERN_ERR "cached is %d, offset %llu bytes %llu\n",
 | |
| 			       block_group->cached,
 | |
| 			       (unsigned long long)block_group->key.objectid,
 | |
| 			       (unsigned long long)block_group->key.offset);
 | |
| 			btrfs_dump_free_space(block_group, bytes);
 | |
| 		} else if (info) {
 | |
| 			printk(KERN_ERR "hmm, found offset=%llu bytes=%llu, "
 | |
| 			       "but wanted offset=%llu bytes=%llu\n",
 | |
| 			       (unsigned long long)info->offset,
 | |
| 			       (unsigned long long)info->bytes,
 | |
| 			       (unsigned long long)offset,
 | |
| 			       (unsigned long long)bytes);
 | |
| 		}
 | |
| 		WARN_ON(1);
 | |
| 	}
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
 | |
| 			   u64 bytes)
 | |
| {
 | |
| 	struct btrfs_free_space *info;
 | |
| 	struct rb_node *n;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) {
 | |
| 		info = rb_entry(n, struct btrfs_free_space, offset_index);
 | |
| 		if (info->bytes >= bytes)
 | |
| 			count++;
 | |
| 		printk(KERN_ERR "entry offset %llu, bytes %llu\n",
 | |
| 		       (unsigned long long)info->offset,
 | |
| 		       (unsigned long long)info->bytes);
 | |
| 	}
 | |
| 	printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
 | |
| 	       "\n", count);
 | |
| }
 | |
| 
 | |
| u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group)
 | |
| {
 | |
| 	struct btrfs_free_space *info;
 | |
| 	struct rb_node *n;
 | |
| 	u64 ret = 0;
 | |
| 
 | |
| 	for (n = rb_first(&block_group->free_space_offset); n;
 | |
| 	     n = rb_next(n)) {
 | |
| 		info = rb_entry(n, struct btrfs_free_space, offset_index);
 | |
| 		ret += info->bytes;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * for a given cluster, put all of its extents back into the free
 | |
|  * space cache.  If the block group passed doesn't match the block group
 | |
|  * pointed to by the cluster, someone else raced in and freed the
 | |
|  * cluster already.  In that case, we just return without changing anything
 | |
|  */
 | |
| static int
 | |
| __btrfs_return_cluster_to_free_space(
 | |
| 			     struct btrfs_block_group_cache *block_group,
 | |
| 			     struct btrfs_free_cluster *cluster)
 | |
| {
 | |
| 	struct btrfs_free_space *entry;
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	spin_lock(&cluster->lock);
 | |
| 	if (cluster->block_group != block_group)
 | |
| 		goto out;
 | |
| 
 | |
| 	cluster->window_start = 0;
 | |
| 	node = rb_first(&cluster->root);
 | |
| 	while(node) {
 | |
| 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
 | |
| 		node = rb_next(&entry->offset_index);
 | |
| 		rb_erase(&entry->offset_index, &cluster->root);
 | |
| 		link_free_space(block_group, entry);
 | |
| 	}
 | |
| 	list_del_init(&cluster->block_group_list);
 | |
| 
 | |
| 	btrfs_put_block_group(cluster->block_group);
 | |
| 	cluster->block_group = NULL;
 | |
| 	cluster->root.rb_node = NULL;
 | |
| out:
 | |
| 	spin_unlock(&cluster->lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
 | |
| {
 | |
| 	struct btrfs_free_space *info;
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_free_cluster *cluster;
 | |
| 	struct btrfs_free_cluster *safe;
 | |
| 
 | |
| 	spin_lock(&block_group->tree_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(cluster, safe, &block_group->cluster_list,
 | |
| 				 block_group_list) {
 | |
| 
 | |
| 		WARN_ON(cluster->block_group != block_group);
 | |
| 		__btrfs_return_cluster_to_free_space(block_group, cluster);
 | |
| 	}
 | |
| 
 | |
| 	while ((node = rb_last(&block_group->free_space_bytes)) != NULL) {
 | |
| 		info = rb_entry(node, struct btrfs_free_space, bytes_index);
 | |
| 		unlink_free_space(block_group, info);
 | |
| 		kfree(info);
 | |
| 		if (need_resched()) {
 | |
| 			spin_unlock(&block_group->tree_lock);
 | |
| 			cond_resched();
 | |
| 			spin_lock(&block_group->tree_lock);
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&block_group->tree_lock);
 | |
| }
 | |
| 
 | |
| u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
 | |
| 			       u64 offset, u64 bytes, u64 empty_size)
 | |
| {
 | |
| 	struct btrfs_free_space *entry = NULL;
 | |
| 	u64 ret = 0;
 | |
| 
 | |
| 	spin_lock(&block_group->tree_lock);
 | |
| 	entry = tree_search_offset(&block_group->free_space_offset, offset,
 | |
| 				   bytes + empty_size, 1);
 | |
| 	if (!entry)
 | |
| 		entry = tree_search_bytes(&block_group->free_space_bytes,
 | |
| 					  offset, bytes + empty_size);
 | |
| 	if (entry) {
 | |
| 		unlink_free_space(block_group, entry);
 | |
| 		ret = entry->offset;
 | |
| 		entry->offset += bytes;
 | |
| 		entry->bytes -= bytes;
 | |
| 
 | |
| 		if (!entry->bytes)
 | |
| 			kfree(entry);
 | |
| 		else
 | |
| 			link_free_space(block_group, entry);
 | |
| 	}
 | |
| 	spin_unlock(&block_group->tree_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * given a cluster, put all of its extents back into the free space
 | |
|  * cache.  If a block group is passed, this function will only free
 | |
|  * a cluster that belongs to the passed block group.
 | |
|  *
 | |
|  * Otherwise, it'll get a reference on the block group pointed to by the
 | |
|  * cluster and remove the cluster from it.
 | |
|  */
 | |
| int btrfs_return_cluster_to_free_space(
 | |
| 			       struct btrfs_block_group_cache *block_group,
 | |
| 			       struct btrfs_free_cluster *cluster)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/* first, get a safe pointer to the block group */
 | |
| 	spin_lock(&cluster->lock);
 | |
| 	if (!block_group) {
 | |
| 		block_group = cluster->block_group;
 | |
| 		if (!block_group) {
 | |
| 			spin_unlock(&cluster->lock);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	} else if (cluster->block_group != block_group) {
 | |
| 		/* someone else has already freed it don't redo their work */
 | |
| 		spin_unlock(&cluster->lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	atomic_inc(&block_group->count);
 | |
| 	spin_unlock(&cluster->lock);
 | |
| 
 | |
| 	/* now return any extents the cluster had on it */
 | |
| 	spin_lock(&block_group->tree_lock);
 | |
| 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
 | |
| 	spin_unlock(&block_group->tree_lock);
 | |
| 
 | |
| 	/* finally drop our ref */
 | |
| 	btrfs_put_block_group(block_group);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * given a cluster, try to allocate 'bytes' from it, returns 0
 | |
|  * if it couldn't find anything suitably large, or a logical disk offset
 | |
|  * if things worked out
 | |
|  */
 | |
| u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
 | |
| 			     struct btrfs_free_cluster *cluster, u64 bytes,
 | |
| 			     u64 min_start)
 | |
| {
 | |
| 	struct btrfs_free_space *entry = NULL;
 | |
| 	struct rb_node *node;
 | |
| 	u64 ret = 0;
 | |
| 
 | |
| 	spin_lock(&cluster->lock);
 | |
| 	if (bytes > cluster->max_size)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (cluster->block_group != block_group)
 | |
| 		goto out;
 | |
| 
 | |
| 	node = rb_first(&cluster->root);
 | |
| 	if (!node)
 | |
| 		goto out;
 | |
| 
 | |
| 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
 | |
| 
 | |
| 	while(1) {
 | |
| 		if (entry->bytes < bytes || entry->offset < min_start) {
 | |
| 			struct rb_node *node;
 | |
| 
 | |
| 			node = rb_next(&entry->offset_index);
 | |
| 			if (!node)
 | |
| 				break;
 | |
| 			entry = rb_entry(node, struct btrfs_free_space,
 | |
| 					 offset_index);
 | |
| 			continue;
 | |
| 		}
 | |
| 		ret = entry->offset;
 | |
| 
 | |
| 		entry->offset += bytes;
 | |
| 		entry->bytes -= bytes;
 | |
| 
 | |
| 		if (entry->bytes == 0) {
 | |
| 			rb_erase(&entry->offset_index, &cluster->root);
 | |
| 			kfree(entry);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock(&cluster->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * here we try to find a cluster of blocks in a block group.  The goal
 | |
|  * is to find at least bytes free and up to empty_size + bytes free.
 | |
|  * We might not find them all in one contiguous area.
 | |
|  *
 | |
|  * returns zero and sets up cluster if things worked out, otherwise
 | |
|  * it returns -enospc
 | |
|  */
 | |
| int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
 | |
| 			     struct btrfs_block_group_cache *block_group,
 | |
| 			     struct btrfs_free_cluster *cluster,
 | |
| 			     u64 offset, u64 bytes, u64 empty_size)
 | |
| {
 | |
| 	struct btrfs_free_space *entry = NULL;
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_free_space *next;
 | |
| 	struct btrfs_free_space *last;
 | |
| 	u64 min_bytes;
 | |
| 	u64 window_start;
 | |
| 	u64 window_free;
 | |
| 	u64 max_extent = 0;
 | |
| 	int total_retries = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* for metadata, allow allocates with more holes */
 | |
| 	if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
 | |
| 		/*
 | |
| 		 * we want to do larger allocations when we are
 | |
| 		 * flushing out the delayed refs, it helps prevent
 | |
| 		 * making more work as we go along.
 | |
| 		 */
 | |
| 		if (trans->transaction->delayed_refs.flushing)
 | |
| 			min_bytes = max(bytes, (bytes + empty_size) >> 1);
 | |
| 		else
 | |
| 			min_bytes = max(bytes, (bytes + empty_size) >> 4);
 | |
| 	} else
 | |
| 		min_bytes = max(bytes, (bytes + empty_size) >> 2);
 | |
| 
 | |
| 	spin_lock(&block_group->tree_lock);
 | |
| 	spin_lock(&cluster->lock);
 | |
| 
 | |
| 	/* someone already found a cluster, hooray */
 | |
| 	if (cluster->block_group) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| again:
 | |
| 	min_bytes = min(min_bytes, bytes + empty_size);
 | |
| 	entry = tree_search_bytes(&block_group->free_space_bytes,
 | |
| 				  offset, min_bytes);
 | |
| 	if (!entry) {
 | |
| 		ret = -ENOSPC;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	window_start = entry->offset;
 | |
| 	window_free = entry->bytes;
 | |
| 	last = entry;
 | |
| 	max_extent = entry->bytes;
 | |
| 
 | |
| 	while(1) {
 | |
| 		/* out window is just right, lets fill it */
 | |
| 		if (window_free >= bytes + empty_size)
 | |
| 			break;
 | |
| 
 | |
| 		node = rb_next(&last->offset_index);
 | |
| 		if (!node) {
 | |
| 			ret = -ENOSPC;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		next = rb_entry(node, struct btrfs_free_space, offset_index);
 | |
| 
 | |
| 		/*
 | |
| 		 * we haven't filled the empty size and the window is
 | |
| 		 * very large.  reset and try again
 | |
| 		 */
 | |
| 		if (next->offset - window_start > (bytes + empty_size) * 2) {
 | |
| 			entry = next;
 | |
| 			window_start = entry->offset;
 | |
| 			window_free = entry->bytes;
 | |
| 			last = entry;
 | |
| 			max_extent = 0;
 | |
| 			total_retries++;
 | |
| 			if (total_retries % 256 == 0) {
 | |
| 				if (min_bytes >= (bytes + empty_size)) {
 | |
| 					ret = -ENOSPC;
 | |
| 					goto out;
 | |
| 				}
 | |
| 				/*
 | |
| 				 * grow our allocation a bit, we're not having
 | |
| 				 * much luck
 | |
| 				 */
 | |
| 				min_bytes *= 2;
 | |
| 				goto again;
 | |
| 			}
 | |
| 		} else {
 | |
| 			last = next;
 | |
| 			window_free += next->bytes;
 | |
| 			if (entry->bytes > max_extent)
 | |
| 				max_extent = entry->bytes;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cluster->window_start = entry->offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * now we've found our entries, pull them out of the free space
 | |
| 	 * cache and put them into the cluster rbtree
 | |
| 	 *
 | |
| 	 * The cluster includes an rbtree, but only uses the offset index
 | |
| 	 * of each free space cache entry.
 | |
| 	 */
 | |
| 	while(1) {
 | |
| 		node = rb_next(&entry->offset_index);
 | |
| 		unlink_free_space(block_group, entry);
 | |
| 		ret = tree_insert_offset(&cluster->root, entry->offset,
 | |
| 					 &entry->offset_index);
 | |
| 		BUG_ON(ret);
 | |
| 
 | |
| 		if (!node || entry == last)
 | |
| 			break;
 | |
| 
 | |
| 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
 | |
| 	}
 | |
| 	ret = 0;
 | |
| 	cluster->max_size = max_extent;
 | |
| 	atomic_inc(&block_group->count);
 | |
| 	list_add_tail(&cluster->block_group_list, &block_group->cluster_list);
 | |
| 	cluster->block_group = block_group;
 | |
| out:
 | |
| 	spin_unlock(&cluster->lock);
 | |
| 	spin_unlock(&block_group->tree_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * simple code to zero out a cluster
 | |
|  */
 | |
| void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
 | |
| {
 | |
| 	spin_lock_init(&cluster->lock);
 | |
| 	spin_lock_init(&cluster->refill_lock);
 | |
| 	cluster->root.rb_node = NULL;
 | |
| 	cluster->max_size = 0;
 | |
| 	INIT_LIST_HEAD(&cluster->block_group_list);
 | |
| 	cluster->block_group = NULL;
 | |
| }
 | |
| 
 |